Kevin E. Allen

Practice of Programming

Assignment 2

1 July, 2004

Test Environment for all runs:

Intel P4-2800

1GB RAM

Windows XP Professional

Java 1.4.0 Build 3

CygWin GCC v3.3.1

Exercise 2-2
Classes:

POPCh2Ex2.java

StringCompare.java

IntCompare.java

POPAssign2Util.java

Results: No appreciable difference was found in speed between the comparison method which referenced an Object array and cast the results, and a direct reference to arrays of String or Integer.
All results average over 30 runs

32 elements:

 String natural : 0

 String cast : 0

 Integer natural: 0

 Integer cast : 0

64 elements:

 String natural : 0

 String cast : 0

 Integer natural: 0

 Integer cast : 0

128 elements:

 String natural : 0

 String cast : 0

 Integer natural: 0

 Integer cast : 0

256 elements:

 String natural : 0

 String cast : 0

 Integer natural: 0

 Integer cast : 0

512 elements:

 String natural : 0

 String cast : 0

 Integer natural: 0

 Integer cast : 0

1024 elements:

 String natural : 0

 String cast : 0

 Integer natural: 0

 Integer cast : 0

2048 elements:

 String natural : 1

 String cast : 2

 Integer natural: 1

 Integer cast : 1

4096 elements:

 String natural : 7

 String cast : 7

 Integer natural: 2

 Integer cast : 3

8192 elements:

 String natural : 18

 String cast : 18

 Integer natural: 6

 Integer cast : 9

16384 elements:

 String natural : 50

 String cast : 49

 Integer natural: 16

 Integer cast : 20

32768 elements:

 String natural : 130

 String cast : 125

 Integer natural: 43

 Integer cast : 43

65536 elements:

 String natural : 325

 String cast : 323

 Integer natural: 116

 Integer cast : 113

131072 elements:

 String natural : 802

 String cast : 804

 Integer natural: 305

 Integer cast : 294

Exercise 2-3

Source file:

POPCh2Ex3.c

Forcing a bad result on the qsort() routine proved very difficult. It dealt well with the standard problem of an already-sorted list, and even handled a reversed list. Even a list full of identical elements were sorted quickly.

Results:

Randomly generated, 131072 elements: 166 ms

Presorted, 131072 elements: 53 ms

Reverse sorted, 131072 elements: 52 ms

Identical, 131072 elements: 5 ms

Alternating, 131072 elements: 11 ms
Exercise 2-5

A call to realloc() should not be necessary following the deletion of an element in the array. Though this will technically free the now-empty memory, doing so is inconsistent with the overall implementation of the expandable array. The operational concept for the expandable array is to claim memory in advance so it is available when it is needed. It is better to simply leave the empty element as one which can be used in the future.

Use of realloc() could also have a performance impact. By removing the deleted element from the available array, the size of the array has shrunk. This could lead to additional grow operations which might not have been necessary otherwise.
Exercise 2-6
int addname(Nameval newname) {

 Nameval *nvp;

 int index;

 if (nvtab.nameval == NULL) { /* First use - initialize */

 nvtab.nameval = (Nameval *) malloc(NVINIT * sizeof(Nameval));

 if (nvtab.nameval == null) {

 return -1;

 }

 nvtab.max = NVINIT;

 }

 for (index = 0; index < nvtab.max &&
 nvtab.nameval[index] == NULL; index++)

 ;

 if (index == nvtab.max) { /* Reached end of the array, grow */

 nvp = (Nameval *) realloc(nvtab.nameval, (NVGROW * nvtab.max) *

 sizeof(Nameval));

 if (nvp == NULL) {

 return -1;

 }

 nvtab.max *= NVGROW;

 nvtab.nameval = nvp;

 }

 nvtab.nameval[index] = newname;

 return index;

}

int delname (char *name) {

 int i;

 for (i = 0; i < nvtab.max; i++) {

 if (strcmp(nvtab.nameval[i].name, name) == 0) {

 nvtab.nameval[i].name = NULL;

 return 1;

 }

 }

 return 0;

}
Impact: This largest impact of this change would be in the area of performance. Individual elements of the array cannot be referenced stably in either implementation; in the original the indexes may move when there is a deletion; in the above, elements may be deleted and overwritten. Functionally, there is no change.
The addname() method has gone from being O(1) to O(n), where n is the current maximum size of the array. delname() is O(n) in both implementations, but will be faster in the above due to removal of the memmove() operation.
Exercise 2-9

