
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 10, OCTOBER 2000 1149

Sequential Synthesis Using S1S
Adnan Aziz, Felice Balarin, Member, IEEE, Robert K. Brayton, Fellow, IEEE, and

Alberto Sangiovanni-Vincentelli, Fellow, IEEE

Abstract—We propose the use of the logic S1S as a mathemat-
ical framework for studying the synthesis of sequential designs. We
will show that this leads to simple and mathematically elegant solu-
tions to problems arising in the synthesis and optimization of syn-
chronous digital hardware. Specifically, we derive a logical expres-
sion which yields a single finite state automaton characterizing the
set of implementations that can replace a component of a larger
design. The power of our approach is demonstrated by the fact
that it generalizes immediately to arbitrary interconnection topolo-
gies, and to designs containing nondeterminism and fairness. We
also describe control aspects of sequential synthesis and relate con-
troller realizability to classical work on program synthesis and tree
automata.

Index Terms—Automata theory, discrete control, mathematical
logic, sequential logic synthesis.

I. INTRODUCTION

T HE advent of modern VLSI CAD tools has radically
changed the process of designing digital systems. The

first CAD tools automated the final stages of design, such as
placement and routing. As the low level steps became better
understood, the focus shifted to the higher stages. In particular
logic synthesis, the science of optimizing gate level designs
for measures such as area, speed, or power, has shifted to the
forefront of CAD research.

Logic synthesis algorithms originally targeted the optimiza-
tion of two-level logic; this was followed by research in synthe-
sizing more general multilevel logic. Currently, a major thrust in
logic synthesis is sequential synthesis, i.e., the automatic opti-
mization of the entire system. This is for designs specified at the
structural level in the form of netlists, or at the behavioral level,
i.e., in the form of finite state machines (FSMs). De Micheli [21]
gives an excellent introduction to logic synthesis.

Designs invariably consist of a set of interacting components.
The environment of a particular component gives rise to a cer-
tain amount of flexibility when implementing it; this flexibility
can be exploited by optimization tools. For example, a datalink
controller interacting with a bus operating in single processor
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mode may never see requests on consecutive cycles. This may
help simplify the logical circuitry associated with the datalink
controller.

Typically, the synthesis process has two stages: First, the set
of all possible implementations is characterized using some fi-
nite structure (which is the topic of this paper); consequently,
one is chosen according to some optimality criteria (e.g., min-
imum state [15]). For combinational designs, the problem of
determining and using the flexibility afforded by “don’t care”
conditions is well solved both in theory and practice [28].

We propose the use of the logic S1S as a mathematical frame-
work for studying the synthesis of sequential designs. We will
show that this leads to simple and mathematically elegant so-
lutions to problems arising in the synthesis and optimization of
synchronous digital hardware. Specifically, we derive a logical
expression which yields a single finite state automaton charac-
terizing the set of implementations that can replace a particular
component which is part of a larger design. The power of our
approach is seen by the fact that it can be applied to designs
containing nondeterminism and fairness [8], [18], and also to
arbitrary interconnection topologies.

Optimization of compositional designs may result in com-
binational cycles, i.e., loops consisting solely of gates. Even
though such loops can sometimes be used to optimize circuits, it
is considered good design practice to avoid them, because cyclic
circuits are difficult to analyze, and can have undesired oscilla-
tory behaviors [3], [19], [29]. Guided by design practice, we
identify flexibility available for synthesis while ensuring that
cycles of logic will not be introduced by optimization.

The term “synthesis” is used in the theoretical computer sci-
ence community to describe the process of taking a logical spec-
ification, and checking if there exists a model which satisfies it.
The model depends on the context; for example, it could be a
Turing machine program [20], a finite state transducer [23], or
a dataflow graph [1]. The issues involved in this discipline in-
clude decidability, complexity, and expressiveness of the spec-
ification language. In this paper we will be mostly concerned
with the optimization problem; we will make a connection to
program synthesis.

Previous work in the VLSI design automation community re-
lated to optimizing interacting sequential designs has tended to
be ad hoc, incomplete, and, sometimes, simply incorrect. The
constructions and proofs offered are often extremely cumber-
some. This is witnessed by a number of previous papers [10],
[26], [5], [17], [33]–[35].

Similar problems have been considered in the control com-
munity under the label “model matching” [6], in the discrete
event system (DES) community under the label “supervisory
control” [37] [25], and in concurrency theory they appear as
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“scheduler synthesis” [36] and “equation solving” [22]. Com-
pared to model matching approaches [6] we limit somewhat the
choice of possible controllers. The limitation is not serious in
hardware context, because it rules out only those circuits that
result in a loop of combinational gates when composed (as pre-
viously remarked, avoiding combinational loops is considered
good design practice). On the positive side, we allow more gen-
eral specifications and provide a uniform methodology that is
applicable to various model matching problems. This general
framework also strictly subsumes the problem considered in
[35]. Compared to supervisory control of DES [25], our ap-
proach offers the advantage of being compatible with FSM tech-
niques that have seen continuous developments in the past three
decades (e.g., [16] and [35]), provides more natural model of
reactive system, and allows significantly simpler development
of results.

We have chosen input-output language containment as a cor-
rectness criterion because it allows loose specifications, where
a range of behaviors may be acceptable. Here, we differ from
most of the previous approaches in the process algebra settings,
where a much stronger relation, typically some form of bisim-
ulation equivalence is used [22]. The exception is [14] which
offers a general framework where the satisfaction relation is not
set a priori, but can be defined by a formula in a logic that can
express, among other relations, both simulation and bisimula-
tion. However, the procedure presented in [14] generates only
a single solution. We believe that it is advantageous to separate
the solution process in two stages: first, all the possible solutions
are characterized, and then one is chosen according to some op-
timality criteria.

