
RealView® Real-Time Library
Revision: r3p1

RL-USB User Guide
Copyright © 2007 ARM Limited. All rights reserved.
ARM DUI 0374A

RealView Real-Time Library
RL-USB User Guide

Copyright © 2007 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited in the EU and
other countries, except as otherwise stated below in this proprietary notice. Other brands and names
mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Change History

Date Issue Confidentiality Change

18 June 2007 A Non-Confidential First release for RL-ARM r3p1
ii Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

Contents
RealView Real-Time Library RL-USB User
Guide

Preface
About this book .. vi
Feedback ... x

Chapter 1 RL-USB
1.1 Introduction ... 1-2
1.2 Overview ... 1-3
1.3 Example Applications .. 1-7
1.4 Creating New USB Applications .. 1-18
1.5 Configuration Parameters ... 1-34
1.6 Source Files .. 1-44
1.7 Functions .. 1-47
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. iii

Contents
iv Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

Preface

This preface introduces the RealView® Real-Time Library USB (RL-USB) software
stack and its user documentation. It contains the following sections:

• About this book on page vi

• Feedback on page x.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. v

Preface
About this book

This book provides user information for the RealView Real-Time Library USB software
stack. It describes how you can use the RL-USB software stack to add a USB interface
to your products. It also discusses the features and examples provided in the RL-USB
software.

Intended audience

RL-USB User Guide is aimed at all users of the RealView Real-Time Library
(RL-ARM™) who want to develop embedded software for USB devices. It is assumed
that users are C/C++ programmers who are familiar with RL-ARM, ARM® assembly
language, and ARM targeted development. Users do not require experience in
developing USB applications, but users must have basic familiarity with the standard
USB device framework. The user guide assumes that users use μVision®, RealView
compiler, and the RTX kernel to develop their USB applications.

Using this book

This book is organized into the following chapters:

Chapter 1 RL-USB

Read this chapter for information on the RealView Real-Time Library
USB software stack. It describes how you can configure it and interface
to it when you create new applications. It also describes the important
functions, which you can modify or use in your applications.

Product revision status

The rnpnvn identifier indicates the revision status of the product described in this
document, where:

rn Identifies the major revision of the product.

pn Identifies the minor revision or modification status of the product.

vn Identifies a version that does not affect the external functionality of the
product.

Typographical conventions

The following typographical conventions are used in this book:

italic Highlights important notes, introduces special terminology,
denotes internal cross-references, and citations.
vi Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

Preface
bold Highlights interface elements, such as menu names. Denotes
ARM processor signal names. Also used for terms in descriptive
lists, where appropriate.

monospace Denotes text that can be entered at the keyboard, such as
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or
option name.

monospace italic Denotes arguments to commands and functions where the
argument is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

Other conventions

This document uses other conventions. They are described in the following sections:

• Bytes, Halfwords, and Words

• Bits, bytes, K, and M.

Bytes, Halfwords, and Words

Byte Eight bits.

Halfword Two bytes (16 bits).

Word Four bytes (32 bits).

Quadword 16 contiguous bytes (128 bits).

Bits, bytes, K, and M

Suffix b Indicates bits.

Suffix B Indicates bytes.

Suffix K When used to indicate an amount of memory means 1024. When used to
indicate a frequency means 1000.

Suffix M When used to indicate an amount of memory means 10242 = 1 048 576.
When used to indicate a frequency means 1 000 000.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. vii

Preface
Further reading

This section lists publications from both ARM Limited and third parties that provide
additional information on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets, addenda, and the ARM Frequently Asked
Questions list. See http://www.keil.com for online manuals, knowledgebase articles,
and application notes.

ARM publications

This book contains information that is specific to the RL-USB software stack supplied
with the RealView Real-Time Library for ARM. See the RL-ARM User’s Guide for
information on the other components of the RealView Real-Time Library.

Other publications

See the following for more information to help you develop USB applications using
RL-USB:

• http://www.keil.com

• http://www.usb.org provides the latest USB specifications:

— USB Specification, Revision 2.0, April 2000

— USB Device Class Definition for Audio Devices, March 1998

— USB Device Class Definition for Human Interface Devices (HID), June
2001

— USB Mass Storage Class Bulk-Only Transport, September 1999

— USB Mass Storage Class Specification Overview, June 2003

— USB HID Usage Tables, June 2001

— USB Device Class Definitions for Audio Data Formats, March 1998

— USB Device Class Definitions for Terminal Types, March 1998.

• http://www.t10.org provides the specifications for SCSI storage interfaces:

— INCITS, SCSI Primary Commands - 3 (SPC-3), May 2005

— INCITS, SCSI Block Commands - 2 (SBC-2), November 2004

— INCITS, Reduced Block Commands (RBC), August 1999.

• http://www.lvr.com
viii Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

Preface
• Axelson, J., USB Complete: Everything You Need to Develop Custom USB
Peripherals (third edition, 2005). Lakeview Research, Madison, WI, USA, ISBN
1-931448-02-7.

• Anderson, D. and Dzatko, D., Universal Serial Bus System Architecture (second
edition, 2001). Addison-Wesley, Boston, MA, USA, ISBN 0-201309-75-0.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. ix

Preface
Feedback

ARM Limited welcomes feedback on both the RL-USB and its documentation.

Feedback on the RL-USB

If you have any problems with the RL-USB software stack, please contact your supplier.
To help us provide a rapid and useful response, please give:

• details of the release you are using, including the version number

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• sample output illustrating the problem.

Feedback on this book

If you have any comments on this book, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.
x Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

Chapter 1
RL-USB

This chapter provides user information for the RealView® Real-Time Library USB
(RL-USB) software stack. It describes how to use the RL-USB software stack to add a
USB interface to your products. It also discusses the features and examples provided in
the RL-USB software. It contains:

• Introduction on page 1-2

• Overview on page 1-3

• Example Applications on page 1-7

• Creating New USB Applications on page 1-18

• Configuration Parameters on page 1-34

• Source Files on page 1-44

• Functions on page 1-47.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-1

RL-USB
1.1 Introduction

Universal Serial Bus (USB) is a serial communication interface between a host and a
peripheral device. USB has become very popular because it is expandable,
hot-pluggable, and low cost. Almost all peripheral device manufacturers therefore
provide a USB interface on their devices to communicate with a host, which in most
cases is a Personal Computer.

To use USB communication between a host computer and a device, both the host and
the device must implement a USB controller software stack. The USB Specification
specifies the requirements of the USB host controller software and the USB device
controller software. Creating a USB host controller software stack or a USB device
controller software stack requires significant work because of the complexity of the
USB standard.

RL-USB is a USB device interface that provides a ready-to-use USB device controller
software stack. It reduces the work you require to add USB communication to your
existing or new ARM®-based products, such as keyboards, digital cameras, and MP3
players. This makes it easy for your applications to perform powerful communication
with the computer using USB. The RL-USB stack consists of hardware drivers, USB
core functionality, and USB class specific functions, which you can easily configure and
interface to from your applications.

Note
 RL-USB provides the USB device controller software stack, which the peripheral
device must use. It does not provide the USB host controller software stack, which the
host computer must use.

RL-USB is available in the stand-alone product RealView Real-Time Library
(RL-ARM™), which also contains the RTX kernel (including source code), Flash File
System, TCP/IP stack, and CAN drivers. RL-USB requires the RTX kernel to function.
You can use RL-USB in your application together with the other components of
RL-ARM. To use RL-USB, you must have RealView Microcontroller Development Kit
(MDK-ARM™) version 3 running on a Windows 2000 or later operating system. You
can then use RL-USB in the applications you develop using μVision®.

Note
 The RealView Microcontroller Development Kit from Keil® does not include RL-USB.
1-2 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
1.2 Overview

This section gives an overview of how the RL-USB software stack functions as a USB
device controller. It contains:

• Features

• Contents of RL-USB on page 1-4

• Software stack overview on page 1-5

• Using RL-USB on page 1-6.

1.2.1 Features

The RL-USB software stack enables you to develop applications that have the following
features:

• complies with the USB 2.0 Specification (Hi-Speed USB)

• successfully completes USB-IF Compliance Testing Program

• works with USB 1.1 and Hi-Speed USB systems and peripherals

• works with standard USB host controller drivers on Windows 2000 and later
operating systems

• high-speed (480 Mb/s) capable on certain supported USB controllers

• full-speed (12 Mb/s) and low-speed (1.5 Mb/s) capable on all supported USB
controllers

• supports control, interrupt, bulk, and isochronous endpoints

• supports various device classes:

— Human Interface Device (HID)

— Audio Device

— Mass Storage Device

• supports composite USB devices

• supports DMA mode data transfer

• works with the RL-RTX real-time operating system

• supports various USB device controllers:

— LPC214x family

— LPC23xx family

— STR75x family

— STR91x family
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-3

RL-USB
— AT91SAM7S family.

1.2.2 Contents of RL-USB

RL-USB is a USB device interface that you can use to easily and quickly add USB
communication to your applications. It contains the source code of several example
applications for each of the supported microcontrollers:

• LPC214x family

• LPC23xx family

• STR75x family

• STR91x family

• AT91SAM7S family.

All examples are μVision applications, and you can build them using μVision (see
Example Applications on page 1-7 for the folder structure). Each application
implements a USB device controller software stack, consisting of the related drivers
(see Software stack overview on page 1-5), which you can use in your own applications
(see Creating New USB Applications on page 1-18).

For each of the supported USB controllers, RL-USB provides one or more of the
following example applications. Each application demonstrates the use of a different
endpoint and transfer type:

RTX_Audio This is an Audio device application. It demonstrates the use of
isochronous endpoints and different kinds of audio interfaces.

RTX_HID This is a Human Interface Device application. It demonstrates the
use of control and interrupt endpoints. It also shows how to use
Report descriptors.

RTX_Memory This is a mass storage device example. It demonstrates the use of
bulk endpoints for transferring a large volume of data between a
computer and the device.

RTX_Mouse This is a mouse application based on the Human Interface Device
class. It demonstrates the use of control and interrupt endpoints. It
also shows how to use Report descriptors.

RL-USB also provides a host side application for the RTX_HID example. This
application is called HID_Client.exe and is present in
\ARM\Utilities\HID_Client1\Release in the Real-Time Library installation folder. The
source code is present in \ARM\Utilities\HID_Client1.
1-4 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
1.2.3 Software stack overview

Figure 1-1 on page 1-6 shows the RL-USB software stack layers:

• Device controller driver

• USB core driver

• Function driver.

The device controller driver is a hardware dependent layer. This layer is the interface
between the USB controller hardware and the USB core driver. The most important
function in the device controller driver is the interrupt service routine (USB_ISR), which
serves the USB interrupt generated by the USB controller. When the USB controller
hardware receives a data packet from the host or when the host requests data from the
device, the USB_ISR interrupt receives the requests. The interrupt function analyzes what
the interrupt is for and sends the appropriate event to the appropriate endpoint task (in
the USB core driver layer). The device controller driver also contains routines to read
and write to the USB controller’s hardware buffer (see Functions on page 1-47).

The USB core driver layer is a hardware independent layer. This layer contains the
functions that implement the USB requests sent by the host. This layer is an interface
between the device controller driver layer and the function driver layer. The most
important function in this layer is the USB_EndPoint0 task. This function analyses all the
requests sent to endpoint 0, such as the setup packets. This layer contains a separate task
for every endpoint that your application needs.

The function driver layer is also a hardware independent layer. This layer contains USB
class-specific functions. Therefore, the functions in this layer depends on the
application of your device. RL-USB provides function drivers for a number of classes:

• Audio device

• Human Interface Device (HID)

• Mass storage device (MSC).
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-5

RL-USB
Figure 1-1 RL-USB software stack

1.2.4 Using RL-USB

RL-USB is easy to use if your application belongs to one of the supported USB classes
and if you use one of the supported USB controllers. You must first determine which
USB controller and USB class you want to use. Find the corresponding example in the
installed folder (see Example Applications on page 1-7), and open it in μVision. You
must then copy and modify the example source code to suit the requirements of your
application. The Configuration Wizard makes it easy to make modifications and
configure your application. See Creating New USB Applications on page 1-18 for more
detail.
1-6 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
1.3 Example Applications

This section provides a list of all the examples in RL-USB, which demonstrate how to
interface to RL-USB in your applications. It describes how to run and test the various
example applications. It contains:

• List of examples

• Running an audio example on page 1-8

• Running an HID example on page 1-11

• Running a mass storage device example on page 1-14.

