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1 Hashing

Many many applications—need dynamic set supporting insert, search, and deletes.

• symbol table in compilers, database severs, etc.

Hash tables —in worst case take Θ(n) time to perform these operations; in practice very fast.

• Assumption—accessing A[i] takes O(1) time

First attempt—direct address tables

If keys are integers in U = {0, 1, . . . ,m − 1}, m small, and no two elements have the same key.

• just store elements with key i in slotA[i] (initialize to NIL).

– search, insert, delete—trivial

Very fast!
Catch—|U | may be very large relative to the number of elements we will ever store.
Hash tables—working with set K, try to reduce storage requirements to Θ(K)

• will keep O(1) search, insert, delete times

– here’s the kicker: these are only in the average case

Hashing—first try:
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• instead of inserting element with key k in slot k, use a hash function to store in array of size
m, where m � |U |

Here h is some function mapping U to {0, 1, . . . ,m − 1}.1

Will say element with key k hashes to slot h(k); h(k) is the hash value of k.

• Ex: U is integers, h(x) is x mod m.

Problem: collisions—two elements may map to the same slot.
How to deal with this?

• make sure it doesn’t happen (make h very “random”)

– unfortunately, since m � |U |, there is always the possibility of a collision

Chaining—one approach to dealing with collisions

• put all elements that hash to the same slot in a linked list

– for simplicity, assume doubly linked, with pointers to head and tail

• insert(T,x)—put at end of T[h(key[x])]

– will always perform a search before an insert, make sure never repeat entries

– inserting at the end is confusing, why not the beginning? Ans: takes same time to insert
at head or tail and makes analysis much simpler. (cf. CLRS problem 11.2-3)

• search(T,x)—search for element with key k in list T[h(k)]

• delete(T,x)—delete x from list T[h(k)]

Time complexity? Insertion is O(1) plus time for search; deletion is O(1) (assume pointer is
given).
Complexity of search is difficult to analyze.
Model—T hash table, with m slots and n elements.

• define load factor α = n/m

1Be careful—in this chapter, arrays are numbered starting at 0! (Contrast with chapter on heaps)
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In worst case—search looks at Θ(n) elements.
How to analyze the average case behavior?

• depends critically on how h distributes the keys

Assumption on h —any element is equally likely to be hashed into any one of the m slots, regard-
less of where the other elements are hashed to. (This is called simple uniform hashing.)

• also assume that h(k) takes O(1) time to compute.

From assumptions, ⇒ time taken to search for element with key k is proportional to length of
T[h(k)].
Now lets analyze the average time to search for key k.

• will consider two cases—search unsuccessful and search successful

Theorem 1 In a hash table in which collisions are resolved by chaining, an unsuccessful search

takes Θ(1 + α) time on average, assuming simple uniform hashing.

Proof: Any key k is equally likely to be in any of the m slots ⇒ average time to search = average
length of list = n/m = α.
Hence average time is Θ(1 + α). (We added 1 for computing h.)

Theorem 2 In a hash table in which collisions are resolved by chaining, a successful search takes

Θ(1 + α) time on average, assuming simple uniform hashing.

Proof: Assume that the search is equally likely to be any of the n keys, and that inserts are done at
the end of the list.
Expected # of elements examined = 1 + # elements examined when sought after element was
inserted.
Take average over the n elements of 1 + expected length of list to which the i-th element was
added.
The expected length of list to which i-th element is added is (i − 1)/m
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Think about the case where α = 1, when α � 1, and when α � 1.

2 Hash functions

What makes for a good hash function?

• comes close to “simple uniform hashing”—each key is equally likely to fall into any slot

Suppose entries are selected from universe with probability p, i.e., p(k) is the probability of choos-
ing key k. Ideally, we would like for each j

∑

k:h(k)=j

p(k) = 1/m

Problem: don’t usually know p in advance
Idea—use heuristics

• From now on will assume keys are natural numbers

– string—think of as sequence of bits ⇒ an integer (possibly very large)

2.1 Division method

h(k) = k mod m
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• need to avoid certain values of m, e.g., powers of 2, powers of 10

Fact—good values are primes which are not too close to powers of 2

• approx. 2000 strings, willing to examine 3 elements per unsuccessful search

– use 701 slots

Experiment on real data.

2.2 Multiplication method

pick some A ∈ (0, 1), hold constant

1. compute k · A

2. extract fractional part of k · A

3. multiply by m and take floor bm · (k · A mod 1)c

What value for A?

• Knuth suggests that A = (
√

5 − 1)/2 which is 0.6180339887...

2.3 Universal hashing

Pick a hash function from a family of hash functions.

• theoretical nice properties; see CLRS page 232 for details

2.4 Open addressing

Basic idea—store elements in hash table itself

• entry is either an element or NIL

First attempt

• insert k at h(k); if entry at h(k) is not NIL (i.e., something has already been stored there),
go to next slot (and next, and next, etc., till you find an open slot.)
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• lookup k at h(k); if entry at h(k) is NIL, not present; if key of entry at h(k) is k, element is
present, otherwise, examine next slot (as before)

Terrible performance!

• cookie monster performance

Generalize to “probing” h : U × {0, 1, 2, . . . ,m − 1} 7→ {0, 1, 2, . . . ,m − 1}

• examine entries in “probe sequence”
〈

h(k, 0), h(k, 1), . . . , h(k,m − 1)
〉

– require
〈

h(k, 0), h(k, 1), . . . , h(k,m − 1)
〉

is a permutation of {0, 1, 2, . . . ,m − 1}

Hash-Insert( T, k)

i <- 0

repeat j <- h(k,i)

if T[j] = NIL

then T[j] <- k

return j

else i <- i + 1

until i=m

error overflow

Tiny changes for Hash-Lookup

2.5 Linear probing

h(k, i) = (h′(k) + i) mod m, where h′ is ordinary hash function
⇒ exactly what we described in our first attempt!

2.6 Quadratic probing

h(k, i) = (h′(k) + c1 · i + c2 · i2) mod m, where c1, c2 are nonzero constants
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• fairly complex requirements on c1, c2,m to get permutations

• if h(k1, 0) = h(k2, 0) then h(k1, i) = h(k2, i) for all i

2.7 Double hashing

h(k, i) =
(

h1(k) + i · h2(k)
)

mod m

• need h2(k) to be relatively prime to m to generate permutations

1. use m a power of 2, and h2 to always be odd

2. use m a prime, and h2 to always be less than m

– following works very well—h1(k) = k mod m, and h2(k) = 1 + (k mod m′),
where m′ is slightly smaller than m

Facts:

• For an open address hash table with load factor α = n/m < 1, the average number of probes
in an unsuccessful search is at most 1/(1 − α)

– follows that on average, insertion requires 1/(1 − α) probes

• For an open address hash table with load factor α = n/m < 1, the average number of probes
in a successful search is at most 1/α + (1/α) · ln (1/(1 − α))

Real code for a hash function for strings:

st_strhash(string, modulus)

register char *string;

int modulus;

{

register int val = 0;

register int c;
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while ((c = *string++) != ’\0’) {

val = val*997 + c;

}

return ((val < 0) ? -val : val)%modulus;

}

8