The rest of this paper is structured as follows: in Section II
we give definitions, in particular those connected to hardware,
design composition, and fairness. In Section III, we review S1S
logic and finite state automata, and use these notions to assign
semantics to hardware. In Section IV, we use S1S to logically
characterize the flexibility that can be used to optimize compo-
nents in hierarchical designs. The relationship to the more clas-
sical view of program synthesis in the form of Church’s problem
[24], automata on trees, and fairness is described in Section V.
We summarize our contributions in Section VI and suggest a
number of ways of extending our results.

II. FORMAL MODELS FORHARDWARE

In order to be able to formally reason about hardware, we
need to develop mathematical models for digital systems. In
this section, we develop two formalisms for expressing designs,
namely FSMs and netlists. FSMs are more abstract—they cor-
respond to the behavioral specification as given by the designer.
Netlists are “structural”—they are closer to the actual imple-
mentation.

A. Sequences

A finite sequenceon a set is a function whose range is
and domain is a prefix of the set of natural numbers,

. An infinite sequence(which we will interchange-
ably refer to as an -sequence) on is a function mapping to

. We will denote the finite sequenceby ;

an infinite sequence will be written as . Given a
sequence (finite or infinite), we will denote by the th el-
ement in the sequence, i.e., . The elements of the range that
occur infinitely often in an infinite sequencewill be denoted
by inf . Thelengthof a finite sequence is the cardinality
of its domain, and will be denoted by.

Given any sequence (finite or infinite) and natural
number , the th prefix of is the finite sequence

; it will be denoted by .
The set of all finite sequences over a setis denoted by ;

the set of all infinite sequences overwill be denoted by .
Subsets of will be referred to as -languages; subsets of
will be referred to as -languages.

B. FSMs

FSMs provide a natural way of describing systems in which
the output depends not only on the current input, but also on past
values of the input, while possessing only a bounded amount of
memory. FSMs are described in [13, p. 42]; below we develop
enough theory to suffice for this paper.

Definition 1: An FSM is a six-tuple where
is a finite set referred to as thestates, is the initial

state, and are finite sets referred to as the set ofinputsand
outputsrespectively, is thenext-state function,
and is theoutput function.

The next-state function can be inductively extended to yield
the function

when

otherwise

An FSM can be represented graphically by a directed finite
graph, referred to as astate transition graph, where the ver-
tices correspond to states. The edges are labeled with input-
output value pairs—the input value enables the transition, and
the output value is produced. The destination node of the edge
represents the next state for that input value. This is illustrated
in Fig. 1(b).

Given a state and sequence of inputs , we
will refer to the sequence of states as being the
run (sometimes referred to as thepath) starting at on input
iff for all , we have . The output sequence

correspondsto iff for all , we have
.

C. Netlists

A netlist is a representation of a design at thestructural level
which is closer to the actual implementation of the design than
FSMs, which can be viewed as behavioral level descriptions of
the design.

Definition 2: A netlist is a directed graph, where the nodes
correspond to elementary circuit elements, and the edges corre-
spond to wires connecting these elements. Each node is labeled
with a distinct variable . The three primitive circuit elements
areprimary inputs, latches, andgates. Primary input nodes have
no fanins; latches have a single input. Each latch has a desig-
nated initial value. Associated with each gateis a Boolean
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Fig. 1. Fig. 1 (a) A netlist and (b) its corresponding FSM.

Fig. 2. Composing netlists.

function of its fanins’ variables. A subset of the set of nodes is
designated as being set ofprimary outputs.

For the reasons given in Section I, we require that every cycle
in a netlist to include at least one latch (i.e., there are no combi-
national cycles).

Fig. 1(a) provides a graphical depiction of a netlist. The node
is a primary input; nodes and are latches, and nodes

and are gates. The nodeis designated a primary output. In
this example, the node is driven solely by latches (i.e., there
is no path from an input node to which does not pass through
a latch), while the node is driven by both primary inputs and
latches.

Given a set of assignments to each primary input node and a
state, one can uniquely compute the values of each node in the
netlist by evaluating the functions at gates. In this way, a netlist

on inputs , outputs and latches
bears a natural correspondence to an FSMon

inputs , outputs , and state-space
, with an initial state given by the initial values for

latches. An example of this correspondence is given in Fig. 1.

D. Netlist Composition

Composition of two netlists consists of placing the two
netlists next to each other and connecting the nodes for primary
inputs and primary outputs which are specified by the composi-
tion. The primary inputs of the composed nelist are the primary
inputs of the original netlists which remain unconnected. A
subset of the primary outputs of the original netlists is desig-
nated as being the primary outputs of the composed netlist; the
remainder are said to behidden

This is illustrated in Fig. 2, where the inputs and are
“tied” to and respectively; is designated an output in
the composed design. As stated in the introduction, our notion of
composition is synchronous, i.e., all the latches are assumed to
be driven by a single clock and, hence, change state in lockstep.

Fig. 3. A four-state abstraction of a processor.

We will only consider netlist composition when it does not result
in combinational cycles.

A Moore netlist is a netlist where there is no path from an
input to an output which does not pass through a latch; it has the
property that no combinational cycles can result on composing
it with any netlist. The FSM derived from such a netlist has the
property that the output is purely a function of the state; such
FSMs are referred to as Moore machines.

E. Fairness

There are situations when a design cannot be captured using a
FSM by itself. Consider, for example, what happens when a pro-
cessor is abstracted to a four state machine which cycles through
idle, request, lock, andreleasestates, with the transition out of
lock being nondeterministic, as in Fig. 3. In order to model the
processor accurately, it may be desirable to specify the condi-
tion that it does not remain in the statelock forever. This cannot
be modeled using an FSM; afairnessconstraint must be speci-
fied as part of the design.