1.3.1 List of examples

Each example in RL-USB is provided in the form of source code and is contained within
a separate folder. The folder also contains the μVision project files. Therefore you can
quickly and easily build and test the examples.

Table 1-1 lists the different types of examples present in RL-USB.

Table 1-1 Types of examples

Example Description

RTX_Audio This example demonstrates how to implement USB communication
for an audio device. The application configures the evaluation board
as a sound card, which you can connect to a computer using a USB
cable.

RTX_HID This example demonstrates how to implement USB communication
for an HID device. The application enables you to control the LEDs
of the evaluation board using an application that runs on the
computer.

RTX_Memory This example demonstrates how to implement USB communication
for a mass storage device. The application configures the evaluation
board as a storage device to which you can copy files from the
computer.

RTX_Mouse This example demonstrates how to implement USB communication
for a computer mouse device. The application configures the
evaluation board as a mouse that you can connect to the computer.
You can use the switches on the evaluation board to simulate the
mouse movement and clicks.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-7

RL-USB
RL-USB provides examples for each of the supported ARM-based USB controllers.
Table 1-2 shows the supported USB controllers, their source code location, and the
example applications they contain.

1.3.2 Running an audio example

This section describes how to build and run the audio example application on the
MCB2140 evaluation board. It contains:

• Hardware requirements

• Building and running the example on page 1-9.

Hardware requirements

To test this example, you require:

• an MCB2140 evaluation board from Keil

• a ULINK® USB to JTAG adapter from Keil

• a standard USB cable (A-plug to B-plug).

Table 1-2 Folder structure

Controller Folder Examples

LPC214x \ARM\Boards\Keil\MCB2140\RL\USB RTX_HID, RTX_Memory, and
RTX_Audio for the MCB2140™
evaluation board.

LPC23xx \ARM\Boards\Keil\MCB2300\RL\USB RTX_HID, RTX_Memory, and
RTX_Audio for the MCB2300™
evaluation board.

STR75x \ARM\Boards\Keil\MCBSTR750\RL\USB RTX_HID and RTX_Memory for
the MCBSTR750™ evaluation
board.

STR91x \ARM\Boards\Keil\MCBSTR9\RL\USB RTX_HID and RTX_Memory for
the MCBSTR9™ evaluation board.

AT91SAM7S
xxx

\ARM\Boards\Atmel\AT91SAM7S-EK\RL

\USB

RTX_HID, RTX_Mouse, and
RTX_Memory for the
AT91SAM7S-EK™ evaluation
board.
1-8 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
Building and running the example

To build and run the example:

1. Open the Audio.Uv2 project in \ARM\Boards\Keil\MCB2140\RL\USB\RTX_Audio using
μVision.

2. Select Project → Build target from the menu bar to build the example. The build
creates an executable file in the folder
\ARM\Boards\Keil\MCB2140\RL\USB\RTX_Audio\Obj.

3. Ensure that the MCB2140 board is configured for the ULINK® USB to JTAG
adapter (see the MCB2140 User’s Guide for the jumper settings). Connect the
ULINK adapter to the JTAG connector on the MCB2140 evaluation board and to
your computer using the USB cable. Power the MCB2140 evaluation board by
connecting it to the host computer using another USB cable.

4. Select Flash → Download from the menu bar to download the executable file
into the flash device on the MCB2140 board. The board is now configured as a
sound card.

5. Disconnect the USB cable (power) from the evaluation board for 10 seconds.
Then reconnect the USB cable. Windows might show a "Found New Hardware"
message to indicate that it recognizes the audio device. It then automatically loads
the correct host driver.

6. You can check the status of this USB audio device in the Device Manager panel.
From the Control Panel, double click System. Select the Hardware tab. Then
select Device Manager. In the Sound, video and game controllers group (see
Figure 1-2 on page 1-10), double click USB Audio Device. This represents the
Keil MCB2140 speaker. Check that this device is enabled and working properly.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-9

RL-USB
Figure 1-2 USB audio device

7. Ensure that the Keil MCB2140 audio device is selected as the default playback
device. From the Control Panel, double click Sounds and Audio Devices. Select
the Audio tab. Ensure that Keil MCB2140 Speaker is selected as the default
Sound playback device (see Figure 1-3 on page 1-11).
1-10 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
Figure 1-3 Select Keil MCB2140 as the default playback device

8. You can now play any sound on the computer (for example using Windows Media
Player), and the Keil MCB2140 speaker produces the sound.

9. You can adjust the volume using the Speaker Volume Control in Windows. Select
start → All Programs → Accessories → Entertainment → Volume Control.

10. You can also control the volume using the POT1 potentiometer on the MCB2140
evaluation board. The LEDS on the evaluation board indicate the level of volume.

1.3.3 Running an HID example

This section describes how to build and run the Human Interface Device (HID) example
application on the MCBSTR9 evaluation board. It contains:

• Hardware requirements on page 1-8

• Building and running the example on page 1-9.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-11

RL-USB
Hardware requirements

To test this example, you require:

• an MCBSTR9 evaluation board from Keil

• a ULINK® USB to JTAG adapter from Keil

• a standard USB cable (A-plug to B-plug).

Building and running the example

To build and run the example:

1. Open the HID.Uv2 project in \ARM\Boards\Keil\MCBSTR9\RL\USB\RTX_HID using
μVision.

2. Select Project → Build target from the menu bar to build the example. The build
creates an executable file in the folder
\ARM\Boards\Keil\MCBSTR9\RL\USB\RTX_HID\Obj.

3. Ensure that the MCBSTR9 board is configured for the ULINK® USB to JTAG
adapter (see the MCBSTR9 User’s Guide for the jumper settings). Connect the
ULINK adapter to the JTAG connector on the MCBSTR9 evaluation board and to
your computer using the USB cable. Power the MCBSTR9 evaluation board by
connecting it to the host computer using another USB cable.

4. Select Flash → Download from the menu bar to download the executable file
into the flash device on the MCBSTR9 board.

5. Disconnect the USB cable (power) from the evaluation board for 10 seconds.
Then reconnect the USB cable. Windows might show a "Found New Hardware"
message to indicate that it recognizes the HID device. It then automatically loads
the correct host driver.

6. You can check the status of this USB HID device in the Device Manager panel.
From the Control Panel, double click System. Select the Hardware tab. Then
select Device Manager. In the Human Interface Devices group (see Figure 1-4
on page 1-13), double click USB Human Interface Device. This represents the
Keil MCBSTR9 evaluation board. Check that this device is enabled and working
properly.
1-12 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
Figure 1-4 USB human interface device

7. You can now start the HIDClient.exe application in the folder
\ARM\Utilities\HID_Client1\Release. In the HID Client application window,
select Keil MCBSTR9 HID from the device drop down menu. Figure 1-5 on
page 1-14 shows the HID client application.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-13

RL-USB
Figure 1-5 HID client application

8. Select the Outputs (LEDs) box 0 and check that the corresponding LED on the
board turns on. Press and hold the INT6 button on the board and check that the
Inputs (Buttons) box 1 is selected in the HID Client. You can control the state of
the LEDs using the HID Client. You can also use the HID client to read the state
of the buttons on the evaluation board.

1.3.4 Running a mass storage device example

This section describes how to build and run the mass storage device example application
on the MCB2140 evaluation board. It contains:

• Hardware requirements on page 1-8

• Building and running the example on page 1-9.

Hardware requirements

To test this example, you require:

• an MCB2140 evaluation board from Keil

• a ULINK® USB to JTAG adapter from Keil

• a standard USB cable (A-plug to B-plug).

Building and running the example

To build and run the example:

1. Open the Memory.Uv2 project in \ARM\Boards\Keil\MCB2140\RL\USB\RTX_Memory
using μVision.
1-14 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
2. Select Project → Build target from the menu bar to build the example. The build
creates an executable file in the folder
\ARM\Boards\Keil\MCB2140\RL\USB\RTX_Memory\Obj.

3. Ensure that the MCB2140 board is configured for the ULINK® USB to JTAG
adapter (see the MCB2140 User’s Guide for the jumper settings). Connect the
ULINK adapter to the JTAG connector on the MCB2140 evaluation board and to
your computer using the USB cable. Power the MCB2140 evaluation board by
connecting it to the host computer using another USB cable.

4. Select Flash → Download from the menu bar to download the executable file
into the flash device on the MCB2140 board.

5. Disconnect the USB cable (power) from the evaluation board for 10 seconds.
Then reconnect the USB cable. Windows might show a "Found New Hardware"
message to indicate that it recognizes the audio device. It then automatically loads
the correct host driver.

6. You can check the status of this USB mass storage device in the Device Manager
panel. From the Control Panel, double click System. Select the Hardware tab.
Then select Device Manager. In the Universal Serial Bus controllers group (see
Figure 1-6 on page 1-16), double click USB Mass Storage Device. This
represents the Keil MCB2140 board. Check that this device is enabled and
working properly.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-15

RL-USB
Figure 1-6 USB mass storage device

7. You can now open Windows File Explorer and find the removable disk named
LPC2148 USB.

8. Open the file README.TXT from the USB storage device. Modify this file and save
it back to the USB storage device using a different filename. You can transfer files
between the USB storage device and your host computer.

Note
 The MCB2140 board provides only 16 kB of storage space, which is part of the

LPC2148 microcontroller’s onboard RAM. Therefore it loses its contents if the
board loses power.
1-16 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
9. The LEDs on the MCB2140 board show the mass storage device activities:

• LED P1.16 turns on when the USB device is performing read access.

• LED P1.17 turns on when the USB device is performing write access.

• LED P1.22 turns on when the USB device is configured.

• LED P1.23 turns on when the USB device is suspended.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-17

RL-USB
1.4 Creating New USB Applications

This section describes the steps involved in adding the USB interface to your new or
existing applications. It describes the changes you must make to the RL-USB software
stack to integrate it safely into your application. It contains:

• Creating a new HID application

• Creating a new audio application on page 1-22

• Creating a new mass storage application on page 1-25

• Creating a new composite device application on page 1-28.

1.4.1 Creating a new HID application

This section describes the changes you must make to RL-USB to integrate it into an
HID application. It contains:

• Using the RL-USB HID template

• Adding an OUT pipe to an existing HID application on page 1-20.

Using the RL-USB HID template

You can use the HID template to create applications for mice, keyboards, or other
control devices. This section describes how to use one of the provided HID examples as
a template to add USB communication to your application:

1. RL-USB supports several USB controllers (see List of examples on page 1-7). In
the installed folder \ARM\Boards, identify the USB controller that your application
uses. You must use the HID example in this \ARM\Boards\…\…\RL\USB folder as a
template.

2. Copy all the source files (*.c and *.s) and header files (*.h) from the RTX_HID
example folder into your existing or new application folder. If you are creating a
new application, also copy the project file HID.Uv2 file from the example folder.

3. Open your project using μVision. If your application is an already existing
project, then add all the new *.c source files to your project using the Add Files
to Group option in μVision.

4. Now you can configure the RL-USB software stack as required by your
application (see Configuration Parameters on page 1-34). For example in
usbcfg.h:

• enable the events you want to handle (you must provide the event handling
code in usbuser.c)

• ensure that the define USB_HID is set to 1.
1-18 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
5. The RL-USB HID example has a simple function which requires it to send and
receive one byte of data (representing LEDs and buttons) from the host computer.
You can modify it to suit the requirements of your application (see the USB
Device Class Definition for Human Interface Devices (HID) specification for
more information):

• If your application has to send or receive more data, or if your application
has to represent the data differently, you must modify:

— usbdesc.c (to modify the report descriptor, HID_ReportDescriptor, and
the endpoint’s wMaxPacketSize field of the configuration descriptor)

— demo.c (to enlarge the buffer InReport or OutReport, as required, to
store the largest data packet, wMaxPacketSize, of the endpoint you use)

— hiduser.c (to modify HID_GetReport and HID_SetReport to copy all the
data from the host or to write all the data to the endpoint 0 buffer
(EP0Buf), depending on the endpoint 0 maximum packet size).

