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ABSTRACT
In recent years, there has been a lot of interest in the database
community in mining time series data. Surprisingly, little
work has been done on verifying which measures are most
suitable for mining of a given class of data sets. Such work is
of crucial importance, since it enables us to identify similar-
ity measures which are useful in a given context and there-
fore for which efficient algorithms should be further investi-
gated. Moreover, an accurate evaluation of the performance
of even existing algorithms is not possible without a good
understanding of the data sets occurring in practice.

In this work we attempt to fill this gap by studying similarity
measures for clustering of similar stocks (which, of course,
is an interesting problem on its own). Our approach is to
cluster the stocks according to various measures (including
several novel ones) and compare the results to the ”ground-
truth” clustering based on the Standard and Poor 500 Index.
Our experiments reveal several interesting facts about the
similarity measures used for stock-market data.

Categories and Subject Descriptors
I.5.3 [Clustering]: Similarity measures

Keywords
time series, stock, clustering, similarity measures, data min-
ing

1. INTRODUCTION
In recent years, there has been a lot of interest in the database
community in mining time series data. Such data naturally
arise in business as well as scientific decision-support appli-
cations; examples include stock market data (probably the
most studied time series examples in history), production
capacities, population statistics, and sales amounts. Since
the data sets occurring in practice tend to be very large,

most of the work has focused on the design of efficient algo-
rithms for various mining problems and, most notably, the
search of similar (sub)sequences with respect to a variety of
measures [1, 2, 3, 4, 5, 7, 8, 10].

Surprisingly, little work has been done on verifying which
measures are most suitable for mining of a given class of data
sets. Such work is of crucial importance, since it enables us
to identify similarity measures which are useful in a given
context and, therefore, for which efficient algorithms should
be further investigated. Moreover, an accurate evaluation
of the performance of the existing algorithms is not possible
without good understanding of the data sets occurring in
practice.

In this work we attempt to fill this gap by studying measures
for clustering of similar stocks (see [11] for more information
about mining financial data). We obtained the stock-market
data for 500 stocks from the Standard & Poor (S & P) in-
dex for the year 1998. Each stock is a series of 252 numbers,
representing the price of the stock at the beginning of an
operational day. Every time series is assigned to one out of
102 clusters (e.g. “Computers (Hardware)”, “Oil and Gas”,
etc). Assuming this classification as a “ground-truth”, we
try to re-create it by running a clustering algorithm on the
stock data using a variety of similarity measures. Then the
respective measures are evaluated by comparing the result-
ing clustering to the original S & P classification (we use
other evaluation methods as well).

Our experiments exhibited several very interesting proper-
ties of stock market data. First of all, the best clustering
results were obtained for a novel measure proposed in this
paper which uses piecewise normalization. The main idea
behind this approach is to split the sequences into blocks
and perform separate normalization within each block. Our
results indicate that this approach yields quite powerful re-
sults for stock-market data. Another interesting observation
is that comparing the normalized derivatives of the price se-
quences resulted in better clusterings than comparing the
actual sequences (this phenomenon is widely known in the fi-
nancial community). In particular, the combination of both
of the above ideas results in the highest quality clustering
obtained in this paper, depicted in Table 5. One can ob-
serve that the majority of our clusters have a one-to-one
correspondence with one of the original S & P clusters, in



the sense that for each of these clusters (say C) the S & P
cluster closest to C also chooses C as its closest cluster. All
of the remaining clusters are not nearest neighbors of any S
& P cluster.

The high quality of the clustering obtained using derivatives
has very interesting implications, since the performance anal-
ysis for most of the times series data structures assumes that
the sequences are smooth1, which is clearly not the case for
the derivatives. Therefore, our results suggest that new al-
gorithmic techniques should be developed, to capture the
scenarios in which non-smooth time series data are present.

2. SETUP DESCRIPTION
The Data. We have used the Standard and Poor 500 index
(S&P) historical stock data published at
http://kumo.swcp.com/stocks/ . There are approximately
500 stocks which daily price fluctuations are recorded over
the course of one year.

