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The proliferation of mobile computing devices with powerful sensing

and communication capabilities has created an immense social landscape of

awareness and connectedness. Social media applications have been largely

designed for asynchronous expression and collaboration among individuals.

Though these models have served as suitable surrogates for social interaction

in a rapidly evolving digital age, they have been insu�cient at connecting

people spatially and temporally. This report describes Revolver: an appli-

cation utilizing the state-of-the-art in mobile and distributed computing to

provide users with a shared sense of time and space. Revolver allows users

to synchronously capture image data of their surroundings with the ability to

virtually reconstruct an event from the separate sources. We present the ratio-

nale for the project, design considerations, implementation details, results of

the prototyping e↵ort, and conclusions to carry this project to future phases

of development for viable deployment.
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Chapter 1

Introduction

The proliferation of mobile computing devices with powerful sensing

and communication capabilities has created an immense social landscape of

awareness and connectedness. “Total mobile-cellular subscriptions reached al-

most 6 billion by end 2011, corresponding to a global penetration of 86%”

[36]. The latest generations of “smart-phones” have a multitude of sensors

which can be used to measure, analyze, and digitally record one’s local envi-

ronment; Table 1.1 lists some common sensors for such devices and what they

measure. Such sensing, computing, and communicating ubiquity is creating

a virtual global nervous system. This explosion in technological innovation

is rapidly fostering the emergence of specializations within the Information

Technology domain such as “cloud computing” [27] and “big data” [3]. The

means by which people can connect and share information is expanding; the

challenge is in finding novel ways of configuring and using these technological

building-blocks to solve problems and enhance our lives.

Sometimes software applications push the boundaries of the technology

underlying them. These so-called “killer apps” act as fulcrums between the

experiential value users perceive of them and the limitations imposed on their

1



Table 1.1: Common smart-phone sensors and measurement

Sensor Measurement
Gyroscope Orientation
Magnetometer Direction
GPS Location
Accelerometer Acceleration
Pressure Altitude
Camera Images, Video
Microphone Audio

potential due to the systems they run on. If an application garners enough

user demand, producers of the supporting technology are more willing to ex-

tend the capabilities of their products. In turn, as the capability of software

infrastructure expands, the next generation of applications come in to fur-

ther challenge the boundary; this synergistic process accelerates technological

advancement. Revolver aspires to be such an application.

Revolver is a multi-user distributed application which leverages state-

of-the-art technologies in mobile sensing and computing, network communi-

cations, cloud services, data persistence, presentation, and social-network in-

tegration. From a functionally fundamental perspective, Revolver is a mobile

application which captures visual images and associated meta-data such as

device orientation (relative to a frame of reference), geographic location, and

time-stamp. Similar to existing social-media applications, Revolver enables

users to share and access data utilizing a commonly accessible infrastructure

such as the Internet. Furthermore, Revolver enables collaboration on a par-
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ticular activity or event between spatially separate users. The key ingredient

to Revolver’s novelty is that it utilizes physical clocks to coordinate and syn-

chronize the activity of each user with one another, and then combine the

collective data to form a spatial view of each moment (in the cloud).

By synchronizing the visual-capture functionality of the mobile appli-

cation for all users of a particular event–utilizing each mobile device’s local

clock–Revolver is capable of aggregating the data uploaded from each device

and constructing a multi-perspective visualization for each instance of time.

Revolver entertains the idea of having a multitude of “eyes” connected to one

shared “brain”, capturing scenes vastly apart in space but precisely at each

moment. Revolver could gain momentum in a number of personal and orga-

nizational application-domains. Individuals would value the ability to share

their present space with distant family and friends and see what others are

seeing at the moment. Groups could actively collaborate on projects to cre-

ate multi-perspective motion pictures. Existing business could use Revolver

to augment their existing information technologies and new businesses could

be formed with Revolver as a key ingredient. If popularized, Revolver could

then challenge the state-of-the-art for faster communications, expanded band-

width, higher-precision timing & synchronization, and better power e�ciency.

Furthermore Revolver has the potential to challenge the existing paradigms of

data visualization, presentation, and analysis.

A user can schedule an event using a mobile device or other client

interface, and optionally invite other users to participate. Using the mobile
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application and device, each user can initiate visual capture of their local envi-

ronment independent of other user; the application determines a synchronized

interval for the device to capture data. At each moment, the visual data–along

with data on the device’s position and orientation–are uploaded to a server

and persisted. The data can then be retrieved, combined, and presented in

various ways using various clients including machine-native and web applica-

tions. The most compelling presentation format is to spatially arrange the

visual data for each moment of time to create a kind of 3-dimensional motion

picture.

The rest of this chapter presents the results of a literature survey on

related work as well as research on similar commercially available products.

Chapter 2 describes Revolver in further detail, enumerating scenarios of use,

and eliciting a set of essential requirements for implementation. Chapter 3

presents design, architecture, and implementation details for the latest proto-

type e↵orts for the mobile, server, and client aspects of the system. Chapter

4 provides some commentary on the results of the prototyping e↵ort including

analysis on system performance and experiences with the chosen technologies

and approaches. Finally Chapter 5 concludes the report with elaboration on

the challenges future iterations of Revolver must overcome to be a commer-

cially viable product; proposals are presented for the evolution of Revolver and

its infrastructure. Supporting materials to this report are in the appendices.
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1.1 Related Work

There are a wide range of photography and video related applications

for mobile devices commercially available, and many more are under devel-

opment. Given some of the characteristics of Revolver described so far, the

functionality may seem similar to panorama applications like Occipital’s 360

Panorama [30] or Microsoft’s Photosynth [28] for mobile devices. Panoramic

images–commonly referred to as panoramas–involve computational techniques

for image stitching [35] and some of these techniques can be applied to Re-

volver’s data presentation, however the key di↵erences are:

• Panoramas are produced with a single camera which is moved about to

capture the scene within a frame. The camera can only capture linear

scenes if the camera is moved in a straight line or concave scenes if the

camera is panned from a fixed point. Revolver uses several cameras to

capture a scene in any geometry, and is capable of capturing convex

scenes.

• Panoramas traditionally have relied on image processing techniques to

determine matching patterns in various images and place the images

spatially based on those patterns. Revolver provides meta-data with

each image which indicates location and orientation of camera when

image was captured, therefore speeding the processing of scenes.

