
A Small Artery Heat Transfer Model for
Self-Heated Thermistor Measurements of Perfusion in the
Kidney Cortex

G. T. Anderson

Department of Electronics and Instrumentation

The University of Arkansas at Little Rock

Little Rock, AR 72204.

J. W. Valvano

Department of Electrical and Computer Engineering

The University of Texas at Austin

Austin, TX 78712.



Anderson, Valvano  5/7/99 Page 2

Abstract

A small artery model (SAM) for self-heated thermistor measurements of perfusion

in the canine kidney is developed based on the anatomy of the cortex vasculature. In this

model interlobular arteries and veins play a dominant role in the heat transfer due to blood

flow. Effective thermal conductivity, kss, is calculated from steady state thermistor

measurements of heat transfer in the kidney cortex. This small artery and vein model of

perfusion correctly indicates the shape of the measured kss versus perfusion curve. It also

correctly predicts that the sinusoidal response of the thermistor can be used to measure

intrinsic tissue conductivity, km, in perfused tissue.    Although this model is specific for

the canine kidney cortex, the modeling approach is applicable for a wide variety of biologic

tissues.

Nomenclature

A steady state applied thermistor power (mW)

A cross sectional area of blood vessels (cm2)

a thermistor radius, or vessel radius (cm)

B sinusoidal applied thermistor power (mW)

C steady state average temperature rise in thermistor (˚C)

c specific heat (mW-sec/g-˚C)

     c1,...,c7 empirically determined calibration coefficients

D sinusoidal average temperature rise in thermistor (˚C)

f frequency (Hz)

k thermal conductivity (mW/cm-˚C)

l distance from arteriole to venule (0.08 cm)

Le vessel equilibration length (cm)
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M kidney cortex mass (g)

m density of interlobular veins in kidney cortex (1/cm2)

m mass flow rate (g/sec)

n density of interlobular arteries in kidney cortex (1/cm2)

n(r) number of blood vessels in a shell of tissue at radius r

P(t) total power applied to thermistor  (mW)

Q distributed heat (mW/cm3)

q capillary contribution to Q (mW/cm3)

r radial distance from the center of the thermistor (cm)

S kidney cortex cross sectional area (cm2)

T temperature difference T - To (˚C)

t time (sec)

v velocity of blood (cm/s)

w tissue perfusion (mL/100g-min, or g/cm3-sec)

x,y,z distance coordinates (cm)

α thermal diffusivity (cm2/sec)

β sinusoidal distributed power (mW/cm3)

Γ steady state distributed power (mW/cm3)

λ normalized bleed-off, 0 for none, 1 for complete

ρ density (g/cm3)

φ phase delay (radians)

 ξ normalized distance into cortex, 0 at medulla, 1 at capsule

∆x,∆y,∆z dimension of cubic control volume (cm)

∆V volume represented by a finite difference node (cm3)

∆T  average volumetric thermistor temperature rise (˚C)

σΣ coupling shape factor between tissue/vessels (2.5)
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σ∆ coupling shape factor between two vessels (1.8)

Subscripts

a arterial

b thermistor bead

bl blood or perfusate

eff effective (KEFF model) or enhanced (W-J Model)

ext external

i,j finite difference indices

m tissue medium (intrinsic)

met metabolic

o initial

perf due to capillary perfusion

sin from sinusoidally heated thermistor

ss from steady-state heated thermistor

v venous

ves vessel

x,y,z Cartesian directions

0,1,2 positive, central , negative face of a control volume

Introduction

Although tissue perfusion is believed to be an important factor in many medical

conditions (e.g., heart disease, vascular surgery, transplants, and cancer therapy), there is

currently no widely accepted clinical method to quantify perfusion for a majority of

applications. Self-heated thermistor techniques to measure perfusion have been investigated
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in recent years (Chato 1968, Balasubramaniam 1977, Holmes 1980, Valvano 1984, Patel

1987, Anderson 1992). A thermistor is placed into a perfused tissue and a microcomputer

based instrument is used to heat the thermistor with a predetermined power. The resultant

temperature rise in the thermistor is then measured by the instrument. Both tissue thermal

conduction and perfusion act to carry heat away from the thermistor. From the steady state

temperature rise in the thermistor, an effective thermal conductivity of tissue, kss, is

calculated. From the kss calculation, perfusion can be extracted based on knowledge of the

intrinsic tissue conductivity, km, and of the particular model of heat transfer due to

perfusion that is used.

