Hash Tables

Adnan Aziz

Based on CLRS, Ch 11.

1 Hashing

Many many applications-need dynamic set supporting insert, search, and deletes.

- symbol table in compilers, database severs, etc.

Hash tables -in worst case take $\Theta(n)$ time to perform these operations; in practice very fast.

- Assumption-accessing $A[i]$ takes $O(1)$ time

First attempt—direct address tables
If keys are integers in $U=\{0,1, \ldots, m-1\}, m$ small, and no two elements have the same key.

- just store elements with key i in $\operatorname{slot} A[i]$ (initialize to NIL).
- search, insert, delete-trivial

Very fast!
Catch- $|U|$ may be very large relative to the number of elements we will ever store.
Hash tables-working with set K, try to reduce storage requirements to $\Theta(K)$

- will keep $O(1)$ search, insert, delete times
- here's the kicker: these are only in the average case

Hashing—first try:

- instead of inserting element with key k in slot k, use a hash function to store in array of size m, where $m \ll|U|$

Here h is some function mapping U to $\{0,1, \ldots, m-1\} .{ }^{1}$
Will say element with key k hashes to slot $h(k) ; h(k)$ is the hash value of k.

- Ex: U is integers, $h(x)$ is $x \bmod m$.

Problem: collisions-two elements may map to the same slot.
How to deal with this?

- make sure it doesn't happen (make h very "random")
- unfortunately, since $m \ll|U|$, there is always the possibility of a collision

Chaining-one approach to dealing with collisions

- put all elements that hash to the same slot in a linked list
- for simplicity, assume doubly linked, with pointers to head and tail
- insert (T, x) —put at end of $T[h(k e y[x])]$
- will always perform a search before an insert, make sure never repeat entries
- inserting at the end is confusing, why not the beginning? Ans: takes same time to insert at head or tail and makes analysis much simpler. (cf. CLRS problem 11.2-3)
- $\operatorname{search}(\mathrm{T}, \mathrm{x})$-search for element with key k in list $\mathrm{T}[\mathrm{h}(\mathrm{k})$]
- delete (T, x) -delete x from list $\mathrm{T}[\mathrm{h}(\mathrm{k})]$

Time complexity? Insertion is $O(1)$ plus time for search; deletion is $O(1)$ (assume pointer is given).
Complexity of search is difficult to analyze.
Model— T hash table, with m slots and n elements.

- define load factor $\alpha=n / m$

[^0]In worst case-search looks at $\Theta(n)$ elements.
How to analyze the average case behavior?

- depends critically on how h distributes the keys

Assumption on h-any element is equally likely to be hashed into any one of the m slots, regardless of where the other elements are hashed to. (This is called simple uniform hashing.)

- also assume that $h(k)$ takes $O(1)$ time to compute.

From assumptions, \Rightarrow time taken to search for element with key k is proportional to length of T[h(k)].
Now lets analyze the average time to search for key k.

- will consider two cases-search unsuccessful and search successful

Theorem 1 In a hash table in which collisions are resolved by chaining, an unsuccessful search takes $\Theta(1+\alpha)$ time on average, assuming simple uniform hashing.

Proof: Any key k is equally likely to be in any of the m slots \Rightarrow average time to search = average length of list $=n / m=\alpha$.
Hence average time is $\Theta(1+\alpha)$. (We added 1 for computing h.)

Theorem 2 In a hash table in which collisions are resolved by chaining, a successful search takes $\Theta(1+\alpha)$ time on average, assuming simple uniform hashing.

Proof: Assume that the search is equally likely to be any of the n keys, and that inserts are done at the end of the list.
Expected \# of elements examined $=1+$ \# elements examined when sought after element was inserted.
Take average over the n elements of $1+$ expected length of list to which the i-th element was added.
The expected length of list to which i-th element is added is $(i-1) / m$

$$
\begin{aligned}
(1 / n) \cdot\left(\sum_{i=1}^{n}(1+(i-1) / m)\right) & =1+\frac{1}{m \cdot n} \cdot\left(\sum_{i=1}^{n}(i-1)\right) \\
& =1+\frac{1}{m \cdot n} \cdot\left(\frac{n \cdot(n-1)}{2}\right) \\
& =1+\frac{\alpha}{2}-\frac{1}{2 \cdot m} \\
& =\Theta\left(1+\frac{\alpha}{2}-\frac{1}{2 \cdot m}\right)
\end{aligned}
$$

Hence overall complexity is $\Theta\left(1+\frac{\alpha}{2}-\frac{1}{2 \cdot m}\right)=\Theta(1+\alpha)$.
Think about the case where $\alpha=1$, when $\alpha \ll 1$, and when $\alpha \gg 1$.