• If you want to use an additional endpoint, you must modify:

— usbuser.c (to provide the appropriate USB_EndPoint<Number> function
to read or write to the endpoint buffer)

— usbcfg.h (to activate the necessary endpoints using the define
USB_EP_EVENT)

— usbdesc.c (to define the endpoint descriptor and modify the fields
bNumEndpoints and wTotalLength in the configuration descriptor).

You must also modify demo.c (SetOutReport and GetInReport functions) or provide
your own main application module to generate the data required by the host or to
use all the data from the host.

6. In the string descriptor (USB_StringDescriptor), in usbdesc.c, you can modify the
labels for:

• manufacturer name

• product name

• serial number of the product

• interface name.

If you change the length of any of these strings, then you must also modify the
corresponding bLength field, in the string descriptor, to show the new length.

7. In the configuration descriptor (USB_ConfigDescriptor), in usbdesc.c, you can
modify certain settings to suit your product:

• If your device is self powered, you must change the value of the field
bmAttributes to USB_CONFIG_SELF_POWERED|USB_CONFIG_POWERED_MASK. You
can also use |USB_CONFIG_REMOTE_WAKEUP if you want the host to control
when your device can use the remote wakeup feature.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-19

RL-USB
• You can modify the maximum power requirement (field bMaxPower).

• You must modify the index of the interface string (field iInterface) if you
modify the string descriptor (USB_StringDescriptor).

• You can optionally modify the country code (field bCountryCode).

See the USB Specification for more information on what each field in the
descriptor means and what requirements that imposes on your application.

8. In the device descriptor (USB_DeviceDescriptor), in usbdesc.c, you can modify
certain settings to suit your product:

• If you modify the string descriptor, you must also modify the indices of the
manufacturer name string (field iManufacturer), product name string (field
iProduct), and serial number string (field iSerialNumber).

• You can modify the vendor ID (field idVendor), product ID (field
idProduct), and device release number (field bcdDevice).

9. Select Project → Options for Target from the menu bar to display the build
options. In the Target tab of the build options, select RTX Kernel for the
Operating system. Build your application and run it on the target hardware (see
Running an HID example on page 1-11).

10. Windows 2000 and later versions provide USB host controller drivers that is
sufficient for applications that use the existing features of RL-USB. If Windows
does not support the functionality you add to RL-USB, then you must also
provide your own host controller driver. Also, depending on your application, you
might have to develop a host side application, using the Windows Driver
Development Kit, to communicate with your USB device.

Adding an OUT pipe to an existing HID application

The HID example in RL-USB uses endpoint 0 and endpoint 1. However, endpoint 1 only
implements the IN pipe. This means that it only transfers data from the device to the
host. This section describes the changes you must make to implement an OUT pipe
using endpoint 1 so that you can use endpoint 1 to transfer data from the host to the
device. You must make changes to the files usbdesc.c and usbuser.c from the provided
HID example application:

1. Open one of provided HID examples in μVision.

2. In the configuration descriptor (USB_ConfigDescriptor), in usbdesc.c, add a new
endpoint descriptor after the end of the existing endpoint descriptor. The new
endpoint descriptor describes the OUT pipe for endpoint 1.
1-20 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
const U8 USB_ConfigDescriptor[] =
{

… /* End of endpoint 1 IN pipe descriptor */
/* Begin endpoint 1, OUT pipe descriptor */
USB_ENDPOINT_DESC_SIZE, // bLength
USB_ENDPOINT_DESCRIPTOR_TYPE, // bDescriptorType
USB_ENDPOINT_OUT(1), // bEndpointAddress
USB_ENDPOINT_TYPE_INTERRUPT, // bmAttributes = interrupt transfer
WBVAL(0x0040), // wMaxPacketSize = 64 bytes
0x20, // bInterval = 32 ms
/* End of endpoint 1 OUT pipe descriptor */
/* Terminator */
0

}

3. In the configuration descriptor:

• increase the number of endpoints (field bNumEndpoints) to 0x02

• increase the total length of the configuration descriptor (field wTotalLength)
by USB_ENDPOINT_DESC_SIZE.
WBVAL(// wTotalLength

USB_CONFIGUARTION_DESC_SIZE +
USB_INTERFACE_DESC_SIZE +
HID_DESC_SIZE +
USB_ENDPOINT_DESC_SIZE * 2

),

4. Modify the USB_EndPoint1 function in usbuser.c to handle the event USB_EVT_OUT.

void USB_EndPoint1 (void) __task
{
U16 evt;
for (;;)
{
/* Wait for IN or OUT signal from the host */
os_evt_wait_or(USB_EVT_IN | USB_EVT_OUT, 0xFFFF);
evt = os_evt_get(); /* Get the current event */
if (evt = USB_EVT_IN)
{
/* Function to update or obtain the data (InReport) that needs to be

sent to the host */
GetInReport();
/* Write 1 byte to the endpoint IN pipe */
USB_WriteEP(0x81, &InReport, sizeof(InReport));

}
else /* evt = USB_EVT_OUT */
{
/* Read one byte from the endpoint OUT pipe */
USB_ReadEP (0x01, &OutReport);
/* Function to use the read data (OutReport) as needed by your
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-21

RL-USB
application. */
SetOutReport();

}
}

}

5. Build and run the application on the target board to verify that it works. See
Running an HID example on page 1-11 for more information.

1.4.2 Creating a new audio application

This section describes the changes you must make to RL-USB to integrate it into an
audio application. It contains:

• Using the RL-USB audio template.

Using the RL-USB audio template

You can use the audio template to create applications for speakers, microphones, or
other audio devices. This section describes how to use one of the provided audio
examples as a template to add USB communication to your audio application:

1. RL-USB supports several USB controllers (see List of examples on page 1-7). In
the installed folder \ARM\Boards, identify the USB controller that your application
uses. You must use the audio example in this \ARM\Boards\…\…\RL\USB folder as a
template.

2. Copy all the source files (*.c and *.s) and header files (*.h) from the RTX_Audio
example folder into your existing or new application folder. If you are creating a
new application, also copy the project file Audio.Uv2 file from the example folder.
If there is no audio example for your USB controller, then you can use the source
files from one of the other examples in the same USB controller folder. However,
you must copy the class dependent files from the audio example of another USB
controller:

• usbdesc.c

• adcuser.c

• usbuser.c

• demo.c

• usbdesc.h

• adcuser.h

• audio.h

• demo.h.

These source files might contain hardware dependent code, which you must
modify to suit your USB controller.
1-22 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
3. Open your project using μVision. If your application is an already existing
project, then add all the new *.c source files to your project using the Add Files
to Group option in μVision.

4. Now you can configure the RL-USB software stack as required by your
application (see Configuration Parameters on page 1-34). For example in
usbcfg.h:

• enable the events you want to handle (you must provide the event handling
code in usbuser.c)

• ensure that the define USB_AUDIO is set to 1.

5. The RL-USB audio example has a simple function which enables it to receive a
stream of audio data from the host and send it to a speaker. You can modify it for
your application’s requirements (see the USB Device Class Definition for Audio
Devices specification for more information):

a. If you want to use an additional AudioStreaming interface to stream
different audio data or format, either from the host to the device or from the
device to the host, you must modify:

• usbuser.c (to provide the appropriate USB_EndPoint<Number> function
and to handle the SOF event)

• usbcfg.h (to activate the necessary endpoints using the define
USB_EP_EVENT)

• usbdesc.c (to define the AudioStreaming descriptor and modify fields
bNumInterfaces and wTotalLength in the configuration descriptor).

Use the existing functionality in the files as a template for your
modifications. You must also modify demo.c or provide your main
application module.

b. If you want to extend the AudioControl interface with more units or
features, you must modify:

• adcuser.c (to handle the additional class specific requests in the
ADC_IF_SetRequest and ADC_IF_GetRequest functions)

• usbdesc.c (to define the interfaces for the additional units in the
configuration descriptor).

Use the existing functionality in the files as a template for your
modifications. You must also modify demo.c or provide your main
application module.

Note
 • The audio example in RL-USB provides one AudioControl interface

consisting of:

— Input Terminal

— Output Terminal
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-23

RL-USB
— Feature Unit consisting of mute and volume features.

• The AudioControl interface in the example is a collection of one
AudioStreaming interface. The AudioStreaming interface has a zero
bandwidth alternate setting and a general format (PCM) streaming
interface.

6. In the string descriptor (USB_StringDescriptor), in usbdesc.c, you can modify the
labels for:

• manufacturer name

• product name

• serial number of the product

• interface name.

If you change the length of any of these strings, then you must also modify the
corresponding bLength field, in the string descriptor, to show the new length.

7. In the configuration descriptor (USB_ConfigDescriptor), in usbdesc.c, you can
modify certain settings to suit your product:

• If your device is self powered, you must change the value of the field
bmAttributes to USB_CONFIG_SELF_POWERED|USB_CONFIG_POWERED_MASK. You
can also use |USB_CONFIG_REMOTE_WAKEUP if you want the host to control
when your device can use the remote wakeup feature.

• You can modify the maximum power requirement (field bMaxPower).

• You must modify the index of the interface string (field iInterface) if you
modify the string descriptor (USB_StringDescriptor).

See the USB Specification for more information on what each field in the
descriptor means and what requirements that imposes on your application.

8. In the device descriptor (USB_DeviceDescriptor), in usbdesc.c, you can modify
certain settings to suit your product:

• If you modify the string descriptor, you must also modify the indices of
manufacturer name string (field iManufacturer), product name string (field
iProduct), and serial number string (field iSerialNumber).

• You can modify the vendor ID (field idVendor), product ID (field
idProduct), and device release number (field bcdDevice).

9. Select Project → Options for Target from the menu bar to display the build
options. In the Target tab of the build options, select RTX Kernel for the
Operating system. Build your application and run it on the target hardware (see
Running an audio example on page 1-8).
1-24 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
10. Windows 2000 and later versions provide USB host controller drivers that is
sufficient for applications that use the existing features of RL-USB. If Windows
does not support the functionality you add to RL-USB, then you must also
provide your own host controller driver. Also, depending on your application, you
might have to develop a host side application, using the Windows Driver
Development Kit, to communicate with your USB device.

1.4.3 Creating a new mass storage application

This section describes the changes you must make to RL-USB to integrate it into a mass
storage application. It contains:

• Using the RL-USB MSC template.

Using the RL-USB MSC template

You can use the MSC template to create applications for USB sticks, cameras, or other
external storage devices. This section describes how to use one of the provided memory
examples as a template to add USB communication to your mass storage application:

1. RL-USB supports several USB controllers (see List of examples on page 1-7). In
the installed folder \ARM\Boards, identify the USB controller that your application
uses. You must use the memory example in this \ARM\Boards\…\…\RL\USB folder as
a template.

2. Copy all the source files (*.c and *.s) and header files (*.h) from the
RTX_Memory example folder into your existing or new application folder. If you
are creating a new application, also copy the project file Memory.Uv2 file from the
example folder.

3. Open your project using μVision. If your application is an already existing
project, then add all the new *.c source files to your project using the Add Files
to Group option in μVision.

