Chapter 1

Problem Solving Patterns

It’s not that I'm so smart, it’s just that I
stay with problems longer.

— A. EINSTEIN

Developing problem solving skills is like learning to play a musical instrument—
books and teachers can point you in the right direction, but only your hard work
will take you there. Just as a musician, you need to know underlying concepts, but
theory is no substitute for practice.

Great problem solvers have skills that cannot be rigorously formalized. Still, when
faced with a challenging programming problem, it is helpful to have a small set of
“patterns”—general reusable solutions to commonly occurring problems—that may
be applicable.

We now introduce several patterns and illustrate them with examples. We have
classified these patterns into three categories:

— data structure patterns,

— algorithm design patterns, and

— abstract analysis patterns.

These patterns are summarized in Table 1.1 on the next page, Table 1.2 on Page 12,
and Table 1.3 on Page 21, respectively.

The notion of patterns is very general; in particular, many patterns arise in the
context of software design—the builder pattern, composition, publish-subscribe, etc.
These are more suitable to large-scale systems, and as such are outside the scope of
EPI, which is focused on smaller programs that can be solved in an interview.

Data structure patterns

A data structure is a particular way of storing and organizing related data items
so that they can be manipulated efficiently. Usually the correct selection of data
structures is key to designing a good algorithm. Different data structures are suited
to different applications; some are highly specialized. For example, heaps are par-

Chapter 1. Problem Solving Patterns

Data structure
Primitive types

Arrays

Lists

Stacks and queues

Binary trees

Heaps

Hash tables

Binary search trees

Table 1.1: Data structure patterns.

Key points

Know how int, char, double, etc. are represented in
memory and the primitive operations on them.

Fast access for element at an index, slow lookups (un-
less sorted) and insertions. Be comfortable with no-
tions of iteration, resizing, partitioning, merging, etc.

Understand trade-offs with respect to arrays. Be com-
fortable with iteration, insertion, and deletion within
singly and doubly linked lists. Know how to imple-
ment a list with dynamic allocation, and with arrays.

Understand insertion and deletion. Know array and
linked list implementations.

Use for representing hierarchical data. Know about
depth, height, leaves, search path, traversal sequences,
successor/predecessor operations.

Key benefit: O(1) lookup find-min, O(log n) insertion,
and O(log n) deletion of min. Node and array repre-
sentations. Max-heap variant.

Key benefit: O(1) insertions, deletions and lookups.
Key disadvantages: not suitable for order-related
queries; need for resizing; poor worst-case perfor-
mance. Understand implementation using array of
buckets and collision chains. Know hash functions for
integers, strings, objects. Understand importance of
equals function. Variants such as Bloom filters.

Key benefit: O(logn) insertions, deletions, lookups,
find-min, find-max, successor, predecessor when tree
is balanced. Understand implementation using nodes
and pointers. Be familiar with notion of balance,
and operations maintaining balance. Know how to
augment a binary search tree, e.g., interval trees and
dynamic order statistics.

ticularly well-suited for algorithms that merge sorted data streams, while compiler

implementations usually use hash tables to look up identifiers.

Solutions often require a combination of data structures. Our solution to the
problem of tracking the most visited pages on a website (Solution 9.12 on Page 78)
involves a combination of a heap, a queue, a binary search tree, and a hash table.

PRIMITIVE TYPES

You should be comfortable with the basic types (chars, integers, doubles, etc.), their
variants (unsigned, long, etc.), and operations on them (bitwise operators, compar-
ison, etc.). Don’t forget that the basic types differ among programming languages.
For example, Java has no unsigned integers, and the number of bits in an integer is
compiler- and machine-dependent in C.

8 Chapter 1. Problem Solving Patterns

A common problem related to basic types is computing the number of bits set
to 1 in an integer-valued variable x. To solve this problem you need to know how
to manipulate individual bits in an integer. One straightforward approach is to
iteratively test individual bits using an unsigned integer variable m initialized to 1.
Iteratively identify bits of x that are set to 1 by examining the bitwise AND of m with
x, shifting m left one bit at a time. The overall complexity is O(n) where n is the length
of the integer.

Another approach, which may run faster on some inputs, is based on computing
y = x & !(x — 1), where & is the bitwise AND operator. This is 1 at exactly the
rightmost bit of x. Consequently, this bit may be removed from x by computing x®y.
The time complexity is O(s), where s is the number of bits set to 1 in x.

In practice if the computation is done repeatedly, the most efficient approach
would be to create a lookup table. In this case, we could use a 256 entry integer-
valued array P such that P[i] is the number of bits set to 1 in i. If x is 32 bits, the
result can be computed by decomposing x into 4 disjoint bytes, b3, b2, b1, and b0. The
bytes are computed using bitmasks and shifting, e.g., b1 is (x & 0xff00) > 8. The final
result is P[b3] + P[b2] + P[b1] + P[b0]. Computing the parity of an integer is closely
related to counting the number of bits set to 1, and we present a detailed analysis of
the parity problem in Solution 2.1 on Page 167.

ARRAYS

Conceptually, an array maps integers in the range [0, # — 1] to objects of a given type,
where 7 is the number of objects in this array. Array lookup and insertion are fast,
making arrays suitable for a variety of applications. Reading past the last element of
an array is a common error, invariably with catastrophic consequences.

The following problem arises when optimizing quicksort: given an array A whose
elements are comparable, and an index i, reorder the elements of A so that the initial
elements are all less than A[i], and are followed by elements equal to A[i], which in
turn are followed by elements greater than A[i], using O(1) space.

The key to the solution is to maintain two regions on opposite sides of the array
that meet the requirements, and expand these regions one element at a time. Details
are given in Solution 3.1 on Page 176.

Lists

An abstract data type (ADT) is a mathematical model for a class of data structures
that have similar functionality. Strictly speaking, a list is an ADT, and not a data
structure. It implements an ordered collection of values, which may be repeated. In
the context of this book we view a list as a sequence of nodes where each node has a
link to the next node in the sequence. In a doubly linked list each node additionally
has a link to the prior node.

A list is similar to an array in that it contains objects in a linear order. The key
differences are that inserting and deleting elements in a list has time complexity O(1).
On the other hand, obtaining the k-th element in a list is expensive, having O(n)

Chapter 1. Problem Solving Patterns 9

time complexity. Lists are usually building blocks of more complex data structures.
However, they can be the subject of tricky problems in their own right, as illustrated
by the following:

Given a singly linked list (lo,], l,...,l,-1), define the “zip” of the list to be
(lo,In=1,11,1u=2, ...). Suppose you were asked to write a function that computes the
zip of a list, with the constraint that it uses O(1) space. The operation of this function
is illustrated in Figure 1.1.

3 F+—[¥

0x1000 0x1240 0x1830 0x2110 0x2200

(a) List before zipping. The number in hex below each node represents its address in memory.

h o> s g0 [[X

0x1000 0x2200 0x1240 0x2110 0x1830

(b) List after zipping. Note that nodes are reused—no memory has been allocated.

