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Pipelined Recursive Digital Filters 
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Abstract-Scattered look-ahead (SLA) pipelining is a new IIR 
filter structure that can achieve very high throughput, regardless 
of multiplier latency. However, the numerical properties of SLA 
have been largely unexplored. In this paper we analyze the 
finite word-length (FWL) performance of SLA filters under 
fixed-point arithmetic. To support this analysis, two new state 
variable descriptions (SVD) are introduced. First, a state variable 
based description especially suited for analysis of certain SLA 
structures, called the sectioned K and W description (SKWD), 
is defined by sectioning the noise contributions of the nonre- 
cursive nodes. Second, a noncanonic state variable description 
(NCSVD) is introduced, which explicitly includes the pipelined 
delay variables in the state space. Roundoff noise (RON) and 
statistical coefficient quantization noise (SCQN) are derived un- 
der an independent pseudonoise source model. SCQN is shown 
to be interpretable as RON under the single length accumulation 
model, which enables the unification of RON and SCQN analysis. 
Analytic closed form solutions for first- and second-order direct 
form (DF) SLA filters are derived and compared to results 
from SLA minimum roundoff noise (MRON) structures. The 
SLA structures are all found to have generally good numerical 
properties, except that the DF SLA structure performs poorly 
in certain regions near the unit circle. However, the DF SLA 
structure actually performs better than the MRON form over 
much of the unit disk at a far smaller implementation cost. 

I. INTRODUCTION 

NDERSTANDING finite word-length (FWL) effects, in- U cluding roundoff noise (RON), coefficient quantization 
noise (CQN) and limit cycles (LC), is essential in designing 
IIR digital filters. IIR filters have often been avoided in real- 
time high throughput applications because of the problematic 
recursive updates of IIR algorithms. High speed digital filters, 
including FIR filters, often must be implemented using either a 
pipelining or parallel form of concurrent calculations. Concur- 
rent algorithms typically must tradeoff latency for throughput, 
i.e., the transfer function is changed by the addition of a 
constant delay term. Because concurrent algorithms can have 
dramatically different internal calculations from those of their 
basis algorithms, it is important to study the numerical prop- 
erties of these new algorithms. 

Several stable look-ahead techniques for IIR filtering which 
break the requirement of multiply-accumulate (MAC) latency 

being less than the sampling period have been proposed [13- 
[3]. In this paper we consider the pipelined technique called 
scattered look-ahead (SLA) with power-of-two decomposition 
[4]. This SLA technique relies on pole-zero cancellation in 
order to create a stable and pipelined (as opposed to block- 
parallel) class of algorithms. To achieve pipelining of depth 
M with this SLA technique requires an O(Zog2M) increase 
in computational complexity. To reduce this computational 
overhead, Chung and Parhi [5] presented a design method 
which is not based on a rational polynomial transfer function, 
but rather on a bounded target frequency response. This 
method thus combines the approximation (pick H ( z ) )  and 
synthesis (find structure that implements H ( z ) )  problems into 
a joint step. Our paper will not address the numerical properties 
of this approach. 

Little attention has been given to the numerical properties 
of the SLA filters. Parhi and Messerschmitt originally showed 
that for the state variable SLA structure, the RON due to the 
recursive section of the SLA filter is strictly decreasing with 
the number of loop pipelining stages M [4]. This result was 
based on comparing any non-SLA filter ( M  = 1) with state 
variable feedback matrix A,  to the state variable description 
(SVD) SLA filter with feedback matrix AM. We point out 
that their analysis is thus not applicable to the direct form 
(DF) SLA implementations, because the implied similarity 
transformation from AM to companion form is not included 
in that analysis. 

In [6] it was claimed that when considering RON from both 
the recursive and nonrecursive sections, the noise gain (NG) 
of the first-order filters always increases with M regardless of 
pole position, and that the total quantization noise decreases 
with M for poles near the unit circle, independent of 19, the 
angle of complex conjugate poles. However, these results 
were derived using the unscaled DF SLA structure, so they 
aren’t relevant to real designs in fixed-point arithmetic. The 
importance of scaling in RON calculations is well documented 
in [7] and [8]. 

In this paper, we use the double-length accumulation RON 
model, i.e., the results of all multiplications are carried in 
full precision (double-length), are added in full precision, and 
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a special factored SVD (FSVD) method. The second method, 
which we call the noncanonic SVD (NCSVD), explicitly 
includes pipeline delays in the description. Quantization of 
filter coefficients from their ideal design values to fixed- 
point numbers is known to cause the realized filter to deviate 
from the desired response. The state-space approach has been 
applied to the CQN problem as well as the RON problem. 
In this paper we derive sufficient conditions for a statistical 
CQN analysis, and explicitly consider the dynamic range of 
coefficient values, not just the sensitivities of coefficients. This 
realistic hardware level modeling allows a unified analysis of 
the sum of RON and CQN. 

11. SCATTERED LOOK-AHEAD PIPELINING 
The dynamic equation of an Nth-order canonic discrete time 

(1) 
(2) 

where x(k) is N x 1, A is N x N ,  b is N x 1, c is 1 x N 
and d, u(k), and y(k) are scalars. 

