Pointers

e We have put off pointers to as late as possible

e Pointers are an essential feature of both C and C++, but are often
over-used or misused in C++

e C++ allows us to call by name (References), making much use of
pointers unnecessary

Pointers give us all the rope we need to
hang ourselves, and shoot curselves in the
foot, and blow our leg off.

How pointers work:

e A variable name is a human-friendly shorthand for its address.
e The assignment: x = 17; is short for:

Put the value “17" into the memory location labelled “x".

e If our computer has 256 MB of (virtual) memory, then x’s location
could be a byte offset from 0 to 228,

Main uses of pointers in C++
1. Arrays
2. Dynamic memory (and object) allocation
3. The current this object

4. Fancy footwork

But first the syntax. There are 2 operators:

1. The “address of” operator, &
If x is any valid variable, then &x is the address of x.

#include <iostream.h> // addressof.cc

int main() {
int x=17;
cout << 'x=" <<dec<< x << ", &x=" <<hex<< (int)&x <<endl;

return 0O;

2. The “dereference” (pointer) operator, *
If p is any valid address (pointer), then *p is the content of that
address.

#include <iostream.h> // addressofint.cc

int main() {
int x=17;
int* px=&x;
cout << "px=" <<hex<< (int)px << ", *px=" <<dec<< *px <<endl;
return 0;

Read a statement such as int* px; backwards:

“px is a poeinter to an int”




A pointer is a distinct type. A pointer of type int* is a different type than

a floatx*

#include <iostream.h> // addressoffloat.cc

int main() {
int x=17;
int* px=&x;
float e=1.6e-19;
float* pe=&e;

cout << "px=" <<hex<< (int)px << ",
cout << "pe=" <<hex<< (int)pe << ", xpe=" <<dec<< *pe<<endl;

return 0;

*¥px=" <<dec<< *px<<endl;

const pointers and pointers to const

Before we look at the use of pointers, we'll clear up (or add) another
source of confusicn:

e if we declare const int x(17);, then x is immutable — it cannot be
changed.

e With pointers, we can make either the pointed-to object constant, or
the pointer itself constant, or both:
—  int* pil; // pl and *pl mutable
— const int* p2; // p2 mutable, *p2 immutable
— const int* const p3(&x); // p3 and *p3 immutable

— intx* const p4(&y); // p4 immutable, *p4 mutable

#include <iostream.h> // const.cc

int main() {

const int x(17);

int y(42);

int* pl;

const int* p2;

const int* const p3(&x);

int* const p4(&y);

pl = &y;

*pl *= 2;

p2 = &x;

(*pd)++;

cout << "pl=" <<hex<< (int)pl <<",
<< "p2=" <<hex<< (imt)p2 <K',
<< "p3=" <<hex<< (int)p3 <K',
<< "p4=" <<hex<< (int)pd <<",

return 0;

*pl="<<dec<<
*p2="<<dec<<
*p3="<<dec<<
*pd="<<dec<<

*pl <<endl
*p2 <<endl
*p3 <<endl
*p4 <<endl;

Where to put the *7

Any of:
e int* pl;
e int *pl;
e int*pl;

are syntactically correct.

to emphasize that the type of pl is a pointer to an int.




Pointer Arithmetic

e We can do pointer arithmetic in a way that makes sense for that

pointer.
e if pis an int*, then p+1 points to the first byte after p.

e The compiler locks after the different variable lengths: we don’t have
that worry.

#include <icstream.h> // arithmetic.cc

int main() {
int x(17);
int y(42);
int* pl(&x);
cout << "pl-&y = " << (int) (pl-&y) << endl;
cout << "pl=" <<hex<< (int)pl <<", #pl="<<dec<< #*pl <<endl;
++pl;
cout << "pl=" <<hex<< (int)pl <<", #*pl='"<<dec<< #*pl <<endl;
// (xpl)++; // this will change random memory

return O;

Notes:

e |t looks like the difference of the 2 pointers is 4, whereas pointer
arithmetic says it's 1. This is consistent.

e Pointers allow us to access memory that maybe we shouldn't access
e Sometimes this leads to the dreaded segmentation fault

e Be careful with the precedence of * and ++. When in doubt, use
parentheses.