4. Now you can configure the RL-USB software stack as required by your
application (see Configuration Parameters on page 1-34). For example in
usbcfg.h:

• enable the events you want to handle (you must provide the event handling
code in usbuser.c)

• ensure that the define USB_MSC is set to 1.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-25

RL-USB
5. The RL-USB memory example has a simple function which enables you to
transfer files to and from the host computer and the device’s onboard RAM. You
can modify it for your application’s requirements (see the USB Mass Storage
Class Bulk-Only Transport specification for more information):

• If you want to add alternate interfaces or endpoints, you must modify:

— usbuser.c (to provide the appropriate USB_EndPoint<Number>
functions)

— usbcfg.h (to activate the necessary endpoints using the define
USB_EP_EVENT)

— usbdesc.c (to define the interface or endpoint descriptors and modify
the fields bNumInterfaces, bNumEndpoints and wTotalLength in the
configuration descriptor)

— mscuser.c (to obtain and use the data from the new endpoints as
needed).

Use the existing functionality in the files as a template for your
modifications. You must also modify memory.c or provide your main
application module.

• If you want to use a different mass storage medium (rather than the onboard
RAM), you must modify the functions MSC_MemoryRead, MSC_MemoryWrite,
and MSC_MemoryVerify in mscuser.c.

• Modify the function MSC_Inquiry in mscuser.c to show your vendor ID,
product ID, and product revision level.

• In mscuser.h, you can reduce the value of the define MSC_MAX_PACKET to a
lower power of 2 if you want to reduce RAM usage. Ensure that the same
value is used in the endpoint descriptors (field wMaxPacketSize), in the
configuration descriptor, in usbdesc.c.

• In mscuser.h, you must change the value of the define MSC_MemorySize to
show the number of bytes available in your mass storage medium.

Note
 The Windows default driver only supports the SCSI subclass for mass storage

applications. This supports flash drives and hard disk drives. If your application
uses a different storage medium, then you must change the subclass code (field
bInterfaceSubClass) in the configuration descriptor and provide the required
protocol commands in mscuser.c. You must also provide your own USB host
controller driver in this case.

6. In the string descriptor (USB_StringDescriptor), in usbdesc.c, you can modify the
labels for:

• manufacturer name

• product name
1-26 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
• serial number of the product

• interface name.

If you change the length of either of these strings, then you must also modify the
corresponding bLength field, in the string descriptor, to show the new length.

7. In the configuration descriptor (USB_ConfigDescriptor), in usbdesc.c, you can
modify certain settings to suit your product:

• If your device is self powered, you must change the value of the field
bmAttributes to USB_CONFIG_SELF_POWERED|USB_CONFIG_POWERED_MASK. You
can also use |USB_CONFIG_REMOTE_WAKEUP if you want the host to control
when your device can use the remote wakeup feature.

• You can modify the maximum power requirement (field bMaxPower).

• You must modify the index of the interface string (field iInterface) if you
modify the string descriptor (USB_StringDescriptor).

See the USB Specification for more information on what each field in the
descriptor means and what requirements that imposes on your application.

8. In the device descriptor (USB_DeviceDescriptor), in usbdesc.c, you can modify
certain settings to suit your product:

• If you modify the string descriptor, you must also modify the indices of
manufacturer name string (field iManufacturer), product name string (field
iProduct), and serial number string (field iSerialNumber).

• You can modify the vendor ID (field idVendor), product ID (field
idProduct), and device release number (field bcdDevice).

9. Select Project → Options for Target from the menu bar to display the build
options. In the Target tab of the build options, select RTX Kernel for the
Operating system. Build your application and run it on the target hardware (see
Running a mass storage device example on page 1-14).

10. Windows 2000 and later versions provide USB host controller drivers that is
sufficient for applications that use the existing features of RL-USB. If Windows
does not support the functionality you add to RL-USB, then you must also
provide your own host controller driver. Also, depending on your application, you
might have to develop a host side application, using the Windows Driver
Development Kit, to communicate with your USB device.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-27

RL-USB
1.4.4 Creating a new composite device application

This section describes the how to create a composite device application that uses the
HID, audio, and mass storage classes in one configuration. You can use this approach
to create a device using any combination of the classes:

1. RL-USB supports several USB controllers (see List of examples on page 1-7). In
the installed folder \ARM\Boards, identify the USB controller that your application
uses. You must use the examples in this \ARM\Boards\…\…\RL\USB folder as the
templates.

2. Copy all the source files (*.c and *.s) and header files (*.h) from the RTX_HID,
RTX_Audio, and RTX_Memory example folders into your existing or new
application folder. You can overwrite the files that have the same name. If there is
no audio example for your USB controller, then you must copy the audio class
dependent files from the audio example of another USB controller (see Using the
RL-USB audio template on page 1-22).

3. Using a prefix to identify the files, copy and rename the files demo.c, demo.h,
usbuser.c, usbdesc.c, and usbdesc.h from each class into your application folder.
For example copy the file usbdesc.c from the RTX_HID example and rename it
to hid_usbdesc.c in your application folder.

4. Merge the unique contents of the different prefix_usbdesc.h files into a single file
called usbdesc.h

5. Rename one of the prefix_usbdesc.c files to usbdesc.c. From the remaining
prefix_usbdesc.c files, copy the unique section of code representing the
interfaces and endpoints in the configuration descriptor (USB_ConfigDescriptor),
and paste the contents one after the other at the end of the configuration
descriptor, in usbdesc.c, before the null terminator field. For example in the
RTX_Memory example’s usbdesc.c file, the interface and endpoint descriptors
that you must copy are located between the field bMaxPower and the null
terminator:

/* Interface 0, Alternate Setting 0, MSC Class */
USB_INTERFACE_DESC_SIZE, /* bLength */
USB_INTERFACE_DESCRIPTOR_TYPE, /* bDescriptorType */
0x00, /* bInterfaceNumber */
0x00, /* bAlternateSetting */
0x02, /* bNumEndpoints */
USB_DEVICE_CLASS_STORAGE, /* bInterfaceClass */
MSC_SUBCLASS_SCSI, /* bInterfaceSubClass */
MSC_PROTOCOL_BULK_ONLY, /* bInterfaceProtocol */
0x62, /* iInterface */
/* Bulk In Endpoint */
USB_ENDPOINT_DESC_SIZE, /* bLength */
USB_ENDPOINT_DESCRIPTOR_TYPE, /* bDescriptorType */
1-28 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
USB_ENDPOINT_IN(2), /* bEndpointAddress */
USB_ENDPOINT_TYPE_BULK, /* bmAttributes */
WBVAL(MSC_MAX_PACKET), /* wMaxPacketSize */
0, /* bInterval */
/* Bulk Out Endpoint */
USB_ENDPOINT_DESC_SIZE, /* bLength */
USB_ENDPOINT_DESCRIPTOR_TYPE, /* bDescriptorType */
USB_ENDPOINT_OUT(2), /* bEndpointAddress */
USB_ENDPOINT_TYPE_BULK, /* bmAttributes */
WBVAL(MSC_MAX_PACKET), /* wMaxPacketSize */
0, /* bInterval */

Ensure you include the files audio.h, msc.h, and hid.h using #include in
usbdesc.c. You can delete the other prefix_usbdesc.c and prefix_usbdesc.h files.

6. You must modify the configuration descriptor (USB_ConfigDescriptor) in
usbdesc.c:

• Give each interface a unique interface number (field bInterfaceNumber)
starting from 0.

• Change the field bNumInterfaces to correspond to the number of interfaces
in the application. In this example, there are 4 interfaces:

— HID interface

— AudioControl interface

— AudioStreaming interface

— Mass storage interface.

• Modify the field wTotalLength to reflect the total length of the configuration
descriptor. In this example, set the value to:
WBVAL(/* wTotalLength */
USB_CONFIGUARTION_DESC_SIZE +
USB_INTERFACE_DESC_SIZE +
AUDIO_CONTROL_INTERFACE_DESC_SZ(1) +
AUDIO_INPUT_TERMINAL_DESC_SIZE +
AUDIO_FEATURE_UNIT_DESC_SZ(1,1) +
AUDIO_OUTPUT_TERMINAL_DESC_SIZE +
USB_INTERFACE_DESC_SIZE +
USB_INTERFACE_DESC_SIZE +
AUDIO_STREAMING_INTERFACE_DESC_SIZE +
AUDIO_FORMAT_TYPE_I_DESC_SZ(1) +
AUDIO_STANDARD_ENDPOINT_DESC_SIZE +
AUDIO_STREAMING_ENDPOINT_DESC_SIZE +
1*USB_INTERFACE_DESC_SIZE +
2*USB_ENDPOINT_DESC_SIZE +
USB_INTERFACE_DESC_SIZE +
HID_DESC_SIZE +
USB_ENDPOINT_DESC_SIZE
)

ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-29

RL-USB
See the USB Specification for more information on the descriptors.

7. Now you can configure the RL-USB software stack as required by your
application using the Configuration Wizard (see Configuration Parameters on
page 1-34). For example in usbcfg.h:

• Enable the events you want to handle (you must provide the event handling
code in usbuser.c)

• Ensure that the defines USB_HID, USB_AUDIO, and USB_MSC are set to 1.

• Ensure that the define USB_IF_NUM supports the number of interfaces in the
application. In this example, ensure that the value is 4 or more.

• Activate the necessary endpoints using the define USB_EP_EVENT. In this
example, set the value to 0x000F because the example composite device uses
the first 4 endpoints.

• Assign unique values to the defines that number the interfaces. Ensure that
this value matches with the interface number (field bInterfaceNumber) you
give in the configuration descriptor (usbdesc.c). For example:
#define USB_HID_IF_NUM 0
#define USB_MSC_IF_NUM 1
#define USB_ADC_CIF_NUM 2
#define USB_ADC_SIF1_NUM 3
#define USB_ADC_SIF2_NUM 4

To avoid a clash in endpoint numbers, each of the individual examples uses a
different endpoint number for its interface. Therefore you do not have to change
the endpoint numbers in the configuration descriptor.

8. Rename one of the prefix_usbuser.c files to usbuser.c. In the file usbuser.c, you
must provide the functions to handle:

• endpoint events

• USB device events

• USB core events.

You can copy these functions from the remaining prefix_usbuser.c files. In
particular, copy:

• function USB_EndPoint1 from RTX_HID example’s usbuser.c

• function USB_EndPoint2 from RTX_Memory example’s usbuser.c

• function USB_EndPoint3 from RTX_Audio example’s usbuser.c

• handling of the event USB_EVT_SOF (function USB_Device) from RTX_Audio
example’s usbuser.c.
1-30 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
You can provide your own code to handle the other device and core events (see
Configuration Parameters on page 1-34). Ensure that usbuser.c includes the file
mscuser.h using #include. When you have copied the necessary code sections into
usbuser.c, you can delete the remaining prefix_usbuser.c files.

9. Merge memory.c and both prefix_demo.c files to create a single main application
file called demo.c:

• Rename one of the prefix_demo.c files to demo.c.

• Copy the unique contents from the second prefix_demo.c and memory.c files
to demo.c. This includes unique global variables and functions.

• Merge the unique contents from the functions demo (RTX_Audio and
RTX_HID examples) and memory (RTX_memory example).

You can now delete the files prefix_demo.c and memory.c.

10. Merge the unique contents of the application header files memory.h and both
prefix_demo.h to create a single main application header file with the name
demo.h. Ensure that this header file is included in usbuser.c and in the main
application file demo.c. You can now delete the files memory.h and prefix_demo.h.

Note
 Do not include memory.h in the files usbuser.c and demo.c.

11. You now have the complete set of source files in your application folder. Create a
new application in μVision or open your existing project using μVision. Then add
all the new *.c source files to your project using the Add Files to Group option
in μVision (see Figure 1-7 on page 1-32).
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-31

RL-USB
Figure 1-7 Add source files for composite device

12. In the string descriptor (USB_StringDescriptor), in usbdesc.c, you can modify the
labels for:

• manufacturer name

• product name

• serial number of the product

• interface name.

If you change the length of any of these strings, then you must also modify the
corresponding bLength field, in the string descriptor, to show the new length.
1-32 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
13. In the configuration descriptor (USB_ConfigDescriptor), in usbdesc.c, you can
modify certain settings to suit your product:

• If your device is self powered, you must change the value of the field
bmAttributes to USB_CONFIG_SELF_POWERED|USB_CONFIG_POWERED_MASK. You
can also use |USB_CONFIG_REMOTE_WAKEUP if you want the host to control
when your device can use the remote wakeup feature.