• Panoramas are static scenes. Revolver can capture scenes consecutively,

creating a motion-picture.
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Besides having panoramic functionality, Photosynth–like Revolver–has

the ability to create scenes of various geometries based on images from di↵erent

perspectives. Photosynth is the result of work by Noah Snavely, Steven Seitz,

and Richard Szeliski [33, 34]. Their work models 3-dimensional scenes from

publicly available images on the Internet and uses image processing techniques

for scene construction. Their work utilizes images taken at di↵erent times from

various sources to construct scenes, whereas Revolver creates scenes from im-

ages taken at the same time and from a relatively consistent set of cameras

which can lead to a less mosaic scene. Furthermore their work relies on com-

putationally intensive techniques to place images based on image-data alone

where Revolver provides meta-data for image placement.

The most closely related work is that of Grosvenor and Cheatle de-

scribed in US Patent 7139018, Synchronized cameras with auto-exchange [21].

The patent describes a system very much like Revolver where the following

characteristics are highlighted from the patent:

• Creating images using digital recording devices.

• Subjecting the users devices to a synchronization event.

• Establishing communication connection between recording device and

database.

• Transmitting image from device to database without input from user.

• Enabling user to access recording from database.

6



The patent describes synchronization capabilities directly between devices as

well as client-server models, whereas Revolver relies solely on the client-server

model. The patent suggests that digital images are synchronized per event by a

synchronization code and uploaded via the Internet to a dedicated database for

the particular code; this implies the synchronization creates a pool of shared

images where Revolver actually synchronizes images to a moment in time.

The patent mentions the use of digital recording devices but does not suggest

the use of smart-phones and one aspect of Revolver’s design is that of mobile

applications that can be executed on various smart-phones; in fact, the patent

suggest the incorporation of specialized controls into digital cameras for the

purpose of device synchronization. Furthermore the patent makes no mention

of how the data is to be processed or presented, only that the data can be

shared between devices or later retrieved from a database; no mention is made

of utilizing device sensors for location and orientation of images. The patent

was filed in 2002, before the mass proliferation of high-capability smart-phones,

and granted in 2006. Though Revolver’s inception was not until late 2011, it

occurred before the discovery of this patent. Nevertheless for Revolver to

become a commercially viable product we feel it would have to be evaluated

against this patent prior to any commercial development.

7



Chapter 2

Specification

This chapter starts with the system description as a basis for formu-

lating specifications for the application. The system is further elaborated on

by use of user stories to narrate several scenarios of application use. We then

attempt to elicit some requirements from these scenarios which guide imple-

mentation in chapter 3.

2.1 System Description

Revolver is a software-system application which has di↵erent function-

ality and user-interface characteristics based on the use-cases the user is exe-

cuting or the role the user is playing at a given time; Figure 2.1 presents the

actors and use-cases for the application.

Users can be one or several individuals that interact with every aspect

of the system, or groups with specific roles. The actors and their roles are:

User A group collaborating through the application, using the entire system.

Coordinator A group scheduling events for other users and analyzing the

results using cloud services and client interfaces.
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Figure 2.1: Use case diagram

Contributor A group capturing event data using mobile devices.

The use-cases are separated between mobile device application and cloud ap-

plication (which could be interfaced via native-platform client or web browser).

The use-cases together form a process for utilizing the application and their

order is:

Schedule Event Configure identification, date, and time of event and invite

collaborators.

Capture Event Record and transfer visual and meta-data.

9



View Event Aggregate, process, and present data.

Figure 2.2: Event schedule

Figure 2.2 depicts the process of scheduling an event. A single user

configures the event parameters and registers with the cloud server. The event

parameters are pushed to contributing users via notification services, or the

user’s device pulls from the server on demand. One of the parameters is

the starting date and time of the event. All devices then have a reference-

time and can use their local clocks to synchronize capture. Users can then

initiate event capture at will; the mobile application calculates when to capture

10



the data and triggers the function at the configured interval. The captured

data is immediately uploaded to the cloud server where it can be presented

by a client application; the data is available as soon as it is uploaded for

each moment. Figure 2.3 depicts the capture and presentation of event data.

With the data being persisted and accessible through cloud services, it can be

accessed and utilized at multiple locations concurrently and independent of

client or platform.

Figure 2.3: Event capture and view

2.2 User Stories

The specifications are first enumerated in a series of user stories. The

user stories are grouped into three scenarios (Sections 2.2.1 to 2.2.3) and are

written in prose form. Although initially describing user interaction with the

system using this informal method makes it more challenging to elicit discrete
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requirements, it leaves room for further extension and enhancement which fits

with the vision of the product for future iterations.

Each hypothetical scenario takes several users through collaborative

interactions with the system, attempting to highlight key features along the

way. Each scenario also represents a di↵erent domain Revolver is applicable

to; where applicable, the scenarios also reference related works which provide

additional context to the problem domain. In common, the stories start out

with a user coordinating an event for which other users will eventually collab-

orate on or utilize in some fashion. The key features are emphasized in the

stories for later inclusion into the requirements.

The scenarios described represent only a subset of intended uses for

the application and are representational of the scope of this report. Further

extensions of Revolver are discussed in the conclusions in Chapter 5.

2.2.1 Corroborated Evidence

Amanda is coordinating an event of “civil disobedience” with many

like-minded individuals she is connected to through social media to protest

some recently enacted public policies her and her friends found contentious.

Amanda, tending to be quite organized and mindful of civil laws and liberties,

wanted her and friends to be prepared to deal with any unfavorable conse-

quences of their intended actions.

Amanda had recently read an article about a mobile application devel-

oped by the American Civil Liberties Union of New Jersey. The application

12



enabled users to record video of law enforcement o�cials potentially infring-

ing on their civil liberties and immediately upload the video to a server for

backup storage and analysis in case their device was confiscated [25]. Amanda

contemplated the benefits of such an application; the ability to capture visual

evidence which is automatically and immediately uploaded from the device and

persisted at an o↵-site location would be beneficial in a legal defense case.

Amanda done some research and came across Revolver, which she re-

alized would fulfill the some of the specific needs she was anticipating. She

realized she could use Revolver to coordinate with several of her friends for this

particular event. Besides capturing and uploading visual events, she saw that

Revolver was capable of also recording the location and orientation of each

event from each user’s perspective as well as a time-stamp of the event. It

dawned on her that such an application could provide corroborated evidence

in a legal defense: multiple witnesses supporting each others case by providing

visual evidence of a single event from di↵erent perspectives. Amanda was cer-

tain the use of Revolver would provide some insurance for her and her friend’s

civil activities.