In this paper, we will take a very simple approach to fairness;
we will restrict our attention toBüchifairness. A Büchi fairness
condition is a subset of the state-space of the FSM.

Definition 3: An infinite path satisfies a Büchi fairness
condition iff inf has a nonempty intersection with.
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Fig. 4. Examples of finite state automata.

The path is fair relative to a set of Büchi fairness conditions
(collectively referred to as aBüchi fair-

ness constraint), iff it is fair with respect to each fairness con-
dition.

Fairness constraints on components of a design can be ex-
tended to fairness on the composed design: a path in the design
is fair exactly when it is fair with respect to each component.

III. FINITE STATE AUTOMATA AND S1S

We start this section by defining finite state automata. We
will then develop S1S which is the logical system concerned
with “second order” properties of the natural numbers with the
successor operation. We present a classical theorem of Büchi
which shows a surprising relationship between finite state au-
tomata and S1S. Thomas [31] provides an excellent survey of
the material covered in this section.

A. Finite State Automata

Definition 4: A finite state automaton is a four-tuple
where is a finite set called thealphabetwhose

elements are referred to assymbols, is a finite set referred to
as thestates, is the initial state, and
is the transition relation. The relation is required to be
completely specified, that is for every and , there is some
such that .

A run corresponding to a finite input sequence is a
sequence starting at such that for every , it is
the case that ; the notion of a run extends
naturally to the case whenis an -sequence.

One can represent a finite state automaton using a graph, as
shown in Fig. 4. Vertices correspond to states, the edge is
labeled with all symbols such that is an element of the
transition relation.

It is useful to classify finite state automata as beingdetermin-
istic andnondeterministic. An automaton is deterministic if for
all states and for all inputs there is exactly one statesuch
that ; otherwise it is nondeterministic. The automata

and in Fig. 4 are deterministic; is nondeterministic.
Note that nondeterminism may lead to multiple runs starting at
the initial state for a particular input word.

Now we describe how a finite state automaton, together with
an “acceptance conditions” can be used to specify languages.
This will be done for both -languages and-languages.

1) -automata:
Definition 5: A -automaton is a tuple , where

is a finite state automaton, and is the
set ofaccepting states.

The -language accepted by the-automaton is the set of
all sequences in such that there is a corresponding run
starting at for which , i.e., the last state in is an
accepting state.

As an example, for the-automaton ,
where is as given in Fig. 4, the-language accepted by
is the set of all sequences in which a (0,0) never appears at any
point after (1,1).

2) Properties of -automata: It is easy to test whether the
language accepted by a-automaton is nonempty—use depth
first search to see if there is an accepting state which is reachable
from the initial state.

Given languages and accepted by -automata
and , it is readily

seen that there exist-automata accepting the languages
and . The proof is by exhibiting the required-au-

tomata by theproduct construction: the automaton for
is simply

, where and
. A similar construction works for .

Given any nondeterministic -automaton
, there exists a deterministic automaton

which accepts exactly the same language. The proof
proceeds by the subset construction [13], which build a de-
terministic -automaton on state-space , which accepts
the same language. The complement of a language accepted
by a -automaton is also accepted by a-automaton. This
follows from the fact that for any -automaton, there exists
an equivalent deterministic-automaton; complementation of
deterministic -automata is trivial.

For a language over accepted by a -au-
tomaton , the projection of to consists of all
sequences for which there exists
a sequence such that the sequence

is a member of .
The projected language is also accepted by a-automaton:
there is a trivial construction to derive the accepting automaton
from —replace each transition label in by . We
refer to the resulting automaton as the projection ofto ;
note that projection can result in a nondeterministic automaton,
even when the original automaton was deterministic.

3) -automata: Informally, an -automaton differs from
a -automaton in that it operates on infinite rather than finite
sequences. Unlike -automata, -automata come in various
forms. We will concentrate on Büchi automata; details on the
other brands of -automata can be gleaned from the survey
article of Thomas [31].
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Definition 6: A Büchi automaton is a tuple , where
is a finite state automaton, and is the

set ofBüchi states.
The -language accepted by the Büchi automaton is the set

of all sequences in such that there is a corresponding run
starting at for which inf , i.e., there are

accepting states which occur infinitely often in.
For example, the Büchi language accepted by ,

where is as in Fig. 4, is the set of all sequences in which
a 1 occurs infinitely often at multiples of 3.

Properties of Büchi automata:It is easy to test whether the
language accepted by a Büchi-automaton is nonempty—check
for the existence of an accepting state which lies on a loop and
is reachable from the initial state.

Given languages and accepted by Büchi automata,
there exists Büchi automata accepting the languages
and ; a similar (albeit marginally more complex) con-
struction to that for -automata can be applied.

The complement of a language accepted by a Büchi au-
tomaton is also accepted by a Büchi automaton, although the
proof of this fact is nontrivial. An early proof [4] proceeds
by taking the (possibly nondeterministic) defining Büchi
automaton and creating a deterministic finite state automaton
with a “Muller” acceptance condition [31], which accepts the
same language; the need for a Muller acceptance condition
stems from the fact that deterministic Büchi automata are
strictly less expressive than nondeterministic Büchi automata.
Following this, complementation is relatively straightforward.
The determinization step, while similar in spirit to the subset
construction for -automata [13], is extremely complex. The
best known procedure [27] starts with a nondeterministic Büchi
automaton on states, and yields a Büchi automaton with

states in the worst case.
For an -language over accepted by a Büchi au-

tomaton, projected down to is also accepted by a Büchi
automaton; the construction is the same as for-automata.