• You can modify the maximum power requirement (field bMaxPower).

• You must modify the index of the interface string (field iInterface) if you
modify the string descriptor (USB_StringDescriptor).

See the USB Specification for more information on what each field in the
descriptor means and what requirements that imposes on your application.

14. In the device descriptor (USB_DeviceDescriptor), in usbdesc.c, you can modify
certain settings to suit your product:

• If you modify the string descriptor, you must also modify the indices of
manufacturer name string (field iManufacturer), product name string (field
iProduct), and serial number string (field iSerialNumber).

• You can modify the vendor ID (field idVendor), product ID (field
idProduct), and device release number (field bcdDevice).

15. Select Project → Options for Target from the menu bar to display the build
options. In the Target tab of the build options, select RTX Kernel for the
Operating system. Build your application and run it on the target hardware (see
Running a mass storage device example on page 1-14).

16. Windows 2000 and later versions provide USB host controller drivers that is
sufficient for applications that use the existing features of RL-USB. If Windows
does not support the functionality you add to RL-USB, then you must also
provide your own host controller driver. Also, depending on your application, you
might have to develop a host side application, using the Windows Driver
Development Kit, to communicate with your USB device.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-33

RL-USB
1.5 Configuration Parameters

This section describes how to configure RL-USB for your product. It contains:

• Using the Configuration Wizard

• USB Configuration on page 1-35

• USB Event Handlers on page 1-38

• USB Class Support on page 1-41.

1.5.1 Using the Configuration Wizard

μVision provides an easy-to-use interface to configure the RL-USB for your product
requirements. This is called the Configuration Wizard interface, and you can use it to
configure all the parameters present in the configuration file usbcfg.h. To access the
Configuration Wizard, open the usbcfg.h file in μVision, and then click on the
Configuration Wizard tab. Figure 1-8 on page 1-35 shows the Configuration Wizard
interface. In the Configuration Wizard interface, you can select the events you want to
use in your application, and you can set the values of the other defines that are present
in usbcfg.h.

The configurable parameters in the Configuration Wizard are categorized into:

• USB Configuration on page 1-35

This contains product, application, and controller specific configuration.

• USB Event Handlers on page 1-38

This enables you to select the events that your application requires notification
about.

• USB Class Support on page 1-41

This makes it easy for you to enable class specific code so that your application
can use one or more of the HID, audio, and mass storage classes.
1-34 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
Figure 1-8 RL-USB Configuration Wizard

1.5.2 USB Configuration

The USB configuration category enables you to configure your product or application’s
general USB requirements. Some of the parameters are only available for certain USB
controllers. This section contains:

• Application configuration on page 1-36

• Configuration for LPC controllers from NXP on page 1-37

• Configuration for STR controllers from ST Microelectronics on page 1-37.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-35

RL-USB
Application configuration

The general USB configuration parameters are:

• USB Power

Use the USB Power parameter to specify whether your product is self powered
or USB bus powered. This parameter corresponds to the define USB_POWER in
usbcfg.h.

define USB_POWER 0 // The device is bus powered.

• Max Number of Interfaces

Use the Max Number of Interfaces parameter to specify the maximum number
of interfaces that your application uses. Specifying a maximum limit for the
number of interfaces enables RL-USB to optimize the RAM space. This
parameter corresponds to the define USB_IF_NUM in usbcfg.h.

define USB_IF_NUM 4 // The application can use up to 4 interfaces.

• Max Number of Endpoints

Use the Max Number of Endpoints parameter to specify the maximum number
of endpoints that your application uses. Specifying a maximum limit for the
number of endpoints enables RL-USB to optimize the RAM space. This
parameter corresponds to the define USB_EP_NUM in usbcfg.h.

Note
 Your USB controller hardware might impose restrictions on the number of

endpoints you can use.

define USB_EP_NUM 32 // The application can use up to 32 endpoints.

• Max Endpoint 0 Packet Size

Use the Max Endpoint 0 Packet Size parameter to specify the maximum packet
size that endpoint 0 can handle. This parameter corresponds to the define
USB_MAX_PACKET0 in usbcfg.h.

define USB_MAX_PACKET0 64 // The maximum packet size for endpoint 0 is
64.

Note
 You cannot use RL-USB to configure the speed (low speed, full speed, or high speed)
of your device. You must configure this using the board hardware. See the USB
Specification for more information.
1-36 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
Configuration for LPC controllers from NXP

The LPC214x and LPC23xx USB controllers provide additional configurable features:

• DMA Transfer

Use the DMA Transfer parameter to enable or disable Dynamic Memory Access
(DMA) transfer for one or more endpoint. If you do not use DMA mode, RL-USB
can save code space by not compiling in the DMA specific code. This parameter
corresponds to the define USB_DMA in usbcfg.h.

define USB_DMA 0 // The application does not use DMA mode.

• Endpoint 0 Out

Endpoint 0 In

…

Endpoint 15 Out

Endpoint 15 In

After you enable DMA Transfer, use the Endpoint <n> Out and Endpoint <n>
In parameters to enable the endpoints that you want to use DMA Transfer for.
For example, enabling Endpoint 1 Out configures the USB controller to use
DMA mode for OUT transfers on endpoint 1 if DMA Transfer is enabled. These
parameters correspond to the bit fields of the define USB_DMA_EP in usbcfg.h.

Note
 The USB controller might restrict which endpoints can use the DMA mode.

define USB_DMA_EP 0x0000000C // Endpoints 1 OUT and 1 IN use DMA mode.

Configuration for STR controllers from ST Microelectronics

The STR75x and STR91x USB controllers provide additional configurable features:

• USB_DBL_BUF_EP

Use the bit fields of the define USB_DBL_BUF_EP, in usbcfg.h, to specify which
endpoints use the double buffer feature. A value of 1 configures it to use a double
buffer. A value of 0 configures it to use a single buffer. The bit position denotes
the endpoint number.

Note
 This parameter is not present in the Configuration Wizard.

define USB_DBL_BUF_EP 0x0000 // None of the endpoints use double buffer.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-37

RL-USB
1.5.3 USB Event Handlers

The USB Event Handlers category enables you to configure which USB events your
application is notified about. You can enable event notification by selecting the event in
the Configuration Wizard. If you enable an event, then RL-USB notifies your
application when the event occurs. The events are categorized into:

• Device Events

• Endpoint Events on page 1-39

• USB Core Events on page 1-40.

Note
 The device events and core events in the Configuration Wizard have a corresponding
define in usbcfg.h, which you can use to enable or disable the event. A value of 1
enables the event, and a value of 0 disables the event.

Device Events

The device events signal a change to the device state. If the event is enabled, then when
the event occurs, the main interrupt service routine sends the event to the USB_Device
task. To use the event, you must enable it, and then write your own code in the
USB_Device task to perform the function that your application requires (see USB_Device
on page 1-57). The device events are:

• Power Event

The power event occurs either when the 5 V power supply from USB bus is
disconnected or connected. The power on event flag is USB_EVT_POWER_ON. The
power off event flag is USB_EVT_POWER_OFF. You can enable or disable this event
using the define USB_POWER_EVENT in usbcfg.h.

define USB_POWER_EVENT 0 // Power event is disabled.

• Reset Event

The reset event occurs when the USB controller receives a USB reset (bus reset)
signal from the host computer. The reset event flag is USB_EVT_RESET. You can
enable or disable this event using the define USB_RESET_EVENT in usbcfg.h.

define USB_RESET_EVENT 1 // Reset event is enabled.

• Suspend Event

The suspend event occurs when there has been no activity on the USB bus for 3
ms, which causes the device to go into power down mode. The suspend event flag
is USB_EVT_SUSPEND. You can enable or disable this event using the define
USB_SUSPEND_EVENT in usbcfg.h.
1-38 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
define USB_SUSPEND_EVENT 1 // Suspend event is enabled.

• Resume Event

The resume event occurs when the USB controller leaves the suspend state and
becomes active again. This typically occurs when the host sends a resume signal
or when any other activity occurs on the USB bus. The resume event flag is
USB_EVT_RESUME. You can enable or disable this event using the define
USB_RESUME_EVENT in usbcfg.h.

define USB_RESUME_EVENT 1 // Resume event is enabled.

• Remote Wakeup Event

The remote wakeup event occurs when the device resumes activity from the
suspended state by itself. The remote wakeup event flag is USB_EVT_WAKEUP. You
can enable or disable this event using the define USB_WAKEUP_EVENT in usbcfg.h.

define USB_WAKEUP_EVENT 0 // Remote wakeup event is disabled.

• Start of Frame Event

The Start of Frame (SOF) event occurs when the USB controller receives a SOF
signal from the host computer. The SOF event flag is USB_EVT_SOF. You can enable
or disable this event using the define USB_SOF_EVENT in usbcfg.h.

define USB_SOF_EVENT 0 // Start of frame event is disabled.

• Error Event

The error event occurs when the USB controller detects an error on the USB bus.
The error event flag is USB_EVT_ERROR. You can enable or disable this event using
the define USB_ERROR_EVENT in usbcfg.h.

define USB_ERROR_EVENT 0 // Error event is disabled.

Endpoint Events

Endpoints are the crucial link between the host computer and your application. You can
use RL-USB to configure which endpoints your application uses. You can enable the
endpoint by selecting the appropriate Endpoint <n> Event in the Configuration
Wizard. When the host computer wants to send or receive data from an endpoint, the
corresponding endpoint event occurs.

Note
 • The USB controller hardware might restrict the number of endpoints you can use.

It might also restrict which endpoint you can use for which type of transfer (see
the hardware manual of your USB controller).
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-39

RL-USB
• Endpoint 0 is always enabled by default, and you must not disable it because all
setup communication occurs using endpoint 0.

For each endpoint you enable, RL-USB creates a separate endpoint task (named from
USB_EndPoint0 to USB_EndPoint15) in usbuser.c. In the endpoint task, you must provide
your code to handle one or more of the endpoint event flags:

• USB_EVT_OUT

 This event occurs when the host has sent some data to your application
using a specific endpoint. When this event occurs, you must read the
data from the USB controller hardware’s endpoint buffer.

• USB_EVT_IN

 This event occurs when the host wants to obtain some data from your
application using a specific endpoint. When this event occurs, you
must write the data into the USB controller hardware’s endpoint buffer.

You can also enable the endpoints your application requires by using the bit fields of the
define USB_EP_EVENT in usbcfg.h. A bit value of 1 enables the endpoint, and a bit value
of 0 disables the endpoint. The bit field position denotes the endpoint number (0 to 15).
After enabling the required endpoints, you can add your own code in the
USB_EndPoint<Number> function, in usbuser.c, to process the endpoint events as required
by your application. See USB_EndPoint<Number> on page 1-59 for more information.

Note
 • For each endpoint you enable, you must provide configuration information in the

form of an endpoint descriptor as part of the configuration descriptor in usbdesc.c.

• Each bit in the define USB_EP_EVENT represents a logical endpoint, which can
represent up to two physical endpoints (one for the IN direction and one for the
OUT direction). See the hardware manual to learn how the USB controller
numbers the physical endpoints for each logical endpoint.

define USB_EP_EVENT 0x0005 // Enable endpoints 0 and 2. Disable all other
endpoints.

USB Core Events

USB core events signal a change to the USB feature or configuration. If the event is
enabled, then when the event occurs, the USB_Endpoint0 function sends the event to the
USB_Core task. To use the event, you must enable it, and then write your own code in the
USB_Core task to perform the function that your application requires (see USB_Core on
page 1-58). The USB core events are:

• Set Configuration Event
1-40 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
The set configuration event occurs when the host computer changes the current
configuration of the USB device. The set configuration event flag is
USB_EVT_SET_CFG. You can enable or disable this event using the define
USB_CONFIGURE_EVENT in usbcfg.h.

define USB_CONFIGURE_EVENT 1 // Set configuration event is enabled.