Figure 1.1: Zipping a list.

The solution is based on an appropriate iteration combined with “pointer swap-
ping”, i.e., updating next field for each node. Refer to Solution 4.11 on Page 208 for
details.

STACKS AND QUEUES

Stacks support last-in, first-out semantics for inserts and deletes, whereas queues are
first-in, first-out. Both are ADTs, and are commonly implemented using linked lists
or arrays. Similar to lists, stacks and queues are usually building blocks in a solution
to a complex problem, but can make for interesting problems in their own right.

As an example consider the problem of evaluating Reverse Polish notation expres-
sions, i.e., expressions of the form “3,4,%,1,2,+,+”, “1,1,+,-2,X”, or “4,6,/,2,/".
A stack is ideal for this purpose—operands are pushed on the stack, and popped as
operators are processed, with intermediate results being pushed back onto the stack.
Details are given in Solution 5.2 on Page 211.

BINARY TREES

A binary tree is a data structure that is used to represent hierarchical relationships.
Binary trees most commonly occur in the context of binary search trees, wherein
keys are stored in a sorted fashion. However, there are many other applications
of binary trees. Consider a set of resources organized as nodes in a binary tree.
Processes need to lock resource nodes. A node may be locked if and only if none of
its descendants and ancestors are locked. Your task is to design and implement an
application programming interface (API) for locking.

A reasonable API is one with isLock(), lock(), and unLock () methods. Naively
implemented the time complexity for these methods is O(n), where 1 is the number of
nodes. However these can be made to run in time O(1), O(h), and O(h), respectively,

10 Chapter 1. Problem Solving Patterns

where & is the height of the tree, if nodes have a parent field. Details are given in
Solution 6.4 on Page 226.

Heaprs

A heap is a data structure based on a binary tree. It efficiently implements an ADT
called a priority queue. A priority queue resembles a queue, with one difference:
each element has a “priority” associated with it, and deletion removes the element
with the highest priority.

Suppose you are given a set of files, each containing stock trade information. Each
trade appears as a separate line containing information about that trade. Lines begin
with an integer-valued timestamp, and lines within a file are sorted in increasing
order of timestamp. Suppose you were asked to design an algorithm that combines
the set of files into a single file R in which trades are sorted by timestamp.

This problem can be solved by a multistage merge process, but there is a trivial
solution based on a min-heap data structure. Entries are trade-file pairs and are
ordered by the timestamp of the trade. Initially the min-heap contains the first trade
from each file. Iteratively delete the minimum entry e = (¢, f) from the min-heap,
write t to R, and add in the next entry in the file f. Details are given in Solution 7.1
on Page 237.

HasH TABLES

A hash table is a data structure used to store keys, optionally with corresponding
values. Inserts, deletes and lookups run in O(1) time on average. One caveat is that
these operations require a good hash function—a mapping from the set of all possible
keys to the integers which is similar to a uniform random assignment. Another is
that if the number of keys that is to be stored is not known in advance then the
hash table needs to be periodically resized, which depending on how the resizing is
implemented, can lead to some updates having ©(rn) complexity.

Suppose you were asked to write an application that compares n programs for
plagiarism. Specifically, your application is to break every program into overlapping
character strings, each of length 100, and report on the number of strings that appear
in each pair of programs. A hash table can be used to perform this check very
efficiently if the right hash function is used. Details are given in Solution 9.14 on
Page 277.

BINARY SEARCH TREES

Binary search trees (BSTs) are used to store objects that are comparable. The underly-
ing idea is to organize the objects in a binary tree in which the nodes satisfy the BST
property: the key stored at any node is greater than or equal to the keys stored in its
left subtree and less than or equal to the keys stored in its right subtree. Insertion
and deletion can be implemented so that the height of the BST is O(logn), leading
to fast (O(log n)) lookup and update times. AVL trees and red-black trees are BST
implementations that support this form of insertion and deletion.

Chapter 1. Problem Solving Patterns 11

BSTs are a workhorse of data structures and can be used to solve almost every
data structures problem reasonably efficiently. It is common to augment the BST to
make it possible to manipulate more complicated data, e.g., intervals, and efficiently
support more complex queries, e.g., the number of elements in a range.

As an example application of BSTs, consider the following problem. You are given
a set of line segments. Each segment is a closed interval [I;, ;] of the x-axis, a color,
and a height. For simplicity assume no two segments whose intervals overlap have
the same height. When the x-axis is viewed from above the color at point x on the
x-axis is the color of the highest segment that includes x. (If no segment contains x,
the color is blank.) You are to implement a function that computes the sequence of
colors as seen from the top.

The key idea is to sort the endpoints of the line segments and do a sweep from
left-to-right. As we do the sweep, we maintain a list of line segments that intersect
the current position as well as the highest line and its color. To quickly lookup the
highest line in a set of intersecting lines we keep the current set in a BST, with the
interval’s height as its key. Details are given in Solution 11.15 on Page 310.

Other data structures

The data structures described above are the ones commonly used. Examples of

other data structures that have more specialized applications include:

— Skip lists, which store a set of comparable items using a hierarchy of sorted
linked lists. Lists higher in the hierarchy consist of increasingly smaller subse-
quences of the items. Skip lists implement the same functionality as balanced
BSTs, but are simpler to code and faster, especially when used in a concurrent
context.

— Treaps, which are a combination of a BST and a heap. When an element
is inserted into a treap it is assigned a random key that is used in the heap
organization. The advantage of a treap is that it is height balanced with high
probability and the insert and delete operations are considerably simpler than
for deterministic height balanced trees such as AVL and red-black trees.

— Fibonacci heaps, which consist of a series of trees. Insert, find minimum,
decrease key, and merge (union) run in amortized constant time; delete and
delete-minimum take O(log 1) time. In particular Fibonacci heaps can be used
to reduce the time complexity of Dijkstra’s shortest path algorithm from O((|E|+
V) log V) to O(E| + [V] log V).

— Disjoint-set data structures, which are used to manipulate subsets. The ba-
sic operations are union (form the union of two subsets), and find (determine
which set an element belongs to). These are used in a number of algorithms, no-
tably in tracking connected components in an undirected graph and Kruskal’s
algorithm for the minimum spanning tree (MST). We use the disjoint-set data
structure to solve the offline minimum problem (Solution 3.7 on Page 182).

— Tries, which are a tree-based data structure used to store strings. Unlike BSTs,
nodes do not store keys; instead, the node’s position in the tree determines the
key it is associated with. Tries can have performance advantages with respect

12

Technique
Sorting
Recursion

Divide and conquer

Dynamic program-
ming

The greedy method
Incremental improve-
ment

Elimination
Parallelism

Caching
Randomization
Approximation

State

Chapter 1. Problem Solving Patterns

Table 1.2: Algorithm design patterns.

Key points

Uncover some structure by sorting the input.