First, we review the SLA algorithm with power-of-two 
decomposition [4]. The basis of all look-ahead algorithms is 
to unwind loop recursions. Applying M levels of look-ahead 
gives 

system is described by 

x(k + 1) = Ax(k) + bu(k), 
y(k) = cx(k)  + d u ( k )  

M-1 

x(k + M )  = AMx(k) + Aibu(k + M - 1 - 2 ) .  (3) 
2=0 

The output calculations in the SLA algorithm are thus identical 
to those of the nonpipelined basis structure (2). The SLA 
structure achieves its pipelining by inserting ( M  - 1) extra 
poles for each original pole in H ( z ) .  Note that throughout this 
paper, we will assume stable N ( z ) ,  i.e., system eigenvalues 
inside the unjt circle. The extra poles are at the same radius, 
T ,  as the original pole and are at angles, 0, that are equally 
spaced around 27~ 

0% = 0 + i27~/M, where i = 1 , 2 , .  . . , (M - 1). (4) 

The apparent denominator polynomial of the SLA filter is 
thus a polynomial in z P M ,  which allows latency M in the 
recursion. The sparsity of the denominator polynomial also 
means that its computational complexity is low, i.e., there are 
only N coefficients for an Nth-order filter. To achieve I/O 
equivalence (in perfect arithmetic), N(M - 1) zeros must be 
inserted to exactly cancel the added poles. This numerator 
polynomial isn’t sparse, and thus it represents a large number 
of calculations. However, by choosing M to be a power- 
of-two, the numerator was factored as log, M polynomials 
with N nontrivial coefficients each [4]. The computational 
complexity of SLA with power-of-two decomposition is thus 
N(1 + log, M) for the DF all-pole filter. The nonrecursive 
portion of the filter which implements the pole-canceling 
zeros can be pipelined to any required degree to facilitate 
MAC implementation. Similar computation-saving numerator 
decompositions have been shown for any composite M = 
MIM*,  so it isn’t required that M be a power of two [3], 141. 
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In contrast to the SLA technique, the clustered look-ahead 
(CLA) technique, whether DF or general SVD form, doesn’t 
necessarily map its extra poles inside the unit disk, so the 
recursive part of a CLA filter may be unstable, regardless of 
the stability of the original filter. However, recent development 
of CLA algorithm in DF by Lim and Liu [9] solves the 
problem of the instability of resultant filters with the minimum 
augmentation of pipelining stages. We don’t consider CLA 
algorithms in this paper. 

111. ROUNDOFF NOISE AND SCALING 

Roundoff noise (RON) is an important FWL effect due to 
the quantization of internal accumulations in a digital filter. We 
follow the notation and assumptions of Roberts and Mullis [7]. 
In particular, trivial summations in the SFG which correspond 
to only passing a state variable from one delay to another, 
with no added inputs, do not generate any RON. As the SLA 
structure has many of these “pure delays,” it is important to 
recognize that they don’t generate additional noise. 

Denote the response at the ith state variable, z ; ( k ) ,  due to 
a unit pulse at the input, u(k) ,  as f ; ( k ) ,  and the response at 
the output, y(k), due to a unit pulse at the i’th state variable 
as g;(k) .  Define K and W as 

m 

K = c f ( k ) f T ( k ) ,  ( 5 )  
k = l  
m 

w = g T ( k ) g ( k ) .  
k = l  

Then K is also the covariance matrix of the state-space vector 
when the input to the filter is a stationary white noise with zero 
mean and unit variance. Assuming that double-length internal 
accumulations are used before rounding to single-length at 
state variables, the total output RON for the 22-scaled filter 
is (following convention and omitting the RON due to the 
output node) 

N N 

oioN = o i  = 0,“ W s ( n ,  n) 
n=l n= l  

N 

= S2($) W(n,  n)K(n, n)  (7) 
n=l 

where the sum from 1 to N implies that all N state variables 
do in fact introduce RON. Roundoff noise gain, which drops 
the multiplicative factor S2q2/12 from a i o N ,  becomes 

N 

N G  = W(n,n)K(n,n) .  (8) 
n= 1 

The fallacy of attempting to calculate RON on an unscaled 
filter by 

(9) 

can be demonstrated by considering a diagonal transformation, 
T ,  where S is chosen to be a small (and unreasonable) number, 
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e.g., 6 = 0.5. Such a choice reduces the apparent RON power 
by 20 dB when compared to the reasonable choice of 6 = 5. 
The apparent gain is illusory because the finite-length registers 
really overflow or saturate, or alternately more bits are really 
used at these registers. 

In a theoretical model of VLSI computing, the bound 
for integer multiplication of B bits has been shown to be 
AT2 = O ( B 2 ) ,  where A is area, and T is processing time 
[IO]. In many practical technologies, for reasonable B, and 
where the multiplier can be pipelined, the product of area and 
throughput is proportional to B2. Thus a moderate increase in 
B can cause a large increase in area. 

IV. ROUNDOFF NOISE OF SLA FILTERS 
In this section we derive analytic forms for the RON of first- 

and second-order SLA structures. To simplify the analysis, 
we introduce two new techniques, called the sectioned K and 
W description (SKWD) and the noncanonic state variable 
description (NCSVD). 

A. First-Order Pipelined Filter 
We first analyze the RON of the single pole DF SLA struc- 

ture. The SKWD technique simplifies the analysis of certain 
SLA structures by sectioning the noise gain contribution of 
multiple paths to the output from a given state variable. Again, 
define f i ( k )  as the impulse response at summing node i. But 
for the SKWD, define gij ( k )  as the response due to an impulse 
at node i taking the j th path to ~ ( k ) .  Thus, cj gij ( k )  = gi ( k )  
in the normal SVD notation. Define K; = X I ,  ff(k), the noise 
power gain from the input to node i. Define Wij = X I ,  g:j ( k )  
as the noise power gain from node i through the j th path 
to the output. Certain SLA structures, including the single 
pole DF structure, by inspection have multiple output paths 
which are orthogonal, i.e., g z j , ( k )  . g i j 2 ( k )  = 0 if j l  # j 2 .  