• Set Interface Event

The set interface event occurs when the host computer changes the alternate
interface setting of any interface of the USB device. The set interface event flag
is USB_EVT_SET_IF. You can enable or disable this event using the define
USB_INTERFACE_EVENT in usbcfg.h.

define USB_INTERFACE_EVENT 0 // Set interface event is disabled.

• Set/Clear Feature Event

The set feature event occurs when the host computer sets or clears one of the USB
device features:

— Device Remote Wakeup

— Endpoint Halt.

The set feature event flag is USB_EVT_SET_FEATURE. The clear feature event flag is
USB_EVT_CLR_FEATURE. You can enable or disable this event using the define
USB_FEATURE_EVENT in usbcfg.h.

define USB_FEATURE_EVENT 0 // Set/clear feature event is disabled.

1.5.4 USB Class Support

The USB Class Support category contains parameters that make it easy for you to
enable and use one or more of the USB classes in your application.

You can enable support for a class, by selecting it in the Configuration Wizard. If you
enable support for a class, then RL-USB compiles in the required code. You can
therefore save code space by disabling the classes that your application does not need.
The class support parameters are:

• USB Class Support

Select the USB Class Support parameter if your application uses either of the
HID, Mass Storage or Audio classes. This parameter corresponds to the define
USB_CLASS in usbcfg.h.

define USB_CLASS 1 // The application uses standard USB classes.

• Human Interface Device (HID)
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-41

RL-USB
Select the Human Interface Device (HID) parameter if your application uses the
Human Interface Device class. This parameter corresponds to the define USB_HID
in usbcfg.h.

define USB_HID 0 // The application does not use the HID class.

• Mass Storage

Select the Mass Storage parameter if your application uses the Mass storage
device class. This parameter corresponds to the define USB_MSC in usbcfg.h.

define USB_MSC 0 // The application does not use the mass storage device
class.

• Audio Device

Select the Audio Device parameter if your application uses the audio device class.
This parameter corresponds to the define USB_AUDIO in usbcfg.h.

define USB_AUDIO 1 // The application uses the audio device class.

Each class you enable must also have a unique interface number, which you can
configure in the Configuration Wizard. The value of the interface number is irrelevant
if you do not enable the class that it applies to. The interface number parameters are:

• Interface Number (HID)

Use the Interface Number parameter (of the HID class) to specify the interface
number of the HID class as specified in the configuration descriptor. This
parameter corresponds to the define USB_HID_IF_NUM in usbcfg.h.

define USB_HID_IF_NUM 0 // The HID class interface number is 0.

• Interface Number (Mass Storage)

Use the Interface Number parameter (of the Mass Storage class) to specify the
interface number of the mass storage class as specified in the configuration
descriptor. This parameter corresponds to the define USB_MSC_IF_NUM in usbcfg.h.

define USB_MSC_IF_NUM 1 // The MSC interface number is 1.

• Control Interface Number

Use the Control Interface Number parameter to specify the interface number of
the audio control interface (of the Audio class) as specified in the configuration
descriptor. This parameter corresponds to the define USB_ADC_CIF_NUM in usbcfg.h.

define USB_ADC_CIF_NUM 0 // The audio control interface number is 0.

• Streaming Interface 1 Number
1-42 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
Use the Streaming Interface 1 Number parameter to specify the interface
number of the first audio streaming interface (of the Audio class) as specified in
the configuration descriptor. This parameter corresponds to the define
USB_ADC_SIF1_NUM in usbcfg.h.

define USB_ADC_SIF1_NUM 1 // The first audio streaming interface number
is 1.

• Streaming Interface 2 Number

Use the Streaming Interface 2 Number to specify the interface number of the
second audio streaming interface (of the Audio class) as specified in the
configuration descriptor. This parameter corresponds to the define
USB_ADC_SIF2_NUM in usbcfg.h.

define USB_ADC_SIF2_NUM 2 // The second audio streaming interface number
is 2.

Note
 The class support and interface number parameters in the Configuration Wizard have a
corresponding define in usbcfg.h. You can also enable support for a class by setting its
define value to 1. Setting it to 0 disables support for that class.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-43

RL-USB
1.6 Source Files

This section describes the source files that make up the RL-USB software stack. The
source files for the example applications are located in the folder
\ARM\Boards\VendorName\BoardName\RL\USB\ApplicationName where:

VendorName is the name of the microcontroller vendor or evaluation board vendor

BoardName is the name of the evaluation board

ApplicationName is the name of the example application.

See Example Applications on page 1-7 for the folder structure and examples. Table 1-3
describes all the source files provided with RL-USB.

Table 1-3 Source files in RL-USB

Filename Description Layer

usbhw.c Contains specific driver routines for the USB
controller hardware. This file is different for each
supported USB controller. There is no requirement
to modify this file.

device controller
driver

usbcore.c Implements endpoint 0 task and standard USB
requests. This is common to all USB controllers and
applications. There is no requirement to modify this
file.

USB core driver

usbdesc.c Contains the standard and class specific descriptors.
This file is different for each application because
each application uses different interfaces and
endpoint types. You can modify this file to suit your
application.

USB core driver

usbuser.c Contains endpoint tasks and processes USB events.
You can modify this file to control how your device
responds to various USB events or to implement a
new endpoint function.

USB core driver

adcuser.c Implements the audio class requests. Use this file
only if your application implements an audio class
interface. You can modify this file to suit your
application’s requirements.

Function driver

hiduser.c Implements the HID class requests. Use this file
only if your application implements an HID class
interface. You can modify this file to suit your
application’s requirements

Function driver
1-44 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
Table 1-4 describes all the header files provided with RL-USB.

diskimg.c Contains the initial disk image for the mass storage
class example application. Your application might
not require an initial disk image.

Application

mscuser.c Implements the mass storage class requests. Use this
file only if your application implements a mass
storage class interface. You can modify this file to
suit your application’s requirements.

Function driver

demo.c Implements an example application. This file is
different for the different applications. You can
modify this file or use this as a template for your own
application.

Application

memory.c Implements an example mass storage application.
You can modify this file or use this as a template for
your own application.

Application

mouse.c Implements an example mouse application. You can
modify this file or use this as a template for your own
application.

Application

Table 1-4 Header files in RL-USB

Filename Description Layer

usbhw.h Declares constants and function prototypes specific
to the USB controller hardware. This file is different
for each supported USB controller.

device controller
driver

usbreg.h Contains hardware specific constants. device controller
driver

usb.h Defines codes for the standard USB requests and
codes that you can use in the interface and endpoint
descriptors. It also defines the structures of the
various descriptors.

USB core driver

usbcfg.h Defines configuration parameters that you use to
select the type of interfaces in your device and the
events you want to handle in the application.

USB core driver

Table 1-3 Source files in RL-USB (continued)

Filename Description Layer
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-45

RL-USB
Note
 Some example applications might contain additional source files for LCD related or
other functionality.

usbcore.h Declares function prototypes and global variables of
the USB core driver.

USB core driver

usbdesc.h Declares the standard USB descriptors and defines
helper macros for the descriptors.

USB core driver

usbuser.h Defines endpoint events and device state events. USB core driver

audio.h Defines codes and constants that you can use to
define your audio class interfaces and endpoints.

Function driver

adcuser.h Declares function prototypes of the audio class
specific requests.

Function driver

hid.h Contains codes that you can use for the HID
interface and Report descriptors.

Function driver

hiduser.h Declares function prototypes of the HID class
specific requests.

Function driver

msc.h Contains codes that you can use for the mass storage
class interface descriptors.

Function driver

mscuser.h Declares function prototypes of the mas storage
class specific requests.

Function driver

demo.h Defines constants for your application. This is
different for each example application. You can use
this file as a template or modify it for your
application.

Application

memory.h Defines constants for the mass storage class example
application. You can use this file as a template or
modify it for your application.

Application

mouse.h Defines constants for the RTX_Mouse example
application. You can use this file as a template or
modify it for your application.

Application

Table 1-4 Header files in RL-USB (continued)

Filename Description Layer
1-46 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
1.7 Functions

This section describes the RL-USB functions that are important to understand so that
you can use RL-USB software stack in your own products. It contains:

• Function Overview

• USB_ISR on page 1-51

• USB_ReadEP on page 1-52

• USB_WriteEP on page 1-53

• USB_EndPoint0 on page 1-54

• USB_Init on page 1-55

• USB_Connect on page 1-56

• USB_Device on page 1-57

• USB_Core on page 1-58

• USB_EndPoint<Number> on page 1-59

• USB_TaskInit on page 1-60

• ADC_IF_GetRequest on page 1-61

• ADC_IF_SetRequest on page 1-62

• FIQ_Handler on page 1-63

• HID_GetReport on page 1-64

• HID_SetReport on page 1-65

• MSC_MemoryRead on page 1-67

• MSC_MemoryWrite on page 1-68

• MSC_MemoryVerify on page 1-69

• MSC_Inquiry on page 1-70.

1.7.1 Function Overview

The RL-USB functions are categorized into:

• Hardware layer functions on page 1-48

• USB core layer functions on page 1-48

• Startup functions on page 1-49

• User configurable functions on page 1-49

• Audio class functions on page 1-50

• HID class functions on page 1-50

• Mass storage class functions on page 1-51.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-47

RL-USB
Hardware layer functions

RL-USB provides hardware layer functions for each supported USB controller. You can
use these functions to interface to the USB controller hardware. Table 1-5 shows the
important hardware layer functions. Each function is described in more detail in the
subsequent sections.

USB core layer functions

RL-USB provides USB core layer functions, which are common to all USB controllers
and USB applications. Table 1-6 shows the important USB core layer functions. Each
function is described in more detail in the subsequent sections.

Table 1-5 Summary of hardware layer functions

Function name Description Page

USB_ISR The main USB interrupt service routine,
which sends events to the various USB
tasks.

page 1-51

USB_ReadEP Reads data from the USB controller’s
endpoint buffer into a local software buffer.

page 1-52

USB_WriteEP Writes data into the USB controller’s
endpoint buffer to send to the host computer.

page 1-53

Table 1-6 Summary of USB core functions

Function name Description Page

USB_EndPoint0 Handles all the requests to endpoint 0. page 1-54
1-48 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
Startup functions

The startup functions are hardware layer functions that you must call from your main
application to activate the USB hardware. Table 1-7 shows the startup functions. Each
function is described in more detail in the subsequent sections.

User configurable functions

RL-USB provides user configurable functions, which you can modify according to the
needs of your applications. Table 1-8 shows the important user configurable functions.
Each function is described in more detail in the subsequent sections.

Table 1-7 Summary of startup functions

Function name Description Page

USB_Init Initializes the USB device controller
hardware.

page 1-55

USB_Connect Enables the USB controller. page 1-56

Table 1-8 Summary of user configurable functions

Function name Description Page

USB_Device Handles the USB device events. page 1-57

USB_Core Handles the USB core events. page 1-58

USB_Endpoint<Number> Handles all data transfers to and from a
specific endpoint.

page 1-59

USB_TaskInit Creates all the USB tasks. page 1-60
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-49

RL-USB
Audio class functions

RL-USB provides functions that implement the audio class. You can use these functions
to develop your own audio class applications. Table 1-9 shows the important audio class
functions. Each function is described in more detail in the subsequent sections.

HID class functions

RL-USB provides functions that implement the HID class. You can use these functions
to develop your own HID class applications. Table 1-10 shows the important HID class
functions. Each function is described in more detail in the subsequent sections.

Table 1-9 Summary of audio class functions

Function name Description Page

ADC_IF_GetRequest Sends the value of the requested audio setup
parameter to the host.

page 1-61

ADC_IF_SetRequest Accepts the new value for one of the audio
setup parameters from the host.

page 1-62

FIQ_Handler Outputs the audio data to the speaker. page 1-63

Table 1-10 Summary of HID class functions

Function name Description Page

HID_GetReport Sends the requested report data to the host. page 1-64

HID_SetReport Obtains the report data from the host. page 1-65
1-50 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
Mass storage class functions

RL-USB provides functions that implement the mass storage class. You can use these
functions to develop your own mass storage class applications. Table 1-11 shows the
important mass storage class functions. Each function is described in more detail in the
subsequent sections.