2.2.2 Security and Surveillance

Sam’s Security is a fledgling security service trying to di↵erentiate itself

from other firms to get a grasp on the security-services market. Although a

relatively small start-up, Sam would like to use technology to give his company

an edge but since his business is independently financed he has a restrictive

13



budget to work with initially.

Sam was intrigued by an article he read in a trade journal about Visual

Sensor Networks (VSNs), particularly of the author’s description of the system

(emphasis ours):

A VSN consists of a group of nodes, each equipped with a

low power, embedded processor, energy source, image sensor, and

some type of transceiver for communication. These nodes must

also be capable of communication with the network base station or

sink where the data is collected and further processed for end-user

consumption. The ability of these nodes to communicate with each

other creates the possibility for event and anomaly detection over

a group of nodes known as a cluster. [26]

After finding Revolver it dawned on Sam that it could be used to im-

plement an a↵ordable VSN for his security business. Since his security guards

were already equipped with smart-phones as part of their standard equipment,

he realized he already had a mobile VSN. Using Revolver, Sam could centrally

coordinate and monitor the local environment in near-real-time with all per-

spectives synchronized to each other. He could schedule guards on duty to use

their devices to capture images of the grounds being secured and get an overall

visual perspective of the environment by aggregation and combination of vi-

sual data from separate and distant sources. Sam could now utilize a↵ordable

ubiquitous technology to give his business a competitive edge.

14



2.2.3 Visual Tour

John had to go on a business trip to Frankfurt, Germany; this was his

first trip to the country and he thought it would be good to take a vacation in

Germany with his wife Nancy right after his business was done. The plan was

for John to fly in the previous week and Nancy to fly in the following weekend

and meet John at his hotel.

When John got to Frankfurt, he took the local train to the vicinity of

the hotel. He thought it would be easy enough to find from foot, but that

turned out not to be the case. The hotel was not clearly marked and was

located in the center of a town plaza which further obscured it from view of

the nearby streets. John did not want Nancy to have the same experience as

he did, and he hoped to avoid the experience again in other cities and towns

in the country.

When John found Revolver, he quickly realized how it could benefit him

and Nancy in their travels. John went back to the train stop and coordinated

an event which he invited Nancy to. He then proceeded to walk from the

train stop to the hotel manually capturing photos of inconspicuous landmarks

along the way; as the photos were captured, information such as location,

orientation, and time were also saved with the photos.

With Revolver, participants to events have access to the visual data

of other users, so Nancy could see all of John’s photos. Furthermore, the

application could associate each picture with a time and location on a map;

15



Nancy could get a “visual tour” of the path John walked and what he saw.

Now Nancy felt confident she could follow in John’s footsteps and meet with

him so they could start their journey through German together.

2.3 Requirements

Based on the user stories of Section 2.2, we have enumerated various

requirements the application must fulfill in Table 2.1. The requirements are

numbered based on a prefix corresponding with the sub-section representing

the scenario they came from. The requirements are specified in the order they

are encountered from the emphasized statements of the scenarios.
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Table 2.1: System requirements

Req. # Requirement
2.2.1.1 Social media integration
2.2.1.2 Visual data capture
2.2.1.3 Automatic & immediate upload
2.2.1.4 O↵-site persistence
2.2.1.5 Coordinate between users
2.2.1.6 Capture orientation & location
2.2.1.7 Capture time-stamp
2.2.2.1 Low-powered embedded devices with sensors & communications
2.2.2.2 Processed data presentation
2.2.2.3 Central coordination & monitoring
2.2.2.4 Near-real-time operation
2.2.2.5 Synchronized operation between users
2.2.2.6 Data aggregation/combination for presentation
2.2.2.7 Various mobile/embed platform support
2.2.3.1 Manual capture mode
2.2.3.2 Shared data among users
2.2.3.3 Present data through map application

17



Chapter 3

Design & Implementation

As depicted in Figures 2.2 and 2.3, Revolver relies on mobile devices,

cloud services, and client interfaces for its utility; it is by definition a distributed

system [31]. It is a heterogeneous system of diverse components or nodes, con-

nected by common protocols, where the nodes are grouped by specific func-

tions. The mobile-device nodes perform a very specific function which is to

capture and transmit data to servers; outside of event synchronization, mobile

devices do not serve as clients to the captured data (in the scope of current

design). The server nodes perform data transference and persistence. The re-

cent availability of reliable, configurable cloud services has blurred traditional

concepts of server nodes; now the nodes are a “cloud” where computing hard-

ware, network infrastructure, and operating system appear as a single node to

users and administrators. Client applications which process and present the

captured data are also nodes in the system.

The following sections present some key design artifacts and imple-

mentation details for each node respectively. The artifacts and details were

derived from the requirements in Chapter 2 and some aspects of the design

and implementation are traced back to Table 2.1. The implementation details
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expose some aspects of platform-specific technologies used to deploy and test

the application during the prototype e↵ort.

3.1 Mobile Nodes

3.1.1 Design

Mobile devices in Revolver play a limited but crucial role in the ap-

plication as data collectors and transmitters; though simple in user function

and interaction, the complexities have been pushed down the application stack

closer to the hardware. There are two modes of capture operation: manual

(Figure 3.1) and automatic (Figure 3.2). In manual mode, no synchroniza-

tion between devices occurs and a user can trigger capture free of constraint;

this mode is suitable for Requirements 2.2.3.1 to 2.2.3.3. The intended mode

for collaboration and advanced visualization is automatic, where the device’s

capture function is constrained to a clock regardless of when the user triggers

it. Automatic mode covers requirements 2.2.1.5, 2.2.2.4, and 2.2.2.5 among

others.

Besides image data, the device’s attitude and location are captured and

associated with the image in the form of meta-data. The attitude represents

the device’s orientation relative to a frame of reference and can be measured by

angles of rotation about the device’s x, y, and z axis. The location represents

the devices geographical coordinates relative to a frame of reference and can

be measured by latitude and longitude. Common frames of reference are true

north–as opposed to magnetic north–and the direction of gravity. Figure 3.3
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Figure 3.1: Manual capture mode behavior

Figure 3.2: Auto capture mode behavior

depicts common measurement and reference parameters and their relation to

the device1.