Each stock is a sequence of some length d, where d ≤ 252
(the latter number is the number of days in 1998 when the
stock market was operational, but d can be smaller if the
company is removed from the Index). We used only the
day’s opening price; the data also contains the closing price,
and the low and high stock valuation for the day.

The data also contained the official S&P clustering informa-
tion which groups the different stocks into industry groups
based on their primary business focus. This information was
also used in our experiments, with the assumption that it
provides us with a basis for a “ground-truth” with which we
can compare and rate the results of our unsupervised cluster-
ing algorithm. We abstracted the 102 members of this S&P
clustering into 62 “superclusters” by combining closely re-
lated ones together, e.g., “Automobiles” and “Auto (Parts)”
or “Computers (Software)” with “Computers (Hardware)”.

Feature Selection. Our feature selection approach con-
sists of three main steps, depicted on the following picture:

Dim reduction

- Aggregation
- Fourier Transform

- PCA

- none

   - first derivative

Normalization

   - global

   - piecewise

   - raw data

Representation

   - none

Figure 1: Feature extraction process

1. Representation choice: in this step we map the original
time series into a point in d-dimensional space, where
d is close to the length of the sequence. We use two
types of mapping: identity and first derivative (or FD
for short). In the first case, the whole sequence is
considered to be one 252-dimensional point. In the
second case, the i-th coordinate of the derivative vector

1E.g., [1, 7] approximate a sequence by removing all but
few elements in the Fourier representation of a sequence; the
quality of approximation in this case relies on the fact that
high frequency component of a signal have low amplitude,
which is clearly not the case for the derivative sequence.

is equal to the difference between the (i+1)-th and i-
th value of the sequence. Both mappings are natural
in the context of time-series data.

2. Normalization: in this step we decide if and how we
should normalize the vectors. The standard normal-
ization is done by computing the mean of the vector co-
ordinates and subtracting it from all coordinates (note
that in this way the mean becomes equal to 0) and then
dividing the vector by its L2 norm. This step allows
us to bring together stocks which follow similar trends
but are valued differently, e.g., due to stock splits (note
that our time series are not adjusted for splits). We
also introduce a novel normalization method which we
call piecewise normalization. The idea here is to split
the sequence into windows, and perform normalization
(as described above) separately within each window.
In this way we take into account local similarities, as
opposed to the global similarity captured by the nor-
malization of the whole vector.

3. Dimensionality reduction: in this step we aim to re-
duce the dimensionality of the vector space while pre-
serving (or perhaps even improving) the quality of
the representation. Our first dimensionality reduction
technique is based on the Principal Component Anal-
ysis (PCA). PCA maps vectors xn in a d-dimensional
space (x1, ..., xd) onto vectors z

n in an M -dimensional
space, where M < d. PCA finds d orthonormal ba-
sis vectors ui, called also principal components, and
retains only a subset M < d of these principal com-
ponents to represent the projections of vectors xn into
the lower-dimensional space. PCA exploits the tech-
nique of Singular Value Decomposition(SVD), which
finds the eigenvalues and eigenvectors of the covari-
ance matrix

Σ =
∑

n

(xn − x̄)(xn − x̄)T

where x̄ is the mean of all vectors xn. The principal
components are shown to be the eigenvectors corre-
sponding to the M largest eigenvalues of Σ and the
input vectors are projected onto the eigenvectors to
give the components of the transformed vectors zn in
the M -dimensional space.

Our second technique, aggregation, is based on the
assumption that local fluctuation of the stock (say,
within the period of 10 days) is not as important as its
global behavior, and therefore that we can replace a 10
day period by the average stock price during that time.
In particular, we split the time domain into windows
of length B (for B = 5, 10, 20 etc) and replace each
window by its average value. Clearly, this decreases
the dimensionality by a factor of B.

Our third technique is based on the Fourier Transform
(e.g., see [1] for the description). Basically, we used
truncated spectral representations, i.e., we represented
a time-series by only a few of its lowest frequencies.

Until now we described how we compare sequences of iden-
tical length. In order to compare a pair of sequences of
different lengths, we take only the relevant portion of the



longer time series, and perform the aforementioned process-
ing only on that part. However, in order to perform PCA,
we need to assume that all points have the same dimension,
so instead, we pad all shorter sequences with zeros.