Currently there is little agreement as to what is the best mathematical model which

describes the heat transfer due to perfusion. At least four different models have been used

to describe the effects of perfusion on self-heated thermistors: the Pennes (1948) model,

the Chen-Holmes model (Chen 1980, Holmes 1980, and Xu 1991), a KEFF model (Chen

1980, Roemer 1987, Patel 1987, and Valvano 1987) and the Weinbaum-Jiji model

(Weinbaum 1985, Song 1987, Valvano 1990, Charny 1990, Xu 1991, Charny 1992).

Some experimental data can be best described by the Pennes model (Valvano 1984), while

other data supports the KEFF model (Patel 1987, Anderson 1988, Anderson 1989a). This

paper examines the specific case of perfusion measured in the canine kidney cortex. A

numerical model is developed that is based on the vasculature of the canine kidney cortex.

This numerical model is then used to explain the effects of perfusion on a thermistor that is

heated with a combination of steady state and sinusoidal power.

Four considerations must be addressed while developing a heat transfer model.

First, one must have a clear specification of the objective of the model. In this paper, the

model is used to examine the relationships between self-heated thermistor measurements

and perfusion in the canine kidney cortex. Second, the model must carefully adhere to

realistic anatomy and physiology. One should make simplifying assumptions because they
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are realistic, and not just because they allow a solution to be found. Third, before

formulating a model, it is important to define the volume of interest. The length scale of

model in this paper is determined by the steady state temperature field around a thermistor.

The temperature field around a 0.15 cm diameter thermistor extends to about 0.5 cm.

Fourth, it is critical to verify the model with carefully acquired experimental data.

Vascular Anatomy of the Canine Kidney Cortex

Figure 1 outlines the blood vessels in the kidney cortex. Perfusion rates in the

kidney are among the highest found in mammalian organs due to its filtration and

reabsorption functions. The glomeruli function to retain cells in the circulation and also

allow filtration of fluid into the tubular space.  Blood enters the kidney through the renal

artery, which branches into several interlobar arteries that run between the lobes of the

kidney up to the cortex. At this point they bend and run parallel to the medulla - cortex

interface as arcuate arteries. Off of these arcuate arteries branch interlobular arteries, which

run up through the cortex approximately parallel to one another and perpendicular to the

kidney surface. Glomeruli branch off of the interlobular arteries at regular intervals.

Efferent arterioles leave the glomeruli and lead to a dense postglomeruli capillary network.

The venous side of the circulation mirrors the arterial side with two exceptions. A

substantial superficial venous network lies near the capsule that connects all lobes of the

kidney. Also, large veins that run through the interlobular axes supplement the drainage

through the interlobular veins.

Vascular casts of the canine kidney cortex were obtained to get the numerical data

required to construct an accurate perfusion model. Three canine kidneys were excised and

the renal arteries and veins were cannulated. The kidneys were cleared with a mannitol-

saline perfusate for 30 minutes. Degassed microfil silicone rubber (Canton Bio-medical

Products, Boulder, CO) was slowly injected over a period of about 30 seconds.  The first
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kidney cast was made with both the arteries and veins by injecting 15 mL into the renal

artery, and stopping when the silicone appeared in the renal vein. The second cast was

made of just the arteries by injecting 8 mL into the renal artery. The last cast was made of

just the veins by injecting 8 mL into the renal vein.  After injection, the kidneys were

refrigerated for 24 hours. 1 mm slices were made at various angles. The tissue slices were

soaked in increasing concentrations (25%, 50%, 75%, 95%, 100%) of ethyl alcohol, each

for 24 hours. A methyl salicylate soak was then used to clear the tissue from the casts.

Experimentally, the thermistors are located in the center of the cortex which is about 0.5 cm

from the surface. Therefore, it is at this kidney location that the vascular statistics were

collected.

Figure 2 is a typical x-z section showing the interlobular venules. The major heat

carrying vessels in the cortex are the interlobular arterioles and venules. These vessels run

predominately perpendicular to the kidney surface with only occasional branching. Figure 3

is a typical x-y section showing the interlobular venules. There were 34 interlobular

arterioles counted in an area of 0.58 cm2 (n ≈ 60 interlobular arterioles/cm2.) There were

313 interlobular venules counted in an area of 4.12 cm2 (m ≈ 82 interlobular venules/cm2.)