Be very careful with pointer arithmetic
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Arrays
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e Arrays use pointers implicitly — and interchangeably
e The array name is a pointer to the 0'th element of the array
e Then name+1 is a pointer to the 1st element of the array, etc.

e We can use either indexed arrays, or pointers.
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#include <iostream.h> // array.cc

int main() {
const int kArraySize(8);
const int al[l={0, 1, 4, 9, 16, 25, 36, 49};
const int* p(a);
for (int i=0; i<kArraySize; i++) {
cout << *p++ << endl;
¥

return O;
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Pcints to note:

e The declaration: const int a[] makes a an array, of size determined
by the initialization.

e The definition {0, 1, 4, 9, 16, 25, 36, 49} sets the size of the
array, and initializes its elements

e The declaration: const int* p(a); declares a pointer to const int

e We can access each element with: *p++ (first dereference, then bump
the pointer).

the arguments of main
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e So far, we have used main() with no arguments.

e |t can also take 2 arguments: main(int argc, char* argv[]).
(By convention, these names are used, but they can be anything.)

— int argc
The number of command line arguments. The program name is
always the first argument, so arge>0

— char* argv([]
A NULL-terminated array of pointers to char[]. Each array of
char is a NULL-terminated string containing the argument.

e (See K & R for a description of arrays, and the use of argc, argv)
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#include <iostream.h> // argumentsl.cc

int main(int argc, charx argv[]) {
cout << "You gave " << argc << " arguments" << endl;
for (int i=0; i<argc; i++) {
cout << argv[i] << endl;
¥

return O;

e Historically, the use of char[] preceded the String class, sc we have
to live with both.

e Note how the program name is the first element pointed to by argv
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We can also use the interchangeability of pointers and arrays:

#include <iostream.h> // arguments2.cc

int main(int, char** argv) {
while (*argv != 0) {
cout << *argv++ << endl;
}

return 0;

e Pointers allow us to be very terse (and cryptic)
e We can use either char* argv[] or char** argv

e The argv array is terminated with a NULL pointer.

Dynamic object allocation

e So far, we have declared every object (including built-in types) at
compile-time

e Very often, we want to wait until run time

— We may want to reduce the executable size

— More normally, we don’t know how big to make the object at
compile time

e C++ allows us to do this with the new operator
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the new operator

e The new operator is a way of creating an object — or dynamically
allocating memory.

It creates the object, and returns a pointer to the object.

That's why we simply cannot avoid pointers

e We can create either a single object, or an array of objects

#include <iostream.h> // newobject.cc
#include <assert.h>
#include "Point7.hh"

int main() {
Peint* p = new Point(5,7);
assert (p!=0);
(*p) .print O ;
p->rmoveTo (Point(2,1));
p->print();
cout << endl;

return O;
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Points to Note:

e We use the assert macro to “assert” some condition:

— if the argument to assert is “true”, nothing happens

— otherwise, the program terminates with an error message

The statement: Point* p = new Point(5,7);

— creates a new Point object, calling the constructor as normal

— returns a pointer to the object
e If new fails, p is assigned to O, otherwise it points to the new object

You should always test that new was successful

e Since p is a pointer, we have to dereference it before using the object

The operation: (*p) .method is done so often, we use the shorthand:
p—>method

#include <iostream.h> // newarray.cc
#include <strstream.h>
#include <assert.h>

int main(int argc, char*x argv) {
assert (arge>1);
istrstream arg(*x++argv);
int arraySize;
arg >> arraySize;
int* a = new int[arraySize];
assert (a!=0);
for (int i=0; i<arraySize; i++) { a[il = i*i; }
const int* p(a);
for (int i=0; i<arraySize; i++) { cout << *p++ << endl; }

return 0;
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Points to Note:

e We use istrstream to parse the arguments
e This time, new is used to dynamically create an array

The array size is given with the [1 cperator

e Since a is int*, we can use an array index or a pointer interchangeably

We could have used any object to create e.g. an array of Point

objects

the delete operator

There is a catch using new:

e Normally, when an object goes out of scope, its memory is freed

e If an object is created with new, memory is not freed

This leads to the dreaded memory leak

We have to use the delete operator to free the memory explicitly:

e Use delete foo to delete an object

e Use delete [] foo to delete an array
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#include <iostream.h> // deletearray.cc
#include <stdlib.h>
#include <assert.h>

int main() {
const int kRandMax (1024);
while (1) {
const int kArraySize( (rand()’%kRandMax)+1 );
int* a = new int[kArraySizel;
assert (a!=0);
for (int i=0; i< kArraySize; ali++]=rand()) {}

cout << "a = " << hex << (int)a
<< ", kArraySize = " << dec << kArraySize << endl;
delete [] a;
}
return O;
}
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Points to Note:

o Without the delete, the array starts at a different address each
iteration — memory is consumed until the program crashes

e With the delete, the memory is recycled (try it)