This orthogonality allows the summation of powers over the 
j index, so the noise gain becomes 

N G  = CC WijK;. (10) 
i j ( ; )  

Consider the conventional DF filter ( M  = 1) with a single 
pole at z = a. Then a RON source e l ( k )  is located at the 
summing node. 

f i ( k )  = {Obaba'b...} (1 1) 
g11(k) = {ccaca2ca3.. .}  (12) 

K1 = b2 + a2b2 + a4b2 + .  . . 
Wll = c2 + c2a2 + c2a4 + . . . 

(13) 
(14) 

The scaled input gain is 

and the scaled output gain is 

while a and d are unchanged by scaling. Then the noise gain of 
12-scaled first-order conventional DF filter assuming la1 < 1 is 

N G ( M  = 1) = WiiKi IM=i, 
b2c2 

(17) 

For the first-order pipelined filter with two loop pipelining 

- - 
(1 - a2)2' 

stages ( M  = 2), the noise gain is 

N G ( M  = 2 )  = WiiKi  1 ~ ~ 2 ,  

b2c2 
(18) 

For the first-order pipelined filter with four loop pipelining 
stages, we can have la-scaled filter coefficients and SFG by 
using the partitioned scaling, SKWD. There is a summing 
node in the nonrecursive section of the filter, so there are now 
two uncorrelated RON sources e l ( k )  and ez(k)  (under the 
assumption of small q and sufficiently energetic input). Among 
four total summation nodes, el ( k )  and e2( k )  are located at the 
second and the fourth summation nodes, from the output node, 
respectively. Observe that the two paths from the single noise 
source ez (k )  in the nonrecursive section of the filter to the 
output have orthogonal sequences, so the total noise power 
contribution is the sum of the two powers. Let p denote the 
number of the paths from each noise source in nonrecursive 
section to the output. 

- - 
( 1  - u2)(1-  u4). 

q2 log2 M P 

&ON = (E) s , " ( - p w K t  
2=1 3=1 

Note that we are defining separate K and W for each state 
variable group associated with a RON source. By inspection, 
the sectioned response sequences are 

f l ( k )  = { O O O O ~ U ~ U ~ ~ U ~ ~ . . . } ,  (20) 
f 2 ( k )  = {babOOO. . . } ,  (21) 

g11(k) = { c 0 0 0 c a 4 . . ~ } ,  (22) 
g21(k) = {OOOOOOca2OOOca6~..}, (23) 
g22(k) = { 0 0 0 0 c 0 0 0 c a 4 ~  ..}. (24) 

Therefore, 

For M=8, we have three true RON sources e l ( k ) ,  e z ( k ) ,  
and e3(k). By using the SKWD again, the roundoff noise gain 
is obtained as 
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1.5 0 
4 1. 

0.5 

3 / I  this is not a very large penalty, as M=16 costs one extra 

- 

M=4 
M = R  

bit, M=65536 costs two extra bits, etc. However near z = / I  f 1  

0.1 0.2 0:s 0:4 015 0:6 0:7 018 0:9 

1 
M ‘T;oN(M) = - . a;oN(M = l), 

Therefore using an SLA filter near z = fl allows the use 
of 3 log, M less bits of internal registers to achieve the same 
RON as the M = 1 conventional filter. For example, using - 
M = 4 saves one bit, using M = 16 saves two bits, etc. 
So it is important to note that for reasonable values Of M, 
the performance of these first-order DF SLA filters is not 
much different from the conventional M = 1 filter. Where the 
conventional filter works well, the SLA filter requires around 
one bit extra. Where the conventional filter doesn’t work too 

1 +(log( 1 - r ) p  

Fig. 1 .  Ratios of NG in the first-order pipelined filters with M=l base. 

Following the preceding development, the general form of 
the NG for M 2 2 is inductively found to be 

well (near z = f l ) ,  the SLA filter requires one or two less log, M - (log, M - 1 ) ~ ~ ~  (27) bits. 
) .  (1 - u2)(1- U2M 

N G ( M )  = b2c2 

slows the approach. For ease of comparison, the noise gains 
normalized to the conventional filter ( M  = 1) are plotted 
in Fig. 1. Note that throughout this paper, the abscissa of 
noise plots is 1 + (loglo(l - ~ ) ) / 3 ,  where T is the pole 
radius of a basis filter. Thus, the abscissa of one at the far 
right corresponds to T = 0, the abscissa of zero at the far 
left corresponds to T = 0.999, and the scale is an offset 
logarithmic. When the pole goes to zero, the NG ratio becomes 

lim N G ( M )  = log, M .  
a-o NG(M = 1) 

When the pole goes to f l ,  the NG ratio becomes 

lim N G ( M )  -L - 
a-fl NG(M = 1 )  M ’  

It is thus clear that the M = 2 SLA first-order filter has lower 
RON than the conventional filter ( M  = 1) at all pole location. 
But for M = 4,8, . . ., it depends on the position of the pole. 
That is, for a pole near the origin the conventional filter is 
better than the pipelined one except M = 2 case, but the 
pipelined filters always have better RON characteristics for 
pole location near z = f l .  

Let 

where B1 represents the number of bits in internal state 
registers of M = 1 case. When the pole is near the 
origin, then 

A22-2(&-4 log,(logZ M ) )  
) N G .  (31) 

Therefore, for a pole near the origin, the use of an SLA 
filter effectively costs an extra 3 log, ( log, M )  bits of intemal 
registers to achieve the same RON as M = 1. Note that 

12 = (  

In this subsection we find the RON of second-order SLA 
filters for the following two structures; the minimum roundoff 
noise (MRON) and true direct form (DF). If we start with 
a conventional M = 1 DF filter and apply the SVD form 
of SLA without any similarity transformation, the resultant 
SLA filters become apparent direct form (ADF) whose system 
matrix is no longer in companion form. For a second-order 
filter (or cascade or parallel connection), the ADF has more 
multiplications than the DF, and its NG is always worse than 
that of the MRON. Therefore, in this paper we do not consider 
the ADF structure, which has no area of application. 