Similarity measure. We use the Euclidean distance be-
tween the feature vectors.

The clustering method. We use Hierarchical Agglomer-
ative Clustering (HAC), which involves building a hierarchi-
cal classification of objects by a series of binary mergers (ag-
glomerations), initially of individual objects, later of clusters
formed at previous stages; see [6] for more details. A single
”partition” (slice across the hierarchy) can then be taken at
any level to give the desired number of clusters. We exper-
imented with several rules for agglomeration. Merging two
clusters which have the smallest maximum distance between
two inter-cluster elements proved to yield the best results.

Rating and Comparing the Results. In order to eval-
uate the various results we got from applying the different
feature selection mechanisms, we need the “ground-truth”,
i.e., some apriori classification which we can use for compar-
isons. The S&P clustering (provided in the input data as
discussed above) serves exactly this purpose. This choice of
“ground-truth” is based on the reasonable assumption that
the pricing of each stock will be mainly influenced by factors
specific to the particular industry sector to which this stock
belongs.

We use the following measure that given the two clusterings
C = C1 . . . Ck (say S & P clusters) and C

′ = C′1 . . . C
′

k (say
HAC clusters), computes their similarity using the following
formula:

Sim(Ci, C
′

j) = 2
|Ci ∩ C

′

j |

|Ci|+ |C′j |

and

Sim(C,C′) =

(

∑

i

max
j
Sim(Ci, C

′

j)

)

/k

Note that this similarity measure will return 0 if the two
clusterings are completely dissimilar and 1 if they are the
same. The measure has been already used for comparing
different clusterings, e.g., in [9]. Note that this measure is
not symmetric.

The above approach, although very natural, has the follow-
ing disadvantage: the quality of the clusters depends not
only on the similarity measure, but also on the clustering
algorithm used. To avoid this problem, we complement our
evaluation by using a method akin to Precision-Recall curves
widely used in the Information Retrieval community. Here
they are defined as follows. For each stock (say S) we “issue
a query”, that is rank all of the other stocks S′ according
to the distance between S and S′, the closest ones first. We
consider the stocks belonging to the same S & P cluster as
S to be “relevant” and all other stocks to be “not relevant”.
Then we define a graph which for every rank i depicts the
percentage of relevant stocks among the i stocks closest to
P . The final curve is obtained by averaging the curves ob-
tained for all stocks S.

3. RESULTS
We started from finding the right parameters for the eigen-
value decomposition for each particular feature-type.

After applying SVD on the raw data, it turned out that
97.62% of the eigenvalue weight is in the first 5 values,
and 98.88% is in the first 10 values. This suggests that
a projection of this 252-dimensional data in 10- or even 5-
dimensional space will result in a negligible loss of informa-
tion (see Figure 2 and 3).
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Figure 2: All eigenvalues for raw data before global
normalization
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Figure 3: First 11 eigenvalues for raw data before
global normalization

After global normalization of the data, we observe an in-
crease in the error of dimensionality reduction. Now, in the
first 10 eigenvalues is 90.47% of the weight, while 94.99% is
in the first 20, and 98.19% in the first 50. Nevertheless, this
could still allow us to achieve a significant reduction (see
Figure 4 and 5).

After taking the first derivative, 61.95% of the eigenvalue
weight is in the first 20 eigenvalues, 80.48% in the first 50,
and 92.42% in the first 100 (see Figure 6).
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Figure 4: All eigenvalues for raw data after global
normalization

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 5: First 25 eigenvalues for raw data after
global normalization
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Figure 6: Plot of all 252 eigenvalues after applying
the first derivative

The last transformation we used was taking the first deriva-
tive, then normalizing. Here, we observe the biggest dimen-
sionality “dispersal”. Only 75.23% of the eigenvalue weight
is contained in almost half of the original dimensions, while
52.20% is in the first 50, and only 21.47% in the first 10 (see
Figure 7).
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Figure 7: Plot of all 252 eigenvalues after applying
globally normalized first derivative

To summarize: we get tremendous dimensionality reduction
on the raw data – 97.62% of the information is only in 5
dimensions ! As we process the data (normalization and
first derivatives (FD) ), we get a dimensionality “dispersal”.
The most “dispersed” is the data that was pre-processed the
most.