The attitude, location, and image comprises an entity known as a mo-

1Relationship of parameters to device may vary with hardware and operating system.
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Figure 3.3: Attitude and location for mobile devices

ment. A moment is created every time a users device automatically or man-

ually captures data for upload to the server; parameters of each moment are

examined in Section 3.2.1. Moments from all users are aggregated and asso-

ciated with an event which is scheduled prior to capture. Figure 3.4 presents
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an abstract model of the relationship between events, moments, and the data-

units comprising moments.

Figure 3.4: Event entity model

When in automatic mode and a capture session is initiated, a static

or singleton object2 manages the synchronization and capture operations and

schedules upload of the data; this object can be referred to as the Moment-

Manager (MM). The MM compares the local time capture is initiated with

the time the event was created; it then determines a delay before it schedules

a timer at interval. When the timer triggers, the MM collects all data and dis-

patches it to an object that will upload the data to the server asynchronously

and concurrently. Figure 3.5 depicts this sequence of operations.

2A static or singleton object is required for mutually exclusive access to device resources
and coordination between device sub-systems.
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Figure 3.5: Moment upload sequence
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3.1.2 Implementation

The prototype described in this report was implemented on the Apple

iOS platform3. The iOS platform was chosen primarily for the provision of

data consistency between device generations due to Apple’s control over both

hardware and operating system.

Figure 3.6: Moment-manager class diagram

The MM previously mentioned has a PositionManager (PM) which

asynchronously manages resources for collecting device attitude and location

3An earlier prototype was also developed on the Google Android platform for previous
coursework.
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and a CaptureManager (CM) which manages resources for capturing images.

Figure 3.6 shows a class diagram of the MM and its associated PM & CM

objects. Table 3.1 describes the significant Foundation Framework classes the

PM & CM incorporate to perform their respective function.

Table 3.1: Foundation Framework classes for moment capture [6]

Class Description
CMMotionManager Provides accelerometer data, rotation-

rate data, magnetometer data, and other
device-motion data such as attitude.

CLLocationManager Defines interface for configuring delivery of
location- and heading-related events.

AVCaptureSession Coordinates flow of data from AV input
devices to outputs.

AVCaptureDevice Represents a physical capture device and
the properties associated with that device.

AVCaptureDeviceInput Captures data from an AVCaptureDevice
object.

AVCaptureVideoDataOutput Processes uncompressed frames from the
video being captured.

AVCaptureVideoPreviewLayer Used to display video as it is being cap-
tured by an input device.

The user interface for configuring and capturing events was designed

with speed and e�ciency in mind since the mobile device is just a sensor

and may have to be set up and used quickly. Section A.1 in the appendices

provides screen-captures of the prototype user interfaces from the application

storyboard. The procedures for authenticating the application, scheduling

and event, and initiating capture as well as key implementation details of each
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procedure are enumerated:

1. If not already logged in, the user authenticates the application with

their credentials (Fig. A.1). In this prototype, the Facebook API is used

for authenticating the application using the OAuth protocol [2] and the

user’s Facebook credentials. If this is the user’s first time logging into

the application, Facebook redirects the user to a browser site where they

can set permissions and allow the application access to their information

(Fig. A.2).

2. The user may select an event to join from existing events in their list

or they may create a new event and fill in the details such as name,

starting & ending date, and mode (Fig. A.3). Selector controls constrain

the user from selecting invalid inputs for date & time (Fig. A.4) and

mode parameters (Fig. A.5).

3. When scheduling an event, the user may invite contributors to collab-

orate on the event (Fig. A.6). In this prototype, a custom user-control

by Facebook called FBFriendPickerViewController to display a list from

the user’s social graph and provide a collection of selected users to the

application [10]. For other application domains, an independent authen-

tication and user-selection service could be implemented.

4. The user can then select the event they want to initiate from the list

of created or invited events. The camera-preview interface is presented

where the user can start and stop capturing the event (Fig. A.7).
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3.2 Server Nodes

3.2.1 Design

Compared to the mobile node, the server node is considerably less com-

plex in design; it merely serves as the data backbone to the other nodes. All

interactions of the system are client-server where the client (including mobile

nodes) make requests of the server to transmit data, receive data, or both;

though in this current design the server does not “push” data to other nodes,

it may be considered for future enhancement. Other design considerations of

the system are “fat” clients, where the application logic is distributed to the

other nodes, and stateless services where client-server interactions are com-

pletely self-contained [31].

Another attractive set of design principles incorporated into Revolver

is that of REST or RESTful Web services.

REST defines a set of architectural principles by which you can

design Web services that focus on a system’s resources, including

how resource states are addressed and transferred over HTTP by

a wide range of clients written in di↵erent languages. [32]

The cited article by Rodriquez suggests a REST implementation follows four

basic principles:

• Explicit use of HTTP methods: POST (create), GET (retrieve), PUT

(change), and DELETE (remove)
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• Use of stateless services

• Directory-like structure for URIs

• Transfer in XML or JavaScript Object Notation (JSON) format

The attractiveness of this design pattern–besides its logical formulation and

use of existing standards–is that it is becoming a de facto standard for Web

services. This makes Revolver’s client-server interfaces intuitive, maintainable,

and scalable.

Figure 3.7 shows the sequence for a mobile device scheduling an event

with the server; a similar sequence would occur for other interactions such as

getting a list of invited events or retrieving a moment from the server. An

HTTP POST methods transfers the event object to an event-handler object.

The event-handler verifies the data is within type- and structure-constraints

before passing to a database-handler. The database handler transforms the

data-object from its native format to an entity-schema compatible with the

underlying database. An ID auto-generated by the database system is then

transferred back up the stack to the initiator; this ID signifies successful per-

sistence of the data an is also the key within the client to be able to retrieve

that particular record of event.

Figure 3.8 depicts a prototypical entity-relationship model of the data

that is handled by the server. This model assumes a schema but may be

altered and represented di↵erently if the underlying database technology were
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Figure 3.7: Event scheduling sequence

schemaless; fundamentally the data would be the same and only it’s relative

organization would di↵er. Notable in the diagram are the attributes qx, qy, qz,

and qw in the moment entity: these are parameters of a quaternion [18] which

represents the device’s orientation; other parameters such Euler angles or that

of a rotation matrix may be substituted or added. Another notable attribute

is that of image in moment: this design assumes the binary data is persisted

directly in the database but depending on size of image4, it may be persisted

as a file in the file-system5 and this attribute would serve as a pointer to the

file.