Interlobular arterioles have a radius, a, of about 0.003 cm in the center of the cortex and a

length of about 1 cm. The majority of artery-vein countercurrent pairs exist in the cortex

near the medulla. In the center of the cortex, there are few artery-vein countercurrent pairs.

The interlobular arterioles and veins are typically at least several vessel diameters apart. In

contrast to our finding in the canine kidney, Xu et al. (1991) found many artery-vein

countercurrent pairs in the porcine kidney cortex.

The fluid velocity can be estimated from the total kidney perfusion, w. The vessel

density, n, is taken as the average of n and m. The 6000 is necessary to convert the

perfusion units mL/100g-min into the velocity units of cm/sec.
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v  = 
w   M

6000 π a 2 S  
n+m

2

   ≈  0.083 w (1)

The Peclet number can be calculated from the velocity.   

Pe =  
2  a  v

αbl
   ≈ 4 v  ≈ 0.332 w (2)

cbl Specific heat  4000 mW-sec/g-˚C

kbl Thermal conductivity 6 mW/cm-˚C

αbl Thermal diffusivity 0.0015 cm2/sec

ρbl Density  1 g/cm3

Table 1. Parameters of the saline perfusate.

a Interlobular vessel radius 0.003 cm

km Tissue thermal conductivity 5 mW/cm-˚C

l Arteriole/venule distance 0.08 cm

L Length of the vessel 1 cm

M Kidney cortex mass 50 g

n Vessel density 71 vessels/cm2

S Surface area at center of the cortex 50 cm2

αm Tissue thermal diffusivity 0.00125 cm2/sec

Table 2. Typical parameters of the alcohol-fixed kidney cortex.
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Sinusoidal Heating Technique

Valvano (1987) proposed a method to simultaneously measure intrinsic and

effective thermal conductivity’s in perfused tissue. In this technique the thermistor is heated

with a combination of steady state and sinusoidal power.

P = A + B sin(2πft)                                 (3)

The resulting thermistor temperature rise is fitted to the following equation using linear

regression.

∆T = C + D sin(2πft + φ)                              (4)

Tissue thermal conductivity is calculated from the steady state response using the following

analytic equation (Balasubramaniam 1977, Valvano 1984).

kss = 
1

c1 +  c 2 
C
A

                                (5)

Tissue thermal conductivity is calculated from the sinusoidal response using the following

empirical equation (Valvano 1987, Anderson 1988).

ksin = 
1

c3 +  c 4 
D
B

                               (6)

Coefficients c1 - c4 are experimentally determined by operating the thermistor probe in two

media of known thermal conductivity’s. Analytical and experimental studies show that kss
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depends on tissue thermal conductivity and perfusion (Balasubramaniam 1977, Valvano

1984, Patel 1987, Anderson 1992). In these experiments,  kss is either linearly related to

the perfusion rate or has an increasing slope with increasing perfusion rate. The shape of

this response is dependent on the organ and the magnitude of perfusion. This variability

suggests that no one model will be appropriate for all situations.

Analytical solution to the sinusoidally-heated thermistor (Valvano 1991) show that

the sinusoidal response, D/B, is sensitive to both tissue conductivity, and tissue diffusivity.

Equation 6 can be used to measure tissue conductivity if the density times the specific heat

is similar for both tissue and calibration medium (which is true for kidney cortex and

water).   

It is the hypothesis of this technique that the sinusoidal heating frequency can be

chosen such that the sinusoidal conductivity, ksin, is independent of perfusion, and hence

can be used to measure intrinsic thermal conductivity, km. Experimental results in alcohol-

fixed canine kidneys have shown that ksin will be independent of perfusion rate if the

sinusoidal heating frequency is fast enough (Anderson 1988, 1989a, 1989b, 1992).  ksin

measured with thermistors of 0.25 and 0.076 cm diameters heated with a sinusoidal period

of 20 seconds is independent of perfusion rate. If the heating frequency is reduced below

0.05 Hz, the measured ksin is either linearly related to perfusion or has an increasing slope

with increasing perfusion rate. Conversely, if the heating period is faster than 0.05 Hz,

then ksin is an accurate measure of intrinsic thermal conductivity, km.             