Therefore, for the further dimensionality reduction experi-
ments, we choose the dimensionality for the above scenarios
to be equal to respectively 5, 10, 50 and 100.

Clusters. The results of the clusterings (together with their
parameters) are depicted in Tables 1, 2, 3 and 4. Table 1
was obtained by clustering the stocks according using 8 vari-
ants of the similarity metrics, from the space

{raw data, first derivative} x {global normalization, no
normalization}

x {all dimensions, reduced dimension}

The number of clusters was set to 62 (i.e., equal to the num-
ber of S & P “superclusters”).

The second table shows the results for dimensionality reduc-
tion via aggregation. In this case, we vary the size of the
aggregation window, the data representation (raw data or
FD) and normalization (global or none).

We also performed experiments where the dimensionality
reduction was done via Fourier Transform. Since, by Par-
seval’s Theorem [1], the Euclidean norm of a raw vector is
equal to the norm of its spectral representation, we per-
formed the experiments on truncated spectral representa-



FD Norm Dims Sim(S&P,HAC) Sim(HAC,S&P)
N N all 0.183 0.210
N N 5 0.197 0.210
N Y all 0.222 0.213
N Y 10 0.211 0.212
Y N all 0.154 0.198
Y N 50 0.172 0.207
Y Y all 0.290 0.298
Y Y 100 0.310 0.310

Table 1: The clustering results, with PCA dimen-
sionality reduction

FD Norm AggWin Sim(S&P,HAC) Sim(HAC,S&P)
N N none 0.183 0.210
N N 5 0.192 0.217
N N 10 0.193 0.215
N N 20 0.192 0.213
N Y none 0.228 0.217
N Y 5 0.217 0.212
N Y 10 0.221 0.216
N Y 20 0.215 0.220
Y N none 0.152 0.197
Y N 5 0.190 0.211
Y N 10 0.195 0.217
Y N 20 0.178 0.208
Y Y none 0.288 0.294
Y Y 5 0.225 0.217
Y Y 10 0.230 0.231
Y Y 20 0.211 0.211

Table 2: The clustering results, with dimensionality
reduction via aggregation

tions, i.e., we kept only a few of its lowest frequencies. The
resulting experiments are presented in Table 3.

In the last table (Table 4), we show the results obtained
when using piecewise normalization. Again, we vary the
window size (note that the role of the window is different
than in the previous set of experiments) and data represen-
tation.

One can observe that the best result (i.e., with the high-
est Sim measure) was obtained when using the combination
of piecewise normalization with window of length 15 and
first derivative. The resulting clustering is depicted in Ta-
ble 5. Unfortunately, the whole description of the clusters
is too big to be included in the paper. However, we present
the clusters in the following form. The ith row corresponds
to one of the HAC clusters (say Ci). The second column
shows the name of the S&P cluster which is the closest to
Ci according to Sim(HAC, S&P) measure. The remaining
columns show the names of S&P clusters which choose Ci
to be the HAC cluster closest to them, listed in the order
of similarity Sim(S&P, HAC), the most similar first. Notice
that the column two and three are almost always equal, with
the exception of clusters 4, 35, 36, or when the third column
is empty.

FD Norm Freqs Sim(S&P, HAC) Sim(HAC,S&P)
N N 5 0.191 0.197
N N 10 0.203 0.204
N N 25 0.192 0.196
N N 50 0.193 0.202
N Y 5 0.215 0.217
N Y 10 0.210 0.208
N Y 25 0.221 0.229
N Y 50 0.225 0.224
Y N 5 0.202 0.215
Y N 10 0.189 0.209
Y N 25 0.191 0.217
Y N 50 0.190 0.212
Y Y 5 0.198 0.209
Y Y 10 0.235 0.236
Y Y 25 0.247 0.240
Y Y 50 0.232 0.234

Table 3: The clustering results after Fourier Trans-
form

Window FD Sim(S&P,HAC) Sim(HAC,S&P)
10 N 0.322 0.326
15 N 0.307 0.314
30 N 0.270 0.273
45 N 0.266 0.281
60 N 0.246 0.241
75 N 0.255 0.257
10 Y 0.338 0.334
15 Y 0.346 0.339
30 Y 0.330 0.329
45 Y 0.346 0.333
60 Y 0.316 0.310
75 Y 0.310 0.297

Table 4: The clustering results, with piecewise nor-
malization

A few example clusters are depicted in Tables 6, 7, 8, 9 and
10.