1.7.2 USB_ISR

Sends USB events to the appropriate tasks.

Syntax

void USB_ISR (void)

Return

void The USB_ISR function does not return any value.

Include

The USB_ISR function is prototyped in usbhw.h.

Usage

The USB_ISR function receives all the USB requests from the controller hardware and
then sends the appropriate USB event to the corresponding task for processing. See
Configuration Parameters on page 1-34 to configure which events USB_ISR sends and
which events it ignores.

Table 1-11 Summary of mass storage class functions

Function name Description Page

MSC_MemoryRead Sends data from the onboard RAM to the
host.

page 1-67

MSC_MemoryWrite Copies data from the host to the onboard
RAM.

page 1-68

MSC_MemoryVerify Checks whether the data written to the
onboard RAM is the same as the data that
was sent by the host.

page 1-69

MSC_Inquiry Sends vendor ID, product ID and product
revision number to the host.

page 1-70
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-51

RL-USB
The USB_ISR function is part of the device controller layer of the RL-USB software
stack. There is no requirement to modify this function.

See also
• USB_Device on page 1-57

• USB_Core on page 1-58

• USB_EndPoint<Number> on page 1-59.

Example

There is no requirement to invoke USB_ISR because it is a continuously active interrupt
service routine.

1.7.3 USB_ReadEP

Reads data from the USB controller’s endpoint buffer.

Syntax

U32 USB_ReadEP(U32 EPNum, U8 *pData)

where:

EPNum Specifies the endpoint number and direction.

pData Pointer to the buffer to write the data into.

Return

U32 The USB_ReadEP function returns the number of bytes read from the
endpoint buffer.

Include

The USB_ReadEP function is prototyped in usbhw.h.

Usage

The USB_ReadEP function reads data from the USB controller’s endpoint buffer to the
local software buffer. The USB controller stores the data from the host in the endpoint
buffer. When new data is available, the USB_EndPoint<Number> function can call
USB_ReadEP to obtain the data. The argument EPNum contains the logical endpoint number
1-52 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
(0-15) in the first 4 bits, and the direction in bit 7. The direction bit is usually 0 because
0 denotes an OUT endpoint, which transfers data from the computer to the USB device.
pData is the pointer to the software buffer to store the data from the endpoint buffer.

The USB_ReadEP function is part of the device controller layer of the RL-USB software
stack. There is no requirement to modify this function.

See also
• USB_WriteEP.

Example

void MSC_BulkOut (void)
{

BulkLen = USB_ReadEP(MSC_EP_OUT, BulkBuf);
switch (BulkStage)
{

case MSC_BS_CBW:
MSC_GetCBW();
break;

…
}

}

1.7.4 USB_WriteEP

Writes data to the USB controller’s endpoint buffer.

Syntax

U32 USB_WriteEP(U32 EPNum, U8 *pData, U32 cnt)

where:

EPNum Specifies the endpoint number and direction.

pData Pointer to the buffer containing the data to write.

cnt Number of bytes to write.

Return

U32 The USB_WriteEP function returns the number of bytes written to the
endpoint buffer.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-53

RL-USB
Include

The USB_WriteEP function is prototyped in usbhw.h.

Usage

The USB_WriteEP function writes data into the USB controller’s endpoint buffer. The host
computer reads the data from the endpoint buffer when it wants to. When the host
computer requests new data, the USB_EndPoint<Number> function can call USB_WriteEP to
send the data. The argument EPNum contains the logical endpoint number (0-15) in the
first 4 bits, and the direction in bit 7. The direction bit is usually 1 because 1 denotes an
IN endpoint, which transfers data from the USB device to the host computer. pData is
the pointer to the software buffer that contains the data to send to the host. The argument
cnt specifies the number of bytes to write to the endpoint buffer.

The USB_WriteEP function is part of the device controller layer of the RL-USB software
stack. There is no requirement to modify this function.

See also
• USB_ReadEP on page 1-52.

Example

void USB_EndPoint1 (void) __task
{

for (;;)
{

os_evt_wait_or(USB_EVT_IN, 0xFFFF); /* Wait for USB_EVT_IN event */
GetInReport();
USB_WriteEP(0x81, &InReport, sizeof(InReport));

}
}

1.7.5 USB_EndPoint0

Handles all the requests to endpoint 0.

Syntax

void USB_EndPoint0 (void)

Return

void The USB_EndPoint0 function does not return any value.
1-54 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
Include

The USB_EndPoint0 function is prototyped in usbcore.h.

Usage

The USB_EndPoint0 function receives all the requests to the control endpoint 0 from the
main USB interrupt service routine (USB_ISR). This includes any standard and class
specific setup requests. This also includes any data transfer using endpoint 0.

The USB_EndPoint0 function is part of the USB core layer of the RL-USB software stack.
There is no requirement to modify this function.

See also
• USB_EndPoint<Number> on page 1-59.

Example

There is no requirement to invoke USB_EndPoint0 because it is a continuously running
task.

1.7.6 USB_Init

Initializes the USB device controller hardware.

Syntax

void USB_Init (void)

Return

void The USB_Init function does not return any value.

Include

The USB_Init function is prototyped in usbhw.h.

Usage

The USB_Init function initializes the USB device controller hardware (such as the USB
clock). It starts all the tasks and sets up the main USB interrupt service routine. You
must call the USB_Init function from your application before calling any other USB
function. The function does not initialize any non-USB hardware features.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-55

RL-USB
The USB_Init function is part of the device controller layer of the RL-USB software
stack. There is no requirement to modify this function because a customized function is
provided for each of the supported USB controllers.

See also

• USB_Connect

Example

#include “usbhw.h”
int main (void)
{

… // Initialize other hardware features
USB_Init(); // Initialize USB hardware
USB_Connect(__TRUE); // Enable the USB controller
…

}

1.7.7 USB_Connect

Enables the USB controller.

Syntax

void USB_Connect(BOOL Conn)

where:

Conn Specifies whether to enable or disable the USB controller.

Return

void The USB_Connect function does not return any value.

Include

The USB_Connect function is prototyped in usbhw.h.

Usage

The USB_Connect function can make the USB controller recognizable by the host, or it
can disconnect the USB controller from the host. You must call the USB_Connect
function, with Conn set to 1, from your application to ensure that the host can recognize
it.
1-56 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
Note
 For certain microcontrollers, it is not possible to use the USB_Connect function to
disconnect the USB controller from the host.

The USB_Connect function is part of the device controller layer of the RL-USB software
stack. There is no requirement to modify this function because a customized function is
provided for each of the supported USB controllers.

See also

• USB_Init on page 1-55.

Example

#include “usbhw.h”
int main (void)
{

… // Initialize other hardware features
USB_Init(); // Initialize USB hardware
USB_Connect(__TRUE); // Enable the USB controller
…

}

1.7.8 USB_Device

Handles the USB device events.

Syntax

int USB_Device(void)

Return

void The USB_Device function does not return any value.

Include

The USB_Device function is prototyped in usbuser.h.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-57

RL-USB
Usage

The USB_Device function handles the USB device events sent by the host (such as the
suspend event). The USB_Device function only handles the device events that you enable
in usbcfg.h or using the Configuration Wizard. See Configuration Parameters on
page 1-34 for a list of USB device events and how to enable them.

The USB_Device function is part of the USB core layer of the RL-USB software stack.
You can modify this function to provide your own special handling code for the USB
device events. USB_Device is a continuously running task.

See also

• USB_Core.

Example

#include “usbuser.h”
void USB_Device (void) __task
{

…
#if USB_SOF_EVENT

if (evt & USB_EVT_SOF) // Start of Frame event
{

// write your Start Of Frame event handling code here
}

#endif
…

}

1.7.9 USB_Core

Handles the USB core events.

Syntax

int USB_Core(void)

Return

void The USB_Core function does not return any value.

Include

The USB_Core function is prototyped in usbuser.h.
1-58 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
Usage

The USB_Core function handles the USB core events sent by the host (such as the set
interface event). The USB_Core function only handles the USB core events that you
enable in usbcfg.h or using the Configuration Wizard. See Configuration Parameters on
page 1-34 for a list of USB core events and how to enable them.

The USB_Core function is part of the USB core layer of the RL-USB software stack. You
can modify this function to provide your own special handling code for the USB core
events. USB_Core is a continuously running task.

See also

• USB_Device on page 1-57.

Example

#include “usbuser.h”
void USB_Core (void) __task
{

…
#if USB_INTERFACE_EVENT

if (evt & USB_EVT_SET_IF) // Set Interface event
{

// write your Set Interface event handling code here
}

#endif
…

}

1.7.10 USB_EndPoint<Number>

Handles all data transfer to and from a specific endpoint.

Syntax

void USB_EndPoint1 (void)

void USB_EndPoint2 (void)

…

void USB_EndPoint15 (void)

Return

void The USB_EndPoint<Number> function does not return any value.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-59

RL-USB
Include

The USB_EndPoint<Number> function is prototyped in usbuser.h.

Usage

The USB_EndPoint<Number> function handles all data transfer to and from the specific
endpoint denoted by Number. It receives the requests from the main USB interrupt
service routine (USB_ISR). Endpoints are the most important link between the host
computer and your application, and you can establish this link using the
USB_EndPoint<Number> functions. There is a separate USB_EndPoint<Number> function for
each of the endpoints from 1 to 15. RL-USB enables the function only if you enable the
appropriate endpoint in usbcfg.h or using the Configuration Wizard. You can enable any
of the USB_EndPoint<Number> function as needed by your application.

The USB_EndPoint<Number> function is part of the USB core layer of the RL-USB
software stack. You must modify or add to the USB_EndPoint<Number> function to suit the
needs of your application. When enabled, each USB_EndPoint<Number> function is a
continuously running task.

See also

• USB_EndPoint0 on page 1-54.

Example

#include “usbuser.h”
void USB_EndPoint1 (void) __task
{

for (;;)
{

os_evt_wait_or(USB_EVT_IN, 0xFFFF); // Wait for IN packet from host
GetInReport();
USB_WriteEP(0x81, &InReport, sizeof(InReport));

}
}

1.7.11 USB_TaskInit

Creates all the USB tasks.

Syntax

int USB_TaskInit(void)
1-60 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
Return

void The USB_TaskInit function does not return any value.

Include

The USB_TaskInit function is prototyped in usbuser.h.

Usage

The USB_TaskInit function creates all the USB event handling and endpoint tasks. It
only creates tasks for the endpoints that are enabled in usbcfg.h. See Configuration
Parameters on page 1-34 for how to enable the endpoints. The function gives a fixed
priority for the tasks. You can modify the priorities to suit your application’s
requirements.

The USB_TaskInit function is part of the USB core layer of the RL-USB software stack.
There is no requirement to modify this function.

See also

• USB_Device on page 1-57.

Example

#include “usbuser.h”
void USB_TaskInit (void)
{

…
#if (USB_EP_EVENT & (1 << 4))

// Create task for endpoint 4 with a priority of 2
USB_EPTask[4] = os_tsk_create(USB_EndPoint4, 2);

#endif
…

}

1.7.12 ADC_IF_GetRequest

Sends the value of the requested audio setup parameter to the host.

Syntax

BOOL ADC_IF_GetRequest(void)
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-61

RL-USB
Return

BOOL The ADC_IF_GetRequest function returns __TRUE if the host request is valid
and supported. Otherwise, it returns __FALSE.

Include

The ADC_IF_GetRequest function is prototyped in adcuser.h.

Usage

The ADC_IF_GetRequest function sends the value of the requested audio setup parameter
to the host. The supported parameters are maximum volume, minimum volume, current
volume, volume resolution, and mute.

The ADC_IF_GetRequest function is part of the function layer of the RL-USB software
stack. There is no requirement to modify this function.

See also

• ADC_IF_SetRequest.