Thermal Models

Thermistor techniques to measure perfusion are based on solutions to a bioheat

equation. The general form of the bioheat equation is given below.
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ρmcm 
∂Tm
∂t   = km ∇2Tm + Qperf + Qext + Qmet + Qves           (7)

Qmet, the metabolic heat generation can be ignored if it is spatially and temporally uniform

or is much smaller than Qext, the self-heated thermistor source. Qext  can be a steady state,

transient, or a combination of steady state and periodic sources.

Pennes Model. Pennes (1948) suggested a model in which the net heat transfer

from blood to tissue was proportional to the temperature difference between the arterial

blood entering the tissue and the venous blood leaving the tissue. When most researchers

apply the Pennes model, they assume that the temperature of venous blood is in equilibrium

with the local tissue temperature, and that the arterial blood is constant. These two

assumptions yield the familiar term:

     Qperf = w cbl (Ta - T)                               (8)

where perfusion is expressed in g/cm3-sec. Charny (1990, 1992) showed that the bleed-off

from the largest countercurrent vessels can be described by the Pennes equation. These

bleed-off vessels in muscle tissue can be as large as 300 µm. For a self-heated thermistor,

perfusion is then related to kss by (Balasubramaniam 1977):

w = 
(kss -  k m)2

km  cbl a2                                    (9)

where a is the radius of the spherical thermistor. Finite element analysis was used to

calculate ksin using Equation 6. The response of the Pennes model to a sinusoidal heat

source is shown in Figure 4.  Calculated ksin,  which depends only on the sinusoidal

components of applied power (B) and thermistor temperature (D), decreases as sinusoidal
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heating period decreases. At heating periods less than or equal to 10 seconds, calculated

ksin is the same as the true intrinsic tissue conductivity.  This demonstrates the feasibility of

using ksin to measure km in the presence of perfusion. The dashed line in Figure 4 is an

extrapolation of ksin to the steady state value (or kss) of 6.25 mW/cm-˚C for the Pennes

model.

The assumptions in the Pennes equation have been criticized by Chato (1980),

Chen (1980), and Weinbaum (1985). Chato and Chen suggested that arterial blood

equilibrates with the local tissue temperature before it reaches the capillary bed. Weinbaum

proposed that the countercurrent heat exchange between parallel arterial and venous vessels

is an important factor in blood-tissue heat exchange.  

KEFF Model. Patel (1987) and Roemer (1989) proposed an effective

conductivity models to describe the heat transfer from a thermistor due to perfusion. In

Patel’s model the perfusion term is approximated by:

Qperf   ≈   
w ∆ 2  cbl ∇2Tm

6                               (10)

where ∆ is a vague heuristically defined quantity called the “measurement length” of the

thermistor. Perfusion and intrinsic tissue conductivity are lumped together. The effective

thermal conductivity of the tissue is defined by

keff = km  +   
w ∆ 2  cbl

6                                (11)

Patel (1987) and Valvano (1987) assumed that the measured steady state conductivity (kss)

equaled this effective conductivity (keff). This assumption motivated the following

empirical relation.
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w = c7 (kss - km)                             (12)

where c7 is a calibration coefficient determined by taking measurements in media of known

perfusion.

Although the KEFF model predicts the linear response of measured kss to perfusion

(Anderson 1988), it does not predict the ability of the sinusoidal response, ksin, to measure

intrinsic thermal conductivity in the presence of perfusion. The KEFF model indicates that

perfusion will have exactly the same influence on a thermistor heated with steady state and

sinusoidal power.

Weinbaum-Jiji (W-J) Model.  A three layer model for peripheral tissue was

developed by Jiji et al. (1984) and extended by Song et al. (1987.) The W-J equation can

be used only if equilibration length is smaller than the actual vessel length (Baish 1986, Qi

1990.) Equation 1 states that a perfusion of 100 mL/100g-min results in a velocity of about

8.3 cm/sec (Valvano 1990).  For the 1 cm interlobular arteries and veins,

ε = 
Le
L    =  

π a 2 ρbl cblv

 k m  σ∆σΣ   L
   ≈ 0.09 (13)

                  

Weinbaum and Jiji show that the unidirectional capillary flow from the artery to the

vein creates a convective heat source which is small compared to the u ∂T/∂z heat transfer

in the interlobular arteries. The W-J equation can be found in their 1985 paper:

1
r 

∂
∂r 



r km

∂T
∂r      +  

∂
∂z 



keff 

∂T
∂z     = ρmcm 

∂T
∂t         (14)

The enhanced conductivity was obtained as
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keff = km  + 
π2

4  σ k m
  n a2 kbl

2 Pe2  ≈ 5 + 0.00114 w2    (15)

where the units of perfusion are mL/100-g-min and σ is given by

σ = 
π

cosh-1 



l

2a

   ≈  3.33 (16)

The directional cosine terms have been dropped because of the parallel vessel structure in

the kidney cortex. Because the major  function of the kidney is filtration, the metabolic heat

term is small compared to the flow term. In the alcohol-fixed kidney there is no

metabolism. Thus, the metabolic heat term is also neglected. The arteriole and venule inlet

temperatures are assumed to be T0. Experimentally this is obtained by placing the alcohol-

fixed kidney in a temperature controlled water bath. Thus, the only temperature

perturbation is caused by the self-heated thermistor. Because Equ. 15 incorporates blood

perfusion, the W-J approach automatically includes the bleed-off source effect.

The steady state and sinusoidal temperatures the thermistor with a 0.08 radius are

plotted versus distance from the thermistor in Fig. 5. The size of this thermistor

approximated the one used in the actual kidney experiments. The effective measurement

volume is defined to be the tissue volume with a temperature rise above 0.1˚C. Table 3

shows that the steady state field includes many vessels, while the sinusoidal field contains

only a few.  The sinusoidal temperature field increases as the excitation frequency

decreases (Valvano 1987.)  The fact the sinusoidal temperature field only crosses about 4

arterioles and 6 venules and that ε is 0.3 dictates that the W-J equation can not be used to

study the sinusoidal response. Indeed, it is this small measurement volume which allows
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the sinusoidal response to predict km in the presence of perfusion.  Thus, a new model

which incorporates explicit vessels must be developed to simulate the transient response of

the thermistor.

Symbol Steady state Sinusoidal

Distance to 0.1˚C r 0.5 cm 0.15 cm

Length scale Lt = 2r 1cm 0.3 cm

Equilibration length Le/L  0.09 0.09

Equilibration length Le/Lt  0.09 0.3

Effective volume 4/3 π r3 0.5 cm3 0.014 cm3

Surface area crossed π r2 0.79 cm2 0.071 cm2

Vessels crossed (n+m) π r2 110 10

Table 3.  Equilibration length and measurement volume.

Small Artery Model (SAM)

To reconcile the differences between experimental data and predicted results based

on the Pennes and KEFF models, a more realistic thermal model is required. The

interlobular arteries are approximately parallel to each other in the cortex. In addition, the

capillary structure of the cortex is very dense.  There are approximately 50 interlobular

arteries and 82 interlobular venules per 1 cm2 of kidney surface area. The artery/vein

separation is typically several vessel diameters, although there doesn't seem to be any

consistent spacing between the arteries and veins. According to the analysis of Chato

(1980),

Gz  =  
Re Pr d

L    =  
2 • 25 • 0.006cm

1cm    =  0.3             (17)
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such a vessel will have a Graetz number of about 0.3. Thus, the fluid in the vessel will be

in equilibrium with the tissue temperature within 120 µm of entering the vessel.

Since the 120 µm equilibration length is small compared to the 1 cm vessel length,

it is assumed that the temperature of the fluid in such vessels is in equilibrium with the local

tissue temperature. Consider one artery in a control volume of tissue ∆x ∆y ∆z (see Figure

6). Let Aa be the cross sectional area of the artery and va be the average velocity of fluid in

the artery. For the above system, heat transfer due to the interlobular artery takes place in

the z direction only. Similar to Equation 19a of Weinbaum and Jiji (1985), the heat transfer

per unit volume at node z1 is:

qa = nvaAaρbl cbl  
(Tz0 -  T z1)

∆z   ≈ nvaAaρbl cbl  
dT+

dz             (18)