If the structure of the input is defined in a recursive
manner, design a recursive algorithm that follows the
input definition.

Divide the problem into two or more smaller inde-

pendent subproblems and solve the original problem
using solutions to the subproblems.

Compute solutions for smaller instances of a given
problem and use these solutions to construct a solution
to the problem.

Compute a solution in stages, making choices that are
locally optimum at step; these choices are never un-
done.

Quickly build a feasible solution and improve its qual-
ity with small, local updates.

Identify and rule out potential solutions that are sub-
optimal or dominated by other solutions.

Decompose the problem into subproblems that can be
solved independently on different machines.

Store computation and later look it up to save work.
Use randomization within the algorithm to reduce
complexity.

Efficiently compute a suboptimum solution that is of
acceptable quality.

Identify an appropriate notion of state.

to BSTs and hash tables; they can also be used to solve the longest matching
prefix problem (Solution 16.3 on Page 393).

Algorithm design patterns

SORTING

Certain problems become easier to understand, as well as solve, when the input
is sorted. The solution to the calendar rendering problem (Problem 10.10 on Page 84)
entails taking a set of intervals and computing the maximum number of intervals
whose intersection is nonempty. Naive strategies yield quadratic run times. How-
ever, once the interval endpoints have been sorted, it is easy to see that a point of
maximum overlap can be determined by a linear time iteration through the end-

points.

Often it is not obvious what to sort on—for example, we could have sorted the
intervals on starting points rather than endpoints. This sort sequence, which in some

Chapter 1. Problem Solving Patterns 13

respects is more natural, does not work. However, some experimentation with it will
likely lead to the correct criterion.

Sorting is not appropriate when an O(n) (or better) algorithm is possible, e.g.,
determining the k-th largest element (Problem 8.13 on Page 71). Furthermore, sorting
can obfuscate the problem. For example, given an array A of numbers, if we are to
determine the maximum of A[i] — A[j], for i < j, sorting destroys the order and
complicates the problem.

RecursioNn

A recursive function consists of base cases, and calls to the same function with
different arguments. A recursive algorithm is appropriate when the input is naturally
expressed using recursive functions.

String matching exemplifies the use of recursion. Suppose you were asked to
write a Boolean-valued function which takes a string and a matching expression,
and returns true iff the string “matches” the matching expression. Specifically, the
matching expression is itself a string, and could be

— xwhere xis a character, for simplicity assumed to be a lower-case letter (matches
the string “x”).

— . (matches any string of length 1).

— x* (matches the string consisting of zero or more occurrences of the character
X).

— .+ (matches the string consisting of zero or more of any characters).

— 11, where r; and r, are regular expressions of the given form (matches any
string that is the concatenation of strings s; and s,, where s; matches r; and s,
matches r,).

This problem can be solved by checking a number of cases based on the first one

or two characters of the matching expression, and recursively matching the rest of
the string. Details are given in Solution 3.22 on Page 197.

DIVIDE AND CONQUER

A divide and conquer algorithm works by decomposing a problem into two or
more smaller independent subproblems, until it gets to instances that are simple
enough to be solved directly; the results from the subproblems are then combined.
More details and examples are given in Chapter 12; we illustrate the basic idea below.

A triomino is formed by joining three unit-sized squares in an L-shape. A mu-
tilated chessboard (henceforth 8 X 8 Mboard) is made up of 64 unit-sized squares
arranged in an 8 X 8 square, minus the top-left square, as depicted in Figure 1.2(a) on
the next page. Suppose you are asked to design an algorithm that computes a place-
ment of 21 triominoes that covers the 8 x 8 Mboard. Since the 8 X 8 Mboard contains
63 squares, and we have 21 triominoes, a valid placement cannot have overlapping
triominoes or triominoes which extend out of the 8 X 8 Mboard.

14 Chapter 1. Problem Solving Patterns

'
%%%%//
7, %7 7,
Eow

(a) An 8 x 8 Mboard. (b) Four 4 x 4 Mboards.

\
\

Figure 1.2: Mutilated chessboards.

Divide and conquer is a good strategy for this problem. Instead of the 8 x 8
Mboard, let’s consider an n X n Mboard. A 2 X 2 Mboard can be covered with one
triomino since it is of the same exact shape. You may hypothesize that a triomino
placement for an n X n Mboard with the top-left square missing can be used to
compute a placement for an (1 + 1) X (n + 1) Mboard. However you will quickly see
that this line of reasoning does not lead you anywhere.

Another hypothesis is that if a placement exists for an n x n Mboard, then one also
exists for a 21 X 2n Mboard. Now we can apply divide and conquer. work. Take four
n X n Mboards and arrange them to form a 2n X 2n square in such a way that three of
the Mboards have their missing square set towards the center and one Mboard has
its missing square outward to coincide with the missing corner of a 2n X 2n Mboard,
as shown in Figure 1.2(b). The gap in the center can be covered with a triomino and,
by hypothesis, we can cover the four n X n Mboards with triominoes as well. Hence
a placement exists for any # that is a power of 2. In particular, a placement exists for
the 23 x 2% Mboard; the recursion used in the proof directly yields the placement.

Divide and conquer is usually implemented using recursion. However, the two
concepts are not synonymous. Recursion is more general—subproblems do not have
to be of the same form.

In addition to divide and conquer, we used the generalization principle above.
The idea behind generalization is to find a problem that subsumes the given problem
and is easier to solve. We used it to go from the 8 x 8 Mboard to the 2" x 2" Mboard.

Other examples of divide and conquer include counting the number of pairs of
elements in an array that are out of sorted order (Solution 12.2 on Page 315) and
computing the closest pair of points in a set of points in the plane (Solution 12.3 on
Page 316).

DYNAMIC PROGRAMMING

Dynamic programming (DP) is applicable when the problem has the “optimal sub-

Chapter 1. Problem Solving Patterns 15

structure” property, that is, it is possible to reconstruct a solution to the given instance
from solutions to subinstances of smaller problems of the same kind. A key aspect
of DP is maintaining a cache of solutions to subinstances. DP can be implemented
recursively (in which case the cache is typically a dynamic data structure such as a
hash table or a BST), or iteratively (in which case the cache is usually a one- or multi-
dimensional array). It is most natural to design a DP algorithm using recursion.
Usually, but not always, it is more efficient to implement it using iteration.

As an example of the power of DP, consider the problem of determining the
number of combinations of 2, 3, and 7 point plays that can generate a score of
222. Let C(s) be the number of combinations that can generate a score of s. Then
C(222) = C(222 - 7) + C(222 - 3) + C(222 - 2), since a combination ending with a 2
point play is different from one ending with a 3 point play, and a combination ending
with a 3 point play is different from one ending with a 7 point play, etc.

The recursion breaks down for small scores, specifically, when (1.)s <0 = C(s) =
0,and 2.)s=0 = C(s) =1.