B. S1S

S1S is a logical system concerned with “second order” prop-
erties of the set of natural numbers with the successor function;
the term “second order” refers to the fact that the logic refers
to both subsets as well as individual natural numbers. It was
studied in detail by Büchi in [2]; in particular it was shown to
be decidable. S1S provides an extremely powerful mechanism
for analyzing and manipulating sequential systems—the expres-
siveness of logic (conjunction, negation, and quantification) is
available to define sets of sequences.

Definition 7: S1S formulas are finite sequences over the fol-
lowing set:

The lower case variables are first order variables
ranging over elements of the natural numbers, and the upper
case variables are second order variables ranging
over subsets of the natural numbers.

We are now ready to describe the syntax yielding theterms
and thewell formed formulasof S1S logic. In the interests of

readability, we will abuse notation, e.g., we will refer to the for-
mula as .

• Terms: , where is a term.
Examples: 0, , .

• Well formed formulas:
, where and are terms, and and

are well-formed formulas.
Examples: , , ,

, .
A variable occursfreely in a formula, if it appears in the for-

mula, and is not quantified [9]. We write to
indicate that at most occur freely in .

In the sequel, we will refer to well formed formulas simply
as formulas. We will routinely use the symbols , etc.,
as logical abbreviations, and drop the use of parentheses unless
needed to avoid ambiguity.

We now consider the semantics of S1S. An S1S formula can
be interpreted over the structure consisting of the set of nat-
ural numbers, where the successor symbolis interpreted as
the function . In this way, a formula in
S1Sdefinesa set of subsets of, i.e., a subset of . The de-
fined set contains all such that the formula is
true when is assigned to be . More generally, formulas

define subsets of ; we will denote this
set by . Formal semantics of S1S can be
found in [31]; below, we illustrate the interpretation of formulas
by means of examples.

Example 1: Nonempty subsets of contain minimal ele-
ments

Example 2: The set of subsets ofwhich contain five when-
ever they contain three

Example 3: The set containing the set of even integers

Example 4: The binary relation on defined by
: every even number in is in

The set of -sequences on is in a natural one-to-one
correspondence with the set of subsets of; for example the
sequence corresponds to the subset . In
this way, an S1S formula definesan -language over the
alphabet .

The following result relates S1S formulas to-automata.
Theorem 3.1 (Büchi 1961):An -language on is de-

finable in S1S if and only if it is accepted by some Büchi au-
tomaton on alphabet .
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Fig. 5. Relating hardware to Büchi automata.

The right-to-left direction of the theorem follows from
a straightforward construction of a formula coding up the
transition structure of the automaton.

The left-to-right direction of the theorem is by induction on
the length of the S1S formula. Automata for the atomic formulas
are easily derived; an inductive construction is used for ,
and . The case of is handled by automaton projection,by
automaton intersection, andby automaton complementation,
as discussed in Section III-A2.

1) WS1S:With minor modifications, the formal treatment
of -languages done in S1S can be applied to-languages. In
this case the resulting logic is referred to as weak S1S (WS1S),
the weak referring to the fact that set variables range over finite
subsets of . In a manner analogous to Theorem 3.1, it can be
shown that a -language is accepted by a-automaton if and
only if it is definable by a formula in WS1S.

Given the relative ease with which-automata can be com-
plemented, it is not surprising that the proof of this fact is much
easier than that of Büchi’s theorem; in fact it predates Büchi’s
result [7].

C. Netlists, FSMs, Languages, and Compositional Designs

We now make precise the relationship between designs and
languages accepted by automata.

Recall that in Section II we defined formal models for hard-
ware; these consisted of FSMs and netlists. We made the point
there that given a netlist, we could derive a FSM from it. An
FSM bears a natural correspondence to a
-automaton where
precisely when and . An example of

this correspondence is shown in Fig. 5.
Observe the language of this-automaton characterizes the

input–output behavior of ; given any finite input sequence
, we can construct the output sequencethat would have

produced on application ofby examining the -automaton. By
Theorem 3.1, it follows that we can also characterize a netlist
by a formula of WS1S.

As described in Section II-D, designs are built composition-
ally. For designs specified as netlists, composition is specified
by simply placing the two netlists next to each other and making
the connections required by the composition. Inputs and outputs
which are not hidden by this composition become the inputs and
outputs of the composed design.

We illustrate the relationship between the WS1S formula for
the -language of the composed design and the WS1S formulas
for the components by considering the netlist composition il-
lustrated in Fig. 2. Let and be the
WS1S formula defining the-language of and . Then the

Fig. 6. A paradigm for sequential synthesis.

-language of the composed design is defined by the WS1S for-
mula given below

D. Applications to Synthesis

Fig. 6 illustrates the approach we will be using. Given de-
sign, we will first identify a formula for it; this formula will
be in WS1S or S1S, depending on the context. We will cast
and solve the problem of characterizing permissible solutions
in logic; essentially this amounts to writing down a system of
logical constraints. This takes the form of a formula which can
then be reflected back to an automaton.

In practice, it is not necessary to actually build any for-
mulas—we can mimic the steps taken in the construction of an
automaton from a formula to derive the automaton for the syn-
thesized design directly. This corresponds to taking the dotted
line in Fig. 6. The advantage of S1S is that it is much easier
to come up with the characterizations. Additionally, elegant
yet rigorous proofs can be given; furthermore, these proofs
are constructive. Furthermore, as we will see in Section V, the
approach generalizes immediately to nondeterministic designs,
possibly with fairness constraints.