To have overall and explicit K and W matrices for the 
second-order case, we should solve the set of linear equations, 
Liapunov equations. To reduce the complexity of solving 
Liapunov equations and derive the explicit formulae for K 
and W of overall structure, we employ the SKWD introduced 
in Section IV-A. Under the assumption of system stability, i.e., 
eigenvalues of A being inside the unit circle, this analysis can 
be extended to the higher-order structures. Note that summing 
nodes and signal paths are now vector sequences. Therefore, 

Notice that using the SKWD technique, the dimensions of the 
K and W matrices are the same as that of the system matrix 
A, e.g., 2 x 2 matrices for second-order systems. 

The RON of the second-order structures will be analyzed as 
a function of the radius and angle of the complex conjugate 
pole pair. Real poles can be implemented as a parallel or cas- 
cade connection of the first-order filters, which were analyzed 
previously. 

Minimum Roundoff Noise Structure (Sectional Optimal) In 
this subsection we start with the second-order sectional optimal 
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0.0 

Fig. 2. Number of saving bits in the pipelined MRON filters ( M  = 8) to match the conventional MRON filter's RON performance. 

MRON structure [Ill-[13], apply the SVD SLA synthesis 
technique, and then analyze the resultant RON. We note that 
the explicit synthesis equations of Bomar [14] can't be used 
in our case (due to trivial zeros), so modified equations are 

- r2 sin2 6 
a21 = , 

a12 
(37) 

b2={l 

1 
c1 = - 

b2a12 
(39) 

where a12 and b2 are real under stability. 
After calculating A, b, c and d ,  the SVD SLA synthesis 

technique is applied. We note that the resultant SLA structure 
is not canonic (like all SLA structures), and thus is not MRON 
structure in the sense of the original definition. Fig. 2 plots the 
number of bits saved by the pipelined MRON filters ( M  = 8) 

to match the conventional MRON filter's RON performance. 
The RON of the MRON structure is symmetric about 6' = 7r/2. 
It is worth noting that for conventional filters ( M  = l), the 
MRON filter actually has higher NG than the DF filter, except 
near z = f l .  This result is due to the fact that the MRON filter 
is optimized under the assumption that all potential parameters 
(two RON sources) in the structure generate RON, while our 
analysis of the DF structure only includes RON at nontrivial 
multipliers (one RON source). 

Noticeable characteristics are as follows: 
1) As T goes to zero, increasing M > 2 causes an increase 

in NG. The number of bits lost, i.e., the number of extra 
bits required to equal the NG performance with M = 1, 
is given by 

2)  As T goes to one, increasing M decreases the NG. Each 
doubling of M saves one-half bit, and is independent 
on B. 

Direct Form Structure. We now consider a true DF 
SLA implementation [4], where each section (including 
nonrecursive) has a companion form of state update matrices 
A,A2,A4 and A8, as shown in Fig. 3 for M = 8. The 
companion form of the matrices is important because the 
sparsity translates directly to a much smaller number of 
multiplications. And we will show that in many applications 
the numerical performance is adequate, even better than more 
complex structures. 

[log,(log, M )  - 11. 
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1 1 1 

e&) 

Fig. 3. Second-order pipelined DF filter with 8 levels of look-ahead. 

The SKWD method of analysis is not convenient for this 
DF structure, so we demonstrate that the traditional SVD- 
based approach can be easily extended to include intermediate 
calculations, a method we call the noncanonic state variable 
description (NCSVD). For SLA structures, the intermediate 
calculations in the nonrecursive sections of the filter can 
include pipeline delays, and in practical implementations do 
so, as shown in Fig. 3 for M = 8. These pipeline delays, 
and the pure delays inside each nonrecursive section are now 
explicitly included in the state-space model of the filter. The 
well known SVD techniques are then used to calculate K and 
W, which are of large dimension because these noncanonic 
state variables have been included in the state space. To 
calculate the NG, we then only consider those states which 
truly have RON sources, i.e., that are not pure delays. For the 
M = 8 true DF SLA structure, the state update and output 
equations are 

z l ( k  + 1) = 2 2 ( k ) ,  

m ( k  + 1) = 2 3 ( k ) ,  
.. 

2 3 o ( k  + 1) = T 2 2 3 1 ( k )  + 2TCOS6232(k) + U(k), 
231(k + 1) = z32(k), 

232(k + 1) = U(k), 
~ ( k  - 16) = ~ l ( k )  (41) 

where A is 32 x 32, b is 32 x 1, c is 1 x 32, and d is 1 x 1. 
Selecting only noise generating state variables, the NG can be 
calculated as 

NG(M = 8 )  = W(16,16)K(16,16) + W(25,25)K(25,25) 

+ W(3O,30)K(3O7 30). (42) 

General Formula for Noise Gain. When considering the 
DF SLA filters, there are many common terms between filters 
of different M, so we have derived the following relationships: 

K(2,2) 1M=i = K(4,4)  ~ M = z =  K(8,8)  I M = ~  
= K(16,16) 1 ~ = 8  (43) 

(44) 
(45) 

= W(30,30) I M = ~  (46) 
(47) 

