
Problem 6

Set S is convex.
Given:

u, v 6∈ conv(S)
u ∈ conv(S ∪ {v})
v ∈ conv(S ∪ {u})

TPT (To Prove That) u = v.
Observe that since u 6∈ S, and u ∈ conv(S ∪ {v}), it must be that u =

av + (1− a)s1, where s1 ∈ S.
Similarly v = bu+ (1− b)s2. Substituting for v, we see

u = abu+ a(1− b)s2 + (1− a)s1(1− ab)u = a(1− b)s2 + (1− a)s1

If ab 6= 1, we can divide through by ab, which means u can be written as a
convex combination of points in S contradicting the assumption that u was not
in conv(S).

Q.E.D.
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This problem is best understood by first thinking about the case where all the
roots of the polynomical f(x) are real—the derivative’s correspond to where
f(x)’s slope is zero, and this has to be in between the largest and smallest
zero of f(x). (So all real roots of the derivative can be expressed as a convex
combination of the smallest and largest zero of f(x).)

Now we consider the general case. First observe that f(z) =
∏n
i=1(z = zi).

Using the chain rule for derivatives, (fg)′ = f ′g + fg′, (fgh)′ = f ′gh +
fg′h+ fgh′, etc., we see that

f ′(z) =
n∑
i=1

∏
j 6=i,1≤j≤n

(z − zj)

=
n∑
i=1

∏
1≤j≤n

(z − zj)/(z − zi)

So if ẑ is a zero of f ′(z), but not of f(z), we see that

f ′(ẑ) =
n∑
i=1

(ẑ − zi)−1 = 0

Now comes the tricky part—remember z̄ is the complex conjugate of z, i.e.,
¯x+ iy = x− iy, and z̄ · x is the square of the absolute value of z.

n∑
i=1

(ẑ − zi)−1 =
n∑
i=1

(¯̂z − z̄i)/((ẑ − zi)(¯̂z − z̄i))
n∑
i=1

(¯̂z − z̄i)/|(ẑ − zi)|2
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Since the derivative is 0 at ẑ, rewrite the above to get

¯̂z(
n∑
i=1

1/|(ẑ − zi)|2) =
n∑
i=1

z̄i)/|(ẑ − zi)|2

Divide both sides by
∑n
i=1 1/|(ẑ − zi)|2) and take complex conjugates again,

and you see ẑ is a weighted sum of the roots of f(x). Furthermore, the weights
are positive, and sum to 1.

We’re almost done—we need to consider the case where ẑ is a zero of f ′(z),
and of f(z). This is trivial, since ẑ again a convex combination of the roots of
f(z).

Q.E.D.
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I’m having some trouble with this one, even showing that (L∗)∗ = L; when it
says L is a subspace of Rk, does that mean it’s an arbitrary subset, or is it
specifically a subspace in the sense of linear algebra?
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C = {x ∈ Rn|xTAx+ bTx+ c ≤ 0}

TPT if A is psd, then C is convex.
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The fundamental fact here is that a psd matrix A has a decomposition A =
LDLT , where L is lower-diagonal, with the diagonal entries set to 1, and D
is diagonal with nonnegative entries on the diagonal. (For pd matrix, the D’s
entries are strictly positive.)

The proof of this fact comes from Gaussian elimination.
Now set y = LTx. Clearly this is a 1-1 linear transform (since L is invertible),

its inverse exists. The image of a convex set under a linear transform is convex,
so we’ll study the set

{y|(yTDy + b(LT )−1y + c < 0}

This set “decomposes” nicely, it’s captured by

k∑
i=1

(diy2
i + eiy + c/k) < 0

Note that each di is nonnegative.
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Refer to (diy2
i + eiy + c/k) as si.

You can now turn to first principles, and show that if q ∈ Rk and r ∈ Rk
satisfy the inequalities, then so does αq+ (1−α)r. You only need to show that
for each i, si(αqi + (1−α)ri) < αsi(qi) + (1−α)s(ri). This is just the test that
a quadratic function is convex, since for a convex function f , f−1(C) is convex,
when C is convex.

Part b is easy with this decomposition, simply write xTAx+ bx+ c as

xT (A+λggT )x−xTλggTx+bx+c = xTA∗x−λ(gTx)T (gTx)+bx+cwhere A∗ = A+ λggT = xTA∗x−λ(−h)T (−h)+bx+csince gTx+ h = 0

Which brings us to the form of part a. (Need some arguing about the regions
we’re intersecting and why it’s ok to substitute for gTx+ h = 0.)
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By defn, C∞(x) = ∩t>0
C−x
t (Note that C − x is not set difference, it’s the

application of the affine transform f(u) = u− x to C.)
(a) To show that C∞(x) is closed, convex, and a cone.
To show a set is closed, show its complement is open. Apply DeMorgans law

to ∩t>0
C−x
t , it’s complement is ∪t > 0(C−xt )c.

Now we need to show (C−xt )c is open. We know C is closed (given), this
implies C−x is closed (affine transform of closed set) and finally if a sequence of
points in Rk p1, p2, . . . converges to say p, then p1/t, p2/t, . . . converges to p/t,
so if A is closed so is A/t. So each C−x

t ) is closed, therefore its complement is
open.

Now to show C∞(x) is convex. Convex sets are closed under intersection
so we just need to show each C−x

t is convex. This is easy, C is convex implies
C − x is convex. Scaling is affine, so A convex implies A/t is convex, so each
C−x
t is convex.