Implementing the recursion naively results in multiple calls to the same subin-
stance. Let C(a) — C(b) indicate that a call to C with input a directly calls C with input
b. Then C(213) will be called in the order C(222) - C(222 - 7) - C((222 - 7) — 2), as
well as C(222) — C(222 - 3) —» C((222 - 3) — 3) —» C(((222 - 3) - 3) - 3).

This phenomenon results in the run time increasing exponentially with the size
of the input. The solution is to store previously computed values of C in an array of
length 223. Details are given in Solution 12.15 on Page 333.

Sometimes it is profitable to study the set of partial solutions. Specifically it may
be possible to “prune” dominated solutions, i.e., solutions which cannot be better
than previously explored solutions. The candidate solutions are referred to as the
“efficient frontier” that is propagated through the computation.

For example, if we are to implement a stack that supports a max operation, which
returns the largest element stored in the stack, we can record for each element in the
stack what the largest value stored at or below that element is by comparing the value
of that element with the value of the largest element stored below it. Details are given
in Solution 5.1 on Page 210. The largest rectangle under the skyline (Problem 12.8 on
Page 323) provides a more sophisticated example of the efficient frontier concept.

Another consideration is how the partial solutions are organized. In the solution
to the longest nondecreasing subsequence problem 12.6 on Page 320, it is better to
keep the efficient frontier sorted by length of each subsequence rather than its final
index.

THE GREEDY METHOD

A greedy algorithm is one which makes decisions that are locally optimum and
never changes them. This strategy does not always yield the optimum solution.
Furthermore, there may be multiple greedy algorithms for a given problem, and
only some of them are optimum.

For example, consider 21 cities on a line, half of which are white, and the other half
are black. We want to map white to black cities in a one-to-one onto fashion so that

16 Chapter 1. Problem Solving Patterns

the total length of the road sections required to connect paired cities is minimized.
Multiple pairs of cities may share a single section of road, e.g., if we have the pairing
(0,4) and (1, 2) then the section of road between Cities 0 and 4 can be used by Cities 1
and 2. The most straightforward greedy algorithm for this problem is to scan through
the white cities, and, for each white city, pair it with the closest unpaired black city. It
leads to suboptimum results: consider the 4 city case, where the white cities are at 0
and at 3 and the black cities are at 2 and at 5. If the straightforward greedy algorithm
processes the white city at 3 first, it pairs it with 2, forcing the cities at 0 and 5 to pair
up, leading to a road length of 5, whereas the pairing of cities at 0 and 2, and 3 and 5
leads to a road length of 4.

However, a slightly more sophisticated greedy algorithm does lead to optimum
results: iterate through the white cities in left-to-right order, pairing each white city
with the nearest unpaired black city. We can prove this leads to an optimum pairing
by induction. The idea is that the pairing for the first city must be optimum, since
if it were to be paired with any other city, we could always change its pairing to be
with the nearest black city without adding any road.

INCREMENTAL IMPROVEMENT

When you are faced with the problem of computing an optimum solution, it is
often straightforward to come up with a candidate solution, which may be a partial
solution. This solution can be incrementally improved to make it optimum. This is
especially true when a solution has to satisfy a set of constraints.

As an example consider a department with n graduate students and n professors.
Each student begins with a rank ordered preference list of the professors based on
how keen he is to work with each of them. Each professor has a similar preference list
of students. Suppose you were asked to devise an algorithm which takes as input the
preference lists and outputs a one-to-one pairing of students and advisers in which
there are no student-adviser pairs (s0,40) and (s1, a1) such that sO prefers a1 to a0 and
al prefers s0 to s1.

Here is an algorithm for this problem in the spirit of incremental improvement.
Each student who does not have an adviser “proposes” to the most-preferred profes-
sor to whom he has not yet proposed. Each professor then considers all the students
who have proposed to him and says to the student in this set he most prefers “I
accept you”; he says “no” to the rest. The professor is then provisionally matched to
a student; this is the candidate solution. In each subsequent round, each student who
does not have an adviser proposes to the professor to whom he has not yet proposed
who is highest on his preference list. He does this regardless of whether the professor
has already been matched with a student. The professor once again replies with a
single accept, rejecting the rest. In particular, he may leave a student with whom he
is currently paired. That this algorithm is correct is nontrivial—details are presented
in Solution 18.18 on Page 433.

Many other algorithms are in this spirit: the standard algorithms for bipartite
matching (Solution 18.19 on Page 435), maximum flow (Solution 18.21 on Page 436),
and computing all pairs of shortest paths in a graph (Solutions 13.12 on Page 365

Chapter 1. Problem Solving Patterns 17

and 13.11 on Page 364) use incremental improvement. Other famous examples
include the simplex algorithm for linear programming, and Euler’s algorithm for
computing a path in a graph which covers each edge once.

Sometimes it is easier to start with an infeasible solution that has a lower cost than
the optimum solution, and incrementally update it to arrive at a feasible solution
that is optimum. The standard algorithms for computing an MST (Solution 14.6 on
Page 371) and shortest paths in a graph from a designated vertex (Solution 13.9 on
Page 362) proceed in this fashion.

It is noteworthy that naively applying incremental improvement does not always
work. For the professor-student pairing example above, if we begin with an arbitrary
pairing of professors and students, and search for pairs p and s such that p prefers
s to his current student, and s prefers p to his current professor and reassign such
pairs, the procedure will not always converge.

Incremental improvement is often useful when designing heuristics, i.e., algo-
rithms which are usually faster and/or simpler to implement than algorithms which
compute an optimum result, but may return a suboptimal result. The algorithm we
present for computing a tour for a traveling salesman (Solution 14.6 on Page 371) is
in this spirit.

ELiminaTION

One common approach to designing an efficient algorithm is to use elimination—
that is to identify and rule out potential solutions that are suboptimal or dominated
by other solutions. Binary search, which is the subject of a number of problems in
Chapter 8, uses elimination. Solution 8.9 on Page 257, where we use elimination
to compute the square root of a real number, is especially instructive. Below we
consider a fairly sophisticated application of elimination.

Suppose you have to build a distributed storage system. A large number, 1, of
users will share data on your system, which consists of m servers, numbered from 0 to
m—1. One way to distribute users across servers is to assign the user with loginid [to
the server h(l) mod m, where k() is a hash function. If the hash function does a good
job, this approach distributes users uniformly across servers. However, if certain
users require much more storage than others, some servers may be overloaded while
others idle.

Let b; be the number of bytes of storage required by user i. We will use values
ko < ki < -+ < ky—p to partition users across the m servers—a user with hash code
c gets assigned to the server with the lowest id 7 such that ¢ < k;, or to server m — 1
if no such i exists. We would like to select ko, k1, .. ., k—» to minimize the maximum
number of bytes stored at any server.

The optimum values for ko, ki, ..., ky,—> can be computed via DP—the essence of
the program is to add one server at a time. The straightforward formulation has an
O(nm?) time complexity.

However, there is a much faster approach based on elimination. The search for
values ko, ki, . .., kyu—» such that no server stores more than b bytes can be performed

18 Chapter 1. Problem Solving Patterns

in O(n) time by greedily selecting values for the k;s. We can then perform binary
search on b to get the minimum b and the corresponding values for ko, ki, ..., ky_.
The resulting time complexity is O(1log W), where W = Y. b;

For the case of 10000 users and 100 servers, the DP algorithm took over an hour;
the approach using binary search for b with greedy assignment took 0.1 seconds.
Details are given in Solution 12.24 on Page 343.

The takeaway is that there may be qualitatively different ways to search for a
solution, and that it is important to look for ways in which to eliminate candidates.
The efficient frontier concept, described on Page 15, has some commonalities with
elimination.

PARALLELISM

In the context of interview questions, parallelism is useful when dealing with scale,

i.e.,, when the problem is too large to fit on a single machine or would take an
unacceptably long time on a single machine. The key insight you need to display is
that you know how to decompose the problem so that

1. each subproblem can be solved relatively independently, and

2. thesolution to the original problem can be efficiently constructed from solutions

to the subproblems.
Efficiency is typically measured in terms of central processing unit (CPU) time,
random access memory (RAM), network bandwidth, number of memory and
database accesses, etc.

Consider the problem of sorting a petascale integer array. If we know the distri-
bution of the numbers, the best approach would be to define equal-sized ranges of
integers and send one range to one machine for sorting. The sorted numbers would
just need to be concatenated in the correct order. If the distribution is not known
then we can send equal-sized arbitrary subsets to each machine and then merge the
sorted results, e.g., using a min-heap. Details are given in Solution 10.4 on Page 283.

CACHING

Caching is a great tool whenever computations are repeated. For example, the central
idea behind dynamic programming is caching results from intermediate computa-
tions. Caching is also extremely useful when implementing a service that is expected
to respond to many requests over time, and many requests are repeated. Workloads
on web services exhibit this property. Solution 15.1 on Page 381 sketches the design of
an online spell correction service; one of the key issues is performing cache updates
in the presence of concurrent requests.

RaNDOMIZATION

Suppose you were asked to write a routine that takes an array A of n elements and
an integer k between 1 and 1, and returns the k-th largest element in A.

Chapter 1. Problem Solving Patterns 19

This problem can be solved by first sorting the array, and returning the element
at index k in the sorted array. The time complexity of this approach is O(nlogn).
However, sorting performs far more work than is needed. A better approach is to
eliminate parts of the array. We could use the median to determine the 1/2 largest
elements of A; if n/2 > k, the desired element is in this set, otherwise we search for
the (k — n/2)-th largest element in the 7/2 smallest elements.

It is possible, though nontrivial, to compute the median in O(n) time without
using randomization. However, an approach that works well is to select an index r
at random and reorder the array so that elements greater than or equal to A[r] appear
first, followed by A[r], followed by elements less than or equal to A[r]. Let A[r] be the
k-th element in the reordered array A’. If k = n/2, A’[k] = A[r] is the desired element.
If k > n/2, we search for the n/2-th largest element in A’[0 : k — 1]. Otherwise we
search for the (1/2 —k)-th largest element in A’[k+1 : n—1]. The closer A[r] is the true
median, the faster the algorithm runs. A formal analysis shows that the probability
of the randomly selected element repeatedly being far from the desired element falls
off exponentially with n. Details are given in Solution 8.13 on Page 260.

Randomization can also be used to create “signatures” to reduce the complexity of
search, analogous to the use of hash functions. Consider the problem of determining
whether an m X m array S of integers is a subarray of an n X n array T. Formally,
we say S is a subarray of T iff there are p,q such that S[i][j] = T[p + i][g + j], for
all 0 < i,j < m—1. The brute-force approach to checking if S is a subarray of T
has complexity O(n*m?)—O(n?) individual checks, each of complexity O(m?). We
can improve the complexity to O(n*m) by computing a hash code for S and then
computing the hash codes for m X m subarrays of T. The latter hash codes can be
computed incrementally in O(m) time if the hash function is chosen appropriately.
For example, if the hash code is simply the XOR of all the elements of the subarray,
the hash code for a subarray shifted over by one column can be computed by XORing
the new elements and the removed elements with the previous hash code. A similar
approach works for more complex hash functions, specifically for those that are a
polynomial.

APPROXIMATION

In the real-world it is routine to be given a problem that is difficult to solve exactly,
either because of its intrinsic complexity, or the complexity of the code required.
Developers need to recognize such problems, and be ready to discuss alternatives
with the author of the problem. In practice a solution that is “close” to the optimum
solution is usually perfectly acceptable.

Let {Ag, Ay, ..., A1} be a set of n cities, as in Figure 1.3 on the next page. Suppose
we need to choose a subset of A to locate warehouses. Specifically, we want to choose
k cities in such a way that cities are close to the warehouses. Define the cost of a
warehouse assignment to be the maximum distance of any city to a warehouse.

The problem of finding a warehouse assignment that has the minimum cost is
known to be NP-complete. However, consider the following algorithm for com-

20 Chapter 1. Problem Solving Patterns

90 F Bl

- Nuuk - Reykjavik

60 | + Anchorage

Petropavlovsk Kamchatsky
+ Irkutsk >

« Viadivostok

30
« Honolulu

- Dakar

=30 « Santiago

—60 [B

McMurdo Station

I I I I I I I
-150 =120 =90 —60 =30 0 30 60 90 120 150 180

Figure 1.3: An instance of the warehouse location problem. The distance between cities at

(v.9) and (r,s) is /(p —1)? + (g —5)*.

puting k cities. We pick the first warehouse to be the city for which the cost is
minimized—this takes ©(n?) time since we try each city one at a time and check its
distance to every other city. Now let’s say we have selected the first i — 1 warehouses
{c1,¢2,...,cic1} and are trying to choose the i-th warehouse. A reasonable choice for
c; is the city that is the farthest from the i — 1 warehouses already chosen. This city
can be computed in O(ni) time. This greedy algorithm yields a solution whose cost
is no more than 2X that of the optimum solution; some heuristic tweaks can be used
to further improve the quality. Details are given in Solution 14.7 on Page 372.

As another example of approximation, consider the problem of determining the
k most frequent elements of a very large array. The direct approach of maintaining
counts for each element may not be feasible because of space constraints. A natural
approach is to sample the set to determine a set of candidates, exact counts for which
are then determined in a second pass. The size of the candidate set depends on the
distribution of the elements.

STATE

Formally, the state of a system is information that is sufficient to determine how that
system evolves as a function of future inputs. Identifying the right notion of state
can be critical to coming up with an algorithm that is time and space efficient, as well
as easy to implement and prove correct.

There may be multiple ways in which state can be defined, all of which lead to
correct algorithms. When computing the max-difference (Problem 3.3 on Page 38),
we could use the values of the elements at all prior indices as the state when we
iterate through the array. Of course, this is inefficient, since all we really need is the
minimum value.

Chapter 1. Problem Solving Patterns 21

Table 1.3: Abstract analysis techniques.

Analysis principle Key points
Case analysis Split the input/execution into a number of cases and
solve each case in isolation.

Small examples Find a solution to small concrete instances of the prob-
lem and then build a solution that can be generalized
to arbitrary instances.

Iterative refinement Most problems can be solved using a brute-force ap-
proach. Find such a solution and improve upon it.

Reduction Use a well known solution to some other problem as
a subroutine.

Graph modeling Describe the problem using a graph and solve it using
an existing algorithm.

Write an equation Express relationships in the problem in the form of
equations (or inequalities).

Variation Solve a slightly different (possibly more general) prob-
lem and map its solution to the given problem.

Invariants Find a function of the state of the given system that re-
mains constant in the presence of (possibly restricted)
updates to the state. Use this function to design an al-
gorithm, prove correctness, or show an impossibility
result.

One solution to computing the Levenshtein distance between two strings (Prob-
lem 12.11 on Page 101) entails creating a 2D array whose dimensions are (m+1)x(n+1),
where m and #n are the lengths of the strings being compared. For large strings this
size may be unacceptably large. The algorithm iteratively fills rows of the array, and
reads values from the current row and the previous row. This observation can be
used to reduce the memory needed to two rows. A more careful implementation can
reduce the memory required to just one row.

More generally, the efficient frontier concept on Page 15 demonstrates how an
algorithm can be made to run faster and with less memory if state is chosen care-
fully. Other examples illustrating the benefits of careful state selection include string
matching (Problem 3.19 on Page 43) and lazy initialization (Problem 3.2 on Page 37).

Abstract analysis patterns

CASE ANALYSIS

In case analysis a problem is divided into a number of separate cases, and an-
alyzing each such case individually suffices to solve the initial problem. Cases do
not have to be mutually exclusive; however, they must be exhaustive, that is cover
all possibilities. For example, to prove that for all 1, n* mod 3 is 0,1, or 8, we can
consider the cases n = 3m, n = 3m + 1, and n = 3m + 2. These cases are individually

22 Chapter 1. Problem Solving Patterns

easy to prove, and are exhaustive. Case analysis is commonly used in mathematics
and games of strategy. Here we consider an application of case analysis to algorithm
design.

Suppose you are given a set S of 25 distinct integers and a CPU that has a special
instruction, SORTS, that can sort five integers in one cycle. Your task is to identify the
largest, second-largest, and third-largest integers in S using SORTS to compare and
sort subsets of S; furthermore, you must minimize the number of calls to SORTS5.

If all we had to compute was the largest integer in the set, the optimum approach
would be to form five disjoint subsets Sy, ..., Ss of S, sort each subset, and then sort
{max Sy, ..., maxSs}. This takes six calls to SORT5 but leaves ambiguity about the
second and third largest integers.

It may seem like many additional calls to SORT5 are still needed. However if you
do a careful case analysis and eliminate all x € S for which there are at least three
integers in S larger than x, only five integers remain and hence just one more call to
SORTS5 is needed to compute the result. Details are given in Solution 18.2 on Page 423.

SMALL EXAMPLES

Problems that seem difficult to solve in the abstract can become much more tractable

when you examine small concrete instances. For instance, consider the following
problem. Five hundred closed doors along a corridor are numbered from 1 to 500.
A person walks through the corridor and opens each door. Another person walks
through the corridor and closes every alternate door. Continuing in this manner, the
i-th person comes and toggles the state (open or closed) of every i-th door starting
from Door i. You must determine exactly how many doors are open after the 500-th
person has walked through the corridor.

It is difficult to solve this problem using an abstract approach, e.g., introducing
Boolean variables for the state of each door and a state update function. However
if you try the same problem with 1,2,3,4,10, and 20 doors, it takes a short time to
see that the doors that remain open are 1,4,9,16. .., regardless of the total number
of doors. The 10 doors case is illustrated in Figure 1.4 on the next page. Now the
pattern is obvious—the doors that remain open are those corresponding to the perfect
squares. Once you make this connection, it is easy to prove it for the general case.
Hence the total number of open doors is L\/Smj = 22. Solution 18.1 on Page 422
develops this analysis in more detail.

Optimally selecting a red card (Problem 17.18 on Page 143) and avoiding losing
at the alternating coin pickup game (Problem 18.20 on Page 151) are other problems
that benefit from use of the “small example” principle.

ITERATIVE REFINEMENT OF A BRUTE-FORCE SOLUTION

Many problems can be solved optimally by a simple algorithm that has a high
time/space complexity—this is sometimes referred to as a brute-force solution. Other

Chapter 1. Problem Solving Patterns 23

6 7 8

1 2 3 4 5

9 10 1 2 3 4 5 6 7 8 9 10

(a) Initial configuration. (b) After Person 1.

(e) After Person 4. (f) After Person 10.

Figure 1.4: Progressive updates to 10 doors.

terms are exhaustive search and generate-and-test. Often this algorithm can be refined
to one that is faster. At the very least it may offer hints into the nature of the problem.

As an example, suppose you were asked to write a function that takes an array A
of n numbers, and rearranges A’s elements to get a new array B having the property
that B[0] < B[1] > B[2] < B[3] > B[4] < B[5] > ---.

One straightforward solution is to sort A and interleave the bottom and top
halves of the sorted array. Alternately, we could sort A and then swap the elements
at the pairs (A[1], A[2]), (A[3], A[4]), ... Both these approaches have the same time
complexity as sorting, namely O(n log n).

You will soon realize that it is not necessary to sort A to achieve the desired
configuration—you could simply rearrange the elements around the median, and
then perform the interleaving. Median finding can be performed in time O(n) (Solu-
tion 8.13 on Page 260), which is the overall time complexity of this approach.

Finally, you may notice that the desired ordering is very local, and realize that it
is not necessary to find the median. Iterating through the array and swapping A[i]
and A[i + 1] when i is even and A[i] > A[i+ 1] or i is odd and A[i] < A[i + 1]. achieves
the desired configuration. In code:

1| template <typename T>

2| void rearrange(vector<T> &A) {

3| for (int i = 0; i < A.size() - 1; ++i) {

4 if (@ & 1 & A[i] < A[1 + 11) || (A & 1) == 0 & A[i] > A[i + 11)) {
5 swap(A[i], A[i + 11);

6 }

7|}

8|}

This approach has time complexity O(n), which is the same as the approach based
on median finding. However it is much easier to implement, and operates in an
online fashion, i.e., it never needs to store more than two elements in memory or
read a previous element.

24 Chapter 1. Problem Solving Patterns

As another example of iterative refinement, consider the problem of string
search (Problem 3.19 on Page 43): given two strings s (search string) and ¢ (text),
find all occurrences of s in ¢t. Since s can occur at any offset in f, the brute-force
solution is to test for a match at every offset. This algorithm is perfectly correct; its
time complexity is O(nm), where n and m are the lengths of s and ¢.

After trying some examples, you may see that there are several ways to improve
the time complexity of the brute-force algorithm. As an example, if the character ¢[i]
is not present in s you can advance the matching by n characters. Furthermore, this
skipping works better if we match the search string from its end and work backwards.
These refinements will make the algorithm very fast (linear time) on random text and
search strings; however, the worst case complexity remains O(nm).

You can make the additional observation that a partial match of s that does not
result in a full match implies other offsets that cannot lead to full matches. If s =
abdabcabe and if, starting backwards, we have a partial match up to abcabc that does
not result in a full match, we know that the next possible matching offset has to be
at least three positions ahead (where we can match the second abc from the partial
match).

By putting together these refinements you will have arrived at the famous Boyer-
Moore string search algorithm—its worst-case time complexity is O(n + m) (which
is the best possible from a theoretical perspective); it is also one of the fastest string
search algorithms in practice.

Many other sophisticated algorithms can be developed in this fashion. As another
example, the brute-force solution to computing the maximum subarray sum for an
integer array of length n is to compute the sum of all subarrays, which has O(1°)
time complexity. This can be improved to O(n?) by precomputing the sums of all the
prefixes of the given arrays; this allows the sum of a subarray to be computed in O(1)
time. The natural divide and conquer algorithm has an O(nlog) time complexity.
Finally, one can observe that a maximum subarray must end at one of n indices, and
the maximum subarray sum for a subarray ending at index i can be computed from
previous maximum subarray sums, which leads to an O(n) algorithm. Details are
presented on Page 98.

RepucTtioN

Consider the problem of finding if one string is a rotation of the other, e.g., “car” and
“arc” are rotations of each other. A natural approach may be to rotate the first string
by every possible offset and then compare it with the second string. This algorithm
would have quadratic time complexity.

You may notice that this problem is quite similar to string search, which can be
done in linear time, albeit using a somewhat complex algorithm. Therefore it is
natural to try to reduce this problem to string search. Indeed, if we concatenate the
second string with itself and search for the first string in the resulting string, we will
find a match iff the two original strings are rotations of each other. This reduction
yields a linear time algorithm for our problem.

Chapter 1. Problem Solving Patterns 25

The reduction principle is also illustrated in the problem of checking whether a
road network is resilient in the presence of blockages (Problem 13.4 on Page 114) and
the problem of finding the minimum number of pictures needed to photograph a set
of teams (Problem 13.7 on Page 116).

Usually you try to reduce the given problem to an easier problem. Sometimes,
however, you need to reduce a problem known to be difficult to the given prob-
lem. This shows that the given problem is difficult, which justifies heuristics and
approximate solutions. Such scenarios are described in more detail in Chapter 14.

GRAPH MODELING

Drawing pictures is a great way to brainstorm for a potential solution. If the
relationships in a given problem can be represented using a graph, quite often the
problem can be reduced to a well-known graph problem. For example, suppose you
are given a set of exchange rates among currencies and you want to determine if an
arbitrage exists, i.e., there is a way by which you can start with one unit of some
currency C and perform a series of barters which results in having more than one
unit of C.

Table 1.4 shows a representative example. An arbitrage is possible for this
set of exchange rates: 1USD — 1 x 0.8123 = 0.8123 EUR — 0.8123 x 1.2010 =
0.9755723 CHF — 0.9755723 x 80.39 = 78.426257197 JPY — 78.426257197 x 0.0128 =
1.00385609212 USD.

Table 1.4: Exchange rates for seven major currencies.

Symbol ~ USD EUR GBP JPY CHF CAD AUD

USD 1 0.8148 0.6404 78125 09784 0.9924 0.9465
EUR 1.2275 1 0.7860 96.55 1.2010 1.2182 1.1616
GBP 1.5617 1.2724 1 122.83 15280 1.5498 1.4778
JPY 0.0128 0.0104 0.0081 1 1.2442 0.0126 0.0120
CHF 1.0219 0.8327 0.6546 80.39 1 1.0142 0.9672
CAD 1.0076 0.8206 0.6453 79.26 0.9859 1 0.9535
AUD 1.0567 0.8609 0.6767 83.12 1.0339 1.0487 1

We can model the problem with a graph where currencies correspond to vertices,
exchanges correspond to edges, and the edge weight is set to the logarithm of the
exchange rate. If we can find a cycle in the graph with a positive weight, we would
have found such a series of exchanges. Such a cycle can be solved using the Bellman-
Ford algorithm, as described in Solution 13.12 on Page 365.

WRITE AN EQUATION

Some problems can be solved by expressing them in the language of mathematics.
Suppose you were asked to write an algorithm that computes binomial coefficients,
!
(Z = k!(;:l—k)!'
The problem with computing the binomial coefficient directly from the definition
is that the factorial function grows quickly and can overflow an integer variable. If

26 Chapter 1. Problem Solving Patterns

we use floating point representations for numbers, we lose precision and the problem
of overflow does not go away. These problems potentially exist even if the final value
of (;) is small. One can try to factor the numerator and denominator and try to cancel
out common terms but factorization is itself a hard problem.

The binomial coefficients satisfy the addition formula:

n\ [n-1 N 1
k) \ k k-1
This identity leads to a straightforward recursion for computing (;) which avoids the

problems described above. DP has to be used to achieve good time complexity—
details are in Solution 12.14 on Page 332.

VARIATION

The idea of the variation pattern is to solve a slightly different (possibly more
general) problem and map its solution to your problem.

Suppose we were asked to design an algorithm which takes as input an undirected
graph and produces as output a black or white coloring of the vertices such that for
every vertex at least half of its neighbors differ in color from it.

We could try to solve this problem by assigning arbitrary colors to vertices and
then flipping colors wherever constraints are not met. However this approach may
lead to increasing the number of vertices that do not satisfy the constraint.

It turns out we can define a slightly different problem whose solution will yield
the desired coloring. Define an edge to be diverse if its ends have different colors. It is
straightforward to verify that a coloring that maximizes the number of diverse edges
also satisfies the constraint of the original problem, so there always exists a coloring
satisfying the constraint.

It is not necessary to find a coloring that maximizes the number of diverse edges.
All that is needed is a coloring in which the set of diverse edges is maximal with
respect to single vertex flips. Such a coloring can be computed efficiently; details are
given in Problem 12.29 on Page 109.

INVARIANTS

The following problem was popular at interviews in the early 1990s. You are
given an 8 x 8 square with two unit sized squares at the opposite ends of a diagonal
removed, leaving 62 squares, as illustrated in Figure 1.5(a) on the facing page. You
are given 31 rectangular dominoes. Each can cover exactly two squares. How would
you cover all the 62 squares with the dominoes?

You can spend hours trying unsuccessfully to find such a covering. This experi-
ence will teach you that a problem may be intentionally worded to mislead you into
following a futile path.