Source file:

POPCh2Ex9.c

Implementation of the generic list in C was difficult, and even once accomplished is far inferior to the Java implementation. With the C generic list, even though the list can be used for multiple types, several functions must be implemented for each type which the list will hold. Additionally, because there is no ability to detect the type of pointer at runtime (as with instanceof), it is impossible to mix different types in the same list.
Results:

String List:

Test

Test2

Hello

Lookup 0: Test

Lookup 1: Test2

Lookup 2: Hello

Integer list:

11

5

9

Lookup 0: 11

Lookup 1: 5

Lookup 2: 9

Exercise 2-12

Classes:

POPCh2Ex12.java

POPAssign2Util.java

DataTree.java

DataTreeNode.java

Results: The sort using the binary tree remains nlogn. Inserting an element is an O(logn) operation, which must be conducted once for each element in order to create the tree. Extracting the sorted list must be done for every element in the tree, O(n). So, O(nlogn) + O(n) remains O(nlogn).

Compared to the quicksort implemented above, this method is much slower. This is not definitive, as a different comparison method was used, but even though the asymptotic performance is the same, there is more work being done via this method.

One result not seen in the quicksort implementation is the consistently longer sort time for Strings than Integers. This is likely due to the implementation of String.compareTo().

All results average over 30 runs

32 elements:

 String : 0

 Integer: 0

64 elements:

 String : 0

 Integer: 0

128 elements:

 String : 0

 Integer: 0

256 elements:

 String : 0

 Integer: 0

512 elements:

 String : 1

 Integer: 1

1024 elements:

 String : 1

 Integer: 1

2048 elements:

 String : 2

 Integer: 3

4096 elements:

 String : 6

 Integer: 7

8192 elements:

 String : 19

 Integer: 12

16384 elements:

 String : 50

 Integer: 30

32768 elements:

 String : 145

 Integer: 75

65536 elements:

 String : 407

 Integer: 221

131072 elements:

 String : 1133

 Integer: 615

The core Java API provides a sort method in java.util.Collections.sort(). It works against the Collections framework objects, and is implemented using a modified merge sort. It showed better performance than either of my other implemented sorts, though the difference was more notable when sorting Strings than Integers.

The merge sort results also show the increased search times for Strings over Integers, supporting the idea that this is a result of the implementation of the Comparable interface.
All results average over 30 runs

32 elements:

 String : 1

 Integer: 0

64 elements:

 String : 1

 Integer: 0

128 elements:

 String : 1

 Integer: 0

256 elements:

 String : 1

 Integer: 0

512 elements:

 String : 2

 Integer: 0

1024 elements:

 String : 3

 Integer: 1

2048 elements:

 String : 4

 Integer: 1

4096 elements:

 String : 8

 Integer: 4

8192 elements:

 String : 20

 Integer: 9

16384 elements:

 String : 44

 Integer: 18

32768 elements:

 String : 101

 Integer: 43

65536 elements:

 String : 244

 Integer: 100

131072 elements:

 String : 573

 Integer: 244

Exercise 2-14
Classes:

HashTest.java

Constructing a bad data set for the hashing algorithm given was difficult, and required manipulation of other settings of the hash table.

In searching for a bad dataset, I realized that any character whose index had NHASH as a factor would be effectively excluded from the hash code computation. With NHASH set to a value of 19, this included the characters & 9 L _ and r. A single-character string using any of these characters returns 0 from the hashcode() method, and any string whose only difference is replacing one of these characters with another will return the same hashcode. They still act as placeholders, however, so while ab9cd and abLcd will return the same value, ab9cd and abcLd will not.

Manipulating the value of NHASH was essential to the creation of the bad data, and the lower value of NHASH creates more factored characters, with accordingly more bad value possibilities. Given the size of the Unicode character set, however, this effect can still occur even with larger values of NHASH, though it is unlikely to have any effect on the practical performance of the hashing method.
Results:

 & 9 L _ r ? ? «

0

0

0

0

0

2

2

6

6

Exercise 2-16

Classes:

NameValNode.java

NameValHashtable.java

Results:

Length before: 1039

Lookups before:

1

5

10

15

Length after: 2078

Lookups before:

1

5

10

15