K(13,13) I M = ~  = K(30,30) ( M = S  

w(272)  IM=l = K(272) lM=l 
w ( 4 , 4 )  / M = Z  = w(13,13)  I M = ~  

W(8,8)  1 ~ ~ 4  = W(25,25) l h . 1 ~ 8  

The terms W(2,2)  l ~ = 1 , W ( 4 , 4 )  1 ~ 4 = ~ , W ( 8 , 8 )  IM=~,  and 
W(16,16) 1 ~ = 8  can all be calculated by 

P(M) 
- 1+TzM 
- 

1 + TZM -4T2MCOS2M6-T4M +4T4MCOS2M6-T6M ' 
(48) 

Therefore, the NG of the second-order pipelined DF filters 
can be computed by 

NG(M) = P(1, P(M) + K ~ o g ,  M P (  M/2) + Klog, M - 1P(M/4) 
+ . - . + K z P ( 2 ) ,  for M 2 2. (49) 

Here, states are numbered from the output to the input, and 
so Ki denotes the power gain from the input to the ith node 
from the output. That is, 

(50) 
(51) 

K2 = K(13,13) 1 ~ = 4 ,  (52) 
K3 = K(25,25) l ~ = 8  . (53) 

The results above have allowed us to derive the analytic 
closed form for the NG near the unit circle [15]. In the limit 
as T approaches one, the ratio of NG as a function of M to 
the NG of the conventional DF filter is 

Ki  1M=i = K(2,2) lM=i, 
K1 lM=2  = K(4,4) 1M=2, 

N G ( M )  = sin26 

NG( 1) 
Therefore, the number of bits saved is 

M sin2 M0 ' 

1 sin2 6 
- 2 log, M MO ' 

(54) 

(55 )  

Notice that because the number of savings bits is negative, 
extra bits are actually required in the SLA structure to achieve 
performance equal to the conventional. Numerical limitations 
in the calculations has rendered the true negative infinities at 
about -50 bits. These negative infinities occur at 6 = i.rr/M, 
where i = f l  . . . f ( M  - 1), so the number of peaks in NG 
near the unit circle is ( M  - 1). At 6 = 0 and 7r, ratio of NG is 
8- log, M ,  i.e. M - 3 .  The huge peaks in NG can be understood 
by noting that the poles added by the SLA algorithm have 
clustered with the original poles of the filter, and the poor 
numerical performance of DF structures with clustered and 
high Q poles is well known. The number of bits saved over the 
conventional DF structure ( M  = 1) as a function of radius and 
angle is shown in Fig. 4 for M = 8. The RON characteristic 
is again symmetric about 6 = .rr/2. 

Notable characteristics of the DF pipelined filters are as 
follows: 

1) As T goes to zero, the NG worsens with increasing 
M > 2. The ratio of noise gains is log, M ,  so the 
number of bits lost is $log,(log, M ) .  

2) As T goes to one, the very poor behavior around 6 = 
i x / M ,  which was previously described, is seen in con- 
text. 

Values of M (among 1, 2, 4, or 8) that minimize RON of the 
DF SLA filter are plotted as a function of T and 6 in Fig. 6 (a). 
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“I 

Fig. 4. Number of saving bits in the pipelined DF filters ( M  = 8) to match the conventional DF filter’s RON performance. 

Results for RON of Second-Order Structures. In this sub- 
section we compare the two second-order SLA structures 
described previously; the MRON and the DF. The number of 
multiplications for each structure is 

MRON Structure : N2(1 + log, M ) ,  
DF Structure : N(l + log, M ) .  

(56) 
(57) 

Comparing the NG of DF and MRON structures, the region 
where the MRON structure has less NG is increasing as M 
increases. 

In conclusion, the NG of second-order SLA structures is 
generally quite good when compared to the underlying basis 
filter, with the notable exception of the DF structure for high 
Q poles near 6 = i r / M .  There is a slight increase in NG 
with increasing M for very low Q poles, but the cost for 
the realistic cases of M 5 16 is less than one bit, and 
grows very slowly beyond that. The question of whether the 
computationally simpler DF SLA filter can be used retains 
the same character as that question for a non-SLA DF filter, 
except for high Q poles near 0 = i r / M .  In the later case, 
either a more complex structure, such as MRON, can be used, 
or altemately a composite M (not a power of 2 )  can be chosen 
to achieve the required speedup without clustering poles (but 
with slightly higher complexity, depending on the composite 
factorization). 

V. STATISTICAL COEFFICIENT QUANTIZATION MODEL 

The effect of coefficient errors on the performance of digital 
filters was first noticed by Kaiser [16]. There also have been 
several attempts to observe CQN by a deterministic way, 
including [17] and [18]. However, in [17] the concept of 
scaling is not treated, and in [18] the assumptions about ap- 
proximate deterministic output error variance due to coefficient 
quantization are not well founded, i.e., we cannot simply 
ignore the higher-order terms related to the quantized values of 
A, So the output error variance due to coefficient quantization 
should be replaced by 

E[Ay2] N tr[ZW] + AcV,j:Ac’ + Ad2 (58)  

where 

Z = AAV,,AAT + A(V22 - Vx2)AAT 
+ AA(V22 - VzX)AT + AbAbT. (59) 

Here, Z is closely related to the filter structure from the input to 
the state variables, similar to the role of K in RON analysis. In 
contrast to RON, CQN has deterministic property because of 
preset coefficients of digital filter. However we cannot measure 
the output error, caused only by the coefficient quantization, by 
deterministic way in real situations, because numerical error 
comes from the mixture of RON and CQN sources at the 
output node. This is one of the reasons we need statistical tools 
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to analyze CQN. Another reason is the necessity of unifying 
analytical and synthetic tools for both errors. Methods using 
statistical analysis for coefficient quantization include [ 181- 
[22]. Fettweis noticed there exists similarity of generations 
between RON and CQN [ 191. According to Jackson [ 131, RON 
and CQN are found to form the bound of each other. Recently 
two noticeable researches about statistical CQN (SCQN) have 
been done in [20] and [21], and they reach the same conclusion 
even though they employed different approaches. 