As a volume of blood travels through the interlobular arteries, a portion of it feeds off into

afferent arterioles leading to the glomeruli associated with each artery. Some of the blood

traveling in the interlobular arteries continues through the cortex until it reaches a

subcapsular zone characterized by a profuse network of large arterioles, capillaries and

superficial veins (Beeuwkes, 1971). It is thought that the efferent arterioles of these

terminal interlobular arteries can open and close to control the distribution of blood in the

kidney (Brenner, 1986). Several of the interlobular arteries continue through the cortex to

supply the capsule, and a few of these  continue to run on the outside of the kidney and

anastomose with the arterial supply of perirenal fat and areolar tissue. The bleed-off of

blood from the interlobular arteries can be modeled in equation (18) as a change in the

arterial flow, vaAa. It is assumed that the bleed-off is linearly related to the length of the

artery, with the average flow of the artery occurring at the midpoint along its length
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(ξ=0.5). Let Fa-avg be the average flow of a typical interlobular artery in the center of the

cortex. We define a bleed-off term, λ, such that Fa-avg (1+λ) equals the arterial flow at the

corticomedullary junction and Fa-avg (1-λ) equals the arterial flow out of the cortex into the

sub-capsular region.  The flow of an interlobular artery at any point in the cortex can

therefore be described by Fa-avg [1 + λ - 2λξ], where ξ is the normalized distance into the

cortex such that ξ = 0 at the corticomedullary junction and ξ = 1 at the capsule. For

complete bleed off, λ=1 and the flow is  Fa-avg [2 - 2ξ]. If there are n arteries per unit area

in the kidney cortex, then the number of arteries in the control volume ∆x ∆y ∆z is

n•∆x•∆y. Similar to Equation 19a of Weinbaum and Jiji (1985), the heat transfer from the

volume due to the artery becomes:

qa = nFa-avg [1 + λ - 2λξ] ρbl cbl  
(Tz0 -  T z1)

∆z   

≈ nFa-avg [1 + λ - 2λξ] ρbl cbl  
dT+

dz      (19)

Similarly, if there are m veins per unit area in the kidney cortex, the heat transfer from a

similar control volume ∆x ∆y ∆z due to the veins is:

qv = mFv-avg [1 + λ - 2λξ] ρbl cbl  
(Tz2 -  T z1)

∆z   

≈ mFv-avg [1 + λ - 2λξ] ρbl cbl  
dT-

dz     (20)

The coefficients (nFa-avg[1+λ-2λξ]ρblcbl) and (mFv-avg[1+λ-2λξ]ρblcbl)  can be derived

from knowledge of the perfusion rate and kidney anatomy. Although there may be local

variations in the velocity of arterial and venous blood, for the whole kidney nFa-avg =

mFv-avg.
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 For this situation, the contribution due to conduction is much greater than the

contribution due to capillary perfusion (Weinbaum and Jiji 1985). Thus, the heat transfer

due to the capillary network will have little effect on the overall heat transfer rate in this

model.

Finite Difference Implementation

A two dimensional axisymmetric finite difference code was implemented to model

the effects of the interlobular arteries and veins on a self-heated thermistor probe (see

Figures 7 and 8). A cylindrical thermistor with a radius of a = 0.045 cm and a height of

0.09 cm was centered in tissue with a conductivity of 5 mW/cm-˚C. The cylindrical tissue

had a radial dimension of 0.5 cm and a height of 1 cm. There were 50 by 100 equally

spaced nodes, 40 of which were in the thermistor and 20 nodes of which were on the

thermistor/tissue interface. Interlobular arteries and veins were each confined to discrete

shells of 0.01 cm thickness. In a given shell, the vessels were lumped with the tissue so

that the shell had uniform heat transfer properties. Arterial shell to arterial shell spacing was

0.1 cm, as was venous shell to venous shell spacing. Spacing between arterial and venous

shells was 0.05 cm. The number of arteries or veins in a given shell was proportional to the

shell area in the r plane, and the overall density of both arteries and veins was 50/cm2 of

tissue in the r - φ plane.  