IV. SYNTHESIZING COMPOSITIONAL DESIGNS

As mentioned in Section I, a critical first step toward synthe-
sizing a component in a design is characterizing the set of all
valid implementations for that component. There is an obvious
“operational” characterization: given a candidate implementa-
tion, plug it in, and test if there is no change in the input-output
behavior observed from the external world, i.e., if the language
of the composed design remains unchanged. Since equivalence
of automata is decidable, this check is effective.
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Fig. 7. A feedforward network.

This characterization is correct, since if the condition holds,
there is no way the change can be determined by looking at the
external inputs and outputs. Conversely, if there were some input
on which the composed design had an output differing from that
in the original design, there is a surrounding environment which
could observe the change and as a result function incorrectly.
Following the parlance of Singhal [30], we will refer to im-
plementations satisfying this condition as being “safe replace-
ments” for the component.

However, this characterization is not well suited for synthesis;
we want a finite structure, on which some kind of algorithmic
search for simple solutions can be performed. In this section, we
will show that the flexibility available for sequential synthesis
can be characterized using a-automaton.

This result was previously shown by Watanabe and Brayton
[35], who referred to this automaton as theE-machine, the “E”
standing for environment. Their approach was based on exam-
ining the design on a state-by-state basis; we derive this result
using S1S. We also derive an approximation to the set of valid
implementations on which it is easier to perform optimization,
and adapt the E-machine construction to a number of intercon-
nect schemes.

We can gain some intuition as to the source of the flexibility
available for optimization by considering a componentin the
design. Observe that nature of the surrounding components may
make it impossible for certain sequences to be input to. Sim-
ilarly, there may be input sequences for which the output from

does not affect the external outputs. Knowledge of these facts
may make it possible to simplify , while preserving the overall
input-to-output behavior.

A. Feedforward Designs

In order to illustrate the principles and arguments we will be
using, we start with the simple case of computing the set of
permissible behaviors for feedforward networks. A feedforward
network corresponds to a composition of a set of component
netlists in such a way that there is no path in the composed netlist
from an output of a component netlist to one of its inputs which
passes only through vertices from other netlists. An example of
such a netlist is given in Fig. 7.

In a feedforward network, it is possible to compose the envi-
ronment around to form a single netlist , and have con-
nected to as shown on the right of Fig. 7. The external inputs
and outputs of this design areand . Here, is an output of
and an input to ; similarly, is an output from and an input

to . Note that the variables, , , and may correspond to
vectors of inputs.

Let the -language of be defined by the WS1S formula
, and the -language of be defined by the

WS1S formula . Then the -language of the composed
design is defined by the formula

; denote this formula by .
We now characterize all possible netlists those which can

safely replace without changing the input-to-output behavior
of the overall design.

Theorem 4.1:Let be a netlist. Then is a safe replace-
ment for if and only if the language defined by is
included in the language defined by the formula

Proof: Suppose . Let be
an arbitrary finite sequence of inputs applied to the composition
of and .

Since the composed design is a feedforward network,is
purely a function of and the design . Let be the result
at of applying at . The output seen atis purely a function
of the input at and the design ; let be the output at
corresponding to . This fixes the output seen atto some ,
since is a function of the sequencesand and the design .

Observe that ; further-
more, , which in turn is contained in

. Hence, , i.e., the output
of the composition of with on input is the same as the
output of the composition of with on input . But was
chosen arbitrarily, and so is a safe replacement for.

Conversely, suppose . Take
; thus, is an

element of the complement of , i.e., is
an element of .
Hence, there exists an ordered pair such that

and .
Since the composed design is a feedforward network,is

purely a function of and . Thus, on application of to the
composition of and , the sequence seen atwill again be .
Since is purely a function of and the design , applying to

will produce at the output. This in turn uniquely determines
the output seen at to be .

However, ; thus, was not the output
of composed with when was the input. Hence, is not
a safe replacement for.
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Fig. 8. A feedback network.

Thus, the formula completely characterizes the
set of implementations that can replace the component. We
will see in Section IV-C how to construct a-automaton that
accepts ; this is a finite representation which is
suitable for constructing an optimal implementation.

B. Feedback Designs

We now consider the case of a general compositional design,
as illustrated in Fig. 8. Given a componentwe can coalesce its
environment into a single netlist in the topology shown on the
right of Fig. 8. The external input is and the external output is
; is an output of and an input to ; similarly, is an output

from and an input to . Again, we want to characterize all
netlists which can replace the component without changing the
input-to-output behavior of the overall design.

Case 1— is Moore: In the presence of feedback, there ex-
ists the possibility of a combinational cycle resulting on com-
position. In order to avoid this possibility, we will first consider
the case where is a Moore netlist. (Actually, we only need
there to be no combinational path fromto .)

Let the -language of be defined by the for-
mula , and the -language of be de-
fined by the formula . Then the -language
of the composed design is defined by the formula

; denote this
formula by .

We now characterize all netlists which are safe replacements
for .

Theorem 4.2:Let be a netlist. Then is a safe replace-
ment for if and only if the language defined by is
contained in the language defined by the formula

(1)

Proof: Suppose . Let be
an arbitrary finite sequence of inputs applied to the composition
of with . Note that the nets, , and are functions of
in the netlist consisting of composed with . Let , and
be the result at , and respectively on applying at ;

Observe that is an element of ;
furthermore, . By hypothesis
is included in . Hence, , i.e.,
the output of the composition of with on input is the same
as the output of the composition of with on input . But
was chosen arbitrarily, and sois a safe replacement for.

Conversely, suppose .
Let be an element of which is not in

; thus,
. Hence, there exists an ordered pair such

that and .

It now suffices to show that applying to the composition
of and will result in as an output. Let and be the
outputs produced at and on applying . We now prove that

and are equal to and , respectively. We do this by using
the fact that the output of a Moore netlist at stepis uniquely
determined by its inputs at steps to inductively
show that for all we have and .