In this paper, we provide another viewpoint for the analysis 
of CQN. That is, to calculate the reflected CQN on the output 
node, output noise power due to coefficient quantization, 
a&QN, is considered instead of coefficient sensitivity. In 
a&QN analysis with supporting register model, the amount 
of output error can be directly found. There also has been an 
attempt to find the linear dependence between the weighted 
sensitivity and the weighted noise measure [22]. 

In the following sections, we apply the state-space linear 
algebraic approach for RON analysis of [ l l ]  to the coeffi- 
cient quantization problem. Statistical assumptions including 
hardware model to unify the CQN and RON analysis are also 
presented. The SLA filters with the power-of-two decomposi- 
tion in [4] are used as an example structure to demonstrate a 
unified approach. These results contradict previous claims [6] 
about the numerical performance of the SLA structure, where 
register scaling [8], [23] was not considered. The total output 
error variance after applying a proper scaling is derived by 
combining RON and CQN [24]. 

In this section we state sufficient conditions to show that 
SCQN source scan be interpreted just like single-length ac- 
cumulation RON source. This result was also achieved in 
[21] by assuming certain approximations, and as a different 
form in [20]. In [21] by using the state error vector e,(IC) = 
Z ( k )  - o(k) and the output error ey(lc) = y(k) - y(k), the 
statistical sensitivity S, output error variance normalized by 
the variance o2 of coefficient variations, is described by 

S = ogQN/a2 = tr[K]tr[W] + tr[W] + t r [K]  (60) 

where output branch is omitted as usual. Here, it is assumed 
all the elements of the system matrices are varied and 

K = K  (61) 

where K is the state covariance matrix of the ideal filter and K 
is that of the quantized filter. For (61), the condition o2 << o:, 
where o: is an upper bound of variance that satisfies mean 
square asymptotical stability of the virtual system, should 
be satisfied. Another underlying assumption in (60) is the 
same q for state vector and system matrices A,  b, c and d, 
that means there are the same length of bits below decimal 
point in every register. A, in defining quantization step size 
q,  is a constant chosen to fit the dynamic range of signal. 
However, A for state vector and system matrices does not 
usually have the same values (A for state vector is 1 by using 
the Z2-scaling with S = 1). That is, A and B combination 
of state vector and system matrices should be different to 
guarantee the same q. Therefore, the number of bits above 
the decimal point for system matrices should be determined 

e. 

Fig. 5. Noise source model of statistical coefficient quantization. 

by the maximum dynamic range of system matrices, assuming 
all system matrices use registers of the same length. There can 
also be a tradeoff between the usage of registers of different 
length for each system matrix and extra circuitry to support 
that. 

Considering the above register model, a general equation 
of output noise variance due to the coefficient quantization of 
scaled filter is 

q' 
&QN = ~ { t ~ [ K s ] t r [ W s ]  + tr[W,] + tr[K,]}. (62) 

In contrast to the previous researches of coefficient sensitivity 
which is normalized by a', the above equation considers a 
practical register model by A and B, and this phenomena will 
be detailed for the DF and the MRON structures. To make the 
&dependence of our register model clear, we recall a larger 
6 brings a larger RON (CQN also) and smaller overflow. In 
addition, a larger 6 causes shorter coefficient registers for b 
and longer registers for c in our model. From now on, we 
assume S = 1 without any loss of generality. That is, the 
decimal point is assumed to be the right of the most significant 
bit (MSB) and the other bits are reserved for the fraction. 
Negative numbers are represented in two's complement form. 
It is similar to Q15 format in TMS320C25 [25]. 

Theorem I :  Noise source of coefficient quantization can be 
interpreted as the roundoff noise source of q2/12 variance 
in the single-length accumulation register model under the 
following three assumptions. 

1) Coefficients are rounded to the least significant bit (LSB) 
= q, the same as state variables, but noting that many 
structures require additional bits to represent coefficients 
whose magnitude exceeds one. 

2) Coefficient quantized errors, Ab, and Ad,, are un- 
correlated with standard white Gaussian input u(lc). 
Coefficient quantized errors, AA, and Ac,, are uncor- 
related with quantized state vector $ ( I C ) .  

3) K, = K,, the state covariance matrix of the quantized 
system. 

Proof: Noise source model of statistical coefficient quan- 
tization is shown in Fig. 5 for state equation. To apply the 
concept of single-length accumulation register RON model, we 
transfer real CQN sources for b, and A, after each multiplier. 
Let's label the two transferred SCQN sources as A(b,u) and 
A(A,X) respectively. For the input section, after the scaling 
and under the steady-state (i.e. time index IC + CO) 

(b, + Ab,)u(k) = b,u(k) + A(b,u(k)). (63) 
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That is, 

Therefore, the variance of A(b,u(k)) becomes 

2 
aA(bs ~ ( k ) )  

N E [ A b, A by] E [U, I] - E [ Ab,] E [U] E [ U] E [ Ab,] T ,  

= -1. 
12 

= E[Ab,AbT. u'I] - E[Ab, . u]E[Ab, . u ] ~ ,  

(65) 
q2 

Here, we used the assumption of uncorrelation between Ab, 
and U. For the state recurrence section, 

(A, + AA,)X(k) = A,X(k) + A(A,x(k)). (66) 

Then 

A(A,X(k)) = AA, . X ( k ) .  (67) 