4May refer to video data in future iteration; Appendix C.
5May be persisted as file-like object in specialized datastore; see Blobstore [20].
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Figure 3.8: Event data-model ERD

3.2.2 Implementation

Traditional server implementations may have utilized a Linux/Apache/

MySQL/PHP (LAMP) stack on servers and infrastructure that were rented

or owned but the recent availability of inexpensive (and sometimes free) cloud

services have expanded options for developers and administrators. LAMP

(or other) stacks can be executed on Amazon Web Services (AWS, [1]); this

leverages the on-demand scalability of cloud services with the maturity of

these traditional solution-stacks. For this report we developed a prototype

implementation for the Google App Engine (GAE, [20]).

GAE provides run-time environments and support for a limited set of

programming languages. Prototypes for this report were developed with the

Java and Python languages for cross-comparison6. The GAE run-time is a

6Refer to Section B.2.2 for measured comparison.
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sand-boxed environment; constraints on library support are specified for each

environment. GAE does not support a traditional file-system but rather a

distributed, fault-tolerant data-base using the Paxos consensus algorithm [9].

Experiences with GAE are further detailed in Chapter 4.

Each node-type was implemented on di↵erent platforms using di↵erent

languages; as REST specifies, a common protocol was established for data ex-

change. Though XML and JSON are supported on all platforms, the property

list (plist) format was chosen because it could be generated and parsed up to

three times faster on the iOS platform than the other formats for files of equal

size7. Plist supports binary, XML, and ASCII format with the binary format

being most e�cient; the binary format when parsed provides an XML-like

structure of nested key-value pairs. Plist is suitable as a data-exchange pro-

tocol because it is constrained by supported types and includes the data-type

in the structure; parsers are able to verify and reconstruct the entire structure

into local objects suitable for processing. Open-source plist libraries are avail-

able for many popular languages; some languages come bundled with them as

a standard library. Suitability was demonstrated on the use of plist for data

transfer between iOS and GAE [17]; libraries utilized for the other languages

were also successful.

7Source: Building a Server-Driven User Experience [5].
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3.3 Client Nodes

3.3.1 Design

Image processing and data visualization are subjects of considerable

breadth and depth; volumes have been written on the subjects a few of which

are referenced in this report [12, 35, 38]. This section provides a design for the

presentation layer adequate for basic demonstration of Requirements 2.2.2.2,

2.2.2.6, & 2.2.3.3. A more elaborate treatment of the topic would have ex-

panded the scope of this report unfeasibly and is left as a future area of work.

Figure 3.9 presents a pipeline architecture for a simple visual-

presentation client. Prior to the presentation of the visual data, the client

would present to the user a navigation-and-selection interface enabling the

user to select which grouping of data to visualize; examples of groupings in-

clude:

• Images for all users from a selected event.

• Images for selected users of a specific event.

• Images for a selected index (moment) from all users for a specific event.

Once the group is selected, the client would retrieve the data from the server;

this could be accomplished by the client transferring to the server a query

string or query parameters and the server returning a structured object of

fetched moments. Ideally the data retrieval could happen concurrently with

setup of the visual environment which would include background coloring and
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data placement. The visual data would be transformed into place based on

the meta-data from each moment of the retrieved set. Finally the scene would

be presented to the user; interactive controls could enable them to navigate

the visual scene.

Figure 3.9: Data presentation pipeline

3.3.2 Implementation

A simple proof-of-concept prototype was implemented with Process-

ing, “an open source programming language and environment for people who

want to create images, animations, and interactions” [13]. Alternatively, the

client could have been implemented with a variant of Processing called Pro-

cessing.js [14] which interprets Processing code into JavaScript for execution

in a browser. Figures in Appendix A present example output from moments
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retrieved from the sever and transformed. Additionally, an open-source library

called Unfolding [29] was used for placing the images in location over street

maps.

At its core, Processing is a Java library which provides a graphics con-

text for the creation of visual structures. It was initially created as a tool

to help teach fundamentals of computer programming and is a very simple

language and library to learn and use for visualizing data. It supports 2-

dimensional as well as 3-dimensional rendering including support for OpenGL

constructs. There is a considerable amount of support for Processing in the

open-source community and many third-party libraries are available for sim-

plifying tasks and work-flows.

Processing is ideal for rapid prototyping and for this reason was chosen

to implement the pipeline architecture of Section 3.3.1. Processing is also a

very powerful tool for creating rich, interactive data-visualization experiences.
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Chapter 4

Results

This chapter attempts to summarize some of the more notable obser-

vations, experiences, and outcomes of the prototyping e↵ort in order to help

guide future work on Revolver. Section 4.1 discusses our experiences with the

selected technologies used for the prototypes and the challenges encountered.

Section 4.2 discusses the amount of e↵ort that went into each aspect of the

system prototype and provides reasoning for the e↵ort. Section 4.3 makes

some observations about the performance of particular aspects of the system

and the challenges they pose for future iterations.

4.1 Experiences

Overall the outcome of the prototyping e↵ort was as expected with

the selected technologies. Di↵erent technologies were selected to prototype

di↵erent aspects of the system in the hopes to be able to compare the expe-

riences and choose the best technologies to support Revolver. Some aspects

of Revolver must run on multiple platforms–such as the mobile application–

and the comparison between platform-technologies is essential for developing

a consistent experience between the di↵erent platforms. With other aspects of
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Revolver such as the server application, it is reasonable that a single platform

be selected to serve the system; however, e↵ort can be a contributing factor

to selection and Section 4.2 expands further on the topic.

4.1.1 Mobile Platforms

Revolver prototypes were made for both the Google Android and Ap-

ple iOS platforms. Both platforms have advantages and disadvantages with

regards to development and usability and it is not the intention of this report

to favor one platform over the other; rather, an e↵ort is made to distinguish

the characteristics of each which require further examination and development

e↵orts in order to provide a consistent user experience between the platforms.

One area of di↵erentiation has more to do with hardware than software.

The types and qualities of sensing hardware di↵er between platforms; with the

Android platform, this is more significant as Android supports many providers

of devices with various models whereas iOS has only one provider with a few

generational models. Information about the sensing hardware used in the de-

vices are di�cult to ascertain because it is most often considered a trade secret

by the manufacturer; therefore the only practical information available is the

type and configuration of positional parameters available through the platform

APIs. The coordinates for device orientation are the same for both platforms

and both can provide orientation in the form of Euler angles, rotation matrices,

or quaternions; location for both platforms are based on a standard geographic

reference. One di↵erence is the Android platform provides a means in the API
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to set the parameter units (e.g., degrees vs. radians) whereas iOS requires

the developer to write additional code for unit conversion. Comparative ex-

periments would be needed to calibrate precision between devices in order to

provide more accurate orientation representation.