The base case is direct—the initial output of at is
uniquely determined by the initial state since is a Moore
netlist, so . The initial output of is purely a func-
tion of the initial state and the input at, and so .

Now for the induction step, consider ; it is
uniquely determined by the values of
and . But by the induction hypothesis,

for all . This determines . Since
is a function of , it follows that

. Hence, the induction step goes through.
The output at is uniquely determined by and ; since

, it follows that . But ; thus,
is not a safe replacement for.

Case 2—General : Now we consider the case when is
not a Moore netlist. Observe that if we pick awhich is Moore,
then its composition with will still be guaranteed to have no
combinational cycles. In order to characterize the Moore netlists
which can replace , we need the concept of a Moore language.

Definition 8: Let be a -language.
The language is a Moore language if whenever we have

, then for any
, we have .

Intuitively, a Moore language is a language with the prop-
erty that for any string in the language, the second component
of the last symbol in is independent of the first component.
The -language corresponding to the input–output behavior of
a Moore netlist is a Moore language, since the output at time
does not depend on the input at time.

The following proposition is a consequence of the fact that
the set of Moore languages is closed under union.

Proposition 4.3: Given an arbitrary -language defined
over , there exists a unique maximal Moore language

contained in it.

We will refer to as theMoore restrictionof .
We are now ready to characterize the set of Moore netlists

which can safely replace; unlike the previous case, this argu-
ment does not require that be Moore.
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Fig. 9. Computing the Moore restriction for a language accepted by a
�-automaton.

Theorem 4.4:Let be a Moore netlist. Then is a safe re-
placement for if and only if the language defined by
is contained in the Moore restriction of the language defined by
the formula

Proof: The first stage of the proof, namely demonstrating
that can be safely substituted for when its language is in-
cluded in the Moore restriction of is identical to
that for Theorem 4.2.

Now suppose is not contained in the Moore re-
striction of . Observe that is a Moore
language (by hypothesis is a Moore netlist); by Proposition
4.3, this implies that it is not contained in . The
rest of the proof can be completed as in Theorem 4.2.

Let be a -automaton on alphabet , accepting the
language . Using the subset construction, one can construct
from a deterministic -automaton accepting . Given ,
it is straightforward to construct a deterministic automaton
for the Moore restriction of : recursively remove from edges

whenever for some applying to leads to
a nonaccepting state. An algorithm which returns exactly the
set of states in the DFA is given in Fig. 9.

C. Constructing an Automaton Accepting

In Section IV-B, we saw the set of replacements for a
component in a compositional design is characterized
by a formula of the form

. This formula can be rewritten as follows:
. This

formula suggests the following four-step construc-
tion for constructing an automaton accepting

.

Step 1) Complement the automaton accepting
to obtain an automaton which

accepts .
Step 2) Form an automaton for the intersection of

and .
Step 3) Project out the inputs and from

to obtain an automaton accepting
.

Step 4) Complement to obtain an automaton for
.

We illustrate the construction for by means of an ex-
ample. Consider the design specified in Fig. 10. In order to op-

Fig. 10. Design to be optimized.

timize the component (shown with a dotted outline), we first
characterize all safe replacements for. The construction for
each step is shown in Fig. 11; by inspection, we can see that
can be replaced by an inverter.

1) Complexity issues:It is straightforward to build a -au-
tomata corresponding to , , and (cf. Section III-C). Since
the automaton for is deterministic, an automaton for its com-
plement, constructed in Step 1, is trivially obtained; it has

states. The product automaton in Step 2 has a state-space
whose cardinality is the size of the product of the state-spaces
of the automata for , and . The projection of the signals
and in Step 3 is also easy to achieve.

The complexity comes in the complementation performed in
Step 4. Even though the product automaton resulting in Step 2
is deterministic, the projection of Step 3 makes it nondetermin-
istic. The complementation in Step 4 is performed by first deter-
minizing the nondeterministic automaton, which, in the worst
case, can lead to an automaton on
states.

By virtue of Theorems 4.1, 4.2, and 4.4, the automaton
capturing the entire set of replacements for a component

interacting with an environment accepts exactly
the language defined by an S1S formula of the form

. It follows that
if we want to capture all the flexibility available for optimizing

by an automaton, then the automaton is obliged to accept
, and it may be

very large.
We complemented the automaton by first determinizing

it. It may be the case that the final automaton, , after
merging equivalent states, is much smaller than the determiniza-
tion of , i.e., generating the complement by determinizing as
a first step leads to an intermediate blow-up. However, comple-
menting a nondeterministic finite automaton is inherently com-
putationally expensive. This is due to the fact that the problem of
deciding if a nondeterministic finite automaton is universal,
i.e., accepts all sequences, is PSPACE-complete [11]. Once an
automaton (deterministic or nondeterministic) accepting the
complement of is constructed, checking the emptiness of
is trivial; hence, performing complementation is as difficult as
checking universality.

Watanabe and Brayton [35] have successfully constructed
the automaton accepting on some ex-
amples. However, the designs they used were synthetic—they
consisted of randomly composed MCNC benchmarks. Fur-



1158 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 10, OCTOBER 2000

Fig. 11. Constructing the E-machine—circled states are accepting.

thermore, they were small—the component to be synthesized
contained at most 18 states, and the entire design contained
at most 336 states. Their results suggest that the final size
of is much smaller than the upper bound we derived
above. The run times they report vary by orders of magnitude,
and can be very large. In view of the fact that their experiments
were performed on small and synthetic examples, a definitive
statement about the average case time and space complexity of
constructing cannot be made at this time.