Precision-recall curves. In order to make our observa-
tions independent from the clustering algorithms, we also
computed Precision-Recall curves (PR-curves) for a variety
of measures and compare them to the PR-curve for normal-
ized derivatives (see Figures 8, 9 and 10). This allows us
to make a visual estimation of the influence of various pa-
rameters (feature extraction algorithm, normalization etc)
on the clustering quality. In each case, one can observe that
the higher quality clustering corresponds to a PR-curve with
higher values at the beginning of the curve, which corre-
sponds to higher precision at the beginning.

4. DISCUSSION
The experiments described in the previous section support
several interesting general observations. First of all, nor-
malizing the input vectors in any form always improved the
quality of the results. This behavior is very natural, since
normalization enables us to reduce the effect of translation
and scaling of the sequences. However, it turned out that
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Figure 8: Fourier Transform vs. globally normalized

derivatives

applying the same normalization to the whole sequence is
not the best solution, and that one can obtain better results
by using piecewise normalization, for a carefully chosen win-
dow size. The fact that piecewise normalization behaves so
good can be explained by observing that it greatly reduces
the effect of “local anomalies” on the distance between two
stock indices. This is due to the fact that such “anomalous”
events affect only one or two windows, while others can still
adjust to each other if their behavior is similar, even if the
actual valuations are very different.

Another observation is that using the normalized deriva-
tives of the sequence data resulted usually in better results
than using raw data. This phenomenon is widely known in
the financial community and can be explained by arguments
similar to the above ones, i.e., that the local anomalies have
only limited influence on the distance between derivatives, as
opposed to large influence in case of the raw data. However,
we believe that more research has to be done in order to fully
understand this behavior. For example, just computing the
first derivatives without normalization actually worsens the
performance (as compared to the raw data results).

Another set of interesting observations comes from the at-
tempts to reduce the dimensionality of the data. Although
the raw, unprocessed data seems to have the lowest intrin-
sic dimensionality (according to PCA), we are not able to
build very good clusters out of it. It is actually interesting
to note that in the case when we get best clusterings (i.e.,
we use normalized derivatives) the data does not seem to be
prone to dimensionality reduction, since the projection onto
a 100-dimensional space preserves only 75.23% of the total
eigenvalue weight. However, even in this case, the clustering
was better than for the full data.

5. RELATED WORK
There has been a significant amount of recent research fo-
cused on designing efficient algorithms for similarity search
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Figure 9: Globally normalized raw data vs. globally

normalized derivatives

and mining of time series. This work has been started
by Agrawal et al [1], who showed that indexing time se-
quences can be done very efficiently using Fourier Trans-
form. This work has been extended in [7] to finding simi-
lar subsequences. Another important contribution has been
done by Agrawal et al in [2], who also addressed the issue
of sequence transformations (like scaling and translations)
as well as noise resilience. Further work in this area has
been done by Rafiei-Mendelzon [10], Bollobas et al [3], Das
et al [4] and Huang-Yu [8].
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LU: Communications Equipment

CSCO: Computers (Networking)

DELL: Computers (Hardware)

INTC: Electronics (Semiconductors)

CPQ: Computers (Hardware)

IBM: Computers (Hardware)

KLAC: Equipment (Semiconductor)

AMAT: Equipment (Semiconductor)

TLAB: Communications Equipment

ADBE: Computers (Software & Services)

COMS: Computers (Networking)

AAPL: Computers (Hardware)

CA: Computers (Software & Services)

HWP: Computers (Hardware)

SEG: Computers (Peripherals)

EMC: Computers (Peripherals)

SUNW: Computers (Hardware)

MU: Electronics (Semiconductors)

TXN: Electronics (Semiconductors)