To show C∞(x) is a cone, consider d ∈ C∞(x) = ∩t>0
C−x
t . Consider αd, we

want to show it’s in each C−x
t for each t. But ∩t>0

C−x
t = ∩t∗>0

C−x
t∗/α , since the

map t 7→ t/α is 1-1 onto, so we’re done.
Q.E.D.
(b) To show that C∞(x1) = C∞(x2) for x1, x2 ∈ C.
By symmetry, suffices to show that C∞(x1) ⊂ C∞(x2). Consider d ∈

C∞(x1). Want to show that x2 + td ∈ C for all t > 0.
The way these proofs work is that you “sneak up” on the point you are trying

to show is in the desired set through points in the desired set, use closedness of
the set to show the point must be in it.

Consider the family of points x1 + td + (1 − α)(x2 − x1), for 0 ≤ α ≤ 1.
Rewrite this expression to

α(x1 +
t

α
d) + (1− α)x2

All these points are in C, since x1 + t
αd is in C (since d ∈ C∞(x1)), and C is

convex.
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Now as α→ 0, the family of points converges to x2 + td. Since C is closed,
C must contain x2 + td.

Q.E.D.
(c) This one’s easy: we know (0, 0) ∈ C, so we just compute ∩t>0(C/t).

C = {(x, r)|r ≥ x2}C/t = {(x, r)|r/t ≥ (x/t)2 ≡ r ≥ x2/t}

So we want to capture points (x, r) for which r ≥ x2/t for all t > 0. This
can only happen when x = 0, since otherwise we can pick t to be arbitrarily
small. So the asymptotic cone is {(x, r)|x = 0, r ≥ 0}.
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Formally, a topological space is compact if for every collection of closed sets,
there’s a finite sub-collection that includes all the points in the original collec-
tion.

As far as Rk goes, a subset of Rk is compact iff it’s closed and bounded.
(For richer spaces, e.g., R∞ things start to get complicated, but for Rk it’s this
simple.)

So to show C is compact iff C∞ = {0} all we need to do is show C∞ = {0}
iff C is bounded and closed.

We don’t need to bother with C being closed, that’s given.
So first we show C bounded⇒ C∞ = {0}. Since C is bounded, it’s contained

in a large sphere S centered at the origin, with radius α. S is convex, closed,
we can talk of S∞, and furthermore S∞ ⊃ C∞ (need 1 liner for this).

Now consider the diameter of the set ∩α>t>0S/t. It’s at most 2/α, so as α
grows unboundedly, the set ∩α>t>0S/t shrinks and only contains 0, everything
else is some finite distance from the origin and gets left out.

Now we show C∞ = {0} implies C is bounded.
We reason by the converse: let C be unbounded. Then we can find a sequence

e1, e2, . . . such that the l2 norm of en, |en| tends to infinity.
We want to show a point that’s not 0 and lies in C∞. Consider a limit point

l of the following (bounded) set of points: {q|q = ei/(|ei|)}. (Such a limit point
exists because an infinite family of points in a bounded subset of Rk always has
a limit point, from Bolzano Weierstrass.1)

Let c1, c2, . . . , be a convergent subsequence of e1, e2, . . . that converges to l.
Let x ∈ C and t > 0. Then observe that x + tl is the limit of the following

sequence of points: {(1− t
|ci| )x+ t

|ci|ci|where|ci| > t} (since (1− t
|ci| ) tends to

0, and t
|ci|ci tends to l)

Each point in this sequence is in C (they are convex combination of points
in C), so their limit must be in C (by closure of C), so l is in C∞.

Q.E.D.
1basically binary search of the bounded set
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(a) This only makes sense if L is a subspace, i.e., is closed under addition and
multiplication by scalars.

Every vector space has a basis—this is a deep theorem. For a finite dimen-
sional subspace, you can construct an “orthonormal basis” pretty easily using
a technique called Gramm-Schmitt orthnormalization.

An orthonormal basis of a m dimensional subspace L ⊂ Rk is a set of m
vectors v1, . . . , vm such that every pair is orthogonal (their dot product is 0)
and each has unit norm.

Let v1, . . . , vm be such a basis for L. Complete this to an ortonormal basis
for all of Rk, V = v1, . . . , vm, vm+1, . . . , vk.

We can write vectors in Rk in terms of their components wrt V .
So any member of L looks like (a1, a2, . . . , am, 0, 0, . . . , 0), where the ais are

arbitrary. This in turn means that if b = (b1, . . . , bm, bm+1, . . . , bk) and 〈b, a〉 ≥ 0
for all a ∈ L, then so does b′ = (b1, . . . , bm, cm+1, . . . , ck) for any choice of ci’s.

This in turn means that if a vector d = (d1, . . . , dm, dm+1, . . . , dk) in (L∗)∗

is to have a nonnegative dot product with every single vector in L∗, it bet-
ter have entries dm+1, . . . , dk set to zero—otherwise consider the element q =
(0, . . . , 0,−dm+1, . . . ,−dl) which is certainly in L∗. Then the dot product of d
with q is negative, contradicting the requirement on d.

So any d ∈ (L∗)∗ must lie in L.
To complete the proof we need to show that L ⊂ (L∗)∗, but this part is

trivial.
(b) This is just Ex 2.24 in Boyd, page 52: the answer is not surprising,

(Sn+)∗ = Sn+.
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x2 lies in the interior, so there’s an open ball of radius r centered at x2 whose
intersection with aff(C) is is completely contained within C.

Clearly the closed ball with radius r/2 centered at x2 has this property too.
Claim: the closed ball centered at αx1 + (1−α)x2 and radius (1−α)r/2 has

an intersection with aff(C) that completely contained in C.
No time to rigorously prove, it’s clear from the geometrical view.
From this it follows that the open ball at each αx1 + (1− α)x2 with radius

(1−α)r/4 has has an intersection with aff(C) that completely contained in C.
This means that each such point lies in ri(C).
QED
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