4 N

Many different approaches: software/hardware,
space/time/power, update complexity

e data structures are large = need to store in DRAM

e minimize number of DRAM accesses (added arithmetic,
indexing, etc. is acceptable)

What's the difference between latches, SRAMs, DRAMs?
e Latches: very large

e RAMS: regular wiring, complex peripheral circuits,
senseamps
— SRAMSs: actively driven wires

— DRAMSs: capacitor holds bit

- /

Interconnection Networks

Software-based IP forwarding 3 of 15

Trie-based forwarding I

table?
Trie: data structure for fast lookups
e Example on page 493, TAOCP-Knuth vol 3

e Can reduce storage significantly (albeit with higher
build time, runtime, complexity)

_

Question: why can't we use a binary search tree, or a hash

/

Interconnection Networks Software-based IP forwarding

4 of 15

4 N

Software-based IP forwarding

Adnan Aziz
The University of Texas

adnan@ece.utexas.edu

Excellent survey in Radia Periman’s “Interconnections:
Second Edition,” Chapter 13, Addison-Wesley, 2000.

- /

Interconnection Networks

Software-based IP forwarding 1 of 15

/

Routing software come up with an optimized “forwarding
table”

o {(*,2), (1x,0), (0%, 1), (00%, 3), (110%, 1), (000%, 1), ...}

Router selects which output link to forward incoming
packet to based on destination IP address

e select based on longest prefix matched in forwarding
table

\

\

/

Interconnection Networks Software-based IP forwarding

2 of 15

g

What if we wanted to query 16 bits at a time?
e 216 nodes, each having 2'¢ children, etc.

e huge number of repeated nodes = lots of memory
array’
exact match, or follows a 1-padded prefix

info as closest entry on left with bit set to 1

_

e keep separate “info-array” for all nodes in range

Lulea solution: keep bit vector of length 2!¢ at node “child

e set bit iff node corresponds to a O-padded prefix, or an

Key idea: all entries with a 0 in the child array have same

/

Interconnection Networks Software-based IP forwarding

7 of 15

4 N

How to index into “info-array”?
e count number of bits set to 1 on your left

e keep extra space in child array, say every 64 bits
— entry holds number of 1s to left, add count of
number of 1s to 64 bit chunk

Reference: Degermark, et al., “Small forwarding tables for
fast routing lookups,” ACM Sigcomm, 1998

_

/

Interconnection Networks Software-based IP forwarding

8 of 15

-~

Can use trie to perform longest prefix matching: store
pointer to longest current match

Example forwarding table —
{*,00%,0001%,11%,101%,0101%,111%,10100x}

e complexity — independent of the number of prefixes

e storage requirement?

\

\

/

Interconnection Networks Software-based IP forwarding

5 of 15

-~

Optimization 1: avoid one-way branching by keeping
number of bits to skip over

e Patricia — don't store keys at nodes
Optimization 2: query multiple bits

e prefix capture problem — expand x,10%, 100, 1000 to
four bits?

e time-space tradeoff: compute optimum points using
dynamic programming

References:
e Knuth, vol. 3, TAOCP, pages 492-512

e Srinivasan and Varghese, “Faster IP Lookups Using
Controlled Prefix Expansion,” ACM Sigmetrics, 1998

\

Interconnection Networks Software-based IP forwarding

6 of 15

4 N

Optimizations:

e build custom made hash function for each prefix length

— try out several seeds till one gives say no more than
3 collisions

— store chains as array, retrieve all in one probe

e don't need to keep marker at all shorter prefixes for a
prefix

— Ex. if best match is 0011 1011 0000 1111 101,
probe sequence is 16 (marker), 24 (empty), 20
(empty), 18 (marker), 19

4 N

More optimizations:
e exploit statistics, perform asymmetric search
e mutating binary search
e initial array lookup

Summary — perform lookup in 80ns

Reference: M. Waldvogel, et al., “Scalable High Speed IP
Routing Lookups,” ACM Sigcomm, 1997

_

/

Interconnection Networks

Software-based IP forwarding 11 of 15

_

/

Interconnection Networks

Software-based IP forwarding

12 of 15

-~

\

-~

\

Interconnection Networks

Binary search on prefix Iengths'

Can use 32 different hash tables (actually fewer, some
prefix lengths don’t exists)

e linear search (longest to shortest)
Why can’t we do binary search on the tables?

e suppose we have a 19 bit prefix
0011 1011 0000 1111 101, but no proper prefix of it in
table

— start by searching for 16 bit prefix
0011 1011 0000 1111 = problem

- /

Software-based IP forwarding 9 of 15

Need a “marker’ — something to indicate that there exists
a longer prefix with that 16 bit prefix

e store 0011 1011 0000 1111& in table 16

What happens if destination IP matches
0011 1011 0000 1111 but not 0011 1011 0000 1111 1017

e along with marker, keep longest prefix of marker prefix
that is in forwarding table

e Ex. if 0011 1011 in database, but nothing else till
0011 1011 0000 1111 101, then keep
(0011 1011 0000 1111&.,8) in table 16

Interconnection Networks

- /

Software-based IP forwarding 10 of 15

4 N

10111

Search for 1100(0) — end just to right of)

e which interval does it match? walk left, match parens
till reach corresponding left parens

e can precompute the interval
Complexity — N prefixes = about lg N DRAM accesses
e N = 60000 need 16 DRAM accesses

Reference: B. Lampson, et al., “IP Lookups using Multiway
and Multicolum Search,” IEEE Infocom, 1998

- /

Interconnection Networks Software-based IP forwarding 15 of 15

/ \ /Keep simple — use 4 bit IP addresses \

e How to deal with 4 bit prefixes? Add dummy 5-th bit,

Binary search on array. so all prefixes correspond to two distinct end points

Problem: interval endpoints may overlap

Intuition: think of 32 bit IP address as binary encoding of a e 10% and 1000% both start at 10000

number in [0, 1)
Solution: make 10000 less than 10000, 10111 greater than 10001

e prefix corresponds to an interval
Example: for prefixes = %,1,10,100,101,1110, address ranges

e proposition: given two prefixes p, g either their intervals are

are disjoint, or one contains other
00000 10000 10000 10000 10011 10100 10111 10111 11100 11101 11111 11111

Natural to think of binary search array of interval end points C C C Yy 9y >y

e some technical issues have to be addressed 10000
Search for 1001(0) — end just to right of (

\ / \ e matches 100 /

Interconnection Networks Software-based IP forwarding 13 of 15 Interconnection Networks Software-based IP forwarding 14 of 15