LSI: Electronics (Semiconductors)

UIS: Computers (Software & Services)

MOT: Communications Equipment

DGN: Computers (Hardware)

ORCL: Computers (Software & Services)

NOVL: Computers (Software & Services)

CMCSK: Broadcasting (Television, Radio & Cable)

TCOMA: Broadcasting (Television, Radio & Cable)

TWX: Entertainment

ADSK: Computers (Software & Services)

PMTC: Computers (Software & Services)

NSM: Electronics (Semiconductors)

AMD: Electronics (Semiconductors)

EK: Photography/Imaging

Table 6: Cluster # 1



WB: Banks (Major Regional)

STI: Banks (Major Regional)

PNC: Banks (Major Regional)

NOB: Banks (Major Regional)

BKB: Banks (Major Regional)

NCC: Banks (Major Regional)

BBK: Banks (Major Regional)

WFC: Banks (Major Regional)

MEL: Banks (Major Regional)

STT: Banks (Major Regional)

FITB: Banks (Major Regional)

BAC: Banks (Money Center)

SUB: Banks (Major Regional)

ONE: Banks (Major Regional)

KEY: Banks (Major Regional)

FTU: Banks (Money Center)

USB: Banks (Major Regional)

RNB: Banks (Major Regional)

CMA: Banks (Major Regional)

MWD: Financial (Diversified)

MER: Investment Banking/Brokerage

LEH: Investment Banking/Brokerage

SCH: Investment Banking/Brokerage

AIG: Insurance (Multi-Line)

SAI: Financial (Diversified)

NTRS: Banks (Major Regional)

BT: Banks (Money Center)

JPM: Banks (Money Center)

CMB: Banks (Money Center)

CCI: Financial (Diversified)

AXP: Financial (Diversified)

BK: Banks (Major Regional)

GDT: Health Care (Medical Products & Supplies)

KRB: Consumer Finance

NSC: Railroads

CSX: Railroads

DRI: Restaurants

TAN: Retail (Computers & Electronics)

MTG: Financial (Diversified)

MAR: Lodging-Hotels

HLT: Lodging-Hotels

MMM: Manufacturing (Diversified)

PCAR: Trucks & Parts

Table 7: Cluster # 3

BR: Oil & Gas (Exploration & Production)

APA: Oil & Gas (Exploration & Production)

APC: Oil & Gas (Exploration & Production)

MRO: Oil (Domestic Integrated)

ORX: Oil & Gas (Exploration & Production)

PZL: Oil (Domestic Integrated)

KMG: Oil & Gas (Exploration & Production)

AHC: Oil (Domestic Integrated)

UCL: Oil (Domestic Integrated)

UPR: Oil & Gas (Exploration & Production)

SNT: Natural Gas

OXY: Oil (Domestic Integrated)

XON: Oil (International Integrated)

MOB: Oil (International Integrated)

CHV: Oil (International Integrated)

ARC: Oil (Domestic Integrated)

P: Oil (Domestic Integrated)

RD: Oil (International Integrated)

AN: Oil (International Integrated)

MDR: Engineering & Construction

RDC: Oil & Gas (Drilling & Equipment)

SLB: Oil & Gas (Drilling & Equipment)

HAL: Oil & Gas (Drilling & Equipment)

BHI: Oil & Gas (Drilling & Equipment)

HP: Oil & Gas (Drilling & Equipment)

Table 8: Cluster # 8



F: Automobiles

CAT: Machinery (Diversified)

GM: Automobiles

DAL: Airlines

AMR: Airlines

U: Airlines

LUV: Airlines

CYM: Metals Mining

PD: Metals Mining

AR: Metals Mining

RLM: Aluminum

AA: Aluminum

AL: Aluminum

N: Metals Mining

CS: Computers (Networking)

ALT: Iron & Steel

SIAL: Chemicals (Specialty)