One reason for the high complexity of constructing the
is the fact that we chose language containment as our

criterion for conformance %(cf. the remarks in Section I).
Testing language containment for nondeterministic finite state
automata is PSPACE complete; we could have used a stronger

notion for conformance, e.g.,simulation [32] which can be
tested in polynomial time. If we did so, the development of the
E-machine would be quite different. Such an approach could
reduce complexity, at the cost of completeness.

D. Optimization from Automata Specifications

Once a -automaton characterizing the set of safe replace-
ments possible for a component is available, the next step is
to find an optimal replacement. There are many criteria for
optimality such as area, timing, power consumption, etc. One
starting point is determining a replacement whose underlying
FSM is minimum state.

Not surprisingly, this is closely related to the problem of min-
imizing anincompletely specified finite state machine(ICFSM)
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[12]. However, there is a subtle distinction: for an incompletely
specified FSM, at a given state, for a specific input, either the
next-state and output is fixed, or any output and next-state is al-
lowed. In the context of the E-machine, at a given state, for a
specific input, a subset of all possible outputs and next-states
may be allowed; this is referred to aspseudo-nondeterminism
[35]. Watanabe and Brayton [35] explain why the problem of
finding a minimum state FSM compatible with a specification
given as a pseudo-nondeterministic automaton is more difficult
than when the specification is given as an ICFSM.

E. An Approximation to the Full Set of Safe Replacements

We now again consider optimization of a compositional de-
sign with feedback as in Fig. 8. It is of some interest to study a
particular subset of the set of safe replacements for, namely
that corresponding to theinput don’t care set. This will help us
better understand previous work; furthermore, we will see that
this subset in certain respects is better suited for optimization.

Input don’t care sequences for are those sequences at
which can never be generated in the composition ofand ;
intuitively, we are free to change the behavior ofon such se-
quences, leading to flexibility which can be exploited by opti-
mization tools.

We assume is a Moore netlist. As before, let the-lan-
guage of be defined by the formula , and the
-language of be defined by the formula .
Definition 9: Theinput don’t care set for is the set defined

by the formula

This formula defines precisely the set of finite sequences which
can never arise at when is composed with ; as a con-
sequence, any component which seeks to replaceis free to
produce any output for inputs which lie in the set defined by

.
More formally, we have the following theorem:
Theorem 4.5:Let be a netlist. Then can be safely sub-

stituted for if the language defined by is contained
in the -language defined by the formula

(2)

Proof: Let be some sequence of inputs to the composi-
tion of and . Note that , , and are uniquely determined
by ; call the resulting sequences, , and . It suffices to show
that applying to the composition of and also results in

, , and .
Let the result of applying to the composition of and

be , and . The construction used in Theorem 4.2 to show
that , , and can be applied in this case also,
and the result follows immediately.

A closer analysis of the formula demonstrates
that the corresponding automaton has, in the worst case,

states; contrast this with the automaton for
which, as shown in Section IV-C, has

states in the worst case.
Furthermore, the automaton accepting corre-

sponds to an incompletely specified FSM, rather than a pseudo-

Fig. 12. A variety of FSM interconnection schemes—the names suggest
applications.

nondeterministic automaton as is the case for the automaton ac-
cepting . This follows from the fact that the au-
tomaton accepting is completely specified and de-
terministic, and for , any sequence will do.
Thus, for any sequence, either it is in , and then
any sequence of outputs is allowed (implying that the next-state
and output of the FSM is not specified), oris uniquely deter-
mined. Hence, the set can be characterized by an
ICFSM, which, as Watanabe and Brayton [35] show, is easier
to perform optimization on than a pseudo-nondeterministic au-
tomaton.

Wang and Brayton [33] report results on computing an
automaton accepting . On comparing their
results with those in [35], we see that an automaton accepting

can be constructed far more efficiently than an
automaton accepting ; this is in concordance
with the reasoning above. Again, their examples are small
and synthetic, so no definitive claims can be made about the
practical applicability of their approach.

F. General Topologies

One of the benefits of the S1S approach is its generality. For
example, in the past different topologies (schemes for intercon-
necting networks) have been studied separately. Using the style
of reasoning given previously, one can easily characterize safe
replacements for components for the topologies in Fig. 12. In all
cases, the techniques described in Section IV-B2 to avoid com-
binational cycles must be used.

Cascade—I(a)
.

Cascade—I(b)
.

Cascade—II
.

Supervisory Control
.
Bidirectional Cascade—(a)

.
Bidirectional Cascade (b)

.
Rectification—I

.
Rectification—II

.
It is worth noting that when there is no “hiding” of signals,

i.e., all inputs and outputs of the components are visible in the
composed design, the size of the corresponding automaton is
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polynomial in the number of states in the component FSMs. This
is because we begin with deterministic components, and, since
no signals are hidden, there are no projected variables in the
formula for the automaton (cf. Section III-A1—projection can
make a deterministic automaton nondeterministic). This is the
case for the Supervisory Control and Rectification-II examples.

V. SYNTHESIZING PROPERTIES

Up to this point we have addressed the problem of optimizing
components of larger designs. We now examine the problem
of selecting a component so that the larger design meets user-
specified properties.

The scenario is as follows: Let be a design on primary
input , auxiliary input , primary output and auxiliary output
, exactly as in Fig. 8, and letbe some specification on accept-

able primary input–output for . It is natural to ask: does there
exist a design which when composed with results in the
primary input–output behavior conforming to?

In order to answer this question, we need to formalize the
notions of specification and conformance. Let and
be the sets of values thatand can take. A natural way of
specifying acceptable input–output behaviors onand is
by specifying a Büchi automaton accepting an-language

, i.e., for an infinite input sequence
, exactly those should be produced for which

. Similarly, it
is natural to say that the composition of the composed design
conforms to if its language is included in .

