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Background

Whenever a resource is shared, it needs to be scheduled

• Student wants to take set of classes, which have

precedence constraints

– cannot take more than k classes per semester; how

fast can he graduate?

• Select times for final exams

– don’t schedule two finals at the same time if a

student is taking two classes, what’s the smallest

number of slots?
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Best-effort vs. guaranteed services

Networks carry two kinds of applications:

• “elastic” “best-effort” — relatively insensitive to

performance (e.g., file transfer)

• “guaranteed services” — need performance bounds

(e.g., voice)

– notion of a “connection” ⇒ need resource

reservation (on-the-fly, or at call establishment, or

in advance)
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Even for best-effort traffic, though no performance bounds

needed, would like “fair” allocation

Simplest scheduling discipline is FCFS with tail drop

• easy to implement, cannot improve upon mean delay of

FCFS

• offers no protection
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Scheduler requirements

• easy to implement

• offer fairness and protection

• give performance bounds

• easy and fast admission control

Measure complexity as a function of N , the number of

simultaneous connections
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Max-min fair share

Divide scarce resource among a set of users

• each has equal right, but some demand less

Idea of max-min fair share: users with small demand get

what they want, remainder equally balanced
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Max-min fair share

Sources numbered 1 . . . n, resource demands x1, . . . , xn,

service capacity C

• WLOG assume x1 < x2, · · · < xn

Give C/n to source 1; if more than x1, divide c/n − x1

equally amnesty rest

• iterate over sources 2, . . . , n

Generalize to weights on sources w1, . . . , wn

• normalize the weights, give to sources in proportion to

its weight
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Local/global scheduling

The above scheduling is local to the router

• what does it achieve globally?

If each connection limits its usage to the smallest locally

fair allocation, the allocation is globally fair

• because of propagation delays, may not track perfectly
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Performance parameters

• Bandwidth bound for pre-specified connections

• Delay bounds

– worst case

– average case (need to consider all possible arrivals

for other connections — almost impossible to

compute analytically)

–

– 99%ile

– delay jitter (max - min)

• loss bound
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Some options

• number of priority levels

– each connection has a priority level, serve higher

priority packets first

– easy to implement, low state overhead

– no protection within class

• work conserving/nonwork conserving

– may be useful — reduce burstiness downstream
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GPS

Generalized Processor Sharing

• N connections with equal weights — N queues

Logically, serve infinitesimal amount from each queue

• skip empty queues

Achieves max-min fair share

• in presence of weights, serve wi · dt

Packets aren’t real numbers ⇒ unimplementable.
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Weighted Round Robin

• when packet sizes same and weights are equal

– serve a packet from each nonempty queue ⇒ good

approximation to GPS

• WRR with equal sized packets: normalize weights,

round time is sum of weights

– Example — 0.5, 0.75, 1.0 ⇒ 2, 3, 4

– serve 2 packets from first, 3 from second, 4 from

third in each round

• different sized packets — divide weight by mean size

Problems: (1.) hard to know mean size, (2.) fair only over

a round (which could be long)

Interconnection Networks Scheduling 12 of 22



'

&

$

%

Deficit Round Robin

For variable sized packets when mean size not known in

advance

• scheduler has a “deficit counter” for each connection

– there is a fixed “quantum” size (say 1000 bytes)

– serve packet if it’s smaller than quantum size, else

add quantum to deficit counter

– if quantum size + deficit counter > packet size,

send packet, subtract packet size from deficit

counter

– set deficit counter to 0 if queue is empty

– setting quantum size to at least max packet size

keep scheduler work conserving
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Large frame size: 45 MBps, 500 connections, 8 kByte pkts

⇒ frame size is 725 ms

Weighted Fair Queueing: compute GPS finish times to

determine service order
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Efficient Implementation of Timers

Many applications, including packet scheduling

Timer module has 3 components:

• startTimer( interval, reqID, expiryAction );

(interval relative or absolute)

• stopTimer( reqID );

• perTickBookkeeping();

First two client calls; third called every one time unit.

Two performance measures for these functions (measured

by n, number of outstanding timers):

• memory used

• time taken
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Scheme I

One memory location per timer: startTimer and stopTimer

trivial

• perTickBookkeeping — decrement each outstanding

timer

– becomes 0 — call appropriate expiry action

perTickBookkeeping as very high cost, especially when

timers last a long time. Good when few timers/stop

soon/custom hardware.
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Scheme II

Keep ordered list of timers

• store absolute time in ordered list

• at each tick examine head

startTimer has Θ(n) time complexity
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Scheme III

Basically, we’re implementing a priority queue with deletes:

• use a balanced binary search tree (AVL, red-black, etc.)

startTimer, perTickBookkeeping, stopTimer take O(log n)

• stopTimer doesn’t have to be supported ⇒ heap suffices

O(log n)
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Scheme IV

Timing wheel — insert timers into an array of lists

• overflow list for timers beyond end of the array

Each cycle is N units: suppose S cycles so far, and pointer

points to j — current time is N · S + j

• increment current time pointer modulo N ; if it wraps to

0, check overflow list, add to array of lists

• if all time intervals are less than MaxInterval, just wrap

around

More likely to insert in overflow lists as reach end ⇒ spin

around every N/2 units

Good when: (1.) short intervals, (2.) few cancellations
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Schemes V & VI

V: analogous to hashing

• 32 bit timer, table with 256 entries

• last 8 bits are 00010100 (dec 20), current pointer is

10, store at location 30

– keep sorted collision chain

Avg time for all is O(1)

VI: unsorted collision chains ⇒ perTickBookkeeping is O(1)

on average, O(n) over n ticks guaranteed
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Scheme VII

Use hierarchy (odometer approach)

Here’s how to encode 8.64 million possible times with only

244 memory locations:

• 100 elt array for days

• 24 elt array for hours

• 60 elt array for minutes

• 60 elt array for seconds
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Current time is 11 days, 10 hours, 24 mins, 30 secs

• set timer for 50 mins, 45 secs in future

– calculate: expires at 11/11/15/15

– insert into list at 1 ahead of current hour, store 15

mins/15 secs at this location

– update minutes at this hour

• startTimer and stopTimer take O(m), where m is the

number of hierarchy levels — 2 to 5
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