Always make sure to use delete after us-
ing new

Object Destructor

e When an object goes out of scope, its memory is freed

e If we used a new operator for memory that is part of the object, that
memory cannot be freed, unless we do so explicitly

e Every class has a default destructor that is called when the object goes
out of scope

e But the default cannot know about memory allocated dynamically — so
we have to provide an explicit destructor

o |f the class is called Foo, the destructor is called “Foo

Always provide a destructor when mem-
ory has been allocated dynamically
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#include <iostream.h> // destructorl.cc
#include <stdlib.h>
#include "Pcint8.hh"

Point::"Pecint() {
cout << "I am the destructor" << endl;

int main() {
const int kRandMax(1024);
for (int i=0; i<20; i++) {
Point p( rand()%kRandMax, rand()?%kRandMax );
cout << "Point " << i << "; M
p.print();
cout << endl;

3

return 0;
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#include <iostream.h> // destructor2.cc
#include <stdlib.h>
#include "Pcint8.hh"

Point::"Peint() {
cout << "I am the destructor" << endl;

int main() {

const int kRandMax(1024);

for (int i=0; i<20; i++) {
Point* p = new Point( rand()?%kRandMax, rand()’kRandMax );
cout << "Point " << i << ": M,
p->print () ;
cout << endl;
delete p;

}

return 0;

Some subtle points:

e In the first example, the destructor is called — even tho we haven't
called it

e In the second example, the destructor is not called unless we explicitly
call it

When in doubt, always provide a de-
structor

e This last destructor does nothing — we'll now lock at one that does
something essential
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In this example, dynamic memory is allocated by the constructor:

#ifndef __FOOBAR_HH // FooBarl.hh
#define __FOOBAR_HH

#include <iostream.h>

class FooBar {
public:
FooBar (unsigned int size=0, int initValue=0);
~“FooBar() ;
void print(Q);
private:
unsigned int m_size;
int* m_array;
};
#endif // __FOOBAR_HH

#include "FooBarl.hh" // FooBarl.cc

FooBar: :FeoBar(unsigned int size, int initValue) : m_size(size) {
m_array = new int[m_size] (initValue);

}

FooBar::“FooBar() {
delete [] m_array;

cout << "I have destroyed you" << endl;

void FooBar::print() {
cout << "array size = " << m_size << ":";
for (unsigned int i=0; i<m_size; i++) {
cout << " " << m_arrayl[il;
}

cout << endl;
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#include <iostream.h> // destructor3.cc
#include <stdlib.h>
#include "FocBarl.hh"

int main() {
const int kRandMax(16);
for (int i=0; i<20; i++) {
FooBar f( rand()’%kRandMax, rand() );
f.print();
}

return 0;

Note that:

e Our destructor is called automatically

e The scope of the object is within { }
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default constructors

As well as a default destructor, C++ also provides 2 default constructors:

1. a “bare” constructor

2. a copy constructor — its signature is: Foo(Foo&) or Foo(const Foo&)

i.e. if we don't write them, the compiler provides them.

If we don’t allocate memory, there is usually not a problem:

e the “bare” constructor may or may not initialize the data members

e the copy constructor copies all data members (recursively)

#include <iostream.h> // default.cc

class Foo {
public:

void print() { cout << m_x << endl; }
private:

int m_x;

};

int main() {
Foo f;
Foo g(£);
f.print();
g.print();
return O;
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but if we allocate memory in the object, we could be in for a surprise:

#include <iostream.h> // copyconstructorl.cc
#include <stdlib.h>
#include "FcoBar2.hh"

int main() {

const int kRandMax(8);

for (int i=0; i<10; i++) {
FooBar f( rand()%kRandMax, rand() );
f.print();
FooBar g(f);
f.increment();
g.print();

}

return O;
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#include "FooBar2.hh" // FooBar2.cc

FooBar: :FcoBar(unsigned int size, int initValue) : m_size(size) {
m_array = new int[m_size] (initValue);

¥

FeooBar:: “FooBar() {
delete [] m_array;
cout << "I have destroyed you" << endl;

}
void FooBar::print() {
cout << "array size = " << m_size << ":";
for (unsigned int i=0; i<m_size; cout<<" ‘"<<m_array[i++]) {}
cout << endl;
¥
void FooBar::increment() {
for (unsigned int i=0; i<m_size; m_array[i++]++) {}
¥

Don’t count on the default constructors
— provide explicit ones

The problem is:

e The default copy constructor does a2 member-by-member copy

e The pointer m_array is copied to the new object, so in g it points to
the same data

e Instead, we have to allocate new memory for the new object
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#ifndef __FOOBAR_HH // FooBar3.hh
#define __FOOBAR_HH
#include <iostream.h>

class FooBar {
public:
FooBar (unsigned int size=0, int initValue=0);
FooBar(const FeooBar&); // copy constructor
~“FooBar() ;
void print();
void increment();
private:
unsigned int m_size;
int* m_array;
};
#endif // __FOOBAR_HH