2 Hash functions

What makes for a good hash function?

- comes close to "simple uniform hashing"-each key is equally likely to fall into any slot

Suppose entries are selected from universe with probability p, i.e., $p(k)$ is the probability of choosing key k. Ideally, we would like for each j

$$
\sum_{k: h(k)=j} p(k)=1 / m
$$

Problem: don't usually know p in advance Idea-use heuristics

- From now on will assume keys are natural numbers
- string-think of as sequence of bits \Rightarrow an integer (possibly very large)

2.1 Division method

$h(k)=k \bmod m$

- need to avoid certain values of m, e.g., powers of 2 , powers of 10

Fact-good values are primes which are not too close to powers of 2

- approx. 2000 strings, willing to examine 3 elements per unsuccessful search
- use 701 slots

Experiment on real data.

2.2 Multiplication method

pick some $A \in(0,1)$, hold constant

1. compute $k \cdot A$
2. extract fractional part of $k \cdot A$
3. multiply by m and take floor $\lfloor m \cdot(k \cdot A \bmod 1)\rfloor$

What value for A ?

- Knuth suggests that $A=(\sqrt{5}-1) / 2$ which is $0.6180339887 \ldots$

2.3 Universal hashing

Pick a hash function from a family of hash functions.

- theoretical nice properties; see CLRS page 232 for details

2.4 Open addressing

Basic idea-store elements in hash table itself

- entry is either an element or NIL

First attempt

- insert k at $h(k)$; if entry at $h(k)$ is not NIL (i.e., something has already been stored there), go to next slot (and next, and next, etc., till you find an open slot.)
- lookup k at $h(k)$; if entry at $h(k)$ is NIL, not present; if key of entry at $h(k)$ is k, element is present, otherwise, examine next slot (as before)

Terrible performance!

- cookie monster performance

Generalize to "probing" $h: U \times\{0,1,2, \ldots, m-1\} \mapsto\{0,1,2, \ldots, m-1\}$

- examine entries in "probe sequence" $\langle h(k, 0), h(k, 1), \ldots, h(k, m-1)\rangle$
- require $\langle h(k, 0), h(k, 1), \ldots, h(k, m-1)\rangle$ is a permutation of $\{0,1,2, \ldots, m-1\}$

Hash-Insert (T, k)
i <- 0
repeat j <- h(k,i) if $T[j]=$ NIL
then $\mathrm{T}[\mathrm{j}]$ <- k
return j
else i <- i + 1
until $i=m$
error overflow

Tiny changes for Hash-Lookup

2.5 Linear probing

$h(k, i)=\left(h^{\prime}(k)+i\right) \bmod m$, where h^{\prime} is ordinary hash function \Rightarrow exactly what we described in our first attempt!

2.6 Quadratic probing

$h(k, i)=\left(h^{\prime}(k)+c_{1} \cdot i+c_{2} \cdot i^{2}\right) \bmod m$, where c_{1}, c_{2} are nonzero constants

- fairly complex requirements on c_{1}, c_{2}, m to get permutations
- if $h\left(k_{1}, 0\right)=h\left(k_{2}, 0\right)$ then $h\left(k_{1}, i\right)=h\left(k_{2}, i\right)$ for all i

2.7 Double hashing

$h(k, i)=\left(h_{1}(k)+i \cdot h_{2}(k)\right) \bmod m$

- need $h_{2}(k)$ to be relatively prime to m to generate permutations

1. use m a power of 2 , and h_{2} to always be odd
2. use m a prime, and h_{2} to always be less than m

- following works very well- $h_{1}(k)=k \bmod m$, and $h_{2}(k)=1+\left(k \bmod m^{\prime}\right)$, where m^{\prime} is slightly smaller than m

Facts:

- For an open address hash table with load factor $\alpha=n / m<1$, the average number of probes in an unsuccessful search is at most $1 /(1-\alpha)$
- follows that on average, insertion requires $1 /(1-\alpha)$ probes
- For an open address hash table with load factor $\alpha=n / m<1$, the average number of probes in a successful search is at most $1 / \alpha+(1 / \alpha) \cdot \ln (1 /(1-\alpha))$

Real code for a hash function for strings:

```
st_strhash(string, modulus)
register char *string;
int modulus;
{
    register int val = 0;
    register int c;
```

```
    while ((c = *string++) != '\0') {
        val = val*997 + c;
    }
    return ((val < 0) ? -val : val) %modulus;
}
```


[^0]: ${ }^{1}$ Be careful-in this chapter, arrays are numbered starting at 0 ! (Contrast with chapter on heaps)