Example

There is no requirement to invoke or modify the ADC_IF_GetRequest function.

1.7.13 ADC_IF_SetRequest

Accepts the new value for one of the audio setup parameters from the host.

Syntax

BOOL ADC_IF_SetRequest(void)

Return

BOOL The ADC_IF_SetRequest function returns __TRUE if the host request is valid
and supported. Otherwise, it returns __FALSE.

Include

The ADC_IF_SetRequest function is prototyped in adcuser.h.
1-62 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
Usage

The ADC_IF_SetRequest function accepts the new value for one of the audio setup
parameters from the host. The supported parameters are current volume and mute.

The ADC_IF_SetRequest function is part of the function layer of the RL-USB software
stack. There is no requirement to modify this function.

See also

• ADC_IF_GetRequest on page 1-61.

Example

There is no requirement to invoke or modify the ADC_IF_SetRequest function.

1.7.14 FIQ_Handler

Outputs the audio data to the speaker.

Syntax

void FIQ_Handler(void)

Return

void The FIQ_Handler function does not return any value.

Include

The FIQ_Handler function is prototyped in demo.h in the RTX_Audio example folder.

Usage

The FIQ_Handler function outputs the audio data from the host to the speaker on the USB
device. It is implemented as a fast interrupt request function that runs every 31.25 μs. It
scales the audio data according to the volume and mute settings before writing the value
to the speaker’s register. The function also calculates the loudness over 32 ms and
outputs this using the LEDs. You can modify this function to suit your application and
product hardware.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-63

RL-USB
Note
 The function only starts to write (DataRun=1) to the speaker register when at least half
the buffer (DataBuf) contains data. The function stops writing (DataRun=0) to the speaker
register when there is no data available in the buffer.

The FIQ_Handler function is part of the application layer of the RL-USB software stack.

See also
• ADC_IF_GetRequest on page 1-61

• ADC_IF_SetRequest on page 1-62.

Example

#include “demo.h”
void FIQ_Handler (void)
{

…
val = DataBuf[DataOut]; // Get the audio data sent by the host
…
val *= volume; // Adjust the data according to the volume
…
if (Mute)
{

val = 0x8000; // Change the data to mute value
}
DACR = val & 0xFFC0; // Write the data to the speaker register
…

}

1.7.15 HID_GetReport

Sends the requested report data to the host.

Syntax

BOOL HID_GetReport(void)

Return

BOOL The HID_GetReport function returns __TRUE if the request from the host is
supported. Otherwise, it returns __FALSE.
1-64 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
Include

The HID_GetReport function is prototyped in hiduser.h.

Usage

The HID_GetReport function sends the requested report data to the host by writing the
report data into the endpoint 0 buffer (EP0Buf). The function calls GetInReport to update
the value of the report variable (InReport) before writing it into the endpoint buffer. You
can modify the HID_GetReport function to obtain your report data and copy it into the
endpoint buffer. The function only supports the request HID_REPORT_INPUT.

Note
 If you modify the HID_GetReport function, then you must also modify the corresponding
endpoint function, USB_EndPoint1, because the host might use either of these functions
to obtain the report data.

The HID_GetReport function is part of the function layer of the RL-USB software stack.

See also

• HID_SetReport.

Example

#include “hiduser.h”
BOOL HID_GetReport (void)
{

switch (SetupPacket.wValue.WB.H)
{

case HID_REPORT_INPUT:
GetInReport(); // call your own function to update the report

variables.
EP0Buf[0] = InReport; // copy your report variables in the endpoint

buffer.
break;

…
}
return (__TRUE);

}

1.7.16 HID_SetReport

Obtains the report data from the host.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-65

RL-USB
Syntax

BOOL HID_SetReport(void)

Return

BOOL The HID_SetReport function returns __TRUE if the request from the host is
supported. Otherwise, it returns __FALSE.

Include

The HID_SetReport function is prototyped in hiduser.h.

Usage

The HID_SetReport function obtains the report data from the host by copying it from the
endpoint 0 buffer (EP0Buf). The function then calls SetOutReport to update other
application variables (such as LED values) based on the report data. You can modify the
HID_SetReport function to obtain as many bytes as your application needs from the host,
and then you can use these report variables to perform any function as required by your
application. The HID_SetReport function only supports the request HID_REPORT_OUTPUT.

Note
 You must copy all your report data from the endpoint buffer, otherwise the report data
might be lost.

The HID_SetReport function is part of the function layer of the RL-USB software stack.

See also

• HID_GetReport on page 1-64.

Example

#include “hiduser.h”
BOOL HID_SetReport (void)
{

switch (SetupPacket.wValue.WB.H)
{

…
case HID_REPORT_OUTPUT:

OutReport = EP0Buf[0]; // copy your report variables from the
endpoint buffer.

SetOutReport(); // call your own function to update the
1-66 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
report variables.
break;

…
}
return (__TRUE);

}

1.7.17 MSC_MemoryRead

Sends data from the onboard RAM to the host.

Syntax

void MSC_MemoryRead (void)

Return

void The MSC_MemoryRead function does not return any value.

Include

The MSC_MemoryRead function is prototyped in mscuser.h.

Usage

The MSC_MemoryRead function sends data from the onboard RAM to the host. The number
of bytes it sends is either the maximum packet size or the number of bytes requested by
the host, whichever is lower. The function turns off an LED when all the data requested
by the host has been sent. You can modify this function to suit the requirements of your
application. For example, if your application reads from a flash card, you must provide
your own function to read from the flash card:

void Flash_MemoryRead(U32 Address, U32 Length, U8* Buffer)

where:

Address is the location on the flash card to read from.

Length is the number of bytes to read.

Buffer is the buffer to read the bytes into.

You can then call your Flash_MemoryRead function before calling the USB_WriteEP
function. You can also modify the code to turn on or off different LEDs according to
your hardware.

The MSC_MemoryRead function is part of the function layer of the RL-USB software stack.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-67

RL-USB
See also
• MSC_MemoryWrite

• MSC_MemoryVerify on page 1-69.

Example

#include “mscuser.h”void MSC_MemoryRead (void)
{

U32 n;
…
Flash_MemoryRead(Offset, n, &Memory); // Call your function to read from the

flash card.
USB_WriteEP(MSC_EP_IN, &Memory, n); // Send the data through the endpoint.
…

}

1.7.18 MSC_MemoryWrite

Copies data from the host to the onboard RAM.

Syntax

void MSC_MemoryWrite (void)

Return

void The MSC_MemoryWrite function does not return any value.

Include

The MSC_MemoryWrite function is prototyped in mscuser.h.

Usage

The MSC_MemoryWrite function copies data from the host to the onboard RAM. The
number of bytes it copies is the number of bytes sent by the host. The function turns off
an LED when all the data sent by the host has been copied. You can modify this function
to suit the requirements of your application. For example, if your application writes to
a flash card, you must provide your own function to write to the flash card:

void Flash_MemoryWrite(U32 Address, U32 Length, U8* Buffer)

where:

Address is the location on the flash card to write to.

Length is the number of bytes to write.
1-68 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
Buffer is the buffer to copy the data from.

You can then call your Flash_MemoryRead function instead of copying the data on to the
onboard RAM. You can also modify the code to turn on or off different LEDs according
to your hardware.

The MSC_MemoryWrite function is part of the function layer of the RL-USB software
stack.

See also
• MSC_MemoryRead on page 1-67

• MSC_MemoryVerify.

Example

#include “mscuser.h”void MSC_MemoryWrite (void)
{

U32 n;
…
Flash_MemoryWrite(Offset, BulkLen, &BulkBuf); // Call your function to copy

the data from the buffer BulkBuf to the flash card.
…

}

1.7.19 MSC_MemoryVerify

Checks whether the data written to the onboard RAM is the same as the data that was
sent by the host.

Syntax

void MSC_MemoryVerify (void)

Return

void The MSC_MemoryVerify function does not return any value.

Include

The MSC_MemoryVerify function is prototyped in mscuser.h.
ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-69

RL-USB
Usage

The MSC_MemoryVerify function checks whether the data written to the onboard RAM is
the same as the data that was sent by the host. The number of bytes it checks is the
number of bytes sent by the host. You can modify this function to suit the requirements
of your application. For example, if your application writes to a flash card, you must
provide your own function to read and verify the contents of the flash card.

The MSC_MemoryVerify function is part of the function layer of the RL-USB software
stack.

See also
• MSC_MemoryWrite on page 1-68

• MSC_MemoryRead on page 1-67.

Example

#include “mscuser.h”void MSC_MemoryVerify (void)
{

U32 n;
…
Flash_MemoryRead(Offset, BulkLen, &Memory); // Call your function to read

from the flash card.
for (n=0; n < BulkLen; n++)
{

if (Memory[n] != BulkBuf[n])
{

MemOK = __FALSE;
break;

}
}
…

}

1.7.20 MSC_Inquiry

Sends vendor ID, product ID and product revision number to the host.

Syntax

void MSC_Inquiry (void)

Return

void The MSC_Inquiry function does not return any value.
1-70 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

RL-USB
Include

The MSC_Inquiry function is prototyped in mscuser.h.

Usage

The MSC_Inquiry function sends vendor ID, product ID and product revision number to
the host. You must change these IDs for your product. However, you must not alter the
length of any of these labels.

The MSC_Inquiry function is part of the function layer of the RL-USB software stack.

See also
• MSC_MemoryWrite on page 1-68

• MSC_MemoryRead on page 1-67.

Example

#include “mscuser.h”void MSC_Inquiry (void)
{

…
BulkBuf[4] = ‘K’; // Vendor ID = Keil. Modify it for your product.
BulkBuf[4] = ‘e’;
BulkBuf[4] = ‘i’;
BulkBuf[4] = ‘l’;
BulkBuf[4] = ‘ ’;
BulkBuf[4] = ‘ ’;
BulkBuf[4] = ‘ ’;
BulkBuf[4] = ‘ ’;
…
DataInTransfer(); // Send the information in the BulkBuf buffer to the host.

}

ARM DUI 0374A Copyright © 2007 ARM Limited. All rights reserved. 1-71

RL-USB
1-72 Copyright © 2007 ARM Limited. All rights reserved. ARM DUI 0374A

	RealView Real-Time Library RL-USB User Guide
	Contents
	Preface
	About this book
	Intended audience
	Using this book
	Product revision status
	Other conventions
	Further reading

	Feedback
	Feedback on the RL-USB
	Feedback on this book

	RL-USB
	1.1 Introduction
	1.2 Overview
	1.2.1 Features
	1.2.2 Contents of RL-USB
	1.2.3 Software stack overview
	1.2.4 Using RL-USB

	1.3 Example Applications
	1.3.1 List of examples
	1.3.2 Running an audio example
	1.3.3 Running an HID example
	1.3.4 Running a mass storage device example

	1.4 Creating New USB Applications
	1.4.1 Creating a new HID application
	1.4.2 Creating a new audio application
	1.4.3 Creating a new mass storage application
	1.4.4 Creating a new composite device application

	1.5 Configuration Parameters
	1.5.1 Using the Configuration Wizard
	1.5.2 USB Configuration
	1.5.3 USB Event Handlers
	1.5.4 USB Class Support

	1.6 Source Files
	1.7 Functions
	1.7.1 Function Overview
	1.7.2 USB_ISR
	1.7.3 USB_ReadEP
	1.7.4 USB_WriteEP
	1.7.5 USB_EndPoint0
	1.7.6 USB_Init
	1.7.7 USB_Connect
	1.7.8 USB_Device
	1.7.9 USB_Core
	1.7.10 USB_EndPoint<Number>
	1.7.11 USB_TaskInit
	1.7.12 ADC_IF_GetRequest
	1.7.13 ADC_IF_SetRequest
	1.7.14 FIQ_Handler
	1.7.15 HID_GetReport
	1.7.16 HID_SetReport
	1.7.17 MSC_MemoryRead
	1.7.18 MSC_MemoryWrite
	1.7.19 MSC_MemoryVerify
	1.7.20 MSC_Inquiry