Therefore, the variance of A(A,X(k)) becomes 

a&As%(k)) 

= E[AA,AAy . X X T ]  - E[AA, . X]E[AA, . X I T ,  

N E[AA,AAT]E[Xji.'] 
- E[AAs]E[X]E[X]'E[AAs]T, 

- -E[XXT], q2 
- 12 

= -1. 
12 
q2 

Here, we used the assumption that AA, and x are uncorrelated 
with each other and K, is equal to K,, the state covariance 
matrix of quantized filter. Above derivations are similarly 
applied to the output equation. Therefore, the variances of all 
noise sources are proved to be q2/12 in our SCQN model. 0 

The above three assumptions assure the variance of each 
noise source of single-length accumulation register is equal 
to q2/12, and are the same assumptions as those in [21] 
except the first one. Actually, the first assumption has not been 
noticed before, but it was represented as a normalized output 
error variance instead. For the compactness of the theorem, 
we assumed state variables and coefficients are all rounded to 
the L S B  = q together. However, even though state variables 
and each coefficient have different quantization step sizes, the 
actual value of can be directly calculated in our model 
under the validity of assumptions 2 and 3. In the previous 
researches of CQN sensitivity, it was difficult to calculate the 
value of a:QN, even in the case of same q, unless we know 
the variance of coefficient variations, which cannot easily be 
obtained from the specifications of a digital filter. 

The main point of the above analysis is the unification of 
analysis methods for RON and CQN. Moreover, the min- 

imization of RON also ensures the minimization of CQN, 
that is, the minimization of numerical noises can be achieved 
simultaneously under the assumption of full system matrix. 
The above analyses are based on the condition of mean square 
asymptotical stability of the quantized filter which guarantees 
the convergence of state covariance matrix and state error 
covariance matrix of quantized filter 1211. 

The accuracy of (60) was considered in detail in [21]. For 
the DF filter, we consider the sparsity of A, matrix also. The 
largest values of coefficients come from c if 6 2 1,which is a 
usual case. For the our all-pole second-order filters, it is 

which is a. It is the same for the DF and the MRON 
filters and also the same for all levels of loop pipelined filters. 
That is, (69) can also be the extra bits for the pipelined filters. 
It is interesting to note that the maximum value of A, in the 
DF filter is always larger than 1 (0 for extra bits), but always 
smaller than 1 in the MRON filter. We observe the dynamic 
range of b, over the z-plane in the DF filter has significantly 
larger value than in the MRON filter, and the maximum values 
of b, of both filters are less than 1. 

VI. COEFFICIENT QUANTIZATION NOISE OF SLA FILTERS 

A .  First-Order Pipelined Filter. 

By using the SKWD 

q2 2(10g2 M - 1)b2c2(1 - u Z M )  + 3b2c2 
(1 - u2)(1- .2M 1 &N(M) = E{ 

+ 1}, where M 2 2. (71) 

The u ~ Q N  goes to infinity as la1 goes to one, but a larger 
M slows the approach. When the pole goes to the origin, the 

ratio becomes 

where M 2 2. When the pole goes to f l ,  the a&QN ratio 
becomes 

(73) 

where M 2 2. The effect of M here is similar to the RON 
case. 
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The extra bits for coefficient registers to guarantee the same 
q (here, S = 1) come from the maximum dynamic range of 
the scaled coefficients, output branch usually, that is 

(74) 

which is the same for all levels of loop pipelined first-order 
filters. This can also be the number of bits we should move 
the decimal point to the right side in coefficient registers when 
we use different 4, i.e., different Acoff and same B. 

agQN(M = 4) = QC{W,(l, 1) + W,(5,5) + W,(9,9) 
12 

+ W,(ll, 11) 
B. Second-Order Pipelined Filters + W,(13,13) + W,(14,14) 

Minimum Roundoff Noise Structure. By using the same 
analysis method in the first-order case and considering sparsity 
in b and c of our all-pole filter 

+ W,(15,15) + l}, 
= -{(r16 q2 + l)P(l)P(4) 

12 
+ 2r4(r4 + 2cOs2 z e ) ~ ( i 3 ,  i 3 ) ~ ( 4 )  

+ P(1) + 11, (82) 

+ K(13,13)P(2) + 2r2(r2 + 2c0s2 B)P(2) 

q2 
o ~ Q N ( M  = 8) = -{Ws(l, 1) + Ws(9,9) 12 + w5(17, 17) + w,(21, 21) 

+Ws(26,26)+W,(28,28) 
+ W,(30,30) + W,(31,31) 

where W2 = Wzl+ W22 and W3 = w31+ w32 + W33 + 
W34. The agQN ratio for the MRON pipelined filters is 

where M 2 2. 
The absolute coefficient noise gain (CNG) in the second- 

order conventional DF and MRON filters and the number of 
saving bits to match the conventional filter’s performance for 
the pipelined MRON filters take the form of plots quite similar 
to the RON case. The ratio near the unit circle is 2-M/4, except 
at B = 7 ~ / 2  ( ~ = 2 .  Combining with RON results, we observe 
a large M is recommended for the pipelined MRON filters 
regardless of 0 to implement high Q filter. 

Direct Form Structure. After applying the NCSVD, we 
consider the sparsity of the system matrices of the pipelined 
DF filters. Then, 

2 2  

agQN(M = 1) = “{E( mA, (n) 
n = l  

12 

+ 2r4(r4 + 2 ~ 0 s ~  ~ B ) K ( I ~ ,  i 3 ) ~ ( 4 )  

+ K(13,13)P(2) 
+ 2r2(r2 + 2c0s2 B)P(2) + P(1) + l} (83) 

where m(i) is the number of the varied elements in the ith 
column of corresponding matrix, and P ( M ) ,  K (  13,13), and 
K(25,25) are defined in Section IV-B. 