Another area of di↵erentiation also has to do mostly with hardware

di↵erences and that is in camera performance; the performance aspects are

discussed in Section 4.3 but here we discuss the di↵erent ways the camera can

be implemented. Both platforms enable developers to integrate a platform-

standardized camera control into their applications; however these camera con-

trols had constraints which competed with Revolver’s requirements so lower-

level APIs were used to develop custom camera-controls. Both the Android

and iOS platforms expose interfaces for enabling the camera and triggering the

capture of a picture; in both platforms this locks the camera while it takes the

picture, which involves focus and light adjustment. The locking of the camera

puts constraints on the minimum capture interval in auto mode. An alterna-

tive approach (the one taken for the most recent prototype of this report) is to

enable the camera in video mode and capture frames from the video stream.

With this approach, there is seemingly no constraint on minimum interval as

an image is always readily available. The caveat is in the quality of image cap-

tured as video-quality images are considerably less than that of images taken

in an image-mode.
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4.1.2 Server Platforms

Both AWS and GAE provided free usage tiers for their cloud-service

o↵erings however AWS required a method of payment prior to accessing the

platform where GAE did not. AWS o↵ered many options for run-time envi-

ronment including several Linux and Microsoft variants; GAE only o↵ered a

few and they were targeted towards an implementation language rather than

an operating system. These were the primary reasons for selecting GAE as

the cloud-service platform for the prototype e↵ort; otherwise both o↵erings

seem suitable as a back-bone to Revolver. A key di↵erence between the two

is that AWS o↵ered services with traditional file-system capabilities whereas

GAE only provided specialized APIs for data persistence and access. The

cloud-services market is currently very dynamic; these particular observation

regarding platform capabilities may soon be obsolete as more features become

available rapidly.

In the GAE platform, prototypes were developed in both Java and

Python. Both variants incorporate “servlet” objects which handle the HTTP

requests and responses; the Java version uses classes from the standard library

and the python version uses an open-source Web framework but the interfaces

are modeled nearly identically. One key di↵erence between the two variants is

the interface to the data-persistence mechanism. The Java version has separate

entity objects which require attributes be placed one at a time before the entity

is persisted. The Python version allows for sub-classing of the entity objects so

constructors could be used for instantly creating and persisting data-objects
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in their native form.

4.2 E↵ort

This section provides some measured and observed e↵orts in the im-

plementation of the various prototypes. E↵ort of time in researching and

implementing the prototypes is estimated and code-size is analyzed; the code

measurements can be found in appendix B.

4.2.1 Mobile Platforms

The e↵ort involved in implementing prototypes for each mobile-device

platform was roughly equivalent despite our di↵erent levels of experience on

each platform1. We believe the reason for this is the quality of documentation

available for both platforms. Mobile computing is a very competitive market

currently focused around user experience. To have applications with intuitive

interfaces and fluid functionality it is essential that developers have a thorough

understanding of the building-blocks to the platform so both vendors had taken

great strides to detail and support their respective platforms. Despite the

equality of e↵ort, implementing the mobile aspect of Revolver was no trivial

task. Mobile-computing platforms are fairly new and despite the e↵ort put into

documentation, knowledgeable and experienced assistance is relatively sparse.

Mobile computing lacks the maturity that desktop computing has, and the

platform paradigms are slightly di↵erent. It is approximated that 40 hours

1Objective-C approximately 10 years; Java approximately two years.
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of continuous research and development time was put into each prototype.

Despite the equivalence in time e↵ort, the amount of code put into the iOS

prototype was about 27% more than that of the Android prototype; this can

be attributed the di↵erence in code for controlling the chosen user-interface

elements.

4.2.2 Server Platforms

The di↵erence in e↵ort for implementing the server prototypes for Re-

volver was more noticeable. Two functionally equivalent prototypes were im-

plemented in Java and Python (for the GAE platform) and one in PHP (for

local or cloud servers) which had a subset of functionality. The Python variant

was 50% smaller in code size than its Java counterpart. The PHP variant had

nearly 63% less code than the Python version and 81% less code than the Java

version. Although the PHP version lacked code for user-interface, the relative

size can be deduced given that PHP, like the other versions, uses HTML and

the other versions had roughly the same amount of UI code. If the PHP ver-

sion had the maximum amount of UI code between the other two versions, it

would be nearly 10% smaller than the Python version and nearly 50% smaller

than the Java version. The approximate e↵ort in continuous hours or research

and programming was 60 for the Java implementation, 20 for the Python im-

plementation, and 15 for the PHP implementation. Figures 4.1 and 4.2 depict

the measurements for visual comparison and Section B.2.2 in the appendices

the measured code-size for each implementation.
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Figure 4.1: Server code size in LOC

Figure 4.2: Server implementation e↵ort in hours
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Several factors went into the di↵erences between implementations. With

regards to the time e↵ort, the Java implementation was our first experience

with the GAE platform as well as Web programming and JavaServer Pages

(JSP) so the learning-curve was steep. Given that, we feel the time-e↵ort for

the Python version would still have been less than that of the Java version

(though not so accentuated) due to the object-orientated nature of the Python

library for the data-store as was mentioned in Section 4.1.2. Also Python is a

less verbose programming language than Java and this additionally accounts

for the relative code-size. One noticeable challenge in implementing both GAE

versions was in the quality of documentation available for both the Java and

Python APIs; we feel this a↵ected both time and code-size. Though the lan-

guages are mature, the environments and supporting libraries are relatively

new. PHP is a mature technology with adequate documentation and a con-

siderable experience-base and we feel this provided a slight advantage in the

e↵ort.

4.3 Performance

The performance of the system as a whole was su�cient for the re-

quirements scoped within this report; only for future enhancements some per-

formance characteristics may be re-evaluated. Most of the observed potential

bottlenecks in performance would occur on the mobile platform. One such

potential bottleneck was seen in the measured performance of uploading the

data to the server via Wi-Fi and 3G networks; the comparison is provided in
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appendix B. However though the 3G network took twice as long to upload the

data than the Wi-Fi network, this did not have an impact on the application

performance due to the upload process happening concurrently to the capture

process. Only might this become an issue if several moments are queued for

transfer and the application is shut down prematurely; the application would

need to be modified to accommodate the upload process continuing in the

background. This may be a non-issue as faster cellular networks are emerging

and 3G will eventually become obsolete for such platforms.

