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ABSTRACT
This paper describes a method for characterizing the step

response of a thermistor probe embedded in a low-conductivity
solid. We define the “step response” as the dynamic response
of a finite-size thermosensor instantaneously plunged into an
infinite homogeneous conductive solid. The final goal of this
research is to evaluate and enhance the time-dependent
response of contact-type thermosensors. We will use the step
response as the parameter for optimizing the probe time-
dependent behavior. Although our research focuses on
thermistors, the results could be applied to other contact-type
sensors like thermocouples and RTD’s.

Currently, there is no direct way for determining the step
response of the probe in such a case, since the probe can not be
instantaneously plunged into a solid. In this paper, we describe
an indirect experimental method for determining the step
response of the probe. It is achieved by self-heating the
thermistor and analyzing its temperature response. The success
of this approach results from the fact that the heat transfer
processes controlling self-heating are the same as the
processes controlling the step response.

In this paper, we present an analytical expression for the
step response of a spherical probe in a conductive solid. A
relationship between the step response and the thermistor
response to a step power self-heating is developed. Finally, a
simple experimental method for determining the step response
from the self-heating response is presented.

INTRODUCTION

The typical way to characterize the transient response of a
temperature probe is the water-plunge test. In this test, the
sensor, at a certain temperature, is plunged into water at
another temperature flowing at a standard speed. Since this test
involves the response of the sensor to a sudden change of the
temperature surrounding the sensor, the plunge response is
often called step-response.

The water-plunge test, however, gives limited information
concerning the behavior of the probe in the actual measurement
situation, since the test conditions are generally different from
the measurement conditions. The speed and the thermal
properties of the fluid surrounding the probe in the
measurement may be different from the speed and thermal
properties of the fluid in the test. Differences are more
significant when the measurement is performed by a probe
embedded in a solid. In this case, the probe response strongly
depends on the thermal properties of the medium in which the
probe is located (Valvano and Yuan, 1992). Thus, the water-
plunge test gives a response which is significantly different
from the response of a probe embedded in a solid. The intuitive
way to get the true response of a probe in this case would be to
"plunge" the thermistor into a solid with similar thermal
properties. Agar-gelled water can be used to simulate tissue.
However, this test is not practical in most cases.

A typical application of the conduction dominated
environment is the thermal response of an oral thermometer.
Other application include externally heated tissue using laser,
ultrasound, or EM.

It is clear from the previous discussion that a method to
determine the actual time response of a temperature probe in



tissue would be useful. A great deal of research and development
concerning methods for the in situ measurement of the time
response of temperature sensors has been performed by Kerlin
et al.  (1980, 1981, 1984, 1982(a), 1982(b)). However,
Kerlin's methods were specific for sensors in convective media.

NOMENCLATURE
a = thermistor radius (cm)

b = α αb m m bk k⋅
c = 1− k km b/

cb = specific heat of the probe material

kb = thermal conductivity of probe bead (W/cm K)

km = thermal conductivity of medium (W/cm K)

Q = heat deposited in the probe (J/cm3)
r = radius coordinate (cm)
t = time (s)

T = temperature rise inside the bead (oC)
To = reference initial temperature of medium (K)

Tb = temperature rise of probe (oC)

Tm = temperature rise of medium (oC)

Tplunge =  average temperature inside the bead (oC)

Tself      =  average temperature inside the bead during self-

heating
Tsuperp. =  temperature due to superposition of plunge

responses
y = integration variable

αb = thermal diffusivity of probe bead (cm2/s)

αm = thermal diffusivity of medium (cm2/s)

Γ = rate of volumetric heat generation (W/cm3)

∆Timp = increment in temperature due to unit impulse 

generation
λ = integration variable for convolution operation

ρb = density of the probe material

THE STEP RESPONSE OF A SPHERICAL
TEMPERATURE PROBE EMBEDDED IN TISSUE

The probe is modeled by a sphere of radius a, thermal
conductivity kb and thermal diffusivity αb. The medium is

modeled as an infinite medium with thermal conductivity kb
and thermal diffusivity αm. The temperature variables Tb(r,t)

and Tm(r,t)  are referred to an initial basal temperature in the

probe (T0):

