Standard Template Library

ADT's and Implementations
C++ and templates revisited

STL philosophy and goals:

— generic algorithms
— efficiency

STL components:

— containers

— algorithms

— Iterators

STL guided tour

ADT's and Implementations

e In the last homework, we implemented some Abstract Date Types
(ADT)

e We learned that the implementation is not the same as the ADT

— The ADT determines the properties, or allowable operations

— A particular implementation may be efficient for some operations,
and inefficient for others.

x iImplementing a list using an array makes binary search
O(log N), but insertion O(N).

x Implementing a list using doubly-linked nodes makes binary
search O(N), but insertion O(1).

which is better? It depends which operation is done more often.

e We have one choice: for a given ADT, we could pick an
implementation that is most efficient for the specific task.

e There is another choice: we could fix the implementation, and choose
the most appropriate ADT for the specific task. E.g. if a list is

implemented with doubly-linked nodes, and a vector with a (smart)

array:

— if we'll be doing a lot of binary searches, choose the vector

— if we'll be doing a lot of insertions (and delete), choose the list

C++ and templates revisited

A reminder of templates:
Templates come in 2 flavors:

1. Template Functions
The arguments to a function can be template arguments, allowing the
compiler to stamp out the appropriate signature.

In the following example, note that operator?: must be defined for

type T.

#include <iostream.h> // TemplateFunction.cc

template <class T>
T min(const T& x, const T& y) { return (x<y) 7?7 x : y; }

int main() {
cout << "Keep entering pairs of integers: " << ends;
int a,b;
while (cin >> a > b) {
cout << "min("<<a <<","<<b<<") = "<< min(a,b) << endl;

2. Template Classes

Classes can be defined with template arguments, allowing the compiler

to stamp out specific classes.

#include <String.h> // TemplateClass.cc
#include "TemplateClass.hh"

int main() {
Pair<int, String> a(43, "Hello");
Pair<float, char> b(3.14, ’x’);
Pair<Pair<int, String>, long> c(a, 1234567890);
cout << a <<"\n"<< b <<"\n"<< ¢ << endl;

#ifndef __TEMPLATECLASS_HH // TemplateClass.hh

#define __TEMPLATECLASS_HH
#include <iostream.h>

template <class T1, class T2>
class Pair {
public:
Pair(const T1& til,const T2& t2) : m_first(tl), m_second(t2){}
T1 first() const { return m_first; }
T2 second() const { return m_second; }
friend ostream& operator<<(ostream&, const Pair<T1,T2>&);
private:
Tl m_first;
T2 m_second;
s
template <class T1, class T2>

ostream& operator<<(ostream& os, const Pair<T1,T2>& p) {

os <<"("<<p.m_first<<", "<<p.m_second<<")"; return os; }
#endif // __TEMPLATECLASS_HH

Note:

e The class can have several comma-separated arguments
e Each class type (classname<T, U, ...>) generates a distinct class

e Templates can be nested — since Pair<int, String> is just a type.

e Operators such as == etc. (if used) must be defined for class T.

More Templates

e Templates support default parameters (g++ does, but not all
compilers do). The syntax is similar to constructor default arguments.

template <class T, class U=Foo>

e A template class can have a template member function (it’s in the
standard, but g+-+ does not yet support).

Boolean Type

The C++ ANSI standard specifies a Boolean — type bool, that is defined
in bool.h (it just uses enum to define true and false).

#include <bool.h> // Boolean.cc

#include <iostream.h>

int main() {
bool a((17>42));
bool b('a);
cout << M"a, b: " KK a << ", " <K< b << endl;

Function Objects

e \We have seen the components — but not given it a name.

e |t is convenient to define a class consisting of just the overloaded
function call operator, operator () () (and possibly some data),
rather than using function pointers.

e An instance of such a class is called a Function Object.

#include <bool.h> // FunctionObject.cc

#include <iostream.h>

template <class T>
class greater {
public:
bool operator() (const T& x, const T& y) const { return (x>y); }
};

template <class T, class Predicate>

void print(const T& x, const T& y, const Predicate& p) {
cout<<"x,y: "<<x<<", "<<y<<" Predicate: "<<p(x,y)<<endl;

int main() {
print (17, 42, greater<int>());
print(3.14, 2.7, greater<double>());
+

Points to note:

. class greater has no data — so use the default constructor.

. class greater is templatized (tho it needn’t be). It assumes the

existence of operator> for class T.
. we overload operator (), which returns a bool

. in the call to print, we pass a (temporary) instance of a greater
object as an argument — using the default constructor.

5. function print uses the predicate like any other object.
Why use function objects?

e the function object is resolved at compile time
e the code can be inlined — improving efficiency for small functions

e the function can use member data

STL philosophy and goals

e A goal of STL is to standardize software components — Software 1C's.
e But it also has to be efficient:

— efficient in the implementation of an algorithm — within a few %
of assembler code.

— efficient in the choice of algorithm — e.g. if the best we can do is
O(Nlog N), STL must be no worse.

e Algorithms should be generic — not dependent on the actual data
structure. Algorithms and data structures are orthogonal.

e But cannot compromise efficiency for some particular data structures.

Are these goals mutually consistent?

generic algorithms

e s it better to have a different algorithm (e.g. sort) for each data
structure? Perhaps we could optimize the efficiency?

e Disadvantages of this approach:

— more difficult to extend (and maintain)

— interfaces more complicated — dependent on data structure
e STL algorithms are generic (i.e. the same for all data structures).

— if this is applied too rigidly, we would lose efficiency

— remember that O(N log N) means cN log N — different algorithms
have a different c

— the algorithm is chosen to be the most efficient — we then do
differently for data structures that cannot support this

E.g. on average, quicksort is O(N log V), but the worst case is
O(N?). Heapsort is guaranteed O(N log N), but with a different ¢ —
c(heapsort) ~ 2 x c(quicksort)

So STL provides both.

e But both get efficiency from using random access — which won't work
with lists. So lists have their own sort (member function) — which is
still O(NN log V), but not as efficient as the generic sort.

efficiency

e STL's efficiency is a corollary of being generic:

— always use the most efficient algorithm

— if that is not possible with some particular data structure, then use
a restricted algorithm for that data structure.

e Efficiency is also gained from C+-+ language features: templates,

function objects, inlining, etc.

e Efficiency arises from the choice of STL components, and their

Inter-relations.

STL components:

The key components of STL are:

e Containers — the data structures, or implementations of the ADT.

e Algorithms — the operations performed on the containers — e.g. sort,
find, etc.

e l|terators — the means to traverse a data structure so as to implement

a generic algorithm.
There are additional components that add to the versatility:
e Function Objects — extend a relation or predicate

e Adaptors — extend a container, iterator, or function

e Allocators — extend a particular memory model

Containers

e An STL container is a C++4 container template class that holds a
sequence of items of type T.

e The STL container is the implementation of the ADT

e STL provides several containers — others can be based on these:

Vector

Deque

List

Set and Multiset

Map and Multimap

Algorithms

STL provides classes of generic algorithms for operations on containers:

e copy
sort
find
fill
partition
Insert, delete
set operations (union, intersection)

accumulate

Iterators

lterators are the glue of STL that makes it possible to use generic
algorithms and orthogonalize those algorithms from the data structures.

Definition: an iterator, i, is a generalized means of traversing a data
structure.

E.g. for an array, an array index, or pointer, is an iterator.

e An iterator is also a “smart pointer”.

e Dereferencing an iterator, *i, is guaranteed to give the item, but in
general, an iterator does not obey all pointer operations.

e All STL containers have iterators — but the iterator algebra depends on
the container. E.g. all containers support ++i, but 1ist does not
support a long jump, i+n.

e All STL containers handle iterators in the same, consistent way. For
any container c, of type T,

container<T>::iterator i=c.begin() points to the first item in
the sequence

container<T>::iterator j=c.end() points beyond the last item
in the sequence

j is said to be reachable from i, iff there is a finite sequence of

operator++ that makes i==j

If j is reachable from i, then i and j refer to the same container

Why does container<T>::iterator j=c.end() point beyond the last
item in the sequence? (and not to the last item)

e To test for the end of a sequence, only operator!= is needed (and

not operator> which is not defined for all containers).

There are other reasons which affect convenience that we will see later.

Notation

e Denoting the iterator range by first and last, the range is written:
first, last)

meaning that first is included in the range, but last is not.

e The range is valid if 1last is reachable from first. The result of an

algorithm on an invalid range is undefined.

o if first==1ast, the range is empty, but valid.

lterator Hierarchy

To ensure that the algorithms operate on the appropriate containers, there
is an iterator hierarchy. (we do not have to remember the restrictions — the
compiler saves us from ourselves.)

1. input iterators

2. output Iiterators

3. forward iterators

4. bidirectional iterators

5. random access iterators

An algorithm that works with one iterator will always work with a
container supporting a higher iterator, but not vice versa.

STL guided tour

To see how it all works, let's do some examples.

Let's populate a vector, shuffle it, then sort it.

#include <vector.h> // exampleOl.cc

#include <algo.h>

int main() {
vector<int> a;
ostream_iterator<int> out(cout, " ");
for (int i=0; i'!=20; a.push_back(i++)) {}
copy(a.begin(), a.end(), out); cout << endl;
random_shuffle(a.begin(), a.end());
copy(a.begin(), a.end(), out); cout << endl;
sort(a.begin(), a.end());
copy(a.begin(), a.end(), out); cout << endl;

Points to note:

. We need the header files vector.h and algo.h
. We declare a vector of int with no items.

. We use the member function push_back() to add items to the back
of the vector.

. We declare out to be of type ostream_iterator<int> — this is an

ostream (output) iterator

. The 2nd argument in the ostream_iterator constructor is a string
to place between successive values on the output stream.

. The ostream_iterator allows us to write to the stream, but not
read from it.

. The iterator only supports operator++. Once we have passed a value,
we cannot write to that position in the stream again.

. The copy function (a generic algorithm) copies items from the vector
to the output stream.

. The random_shuffle function (a generic algorithm) randomizes the

vector.

. The sort function (a generic algorithm) then sorts the vector in place.

. Both sort and random_shuffle take iterators of type
RandomAccessIterator as arguments, so cannot work with lists.

. But this will work with other containers such as deque

#include <algo.h> // example02.cc
#include <deque.h>

int main() {
deque<int> a;
ostream_iterator<int> out(cout, " ");
for (int i=0; i'=20; a.push_back(i++)) {}
copy(a.begin(), a.end(), out); cout << endl;
random_shuffle(&al[0], &ala.size()]);

copy(a.begin(), a.end(), out); cout << endl;

sort(a.begin(), a.end());
copy(a.begin(), a.end(), out); cout << endl;

Some of the STL implementation (e.g.
deque) looks buggy. Is this STL or g++7

Why won't random_shuffle work with lists?

e random_shuffle works in linear time for a random access iterator.

e To work with lists, it would have to be O(N?).

e Since the best it can be is O(NN), STL only allows those iterators
which are O(N).

Is this restrictive? STL places efficiency above generality.

As well as an output iterator, there is (not surprisingly) an input iterator.

It has 2 constructors:

e istream_iterator(istream& in) — constructs an

istream_iterator object that reads values from the input stream in.

e istream iterator () — constructs the end of stream iterator value.

#include <vector.h> // example03.cc
#include <algo.h>

int main() {
vector<float> a;
istream_iterator<float> eos;
ostream_iterator<float> out(cout, " ");
cout << "Enter some floats, "D to end" << endl;
for (istream_iterator<float> in(cin); in!=eos;

a.push_back (*in) ;

}
copy(a.begin(), a.end(), out); cout << endl;
sort(a.begin(), a.end());

copy(a.begin(), a.end(), out); cout << endl;

Points to note:

The istream_iterator allows us to read from the stream, but not

write to it.

The iterator only supports operator++. Once we have passed a value,
we cannot read from that position in the stream again.

The end of stream iterator, eos, allows us to read to the end of

stream.

Using a.push_back(*in), we add to the end of the vector.

If a is empty, a.end() and a.begin() both point to the beginning of

the vector.

more on Iterators

Now we've seen how containers, algorithms, and iterators work together,
we can categorize the iterators:

1. | Input Iterators.

We can see the requirements for input iterators by coding the find
algorithm:

template <class InputlIterator, class T> // find.cc
InputIterator find(InputIterator first, Inputlterator last,
const T& value)

while (first != last && *first != value) { ++first; }
return first;

This code implies that the following operations are required:
e operator!= to test termination (note that this is less restrictive
than other tests)
e operator++ for prefix incrementing
e operator* for iterator dereferencing
For £ind to work efficiently, each of these operations must work in
constant time.

In addition, class InputIterator requires:

e operator++ (postfix) — implemented in terms of prefix

® operator==

These requirements are also met by built-in pointer types, but built-in
pointer types also have additional properties. Therefore built-in
pointer types can serve as input Iterators.

#include <list.h> // exampleO4.cc
#include <algo.h>

#include <assert.h>

int main() {
const int al[]l={0,4,6,7,4,2,3,89,12,34};

const int kArraySize(sizeof (a)/sizeof(int));

const int* pa=find(a, atkArraySize, 89);

assert(*pa==89 && *(pa+1)==12);

list<int> listl(a, atkArraySize);

list<int>::iterator i=find(listl.begin(), listl.end(), 89);
assert(*i==89 && *(++i)==12);

Points to note:

e the value of a or &a[0] clearly points to the beginning of the array.

e the value of a+10 or &a[10] points beyond the last item.

— last is never dereferenced, so that's not a problem
— a+10 is clearly reachable from a by repeated application of

operator++

Output Iterators.

As well as the “obvious” difference between input and output
iterators, there are also subtle ones:

e for class InputIterator, we can use foo=+in (as we did in an

earlier example)

e for class QutputIterator, we can use *out=... but cannot
dereference out

e since there is no equivalent of eos, we do not need == or !=

#include <iterator.h> // exampleO05.cc

int main() {
ostream_iterator<int> out(cout, "\n");
*out = 37;

More generally, we can code the copy algorithm to illustrate the

iterator requirements:

template <class InputIterator, class OutputIterator> // copy.cd
OutputIterator copy(Inputlterator first, InputIterator last,

OutputIterator result)

while (first !'= last) { *result++ = *xfirst++; }

return result;

which only needs ++ (postfix and prefix)

Forward Iterators.

Forward lterators have all the properties of Input and Output Iterators

plus:
e they can be used in multipass algorithms

Let's look at the replace algorithm:

template <class ForwardIterator, class T> // replace.cc
void replace(ForwardIterator first, ForwardIterator last,
const T& old_value, const T& new_value) {
while (first != last) {
if (xfirst == old_value) *first = new_value;

++first;

#include <algo.h> // exampleO6.cc

#include <vector.h>

int main() {
const int al[l={0,4,6,7,4,2,3,89,12,34};
vector<int> b(&al[0], &al(sizeof(a)/sizeof(int))]);

ostream_iterator<int> out(cout, " ");

copy(b.begin(), b.end(), out); cout<<endl;
replace(b.begin(), b.end(), 4, 23);
copy(b.begin(), b.end(), out); cout<<endl;

Bidirectional Iterators.

Surprise, surprise! Bidirectional lterators support all the properties of
Forward lterators plus:

e they must have the —- operator (prefix and postfix)

so a sequence can be traversed in the reverse direction

#include <algo.h> // exampleO7.cc
#include <list.h>

int main() A
const int al[]l={0,4,6,7,4,2,3,89,12,34};
list<int> b(&al0], &al(sizeof(a)/sizeof(int))]);
ostream_iterator<int> out(cout, " ");

copy(b.begin(), b.end(), out); cout<<endl;

reverse(b.begin(), b.end());

copy(b.begin(), b.end(), out); cout<<endl;

Random Access Iterators.

Finally, Random Access lterators ensure that any position in a
sequence can be reached from any other position in constant time.

e Random Access lterators must support a long jump: a.begin()+n

E.g. binary search works in O(log N) time on an ordered sequence iff
the sequence supports Random Access lterators.

#include <algo.h> // example08.cc
#include <vector.h>

#include <assert.h>

int main() {

const int a[]={0,4,6,7,4,2,3,89,12,34};

vector<int> b(&al[0], &al(sizeof(a)/sizeof(int))]);
sort(b.begin(), b.end());

ostream_iterator<int> out(cout, " ");
copy(b.begin(), b.end(), out); cout<<endl;

assert(binary_search(b.begin(), b.end(), 89));

constant i1terators

Finally, finally: all iterators also come in a constant version for traversing a
constant container.

Note:

e a const_iterator i can be changed

e but *i cannot be changed

#include <algo.h> // example09.cc
#include <vector.h>

#include <assert.h>

int main() {
const int a[]l={0,4,6,7,4,2,3,89,12,34};
const vector<int> b(&al[0], &al(sizeof(a)/sizeof(int))]);

vector<int>::const_iterator i = b.begin()+3;

assert(*xi==7 && *x++i==4);

Algorithms

e This is not a comprehensive tour thru the STL algorithms
e Look in algo.h for the complete story
e We've already met some of the STL algorithms

e Don’t be fooled: STL algorithms (together with function objects) are

very comprehensive

Let's first remind ourselves of the sort algorithm:

#include <vector.h> // examplelO.cc
#include <algo.h>

int main() {
vector<int> a;

ostream_iterator<int> out(cout, " ");

for (int i=0; i!'=20; a.push_back(i++)) {}
random_shuffle(a.begin(), a.end());
sort(a.begin(), a.end()); // ascending sort
copy(a.begin(), a.end(), out);

cout << endl;

Suppose we want to sort in decreasing order?

e We could first sort, and then reverse_copy — but that is inefficient.

e STL could give a descending_sort algorithm — but that's not very
flexible.

e Instead, we use function objects: sort can take a 3rd argument — the
function object.

We could write our own function objects — but STL already provides a

family of (template) classes.

e An ascending sort uses the < operator

e A descending sort must use the > operator — with the greater<T>()
function object.

#include <vector.h> // examplell.cc
#include <algo.h>

int main() {
vector<int> a;

ostream_iterator<int> out(cout, " ");

for (int i=0; i!'=20; a.push_back(i++)) {}
random_shuffle(a.begin(), a.end());

sort(a.begin(), a.end(), greater<int>()); // descending sort
copy(a.begin(), a.end(), out);

cout << endl;

In this case, the signature for sort was different with a function object, so
there is no ambiguity.

To use a function object with find (to find a value based on a predicate),

the usual signature is:

InputIterator find(InputIterator first,

InputIterator last, const T& value)

and since a predicate function object is just a class, this signature would
not be unique.

So STL provides the find_if function:

InputIterator find_if(InputIterator first,
InputIterator last, Predicate pred)

#include <algo.h> // examplel2.cc

template <class T>
class myGreater {
public:
bool operator() (const T& x) const { return (int)x > 48; }
s

int main() A
int al[l= {12,31,45,17,21,67,8,96,13};
int len= sizeof(a)/sizeof (int);
cout << *find_if(a, atlen, myGreater<int>()) << endl;

There is one algorithm that does an internal traversal of a container —
without requiring an external iterator:

Function for_each(InputlIterator first,

InputIterator last, Function f)

this applies the function object £ to each element of the sequence.

#include <algo.h> // examplel3.cc
#include <list.h>
#include <math.h>

class printSqrt {
public:

void operator() (double x) const { cout << sqrt(x) << endl; }
s

int main() {
list<double> a;
for (int i=0; i'=10; a.push_back(++i)) {}

for_each(a.begin(), a.end(), printSqrt());
}

Another use of a predicate is to partition a sequence: all elements of the
sequence satisfying the predicate are placed before those that do not.

e partition does not guarantee to preserve the order of each subset

e stable_partition does guarantee to preserve the order of each

subset

#include <algo.h> // exampleléd.cc

#include <vector.h>

class myPredicate {
public:

bool operator() (double x) const { return x>2.0; }
}s

int main() {
const int kArraySize=10;
vector<float> a(kArraySize);
for (int i=0; i!=kArraySize; i++) { alil=(i+0.5)/3.14; }

partition(a.begin(), a.end(), myPredicate());

ostream_iterator<float> out(cout, "\n");

copy(a.begin(), a.end(), out);

#include <algo.h> // examplelb.cc

#include <vector.h>

class myPredicate {
public:

bool operator() (double x) const { return x>2.0; }
}s

int main() A{
const int kArraySize=10;
vector<float> a(kArraySize);
for (int i=0; i!=kArraySize; i++) { alil=(i+0.5)/3.14; }
stable_partition(a.begin(), a.end(), myPredicate());

ostream_iterator<float> out(cout, "\n");

copy(a.begin(), a.end(), out);

The remove function is worth noting:

e it removes an element, changing the value of the last iterator
e but it does not change the size of the container

e so iIf M elements are removed, at least M can be added before

increasing the size of the container

e the return value is the iterator for the new end position

Not surprisingly, there is also a remove_if algorithm

#include <algo.h> // examplel6.cc
#include <vector.h>

#include <assert.h>

int main() {
vector<long> a;
const int N(12);

for (int i=0; i!=N; a.push_back(i++)) {}

vector<long>::iterator new_end=remove(a.begin(), a.end(), 4);

assert (N==a.size());
*new_end = 17;
assert(*(a.begin()+N-1)==17 && N==a.size());

Containers

We have already done several examples with:

array: built-in container — “standard” pointers, no member functions, no
dynamic expansion, no bounds-checking, etc.

vector: “smart” array — STL member functions, dynamic expansion,
bounds-checking, push_back in O(1) time.

deque: almost identical to vector, but both push_back and push_front
in O(1) time.

list: insert and delete in O(1) time, but find in O(N) time

In addition, STL provides set (multiset) and map (multimap).

Set

set and map (together with multiset and multimap) differ (somewhat)

from the previous containers:

e array, vector, deque, and list are Sequence Containers — that is, the
container is a sequence of elements of type T

e set and map are Sorted Associative Containers — that is, the
container is a sorted sequence of keys used to access the elements of

type T.
set and multiset (and map and multimap) differ:

e set (map) has only one element for a given key

e multiset (multimap) can have multiple elements for a given key

Definitions:

set:
In a set, the data items are just the keys themselves.
For a multiset, a key can be repeated

map:

In a map, the data items are pairs of (key, data). pair is an
STL-defined class.
For a multimap, duplicate keys are allowed.

And now for an example:

#include <algo.h> // examplel7a.cc
#include <set.h>
#include <String.h>

int main() {
String s("that government of the people, by the people, "
"for the people shall not perish from the earth.");
cout << s << endl;

set<char, less<char> > si;

for (const char* p=s.chars(); p!=s.chars()+s.length();
s1.insert (xp++)) {}

ostream_iterator<char> out(cout);

copy(sl.begin(), sl.end(), out); cout << endl;

, .abefghilmnoprstvy

#include <algo.h> // examplel7b.cc
#include <multiset.h>
#include <String.h>

int main() A
String s("that government of the people, by the people, "
"for the people shall not perish from the earth.");
cout << s << endl;

multiset<char, less<char> > si;

for (const char* p=s.chars(); p!=s.chars()+s.length();
s1.insert (xp++)) {}
ostream_iterator<char> out(cout);

copy(sl.begin(), sl.end(), out); cout << endl;

, » -aaabeeeeeceeeceeeceeefffghhhhhhhh
illlllmmnnnooooooooppppppprrrrrsstttttttttvy

Points to Note:

e Surprise, surprise! We can use the same old methods and algorithms.

the template argument less<char> is required. In this case, the STL
function object. less<char> does a lexicographical compare.

In general, we would either supply a compare function object, or an
operator< for type T.

For the multiset, the data item is the key, so the keys (data) are

simply duplicated.
Let's do 2 further examples:

e using a different compare function

e using the erase(key) and find methods

#include <algo.h> // examplelB8a.cc
#include <set.h>
#include <String.h>

int main() {
String s("that government of the people, by the people, "
"for the people shall not perish from the earth.");
cout << s << endl;

set<char, greater<char> > si;

for (const char* p=s.chars(); p!=s.chars()+s.length();
s1.insert (xp++)) {}

ostream_iterator<char> out(cout);

copy(sl.begin(), sl.end(), out); cout << endl;

yvtsrponmlihgfeba.,

#include <algo.h> // examplel8b.cc
#include <multiset.h>
#include <String.h>

int main() {
String s("that government of the people, by the people, "
"for the people shall not perish from the earth.");
cout << s << endl;
multiset<char, less<char> > si;
for (const char* p=s.chars(); p!=s.chars()+s.length();
s1.insert (xp++)) {}
sl.erase(’e’), sl.erase(’h’), sl.erase(’ ’);
sl.erase(s1.find(’f’));
ostream_iterator<char> out(cout);

copy(sl.begin(), sl.end(), out); cout << endl;

,,.aaabffgillllImmnnnoooooocooppppppprrrrrsstttttttttvy

Map

e Finally, maps (probably more useful than sets) allow a data item to be
referenced by a key.

e E.g. a telephone directory is a map with key=name, and data=number.
e maps use the STL pair class —i.e. (key, T) is a pair.

e | will leave most of the details to the student.

#include <algo.h> // examplel9.cc
#include <map.h>

#include <String.h>

#include <iomanip.h>

#include <assert.h>

ostream& operator<<(ostream& os,const pair<const String,long>& p) {

0os << setw(24) << setiosflags(ios::left)<< p.first << p.second;
return os;
}
int main() {
map<String, long, less<String> > m;
m["Ricciardi, Aleta"] = 3642754;
m["0gg, Michael"] = 8461432;
m["Song, John"] = 4865385;
ostream_iterator<pair<const String, long> > out(cout, "\n");
copy(m.begin(), m.end(), out);
assert((*m.find("Ogg, Michael")).second==8461432);

which produces the output:

Ogg, Michael 8461432
Ricciardi, Aleta 3642754

song, John 4865385

If instead we had used multimap we could have multiple listings for each
key (name).

e | will leave as an exercise making a database of event properties,
where each event is labelled by an event number (e.g.
pair<int,int>), and class Event is an object of the properties.

e The standard map is based on an assorted associative container, so
locating an element (find) is O(log N).

e There are extensions (which might become part of the standard) to
use a hash table — so find would be O(1) most of the time, but
O(N) in the worst case.

Adaptors

and finally: to make a container do something different (e.g. to make a
vector behave as a stack), we use container adaptors. The idea:

The new container (e.g. stack) has a private instance of the old
container (e.g. vector)

Therefore none of the data, nor the methods of vector are accessible
to stack

So: provide new public methods (e.g. push, pop) defined in terms of
the old methods

Presto-magico! We have a new container.

This can also be done for iterators and function objects.