#include "FcoBar3.hh" // FooBar3.cc
FooBar: :FooBar(unsigned int size, int initValue) : m_size(size) {

m_array = new int[m_size] (initValue);

¥

FooBar: :FooBar(const FooBar& f) {
cout << "Copy cemstructoer ..." << endl;
m_size = f.m_size;

m_array = new int [m_sizel;
for (unsigned int i=0; i<m_size; i++) {m_array[il=f.m_array[il;}
T
FooBar: :"FooBar() {
delete [] m_array;
cout << "I have destroyed you" << endl; }
void FooBar::increment () {
for (unsigned int i=0; i<m_size; m_array[i++]++) {} }
void FooBar::print() {
cout << '"array size = " << m_size << ":";
for (unsigned int i=0; i<m_size; cout<<" '"<<m_arrayl[i++]1) {}
cout << endl; }
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#include <iostream.h> // copyconstructoril.cc
#include <stdlib.h>
#include "FooBar2.hh"

int main() {

const int kRandMax(8);

for (int i=0; i<10; i++) {
FooBar f( rand()%kRandMax, rand() );
f.print();
FooBar g(f);
f.increment () ;
g.print();

}

return 0;

this
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e Sometimes we have to distinguish between some other object, and
this — the current object

e C++ gives us a pointer called “this” which points to the current
object

e We will use it extensively with operator overloading

e We will also use in the next example

Fancy footwork
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e Armed with pointers, we can shoot curselves in the foot in ways that
we never thought possible

e We can also do things that would not be possible otherwise
e E.g. making an object persistent (writing it to disk)

— our use of streams did formatted i/o

— suppose we want to do unformatted i/o — just save the bytes?
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e First define a base class, Persistent

e Use a pure virtual function, size() for the size of the object. (Note
that the sizeof operator cannot be overloaded.)

e Implement write and read methods for the base class

— Note the cast of this to char*
e Then define a derived class which inherits write and read.
e The derived class must alsc implement size

— Note the use of this in sizeof

e Presto-Magico!!l Our derived class can now make itself persistent
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#ifndef __PERSISTENT_HH // Persistent.hh
#define __PERSISTENT_HH
#include <fstream.h>

class Persistent {
public:

void write(ofstream&) ;

void read(ifstream&);
protected:

Persistent() {}

virtual int size()=0;
};
#endif // __PERSISTENT_HH

#include "Persistent.hh" // Persistent.cc
void Persistent::write(ofstream& cs) {

os.write( (char*)this, size() );

void Persistent::read(ifstream& is) {
is.read( (charx)this, size() );
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#ifndef __FOOBAR_HH // FooBar4.hh

#define __FOOBAR_HH
#include "Persistent.hh"

class FooBar : public Persistent {
public:

FooBar(int a=0, int b=0, int c=0, int d=0)

: m_a(a),m_b(b),m_c(c),m_d(d) {3}

void print() { cout<<m_a<<" "<<m_b<<" "<<m_c<<" "<<m_d<<endl;}
private:

int m_a, m_b, m_c, m_d;

int size() { return sizeof (*this); }
3

#endif // __FOOBAR_HH

Finally, here's the persistent write program:

#include <stdlib.h> // PersistentWrite.cc
#include "FcoBar4.hh'

int main() {
FooBar f( rand(), rand(), rand(), rand() );
f.print();
ofstream out("myobject.dat");
f.write(out);

return 0;
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We can see that the virtual function does “the right thing” by adding
another persistent class:

and here's the persistent read program:
#include <stdlib.h> // PersistentWrite2.cc

#include "FccBar4.hh"

#include "FooBar4.hh" // PersistentRead.cc #include "Fco.hh"
int main() { int main() {
FooBar f; FooBar f( rand(), rand(), rand(), rand() );
ifstream in("myobject.dat"); f.print();
f.read(in); Foo bar(1);
f.print(); bar.print();
return 0; ofstream out("myobject.dat");
¥ f.write(out);
bar.write(out);
return 0;
¥
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and we can use new in the read program:

#include "FooBar4.hh" // PersistentRead2.cc
#include "Foc.hh"

Exercise for the student:

int main() {

FooBar f;

‘ Repeat this for an object that allocates memory in the constructor
Foox bar = new Fco;

ifstream in("myobject.dat");

f.read(in); There is no shortage of rope with which
bar->read(in); you can hang yourself

f.print();

bar->print();
delete bar;

return 0;
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