T r t T r t Tb b( , ) ( , ),= −0 0 (1)
T r t T r t Tm m( , ) ( , ),= −0 0 (2)

The differential equation governing the system is the heat
transfer equation in spherical coordinates applied to the
thermistor and the medium:
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The initial conditions are described by:
T r Vb ( , )0 = for 0 < <r a (5a)

T rm( , )0 0= for a r< < ∞ (5b)

The boundary conditions are described by:
T at T a tb m( , ) ( , )= for t > 0 (6.a)

T tm ∞ =, 0b g for   t > 0 (6.b)
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T r tb ( , ) is finite at r=0 (6.d)

This system of equations was solved by using the Laplace
Transform. The inverse Laplace Transform was calculated by
contour integration. The solution is:
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This analytical solution was verified by comparing

temperature values calculated using finite difference
approximation.

A numerical integration of Eq. (7) was performed using the
parameters in table 1.

===============
a=0.05 cm
kb=0.001 W / cm K

km=0.005 W / cm K

αb=0.001 cm2/ s

αm=0.002 cm2 / s 

===============
Table 1 . Parameters used in example in Fig. 1.

The integration was performed for values of r from 0.001 to
0.05 cm in steps of 0.001, and for values of time from 0 to 1.5
seconds. The results are shown in Fig. 1.

Figure 1. The temperature distribution  in a spherical 
thermistor bead during  a step  change in  the 
temperature  of  the surroundings every 0.05 
sec.



Figure 1 shows that initially the heat transfer is more
intense in the outer radius of the thermistor, and after some
time the heat transfer increases also in the inner part of the
thermistor body. This happens in this example because the
thermal diffusivity of the medium is higher than the thermal
diffusivity of the thermistor. It makes the heat flux higher at
the thermistor border, especially in the beginning when the
temperature gradients are high. After some time, the
temperature gradient at the border becomes lower, and the heat
flow becomes less intense.

The temperature measured by the thermistor will be assumed
to be the spatial average of the temperature within the spherical
bead, described by Eq. (7):
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Substituting Eq. (7) into Eq. (8), switching the order of
integration, integrating, and reorganizing the terms:
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where Tplunge(t) is define as the probe "step response"

temperature.
The plunge response was numerically calculated by using

the same parameters as in Fig. (1), and the result is shown in
Fig. (2). A best fit exponential curve is also shown in the
picture. These result indicates that the probe step response can
not be accurately modeled as a first order system. It can be
shown that the solution could be approximated by a summation
of several exponential functions (Carslaw and Jaegger, 1959).

Figure 2 - The plunge response of the thermistor.

RESPONSE OF A PROBE EMBEDDED IN TISSUE
TO A STEP POWER SELF-HEATING

The method for in situ measurement of the plunge response
of a thermistor uses the response of the coupled
thermistor/tissue system to a step power self-heating applied
to the thermistor. The model situation is the same as in section
(3.1): the thermistor probe is modeled by a sphere of radius a,
thermal conductivity kb, and thermal diffusivity αb. The

medium is modeled as an infinite medium with thermal
conductivity km and thermal diffusivity αm. A constant power

with density Γ is applied to the thermistor at time t≥0. I t  is

assumed that the self-heating is uniformly distributed in the
probe.

A previous work, by Goldenberg (1952), has shown that the
solution for the region inside the thermistor is given by:
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A simulation of the self heating process using the same

parameters (kb, αb,  km, αm) as Fig. 1, was performed, for

Γ=10 W/cm3. The results for the first 2 seconds are shown in

Fig. 3.

Figure 3.Temperature distribution in a probe 
subjected to step self-heating every 0.05 sec.

Similar to Eq. (8), the temperature indicated by the probe is
considered to be the volumetric average temperature in the
sphere:
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Performing the integration and rearranging the terms obtains:
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There are apparent similarities between Eqs. (9) and (13).

Equation (9) and the transient part of Eq. (13) have a similar

form; the difference is that there is a term y2 in Eq. (9), instead

of y4. A simulation of the volumetric average temperature in



the thermistor using the same parameters as in Fig. (3) is
shown in Fig. (4).

Figure 4. The analytical solution for the average 
temperature in the thermistor bead.