It is preferable to specify the input–output behavior using
-sequences rather than finite sequences (as we used in opti-

mization). This is because the use of Büchi automata allows the
specification of fairness. This is because whenever we want to
specify a liveness property, it is invariably necessary to include
a fairness constraint in the description of the system (in this
case). Use of a fairness constraint makes it possible to ignore
behaviors that correspond to extreme execution scenarios which
would not occur in any reasonable system.

Let the -language of and be defined by the S1S for-
mulas and . Let us re-examine the ex-
pression characterizing the set of safe replacements for a com-
ponent interacting with design

where .
We argued that any netlist whose language was included in

would be a safe replacement for, i.e., compo-
sition of with would result a netlist whose language was
contained in .

Now suppose was some arbitrary specification on
the input-output behavior of , as discussed above. Exactly the
same arguments as were used in proving Theorem 4.2 can be
applied to prove the following:

Theorem 5.1:The composition of netlist with netlist
conforms to the Büchi specification if and only if the
language of is included in the language defined by the formula

Fig. 13. Infinite tree for realizability.

Again, the caveats about introducing combinational cycles must
be taken.

1) Realizability: Computing the Büchi automaton for the
formula does not directly answer the existence
question we posed at the beginning of this section. Our question
is closely linked to the problem ofrealizability. Given an -lan-
guage accepted by a Büchi automata, it
is natural to ask if there exists a netlist whose corresponding
language is contained in.

Note that this can be trivially answered in the affirmative
when dealing with the optimization problem, since it would suf-
fice to use the original component. However, when the spec-
ification is given by an arbitrary Büchi automaton, it may be
the case that there is no netlist whose language is contained in
the specification. A necessary condition for the existence of a
netlist is that for any , there exists a such
that . However,
this condition is not sufficient, because it does not guarantee
causality: the netlist realizing must produce based only
on the values .

Pnueli and Rosner [23] argue that a necessary and sufficient
condition for a language to be realizable by
a netlist is that –branching infinite tree must exist, whose
edges are labeled with pairs such that:

1) at each vertex, for every , there is a
such that labels some edge coming out of;

2) for every infinite path from the root of the tree, the se-
quence of pairs is an element of .

An example of such a tree, where and
, is shown in Fig. 13.

Given accepted by a nondeterministic
chi automaton over the alphabet , the following is

a procedure for determining if a netlistexists whose language
is contained in .

1) Use the construction of [27] to determinize the automaton
to obtain a deterministic Streett automaton.

2) In this Streett automaton, project the symbols of the al-
phabet down to . Interpret the new structure
as a Streett automaton ontreesand check for tree empti-
ness [24].

As is shown in [23], an implementable controller (a netlist in our
context) exists if and only if the tree emptiness check is negative;
this approach will produce an implementation if one exists.

The complexity of this procedure is very high—the construc-
tion of the deterministic Streett automaton potentially yields an



AZIZ et al.: SEQUENTIAL SYNTHESIS USING S1S 1161

automaton whose state-space is exponential in, and doubly
exponential in . Furthermore, the tree-emptiness check is
NP-complete; the algorithm of [23] has complexity polynomial
in the number of states and exponential in the number of
accepting pairs of the Streett automaton.

VI. SUMMARY

We have proposed the logic S1S as a formalism to describe
permissible behaviors of an FSM interacting with other FSMs.
We believe that this framework offers several advantages.

First, for any S1S formula it is possible to generate automat-
ically an automaton describing the same behaviors as the for-
mula. Thus, fully automatic synthesis is possible that takes into
account all available degrees of freedom. In practice, the gener-
ated automaton is often too large to handle with state-of-the-art
optimization algorithms. Nevertheless, S1S provides a rigorous
framework in which one can prove that a set of behaviors used as
a don’t-care condition indeed represents permissible behaviors
of the system. This allows easy development of a spectrum of
methods that explore trade-offs between flexibility provided by
the information about the environment, and the price of storing
and using this information—on one side of the spectrum is the
optimization of a component in isolation, and on the other side
is the construction of the E-machine. A concrete example of this
trade-off was presented in Section IV-D, where we saw that by
restricting our attention to the flexibility afforded by input don’t
care sequences, we arrived at an approximation which was sig-
nificantly more tractable. The formalism S1S provides a system-
atic and simple way of reducing the problem of optimizing inter-
acting FSMs to optimizing a single FSM, with different methods
generating FSMs of different sizes. Thus, any future improve-
ment in FSM optimization algorithms will provide immediate
benefits to optimization of interacting FSMs.

Second, in contrast to previous approaches, our approach is
easily extended to different interconnection topologies. In this
paper we have derived specifications of permissible behaviors
for several topologies, some of which have not been previously
investigated. By observing specifications for different topolo-
gies we were able to formulate the following general principle:
if a component FSM can observe values of all the signals in the
system, then the size of its E-machine is polynomial; otherwise
it is exponential.

Finally, our approach immediately generalizes to the syn-
thesis of properties, such as safety and liveness. In doing so,
we have also shed some light on the relationship between inter-
pretations of the term “synthesis” in different communities.

Future Work: There are a number of ways in which this work
can be extended. Experiments need to be performed on a mean-
ingful set of examples to see how the proposed procedures per-
form in the average case. Additionally, studies can be made on
the use of partitioning and peephole optimization techniques (as
are used in combinational logic synthesis) to reduce complexity
when dealing with large designs.

Our approach should be applicable to software synthesis, ap-
plications of which include optimizing embedded controllers,
and hardware-software co-design. