1 Algorithms

CLRS 1.1

Definition 1 Algorithm: A well-defined computational procedure which takes some value or set of values as input and produces some value or set of values as output.

- “well-defined computational procedure”—synonymous with program running on generic computer
- usually used to solve a “computational problem”
- can “compose” algorithms

Algorithm is correct—for every input instance, it halts and produces the correct output.

- very difficult to check correctness: undecidable in general

2 Inserttion sort

CLRS 2.1

Example 1 “Sorting Problem”

Input: \(\langle a_1, a_2, \ldots, a_n \rangle \)
Output: \(\langle a_1', a_2', \cdots, a_n' \rangle \)

\(\langle 31, 41, 59, 26, 41, 28 \rangle \rightarrow \langle 26, 31, 41, 41, 58, 59 \rangle \). *Will refer to \(\langle 31, 41, 59, 26, 41, 28 \rangle \) as an “instance”*

Concrete example of an algorithm: **insertion sort**. Pseudo-code in Figure 1

```plaintext
insertion_sort( A )
    for j <- 2 to length[A]
        do key <- A[j]
            // insert A[j] into the sorted sequence A[1..j-1]
            i <- j - 1
            while i > 0 and A[i] > key
                do A[i+1] <- A[i]
                    i <- i - 1
            A[i+1] <- key
```

Figure 1: Pseudo-code for insertion sort. See CLRS 2.1 for details, notation.

Two fundamental issues:

1. Analysis CLRS 2.2
2. Design CLRS 2.3

Analysis—predict “computational resources”, e.g., time, space, communication, logic gates, etc.

- can be very difficult!

We’ll be examining the problem of determining the run time needed: ignore the development time, compile time. This is a very dangerous assumption—recall Pike’s observations:

Rule 1 You can’t tell where a program is going to spend its time. Bottlenecks occur in surprising places, so don’t try to second-guess and put in a speed hack until you’ve proven that’s where the bottleneck is.
Rule 2 Measure. Don’t tune for speed until you’ve measured, and even then don’t unless one part of the code overwhelms the rest.

Rule 3 Fancy algorithms are slow when \(n \) is small, and \(n \) is usually small. Fancy algorithms have big constants. Until you know that \(n \) is frequently going to be big, don’t get fancy. (Even if \(n \) does get big, use Rule 2 first.)

Rule 4 Fancy algorithms are buggier than simple ones, and they’re much harder to implement. Use simple algorithms as well as simple data structures.

Rule 5 Data dominates. If you’ve chosen the right data structures and organized things well, the algorithms will almost always be self-evident. Data structures, not algorithms, are central to programming.

Back to insertion sort:

1. runtime is a function of input “sortedness”
2. runtime is also a function of array size

General fact—time taken grows with input size

- Need to formalize the notion of runtime, size of input

Size: depends on problem being solved

1. sorting—array length
2. multiplying large binary integers—total number of bits

Sometimes two components to size, e.g., matrix: \(m \) rows, \(n \) columns; graph \(|V|\) vertices, \(|E|\) edges.

Running time: for an algorithm on a particular input

- would like to make “machine independent”
 - count number of “primitive steps” executed (think of as machine instructions)
 * take care with function calls

Example 2 insertion-sort
1. array already sorted—$a \cdot n + b$

2. reverse sorted—$c \cdot n^2 + d \cdot n + e$

VERY IMPORTANT: We will always focus on the “worst case” runtime as a function of the input size.

- gives us a guarantee
- commonly seen:
 - worst case happens
 - average case same as worst case

Will examine the “rate of growth”

- impossible to predict exact runtimes (need very elaborate experimental methodology)

Useful to compare algorithms for same problem, predict growth.
Recall insertion sort worst case: $c \cdot n^2 + d \cdot n + e$—focus on the “dominant term”

3 Asymptotic notation

CLRS 3.1
Mathematical foundations: will be looking at real-valued functions on $N = \{0, 1, 2, \ldots\}$

Definition 2 Given $g(n)$, denote by $\Theta(g(n))$ the set of function

$$\{f(n) \mid \exists c_1, c_2 > 0 \text{ and } \exists n_0 \text{ such that } 0 \leq c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \text{ for all } n \geq n_0\}$$

Conceptually—f is “sandwiched” between $c_1 \cdot g$ and $c_2 \cdot g$ for large n.
Common to abuse notation and say $f(n) = \Theta(g(n))$ when $f(n) \in \Theta(g(n))$.

Example 3 $n^2/2 - 3n = \Theta(n^2)$
Proof: Need to show c_1, c_2, n_0 such that $\forall n \geq n_0 \ c_1 n^2 \leq n^2/2 - 3n \leq c_2 n^2$.

Equivalently, need to show: $\forall n \geq n_0 \ c_1 \leq 1/2 - 3/n \leq c_2$.

Take $c_2 \geq 1/2 \Rightarrow 1/2 - 3/n \leq c_2$ if $n \geq 1$.

Take $c_1 \leq 1/14 \Rightarrow 1/14 \leq 1/2 - 3/n$ if $n \geq 7$.

So $c_1 = 1/14, c_2 = 1/2, n_0 = 7$ works. \blacksquare

Note there are many other choices for c_1, c_2, n_0; similarly for other functions in $\Theta(n^2)$ we may need different c_1, c_2, n_0.

Example 4 $6n^3 \neq \Theta(n^2)$

Suppose $6n^3 = \Theta(n^2)$. Then there exists c_1, c_2, and n_0 such that $6n^3 \leq c_2 n^2 \ \forall n \geq n_0$; equivalently, $n \leq c_2/6 \ \forall n \geq n_0$

This is impossible! Hence the supposition $6n^3 = \Theta(n^2)$ must be false.

O-notation—“Asymptotic Lower Bound”

Definition 3 Given $g(n)$ denote by $O(g(n))$ the set

$$\{f(n) \mid \text{there exists } c > 0 \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq c \cdot g(n) \text{ for all } n \geq n_0\}$$

As with Θ notation, we’ll write $f(n) = O(g(n))$ when we really mean $f(n) \in O(g(n))$.

Conceptually—Θ-notation specifies upper and lower bounds; the O-notation specifies only upper bound. Advantage of O notation: usually easier to come up with by inspecting the algorithm.

Straightforward fact: if $f(n) = \Theta(g(n))$ it must be that $f(n) = O(g(n))$.

Example 5 $\ a \cdot n + b$ is in $O(n^2)$. (Reason: take $c = |a| + |b|$ and $n_0 = 1$. Check—$a \cdot n + b \leq (|a| + |b|) \cdot n^2$ holds whenever $n \geq 1$.

Warnings:

1. Older books use O where CLRS uses Θ.

2. We’ll often say “running time of insertion sort is $O(n^2)$” when it would be more precise to say “the worst case running time of insertion sort is $O(n^2)$.”
Ω-notation—“Asymptotic Upper Bound”

Given $g(n)$ denote by $\Omega(g(n))$ the set

$$\{f(n) \mid \text{there exists } c > 0 \text{ and } n_0 \text{ such that } 0 \leq c \cdot g(n) \leq f(n) \text{ for all } n \geq n_0\}$$

Easy fact:

Theorem 1 For any two functions $f(n)$ and $g(n)$

$$f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \text{ and } g(n) = O(f(n))$$

We’ll find this theorem useful when we want to prove that two functions are “asymptotically equivalent.”

Notation: thus far have been writing things like $n = O(n^2)$. Later will find it convenient to write $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$; by this we mean $2n^2 + 3n + 1 = 2n^2 + g(n)$, where $g(n) = \Theta(n)$.

ο-notation

First the idea: $2n^2 = O(n^2)$ and $2n = O(n^2)$; however, first bound is “tight,” the second isn’t. With this in mind we define the “little-oh” notation:

Definition 4 Given $g(n)$, denote by $o(g(n))$ the set

$$\{f(n) \mid \text{for each } c > 0 \text{ there exists } n_0 \text{ such that } 0 \leq f(n) \leq c \cdot g(n) \text{ for all } n \geq n_0\}$$

Example 6 $2n = o(n^2)$ but $2n^2 \neq o(n^2)$.

Note the difference between “little-oh” and “big-Oh”

- big-Oh—$f(n) \leq c \cdot g(n)$ for some c
• little-oh—\(f(n) \leq c \cdot g(n)\) for every \(c\)

Conceptually: “\(f(n)\) is (asymptotically) insignificant with respect to \(g(n)\).”

Theorem 2 \(f(n) = o(g(n))\) iff \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0\)

Proof: Use the definition of \(\lim_{n \to \infty} \frac{f(n)}{g(n)}\)

Comparing functions

Analogs of the ordering properties of the real numbers hold for functions:

\[
\begin{align*}
 f(n) = \Theta(g(n)) \text{ and } g(n) = \Theta(h(n)) & \implies f(n) = \Theta(h(n)) \\
 f(n) = O(g(n)) \text{ and } g(n) = O(h(n)) & \implies f(n) = O(h(n)) \\
 f(n) = \Omega(g(n)) \text{ and } g(n) = \Omega(h(n)) & \implies f(n) = \Omega(h(n)) \\
 f(n) & = \Theta(f(n)) \\
 f(n) = \Theta(g(n)) & \iff g(n) = \Theta(f(n)) \\
 f(n) = O(g(n)) & \iff g(n) = \Omega(f(n))
\end{align*}
\]

As such, the following analogies can be made:

\[
\begin{align*}
 f(n) = O(g(n)) & \sim a \leq b \\
 f(n) = \Omega(g(n)) & \sim a \geq b \\
 f(n) = \Theta(g(n)) & \sim a = b \\
 f(n) = o(g(n)) & \sim a < b \\
 f(n) = \omega(g(n)) & \sim a > b
\end{align*}
\]

However, the analogy can break down: for any real numbers \(a\) and \(b\), exactly one of the following must be true: \(a < b\) or \(a = b\) or \(a > b\). However given two functions \(f(n)\) and \(g(n)\), it is not always the case that \(f(n) = O(g(n))\) or \(f(n) = \Theta(g(n))\) or \(f(n) = \Omega(g(n))\).
Counter example: \(f(n) = n, \ g(n) = n^{1+\sin n} \).

CLRS 3.2

Standard notation and terminology: you should be familiar with monotonicity, strict monotonicity, \([x], [y]\), polynomials, \(a^n\), \(\log_a b\), \(\lg\), \(\ln\), \(n!\).

We will define \(\lg^*(n)\) when we need it; will never encounter Fibonacci numbers.