Another performance consideration was that of image quality versus

time to capture. As mentioned previously in the chapter, capture of high-

quality images locks the camera and puts constraints on the minimum in-

terval for automatic capture mode; experiments performed set the minimum

whole-number interval to two seconds on both platforms without causing the

application to freeze. To be able to capture moments faster, a di↵erent sub-

architecture had to be implemented to extract images from a video stream.

There was no observed lower-limit on capture interval as the camera resource

asynchronously updates the video output; however the image quality was less

than that taken when the camera performed in image-capture mode. Images

captured regularly at highest available resolution ranged from 1.5 MB to 3.0

MB in size; images captured from the video stream ranged from 15 KB to

30 KB. Besides a↵ecting the algorithms used to capture images, the choice in

mode a↵ects the time to upload images and the way the images are persisted

from the server side. The divergence in performance characteristics would
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cause a considerable bifurcation in code-bases for both the mobile and server

applications and would need to be further evaluated for future iterations of

Revolver.

A final notable performance aspect for this report was that of synchro-

nization accuracy. Revolver relies on the device’s local clock to keep moments

synchronized between devices. There are two challenges to this approach:

• The clocks of the devices tend to drift over time2. Often the drift is

minute and the device system may periodically re-calibrate to the net-

work time but observed drift was enough to cause moment indexes to

di↵er between devices.

• Devices often have di↵erent master time-sources. Even if devices peri-

odically re-calibrate their local clocks to their network time source, the

networks themselves may have di↵erent time sources.

If the particular use-case involved stitching images together at a certain mo-

ment, the slip in indexes could be significant to cause anomalies in the scene.

Image processing algorithms could accommodate for the potential anomalies

but it is desirable to have more precision in the synchronization process to

provide the servers more consistent data-sets, and mechanisms do exist for

synchronizing network devices to common time sources.

2Experiments showed a particular device’s clock drifted by 0.6 seconds within an hour.
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Chapter 5

Conclusions

This report presented Revolver, a distributed-systems application for

capturing visual events synchronously between users. Some software applica-

tions are developed to solve concrete problems while others are designed to

address more abstract problems. Revolver attempts to do both:

The concrete problem: Revolver is meant to enable users to have a shared

perspective of the world at a common moment in time regardless of their

geographical distance.

The abstract problem: Revolver aims to push the boundaries of existing

technologies through value-creation.

The report started out by introducing the problems being addressed and com-

paring existing works both in research and commercially available products. It

then described the system in more elaborate detail: defining the user and sys-

tem roles, describing some user scenarios, and extracting some requirements

for the system. The report then provided some design and implementations

details for each aspect of the system; notable design artifacts and technology

details were presented. Then an analysis of the prototyping e↵ort was given
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highlighting some significant experiences, quantifying the e↵ort involved, and

assessing performance aspects.

Revolver is an ambitious project. The report has detailed some techni-

cal challenges still in need of further evaluation and a particular aspect of the

system (the client node) could have easily doubled the e↵ort of this project

and filled a report independently. We feel this report has presented a solid

vision for Revolver in it’s inception, and now proposals are made in Section

5.1 to continue the work started, eventually drive it to market, and set the

stage for its future generations.

5.1 Future Areas of Work

This section presents proposal for the future course of Revolver. We

first detail the more immediate steps that can be taken to see Revolver to

market as a first-generation product. Secondly we initiate a future-vision for

Revolver’s functionality in the hopes that e↵orts for research and development

along these lines are some day inspired.

Considering marketability of Revolver as the most immediate goal, we

feel having a system that adequately meets the functionality outlined in the

requirements of this report is essential. Though the prototype e↵ort produced

some good implementations as a starting point for the mobile and server ap-

plications, the visualization client would require the most immediate and fo-

cused attention. The ability to orient and seamlessly combine images in a

3-dimensional scene would seem to be first priority as it is the most com-
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pelling use-case for Revolver, followed by the ability to present the oriented

images in a map application or virtual environments for visual tours. Though

Processing was chosen as an initial technology to present the concept, other

technologies for visualization exist such as OpenCV [22] or platform-native

OpenGL. Processing was chosen not only for its ease of use but also for its

wider platform support including modern Web browsers with Processing.js.

Once a visual client is more thoroughly developed, one challenge in

testing it would be to have enough users of the application capturing a com-

mon scene simultaneously to produce a su�cient data-set in order to stitch a

complete scene. If not enough data is available, sophisticated algorithms my

have to be employed to fill the visual gaps; otherwise the gaps are tolerated

by the user, but the most desirable compromise is to determine an acceptable

threshold within which visual processing is feasible to fill in for lack of data.

From a testing perspective; a utility application could be written to simulate

the moment-capture functionality of Revolver and allow the user to configure

which user is capturing the data and at what index. This way a single user

and device could be used to simulate a multitude of users and devices at the

same location and at the same time.

If users are capturing moments from significantly separate locations (i.e.

di↵erent cities) it may be desirable for the visual client to automatically detect

a configurable threshold and change the type of scene being rendered, perhaps

automatically switching to a map visualization-mode. As was stated in the

introduction “Revolver has the potential to challenge the existing paradigms
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of data visualization, presentation, and analysis”; this becomes more apparent

when one considers the nature of the data and the fact that the data sources

could be considerably spaced from each other.

As a secondary priority for enhancement, it would be desirable to ad-

dress some of the performance issues brought up in Section 4.3; specifically

the issues of image quality and time synchronization. For the issue of image

quality versus automatic interval, this could be addressed a number of ways.

One option is to have a selectable mode for the mobile application where the

user can decide the quality of image they want to capture for a given event

and be restricted on the minimum interval of capture; if this mode were cap-

tured in the event object, then all users would be constrained to this mode and

therefore the data produced by all users would be consistent. Alternatively

this di↵erentiation in functionality could be licensed separately in the same

application or di↵erent-grade applications; one could be provided free in the

marketplace to attract users and the other provided at a cost. The application

would have to be modified to be able to upload the larger pictures in back-

ground processes if it is minimized, and the server could be modified to have a

di↵erent set of services–and hence a di↵erent way to persist the data–based on

the mobile application’s mode of operation. The chosen mode would also af-

fect the visualization client’s performance regarding the retrieval of image data

from the server, as well as image processing. We envision an initially available

product supporting the rapid capture mode and lower-quality images.