EXPERIMENTAL METHOD FOR THE
DETERMINATION IN SITU OF A THERMISTOR
PLUNGE RESPONSE USING A SELF-HEATING
METHOD

The plunge response of the probe can be determined from
the step power self-heating response. If successful, we could
determine the step response of the probe in situ, without the
disturbing problems of probe motion.

Even with the similarities between Eqs. (9) and (13), they
are fundamentally different. The response in Eq. (13) is slower
than the response in Eq. (9). The reason for the different
behavior is simple: in the first case the heat is only leaving the
bead, and in the second case there is heat being added to the
bead, as heat exits the bead, making the second process slower.

The key for finding a relationship between the two
equations is the superposition property of linear time-invariant
systems. The method consists of subdividing the problem
involving the self-heating process in an infinite number of
infinitesimal solutions of the plunge response. Let us define a
probe impulse response in the following sense: an impulsive
amount of heat is uniformly deposited all over the spherical
bead. The hypothetical spatial unit impulse would

instantaneously deposit the heat density of 1 Joule/cm3.  This
amount of heat will cause the instantaneous temperature rise in
the whole sphere of:

∆ T
c

imp
b b

=
1

ρ
(14)

After the impulsive energy is deposited in the bead,
causing an instantaneous rise (∆Timp) in temperature, the

heat starts to spread out to the medium. It is important to notice
that, except for a multiplicative constant, this impulse
response will have the same shape as the step response in Eqs.
(7) and (9). There is, therefore, a switch in nomenclature from
this point. The step (or plunge) response determined before
will become an impulse response in this new context.

The decomposition of the self-heating problem into a series
of infinitesimal plunge response problems can be intuitively
understood as follows. The constant power generation could be
divided as a sequence of discrete little packets of heat, delivered
uniformly to the bead in a sequential way, as illustrated in Fig.
(5). In the figure, the first differential heat package causes a
uniform raise in temperature, which starts spreading out of the
bead. After a differential moment, ∆t, another heat packet is

delivered, causing a uniform temperature rise, which adds to the
present temperature distribution. And the process repeats
indefinitely. It is important to remember that the real situation

is the limit as the time intervals and the energy packets tend to
zero.
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Figure 5.Illustration of the superposition theorem
applied to the present problem. "+" and "-"
mean time immediately after and before 
respectively.

With a little thought, one can show that the probe response
is the convolution of the unit step response, with a function
describing the generation of the instantaneous heat packets.
Suppose that a uniform constant power is delivered at a rate Γ
to the bead. We will divide the constant heat generation in a
sequence of pulses of width ∆t at intervals of ∆t, as shown in

Fig. 6.
Γ

(W/m  )

Time (s)∆ t ∆ t∆ t∆ t2 3 4

3

Figure 6.Decomposition of the linear temperature
increase in infinitesimal blocks.

Each heat pack deposits the heat amount of  Γ∆t. If ∆t i s

small, the result of the heat deposition will be approximately
the same as that of an impulse of intensity Γ∆t. Thus, the

response to the heat packet at t=0 would be a rise in temperature
of :

Γ∆t

c
T r t

b b
plungeρ

( , ) (15)



Similarly, the result for the heat packet at t=∆t will be the

same, but delayed by ∆t, that is:
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The net response will be the summation of all the individual
responses, that is:
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where Tsuperp.(r,t)  is the result of the superposition of the

heat packs (which will be shown to be equivalent to Tself(r,t)).

As ∆t → 0 , the summation in Eq. (15) becomes the integral:
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where h(r,t)=Tplunge(r,t)/ρbcb is the response to a unit power

impulse, and x(t)=Γ  is the rate of heat generation in the bead.

Plugging Eq. (7), with V Co= 1  into Eq. (19):
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Reversing the order of integration, we get:
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Solving the integral for λ, we get:
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Simplifying Eq. (23) results in Eq. (13), which is the Eq. for
the self-heated thermistor. Therefore, Tsuperb. is the same as

Tself. Thus, we have established the relationship between the

plunge response and the self-heated response.
The next step is to use this result for designing a self-

heating experiment for identification of the plunge response.
To do so, note that Eq. (19) can be rewritten as:
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where the symbol "*" indicates convolution.
Taking the Laplace Transform of Eq. (24) gives:
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where the bar over Tself and Tstep indicate Laplace Transform.