Chapter 1. Problem Solving Patterns 27

(a) An 8 x 8 square, minus two unit (b) A chessboard, with two diagonally
squares at opposite corners. opposite corners removed.

Figure 1.5: Invariant analysis exploiting auxiliary elements.

Here is a simple argument that no covering exists. Think of the 8 x 8 square as
a chessboard as shown in Figure 1.5(b). Then the two removed squares will always
have the same color, so there will be either 30 black and 32 white squares to be
covered, or 32 black and 30 white squares to be covered. Each domino will cover
one black and one white square, so the number of black and white squares covered
as you successively put down the dominoes is equal. Hence it is impossible to cover
the given chessboard.

This proof of impossibility is an example of invariant analysis. An invariant
is a function of the state of a system being analyzed that remains constant in the
presence of (possibly restricted) updates to the state. Invariant analysis is particularly
powerful at proving impossibility results as we just saw with the chessboard tiling
problem. The challenge is finding a simple invariant.

The argument above also used the auxiliary elements pattern, in which we added
a new element to our problem to get closer to a solution. The original problem did
not talk about the colors of individual squares; adding these colors made proving
impossibility much easier.

It is possible to prove impossibility without appealing to square colors. Specifi-
cally, orient the board with the missing pieces on the lower right and upper left. An
impossibility proof exists based on a case-analysis for each column on the height of
the highest domino that is parallel to the base. However, the proof given above is
much simpler.

Invariant analysis can be used to design algorithms, as well as prove impossibility
results. In the coin selection problem, sixteen coins are arranged in a line, as in
Figure 1.6 on the following page. Two players, F and S, take turns at choosing one
coin each—they can only choose from the two coins at the ends of the line. Player F
goes first. The game ends when all the coins have been picked up. The player whose
coins have the higher total value wins.

The optimum strategy for F can be computed using DP (Solution 12.19 on
Page 337). However, if F's goal is simply to ensure he does not do worse than

28 Chapter 1. Problem Solving Patterns

Figure 1.6: Coins in a row.

S, he can achieve this goal with much less computation. Specifically, he can number
the coins from 1 to 16 from left-to-right, and compute the sum of the even-index coins
and the sum of the odd-index coins. Suppose the odd-index sum is larger. Then F
can force S to always select an even-index coin by selecting the odd-index coins when
it is his own turn, ensuring that S cannot win. The same principle holds when the
even-index sum is larger, or the sums are equal. Details are given in Solution 18.5 on
Page 424.

Invariant analysis can be used with symmetry to solve very difficult problems,
sometimes in less than intuitive ways. This is illustrated by the game known as
“chomp” in which Player F and Player S alternately take bites from a chocolate bar.
The chocolate bar is an 1 X n rectangle; a bite must remove a square and all squares
above and to the right in the chocolate bar. The first player to eat the lower leftmost
square, which is poisoned, loses. Player F can force a win by first selecting the square
immediately above and to the right of the poisoned square, leaving the bar shaped
like an L, with equal vertical and horizontal sides. Now whatever move S makes,
F can play a symmetric move about the line bisecting the chocolate bar through the
poisoned square to recreate the L shape (this is the invariant), which forces S to be the
first to consume the poisoned square. Details are given in Solution 18.6 on Page 424.

Algorithm design using invariants is also illustrated in Solution 9.7 on Page 270
(can the characters in a string be permuted to form a palindrome?) and in Solu-
tion 10.14 on Page 291 (are there three elements in an array that sum to a given
number?).

Complexity Analysis

The run time of an algorithm depends on the size of its input. One common
approach to capture the run time dependency is by expressing asymptotic bounds
on the worst-case run time as a function of the input size. Specifically, the run time
of an algorithm on an input of size n is O (f(n)) if, for sufficiently large n, the run
time is not more than f(n) times a constant. The big-O notation simply indicates an
upper bound; if the run time is asymptotically proportional to f(1), the complexity
is written as © (f(n)). (Note that the big-O notation is widely used where sometimes
@ is more appropriate.) The notation Q(f(n)) is used to denote an asymptotic lower
bound of f(n) on the time complexity of an algorithm

As an example, searching an unsorted array of integers of length n, for a given
integer, has an asymptotic complexity of ®(1) since in the worst-case, the given inte-
ger may not be present. Similarly, consider the naive algorithm for testing primality
that tries all numbers from 2 to the square root of the input number n. What is its
complexity? In the best case, n is divisible by 2. However in the worst-case the

Chapter 1. Problem Solving Patterns 29

input may be a prime, so the algorithm performs +/n iterations. Furthermore, since
the number 7 requires lgn bits to encode, this algorithm’s complexity is actually
exponential in the size of the input. The big-Omega notation is illustrated by the
Q(nlog n) information-theoretic lower bound on any comparison-based array sorting
algorithm.

Generally speaking, if an algorithm has a run time that is a polynomial, i.e., on")
for some fixed k, where n is the size of the input, it is considered to be efficient;
otherwise it is inefficient. Notable exceptions exist—for example, the simplex algo-
rithm for linear programming is not polynomial but works very well in practice. On
the other hand, the AKS primality testing algorithm has polynomial run time but
the degree of the polynomial is too high for it to be competitive with randomized
algorithms for primality testing.

Complexity theory is applied as a similar way when analyzing the space require-
ments of an algorithm. Usually, the space needed to read in an instance is not
included; otherwise, every algorithm would have ()(1) space complexity.

Several of our problems call for an algorithm that uses O(1) space. Conceptually,
the memory used by such an algorithm should not depend on the size of the input
instance. Specifically, it should be possible to implement the algorithm without
dynamic memory allocation (explicitly, or indirectly, e.g., through library routines).
Furthermore, the maximum depth of the function call stack should also be a constant,
independent of the input. The standard algorithm for depth-first search of a graph is
an example of an algorithm that does not perform any dynamic allocation, but uses
the function call stack for implicit storage—its space complexity is not O(1).

A streaming algorithm is one in which the input is presented as a sequence of
items and is examined in only a few passes (typically just one). These algorithms
have limited memory available to them (much less than the input size) and also
limited processing time per item. Algorithms for computing summary statistics on
log file data often fall into this category.

As arule, algorithms should be designed with the goal of reducing the worst-case
complexity rather than average-case complexity for several reasons:

1. Itis very difficult to define meaningful distributions on the inputs.

2. Pathological inputs are more likely than statistical models may predict. A
worst-case input for a naive implementation of quicksort is one where all
entries are the same, which is not unlikely in a practical setting.

3. Malicious users may exploit bad worst-case performance to create denial-of-
service attacks.

Conclusion

In addition to developing intuition for which patterns may apply to a given
problem, it is also important to know when your approach is not working. In an
interview setting, even if you do not end up solving the problem entirely you will
get credit for approaching problems in a systematic way and clearly communicating
your approach to the problem. We cover nontechnical aspects of problem solving in
Chapter 20.