Actual thermistor probe are constructed with metal lead wires and include protective

glass or epoxy coverings. Valvano and Hayes (1985) developed a detailed finite element

model of the thermistor probe including the metal wires, the prolate ellipsoid thermistor

shape, and a glass shell around the active thermistor bead. The numerical results show the

40 gauge wires can be neglected. The results also show that the complex probe acts similar

to a simple spherical bead with a new effective bead radius and effective bead thermal

properties. Hence, the simple spherical bead model is used in this study. 
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The governing equations for the finite difference model were:

ρbcb 
∂Tb
∂t   = kb [ 

1
r 

∂Tb
∂r   + 

∂2Tb

∂r2   + 
∂2Tb

∂z2   ] + 
A + B sin(2πft)

4
3 π a 3

      in the thermistor (21)

ρmcm 
∂Tm
∂t   = km [ 

1
r 

∂Tm
∂r   + 

∂2Tm

∂r2   + 
∂2Tm

∂z2   ]        in the tissue  (22)

ρmcm 
∂Tm
∂t   = km [ 

1
r 

∂Tm
∂r   + 

∂2Tm

∂r2   + 
∂2Tm

∂z2   ]

+ n(r) Fa-avg [1 + λ - 2λξ] ρbl cbl  
(Ti,j-1 -  T i,j)

∆V      in the arterial shell  (23)

ρmcm 
∂Tm
∂t   = km [ 

1
r 

∂Tm
∂r   + 

∂2Tm

∂r2   + 
∂2Tm

∂z2   ]

+ m(r) Fv-avg [1 + λ - 2λξ] ρbl cbl  
(Ti,j+1 -  T i,j)

∆V    in the venous shell (24)

where ∆V is the control volume, n(r) and m(r) are number of interlobular arteries and veins

in a shell of tissue at radius r . Temperature is assumed to be initially zero. Conservation of

flux is applied as a boundary condition at the interface between the thermistor bead and

tissue. No heat flux can occur at the r=0 boundary.

∂Tb
∂r   = 

∂Tm
∂r   = 0 at r = 0    (25)

In order to approximate infinite tissue one can assume the tissue temperature field far away

from the thermistor follows a 1/r shape (where r is in spherical coordinates) This 1/r shape

satisfies T+r
∂T
∂r  =0   Therefore the infinite tissue can be approximated by the mixed

boundary conditions:
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Tm + 
z2 +  r 2

r   
∂Tm
∂r   = 0 at r = 0.5 cm    (26)

Tm + 
z2 +  r 2

z   
∂Tm
∂z   = 0      at z = ± 0.5 cm   (27)

Another way to justify these remote boundary conditions comes from the fact that a T=0

boundary condition will underestimate the true solution while a ∂T/∂x=0 boundary

condition will overestimate the true solution. Equations 26 and 27 are a combination of the

two simple boundary conditions.

Table 4 shows effect of bleed-off on the calculations of kss and ksin.  Perfusion was

100 mL/100g-min for each calculation. The results show small variations in the range of

λ=0 (no bleed-off) to λ=0.89 (bleed-off of most of the flow), and a large effect for

complete bleed-off (λ=1).

bleed-off (λ) kss ksin (2 sec) ksin (20 sec)

0 6.020 4.920 5.750

0.89 6.130 4.930 5.750

1 7.070 4.980 6.620

Table 4. Calculated conductivity (mW/cm-˚C) versus bleed-off at 100 mL/100g-min.

Figure 9 graphs measured steady state and sinusoidal conductivity versus perfusion

rate for a thermistor heated with a sinusoidal periods of 2 and 20 seconds using the SAM

with λ=0.89. Notice the positive second derivative for both the kss and measured ksin (with

a 20 second heating period) versus perfusion curves. By definition km should be

independent of perfusion, so that for a heating period of 20 seconds, the measured ksin

(that derived from the sinusoidal response in Equation 6) is not a good indicator of tissue
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intrinsic conductivity. For a heating period of 2 seconds, the measured ksin curve has a

slightly negative slope, and is nearly independent of perfusion. In this case, measured ksin

is a good indicator of tissue intrinsic conductivity.

Discussion

Figure 10 plots steady state thermal conductivity versus perfusion for various

situations. The experimental data was measured in an alcohol-fixed canine kidney with a

P60 thermistor (Anderson 1989a, 1989b, 1992). Each experimental point represents 20

measurements averaged at the same flow. The standard deviation for this average was less

than 0.05 mW/cm-˚C. For each of the models, a steady state power (A=12 mW) is applied

to a spherical thermistor (a=0.05 cm), and the volume average temperature within the

thermistor bead (C) is calculated as a function of perfusion. The numerical model is first

run with no flow at two intrinsic conductivies to get c1 and c2 in Equation 5.  Then, the

numerical model is run with various perfusion models. The steady state temperature rise

within the thermistor (C) was determined for each perfusion. Equation 5 is used again to

calculate the steady state thermal conductivity (kss). The Pennes response is derived from