The issue with time synchronization is considered of lesser priority and

48



may be seen as a future enhancement to an initial deployment. As stated pre-

viously in the report there are other means for accommodating the potential

anomalies of images inaccurately synchronized, namely using image process-

ing techniques. Another option is to add a layer to the mobile application

stack which is responsible for synchronizing to a common time source via well-

established Network Time Protocols (NTPs); this layer could then serve as

the local clock for synchronized event capture. The approach taken should

consider whether the computation should be pushed to the mobile application

or the client application. Considering that mobile devices run on batteries,

an additional process would only drain the charge more rapidly. On the other

hand, more accurately synchronized data would enable more seamlessly in-

tegrated scenes and require less in complex processing algorithms. A more

thorough treatment by users with an initial release may provide the necessary

feedback to determine the course to take.

Finally we present a concept for functionality in a future generation of

Revolver. Up to this point, the report has described the capture of discrete

data-units in the form of images for the construction of scenes. It may some day

be desirable for Revolver to capture video between users synchronously. We

feel the challenges for such a use-case are deep and wide and we have provided

some guiding questions in Appendix C as a starting point for exploration.
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Appendix A

User Interfaces

This appendix provides screen-captures of User Interface (UI) imple-

mentations from the prototype e↵ort.

A.1 Mobile UI

(a) Login redirect (b) Authenticaiton from browser

Figure A.1: Authentication
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(a) Required permissions (b) Optional permissions

Figure A.2: Permissions

(a) Event list (b) Schedule details

Figure A.3: Scheduling
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(a) Date picker (b) Time picker

Figure A.4: Date and time selection

Figure A.5: Selecting mode
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Figure A.6: Inviting contributors

(a) Scheduled event (b) Preview and capture controls

Figure A.7: Event capture
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A.2 Server UI

Figure A.8: Web scheduling
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Figure A.9: Web viewing
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A.3 Client UI

Figure A.10: Transformed image presentation
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Figure A.11: Image at map location
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Appendix B

Measurements

This appendix provides measurement results in support of the analysis

of prototype implementation.

B.1 Communication Measurements

This section provides a comparison of the measured round trip for com-

munication from the time the mobile device initiates upload of a moment to

the time the server responds; the comparison is between Wi-Fi and 3G net-

works. Table B.1 shows the mean and standard deviation for each network

from a sample-size of 10 measured in seconds and Figure B.1 shows the nor-

mal distributions of each. The interval between upload was one second; upload

occurred concurrently to capture operation is asynchronous thread.
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Table B.1: Statistical results for Wi-Fi and 3G

Wi-Fi 3G
Mean 0.786 1.352

St. Dev. 0.160 0.420

Figure B.1: Normal distributions for Wi-Fi & 3G

B.2 Software Measurements

This section provides Lines of Code (LOC) measurements1 for the var-

ious prototype implementations supporting this report. It is divided between

mobile and server applications and the sub-subsections are titled in the form

year/platform/language indicating year prototype was implemented, execution

environment or platform, and primary language of implementation.

1Measurements performed using CLOC (http://cloc.sourceforge.net)
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B.2.1 Mobile Application Prototypes

B.2.1.1 2011/Android/Java

18 text files.

18 unique files.

5 files ignored.

--------------------------------------------------

Language files blank comment code

--------------------------------------------------

Java 7 88 4 652

XML 6 21 0 115

--------------------------------------------------

SUM: 13 109 4 767

--------------------------------------------------

B.2.1.2 2012/iOS/Objective-C2

32 text files.

32 unique files.

7 files ignored.

--------------------------------------------------

Language files blank comment code

--------------------------------------------------

Objective C 13 234 156 923

2Additional code for UI controllers.
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C/C++ Header 12 84 85 129

--------------------------------------------------

SUM: 25 318 241 1052

--------------------------------------------------

B.2.2 Server Application Prototypes

B.2.2.1 2011/GAE/Java

17 text files.

17 unique files.

7 files ignored.

--------------------------------------------------

Language files blank comment code

--------------------------------------------------

Java 5 51 1 375

JSP 2 5 0 157

XML 3 8 6 57

--------------------------------------------------

SUM: 10 64 7 589

--------------------------------------------------

B.2.2.2 2012/GAE/Python

11 text files.

11 unique files.
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126 files ignored.

--------------------------------------------------

Language files blank comment code

--------------------------------------------------

Python 3 14 25 142

HTML 2 0 0 129

YAML 2 4 0 23

--------------------------------------------------

SUM: 7 18 25 294

--------------------------------------------------

B.2.2.3 2012/MAMP/PHP3

14 text files.

14 unique files.

65 files ignored.

--------------------------------------------------

Language files blank comment code

--------------------------------------------------

PHP 4 12 0 75

SQL 1 5 3 27

XML 1 0 0 7

--------------------------------------------------

3Data transfer/persistence prototype; no UI.
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SUM: 6 17 3 109

--------------------------------------------------

B.2.3 Client Application Prototypes

B.2.3.1 2012/JRE/Java

6 text files.

6 unique files.

1959 files ignored.

--------------------------------------------------

Language files blank comment code

--------------------------------------------------

Java 2 23 0 142

--------------------------------------------------

SUM: 2 23 0 142

--------------------------------------------------
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Appendix C

Future Work

This appendix provides supplementary specifications, design artifacts,

or implementation details to serve as a basis for continued research and devel-

opment on Revolver.

C.1 Mobile Nodes

C.1.1 Design

It was desirable to prototype a mode of the mobile-device application

that could capture continuous (video) moment-data but this would have ex-

panded the envisioned scope of the report. Figure C.1 depicts the envisioned

behavior for this mode and Figure C.2 suggests an entity-relationship between

the video data and meta-data. Many technical and theoretical challenges

emerge when questioning this mode of behavior:

• Should there be any limits on how much video data should be captured

per session?

• How much would this mode increase the drain on power-supply for de-

vices?
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• How frequently should moment meta-data be captured? What are the

challenges of synchronizing the meta-data with frames of the video?

• How can the data be uploaded to the server while it is still being captured

(incrementally and concurrently)? Would the upload have to wait until

the session was done? If so, could the device upload in the background

while the application is inactive?

• How could the visual data be presented?

• Could the audio data also be captured and presented? What kind of pro-

cessing would be involved in synchronizing and combining the multiple

audio sources?

We feel even more questions could be asked about this proposition, and a

considerable amount of time could be spent trying to answer them all, so this

concept has been shelved for potential future e↵ort.
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Figure C.1: Movie capture mode behavior

Figure C.2: Event entity model (movie capture mode)
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