
Lab 6e Sound generating using a DAC Page 6e.1

Jonathan W. Valvano

Lab 6e Sound generation using a Digital to Analog Converter
This laboratory assignment accompanies the book, Embedded Microcomputer Systems: Real Time Interfacing, by
Jonathan W. Valvano, published by Brooks-Cole, copyright © 2000.

Goals • DAC conversion,
 • SPI interface,
 • Design a data structure to represent music,
 • Develop a system to play sounds.

Review • Data sheets on 74HC595,
 • Valvano Chapter 7 on SPI interfacing,
 • Valvano Chapter 8 on NPN transistors,
 • Valvano Chapter 11 on DAC converters.
Starter files • OC3 project

Background
 Most digital music devices rely on high-speed DAC converters to create the analog waveforms required to
produce high-quality sound. In this lab you will create a very simple sound generation system that illustrates this
application of the DAC. Your goal is to play your favorite song. For the first step, you will interface a 74HC595
serial in/parallel out shift register to the SPI port. Please refer to the 74HC595 data sheets for the synchronous
serial protocol. The second step you need to perform is to create a DAC from the 8-bit digital output of the
74HC595. You are free to design your DAC with a precision anywhere from 5 to 8 bits. You will convert the
binary bits (digital) to an analog output current using a simple resistor network. The third step is to convert the
DAC analog output to speaker current using a current-amplifying NPN transistor. It doesn’t matter what range the
DAC is, as long as there is an approximately linear relationship between the digital data and the speaker current.
To do this you will have to run the NPN transistor in it’s linear range. The performance score is not based on
loudness, but sound quality. On the other hand, sound quality will be a function of the number of DAC bits, the
linearity of the analog circuit, and the periodic output rate. If an analog signal is noisy, you can add filter
capacitors. It is important to add a 0.1µF bypass capacitor on the power connection of the 74HC595 to prevent
output glitches during serial input transmissions. The fourth step is to design a low-level device driver for the
DAC. A single 8-bit SPI frame is all that is required to set the DAC output.

7

74HC595

 Gnd

16
 VDD +5V

6812
0.1µF

SS

MOSI

SCLK

SPI

QD
QC
QB
QA

QH
QG
QF
QE simple

resistor
network

R

speaker

+5

1N914

PN2222

Figure 6.1. DAC allows the software to create music.

The fifth step is to design a data structure to store the sound waveform. You are free to design your own format, as
long as it uses a formal data structure (i.e., struct). Compressed data occupies less storage, but requires runtime
calculation. On the other hand, a complete list of points will be simpler to process, but requires more storage than
is available on the 6812. The sixth step is to organize the music software into a device driver. Although you will
be playing only one song, the song data itself will be stored in the main program, and the device driver will
perform all the I/O and interrupts to make it happen. You will need public functions Rewind, Play and Stop,
which perform operations like a cassette tape player. The Play function has an input parameter that defines the
song to play. A background thread implemented with output compare will fetch data out of your music structure

Lab 6e Sound generating using a DAC Page 6e.2

Jonathan W. Valvano

and send them to the DAC. The last step is to write a main program that inputs from three binary switches and
performs the three public functions.

Preparation (do this before your lab period)
 1. Draw the circuit required to interface the 74HC595 to the 6812 SPI port. Include signal names and pin
numbers. The bypass capacitor on the +5 V supply of the 74HC595 can be any value from 0.1 µF to 0.22 µF.

 2. Design the DAC converter using a simple resistor-divider technique. Use resistors in a 1/2/4/8/16/32
resistance ratio. Select values in the 5 kΩ to 200 kΩ range. For example, you could use 5 kΩ, 10 kΩ, 20 kΩ, and
40 kΩ. Notice that you could create double/half resistance values by placing identical resistors in series/parallel.
Using Ohm's law and the properties of the NPN transistor, make a table of the transistor base current for each of
the possible digital values. Using the current gain of the NPN transistor, make a table of the speaker voltage and
current as a function of digital value. If you add an analog filter connect a capacitor from the analog signal to
ground. Use ceramic or Mylar capacitors with a value ranging from 100 to 1000 pF. Do not use tantalum or
electrolytic capacitors.

 3. Write a low-level device driver for the SPI interface. Include two functions that implement the SPI/DAC
interface. The function DAC_Init() initializes the SPI protocol, and the function DAC_Out() sends a new data
value to the DAC. Create separate DAC.h and DAC.c files.

 4. Write a couple of simple main programs that test the SPI/DAC interface. You will use this software to test
the SPI interface, and the DAC hardware. This main program can be used for static testing.

void main(void){unsigned char number;
 SCI_Init(38400); // initialize SCI interface
 DAC_Init(); // initialize SPI/DAC interface
 while(1){
 number = SCI_InUHex(); // read from PC keyboard
 number = number&0x1F; // 5-bit only
 DAC_Out(number); // output to SPI
 }
}

This main program can be used for dynamic testing. It creates a triangle waveform.

void main(void){unsigned char n;
 DAC_Init(); // initialize SPI/DAC interface
 while(1){
 for(n=0; n<32 ; n++){ // up 0 to 31
 DAC_Out(n); // output to SPI
 }
 for(n=30; n>0 ; n--){ // down 30 to 1
 DAC_Out(n); // output to SPI
 }
 }
}

 5. Design and write the music device driver software. Create separate Music.h and Music.c files. Place
the data structure format definition in the header file. Add minimally intrusive debugging instruments to allow you
to visualize when interrupts are being processed.

 6. Write a main program to run the entire system.

 A “syntax-error-free” hardcopy listing for the software is required as preparation. The TA will check off
your listing at the beginning of the lab period. You are required to do your editing before lab. The debugging will
be done during lab. Document clearly the operation of the routines.

Lab 6e Sound generating using a DAC Page 6e.3

Jonathan W. Valvano

Procedure (do this during your lab period)
1. Use the simple main programs to debug the SPI/DAC interface. Experimentally measure the speaker
voltage/current versus digital value. Compare the measured data from the predicted data calculated as part of the
preparation. Adjust resistance and capacitor values to get an approximately linear relationship between the digital
output and the speaker current.

2. Using debugging instruments, measure the maximum time required to execute the periodic interrupt service
routine. Adjust the interrupt rate to guarantee no data are lost.

3. Debug the music system.

Deliverables (exact components of the lab report)
A) Objectives (1/2 page maximum)
B) Hardware Design
 Detailed circuit diagram of all hardware attached to the 6812 (preparation 1 and 2)
C) Software Design (no software printout in the report)
 Draw pictures of the data structures used to store the sound data
 Draw a data flow graph illustrating out information in the data structure is converted to music
D) Measurement Data
 Show the theoretical response of speaker current versus digital value (preparation 2)
 Show the experimental response of speaker current versus digital value (procedure 1)
E) Analysis and Discussion (1 page maximum)

Checkout (show this to the TA)
 You should be able to demonstrate the three functions Rewind, Play and Stop. You should be
prepared to discuss alternative approaches and be able to justify your solution.
Your software files will be copied onto the TA’s zip drive during checkout.

Hints
1) There are two versions of the Adapt812 board1.

1 Rev1 and Rev2 have different H1 connector pin assignments for PS5 PS6, PS7