Equation 9. The KEFF response comes from Equation 11 where ∆ is arbitrarily chosen to

fit the experimental data. For the Weinbaum-Jiji response Equ. 15 was used to convert

perfusion into z-direction enhanced conductivity. The W-J equations were then solved

using a 2-D finite element model (Valvano 1990). For the W-J model, the steady state

thermal conductivity (kss) as measured by the thermistor is similar in shape but smaller in

magnitude as the W-J keff  (See Table 5). This is because the W-J keff is the conductivity

enhanced in only the z-direction, while the kss is the conductivity enhanced in all directions.

The SAM curve was derived from the finite difference solution to Equations 20-26.
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Velocity

(cm/sec)

Perfusion

(mL/100g-min)

W-J keff

(mW/cm-˚C)

kss

(mW/cm-˚C)

 0  0    5.00  5.00

 2  22    5.55 5.11

 4  44   7.21 5.54

 6  66    9.97 6.16

 8  88  13.83 6.92

Table 5. Weinbaum-Jiji keff (Equation 15) and thermistor kss (Equation 5).

Experimental measurements in the canine kidney indicate that the Pennes model of

perfusion correctly predicts that intrinsic conductivity can be measured in perfused tissue

independent of the perfusion rate, but incorrectly predicts that kss is related to the square

root of perfusion. The KEFF model (Patel 1987, Valvano 1987, Roemer 1989) predicts

that kss is linearly related to perfusion, as is seen in some measurements, but is unable to

explain why ksin can be used to determine intrinsic thermal conductivity in the presence of

perfusion. The Weinbaum-Jiji model correctly determines the shape of the kss data, but can

not be used to model the sinusoidal response of the thermistor because the equilibration

length is large compared to the vessel length.

The new perfusion model (SAM) based on the interlobular arteries and veins in the

kidney predicts that the slope of the kss versus perfusion curve will increase with increasing

perfusion rate. Published experimental data agree with this prediction (Anderson 1987,

1989a, 1989b, 1992), although the extent of the upswing in kss slope varies greatly

between different measurements. One explanation for this might be the distance between
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the thermistor and the arteries and veins will vary depending on where the thermistor is

placed in the kidney. The SAM can easily be implemented in 3-D, which may be necessary

to correctly adjust all these factors. Other factors that would affect the slope of the kss

versus perfusion curve include artery to vein spacing, vessel density, and artery and vein

distribution. The small artery model of kidney perfusion also correctly predicts that ksin can

be used to determine intrinsic thermal conductivity in the presence of perfusion by choosing

the correct sinusoidal heating period.

The finite difference code used to develop the small artery model of perfusion

assumed that arteries were 0.005 cm from the thermistor surface. Other finite difference

codes were developed varying the probe to vessel separation, and the results were similar

to the case presented in this paper.

This thermal model has been developed specifically for thermistors placed in the

canine kidney cortex.  This type of model is appropriate for any study of local tissue heat

transfer (≈ 1 cm3.) The development steps can be repeated to create thermal models for

other tissues. An advantage of the small artery model comes from the fact that actual

physical dimensions are utilized and the heat transfer equations are developed from basic

principles.  If the arterioles run next to the venules in the tissue, it may be necessary to

include counter-current heat exchange term.  In the liver, the capillaries (or sinusoids) are

larger and more dense. In this situation, capillary perfusion may be important. A three

dimensional numerical implementation will be required if symmetry is not present.

Conclusions

The small artery model (SAM) was developed based on the anatomy of the kidney

cortex vasculature. It correctly predicts the shape of the kss versus perfusion curve and the

ability to measure km in vivo by choosing the correct sinusoidal heating period of the
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thermistor. Although this model is specific for the canine kidney cortex, the modeling

approach is applicable for a wide variety of biologic tissues.
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element analysis with no perfusion.
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Figure 7.  Top view of the 2-D finite difference implementation of the small artery model.

Figure 8. 2-D finite difference model showing placement of the thermistor, arteries and

veins in tissue. Drawing is not to scale.

Figure 9. Numerically determined tissue conductivity versus perfusion rate.  

Figure 10. Steady state thermal conductivity versus perfusion for various thermal models.