Therefore, a general formula of output CQN variance ( M  2 
4) is 

q2 
&QN(M) = -{(r4M + l)P(l)P(M) 12 

M 
2 

+ 2rM(rM + 2 cos2 -B)Klog,  M P ( M )  

M 
4 

+ 2rM/2(rM/2 + 2c0s2 - B ) K l O g ,  MP1P(M/2) 
+ . . . . . . . . . 
+ 2r4(r4 + zcOs2 20)&P(4) + ~ ~ ~ ( 2 1  
+ 2r2(r2 + 2c0s2 e ) ~ ( 2 )  + ~ ( 1 )  + 1). (84) 

Then the agQN ratio becomes 
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Fig. 6. 
filters: (a) RON (b) CQN. 

Values of ,I.I to minimize quantization noise in the pipelined DF 

o&QN(') - sin2 e lim - 
r+1 o g Q N ( M  = 1) 6(log, M - 1) sin2 MO' 

where M 2 4. (87) 

Here, CQN due to the feedforward part becomes zero near 
the origin, and that is why we have constant CQN ratio near 
the origin. As the poles approach the unit circle, however, 
unlike the MRON structure, the ~7.6~ ratios of the pipelined 
DF filters are seen to be highly dependent on the pole angle. 
In particular, if 0 = f i ~ / M  for i E ( 1 ' 2 , .  ... ( M  - l)}, 
then the ratios become infinite as in the RON case. At 
19 = 0 and T ,  ratio of coefficient noise gain (CNG) becomes 
{6M2(log2 M - l)}-', M 2 4. For the pipelined DF filters, 
the number of saving bits to match the conventional DF filter's 
CQN performance also takes a form of plots similar to the 
RON case. Values of M at each T and 6 to minimize CQN are 
shown in Fig. 6(b) for the DF. To design a high Q pipelined 
DF filter, a smaller M is better around the imaginary axis, 
but a larger M is recommended around the real axis. With 
M larger, the DF structure is getting better than the MRON 
structure in CQN, which is contrary to the RON case. That is, 

TABLE I 

AND SECOND-ORDER PPELINED FILTERS 
O~ot,,(M)/U~ota,(M = 1) OFTHE FIRST 

(4+logzM) I 5 

they have different improving velocity about RON and CQN. 
With M larger, the pipelined DF filter is better in decreasing 
CQN and the pipelined MRON filter is better in decreasing 
RON compared to each other. Again, the pipelined DF and 
MRON filters are the structures to be selected for the purpose 
of less CQN or less complexity, as in the conventional case. 

VII. TOTAL QUANTIZATION NOISE OF SLA FILTERS 

From the uncorrelation of noise sources or by the determin- 
istic approach [18], we can verify 

In the pipelined filters, 
1) First-Order Case 

2(10g2 M - 1)(1 - r Z M )  + 3 + 11 IM22 (89) ( 1  - T 2 ) ( 1  - T 2 M )  
+ 

2) Second-Order DF Case 

The ratios of each ototal with M = 1 base are in Table I. 
Fig. 7 shows the regions of less total quantization noise 

(TQN) for the pipelined DF filters compared with the pipelined 
MRON filters. As a conclusion, the DF and the MRON 
structures should be considered together to implement the 
pipelined filter for the purpose of better numerical performance 
or less complexity. 
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Fig 7 Region of less TQN for the pipelined DF filters compared with the pipelined MRON filters (a) .11=1, (b) 11=2, (c) -11=4, (d) 11=8 

VIII. CONCLUSIONS 

The FWL effects of the first-order and the second-order 
DF and MRON-based SLA filters using fixed-point arithmetic 
have been investigated using the unified statistical methods 
presented in this paper. Two methods to calculate scaling 
parameters and NG ratios with respect to the M = 1 (non- 
SLA) were demonstrated. The first-order SLA forms increase 
NG by log,M near z = 0, and decrease NG by M near 
z = kl.  The second-order SLA MRON form has a well 
behaved NG, being very close to the first-order SLA. Near 
the origin the second-order DF SLA has constant NG, but 
depends strongly on pole angle near the unit circle, where NG 
ratios vary between infinite increase and decrease by M 3 .  The 
overall RON performance of the SLA pipelining is quite good, 
except for small regions of the z-plane near the unit circle, 
where the second-order DF SLA filters behave poorly. Except 
for these regions, the need to use the MRON structure instead 
of the DF structure is analogous to the same choice with non- 
SLA filters. Because the DF structure has fewer summing 
nodes than the MRON structure, the DF can have slightly 
smaller NG in certain regions of the z-plane. As M increases, 
this region of the z-plane atrophies. By applying the unified 
statistical tools developed in this paper, CQN is proved to 
be interpretable as RON under the single-length accumulation 

model and usually larger than RON in digital system. In our 
modeling with given specifications of a digital filter, the actual 
value of ngQN can be directly calculated, which is not possible 
in the previous researches of coefficient sensitivity. It can 
even be done in the case of the different quantization step 
sizes for state variables and each coefficient. With increasing 
M ,  the regions in the z-plane where the DF SLA filter has 
lower CQN than the MRON structure are actually increasing; 
however, for RON the analogous regions are decreasing. In 
conclusion, both the DF and the MRON basis filters should be 
considered when implementing high throughput digital filters. 
Contrary to widespread belief, the DF structure including the 
DF SLA, sometimes exhibits lower RON and CQN with lower 
implementation cost. The limit cycle behavior of the various 
SLA pipelined filters is analyzed in [26] and [27]. 
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