Table 9: Cluster # 22

CPL: Electric Companies

FPL: Electric Companies

DUK: Electric Companies

AEE: Electric Companies

PEG: Electric Companies

HOU: Electric Companies

UCM: Electric Companies

EIX: Electric Companies

PCG: Electric Companies

CIN: Electric Companies

BGE: Electric Companies

NSP: Electric Companies

AEP: Electric Companies

ED: Electric Companies

SO: Electric Companies

DTE: Electric Companies

FE: Electric Companies

D: Electric Companies

CSR: Electric Companies

GPU: Electric Companies

TXU: Electric Companies

PPL: Electric Companies

ETR: Electric Companies

PE: Electric Companies

Table 10: Cluster # 38



No. HAC vs S&P S&P vs HAC 1 S&P vs HAC 2 S&P vs HAC 3
0 Natural Gas (0.416667) Natural Gas (0.416667) Entertainment (0.117647)
1 Computers (0.6) Computers (0.6) Electronics (0.272727) Equipment (0.114286)
2 Retail (0.518519) Retail (0.518519)
3 Banks (0.657534) Banks (0.657534) Financial (0.185185) Lodging-Hotels (0.08889)
4 Agricultural (0.285714) Electrical (0.166667)
5 Computers (0.129032)
6 Biotechnology (0.25) Biotechnology (0.25) Office (0.222222)
7 Truckers (0.285714) Truckers (0.285714)
8 Oil (0.901961) Oil (0.901961)
9 Household (0.4) Household (0.4)
10 Personal Care (0.285714) Personal Care (0.285714)
11 Iron (0.428571) Iron (0.428571) Footwear (0.4)
12 Telephone (0.592593) Telephone (0.592593) Tobacco (0.190476)
13 Natural Gas (0.153846)
14 Homebuilding (0.333333) Homebuilding (0.333333) Air (0.133333)
15 Financial (0.142857)
16 Services (0.111111)
17 Photography/Imaging (0.25)
18 Electric (0.142857)
19 Retail (0.238095)
20 Chemicals (0.216216)
21 Auto (0.166667)
22 Airlines (0.380952) Airlines (0.380952) Aluminum (0.3) Metals (0.363636)
23 Housewares (0.4) Housewares (0.4) Engineering (0.222222)
24 Consumer (0.222222) Consumer (0.222222)
25 Auto (0.24) Auto (0.24)
26 Oil (0.129032)
27 Hardware (0.166667) Hardware (0.166667) Broadcasting (0.133333)
28 Health (0.55814) Health (0.55814)
29 Aerospace/Defense (0.222222)
30 Insurance (0.27027)
31 Homebuilding (0.333333)
32 Gaming (0.285714) Gaming (0.285714)
33 Insurance (0.368421) Insurance (0.368421)
34 Waste (0.333333) Waste (0.333333)
35 Restaurants (0.210526) Specialty Printing (0.117647)
36 Chemicals (0.214286) Trucks (0.181818)
37 Services (0.222222) Services (0.222222)
38 Electric (0.96) Electric (0.96)
39 Photography/Imaging (0.3333) Photography/Imaging (0.3333)
40 Gold (0.909091) Gold (0.909091)
41 Publishing (0.266667) Publishing (0.266667) Building (0.2)
42 Natural (0.133333)
43 Paper (0.608696) Paper (0.608696) Containers (0.3)
44 Beverages (0.4) Beverages (0.4) Agricultural (0.4)
45 Distributors (0.222222) Distributors (0.222222) Foods (0.210526)
46 Telecommunications (0.153846)
47 Foods (0.133333)
48 Computers (0.0714286)
49 Iron (0.25)
50 Investment (0.25) Investment (0.25)
51 Restaurants (0.333333) Restaurants (0.333333)
52 Chemicals (0.307692) Chemicals (0.307692)
53 Railroads (0.333333) Railroads (0.333333)
54 Manufacturing (0.173913) Manufacturing (0.173913) Machinery (0.153846)
55 Paper (0.428571)
56 Aerospace/Defense (0.666667) Aerospace/Defense (0.666667)
57 Telecommunications (0.333333) Telecommunications (0.333333)
58 Leisure (0.285714) Leisure (0.285714) Textiles (0.222222)
59 Savings (0.666667) Savings (0.666667)
60 Power (0.666667) Power (0.666667) Communications (0.2)
61 Computers (0.0689655)

Table 5: Comparison of S&P and HAC-62 clusterings.