Isolating  T r sstep( , ), we obtain:
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Calculating the inverse Laplace Transform of Eq. (26) we
obtain:

T r t
c dT r t

dt
step

b b self
( , )

( , )
=

ρ
Γ

(27)

Thus, the plunge response is directly proportional to the
derivative of the self-heated step response. Eq. (27) shows that
the constant power self-heating was a good choice, since it
leads to a very simple relationship.

Now, consider the expressions for the measured temperature
in the plunge response and in the self-heating mode, Eqs. (9)
and (13), in which the measured temperatures were assumed to
be volumetric averages of the temperature distribution inside
the bead. The volumetric integration performed during the
evaluation of those equations does not affect the results in Eq.
(27), and an expression relating the average temperatures
Tplunge(t) and Tself(t) can be written as:
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Thus, a simple experimental approach for identifying the
plunge response of a probe is:

(i) Perform a step power self-heating experiment. This can
be done by using by an smart electronic control that
monitors the resistance and current passing through the
thermistor, which supplies the necessary current to
maintain a constant power generation.

(ii) Calculate the derivative of the signal using numerical
methods. Use a method that eliminates high frequency
noise.

(iii) The result is the plunge response multiplied by a
constant dependent on



Γ
, and can be scaled.

EXPERIMENTS
A number of experiments have been performed in order to

evaluate the validity of the method described. Some typical
results are presented in this section. A Thermometrics P60
probe was self-heated with a constant power (10 mW), and the
correspondent temperature was measured. The first measurement
was performed in still water. The derivative was calculated and
the result was normalized so that the response ranges from 0 to
1. A model, using equation (9), for a spherical thermistor was
run for different effective radiuses a. The assumed values of km
and αm for water were respectively 0.00613 W / cm K and

0.0014678  cm2/ s, respectively. The result that best fits the
experiment was chosen. The best effective radius was 0.031
inches. The self-heated measurement and the theoretical model
with the best effective radius is shown in Fig. 7.

Figure 7. The model and the measured plunge
response.

The measured plunge response had a fairly good agreement
with the model. The possible causes of the errors will be
discussed in the discussion section. A number of experiments
were performed using glycerol and water, and using probes with
different radii. The level of agreement was similar to that of
Fig. 7.

DISCUSSION
Comparing the present model with a real thermistor system,

we note that the model has several simplifying assumptions.
Among the most important are:

(i) The measured resistance was assumed to be the
volumetric average of the temperature distribution.

(ii) The thermistor leads deposit a uniformly distributed
power Γ.

(iii) The thermal effect of the metallic leads was neglected.
(iv) The glass or epoxy coating that normally protects the

thermistors was not considered.
(v) The thermal properties of the thermistor and the

medium were assumed to be homogeneous.
The validity of Eq. (28) was demonstrated by using the

known responses in Eqs. (9) and (13), for a simple spherical
probe. However, the method is valid for a general geometry,
provided that the assumptions above are valid, since the
superposition theorem still remains valid for a general
geometry.

We believe that the main limitation in this technique is due
to the presence of the coating shell. The presence of the shell
makes the true step response and the response found using the
self-heating technique different. This is because in the self-
heating situation the heat diffuses from the bead, crossing the
shell, in an outward direction, and in the temperature
measurement situation the heat starts diffuses from the tissue
through the shell. This fact limits the practical applicability of
the method to probes with a very protective coating. A model
considering the coating shell is presently being developed in
order to overcome this limitation.

CONCLUSION
This paper describes an in situ  experimental method for

determining the step response of a spherical temperature probe.
A simple model describing the step response of a spherical
probe embedded in a solid was presented. An experimental
method for determining this step response by self-heating the
thermistor was developed. Although the self-heating method
was applied to a simplified spherical probe, it should still be
valid for a general geometry, provided the assumptions in the
model are met, because the superposition theorem is still valid.

A number of preliminary experiments were performed in
order to assess the validity of the method. Although the results
are encouraging, the method can undergo further development.
The development of a more elaborated model would be required
in order to account for the coating shell
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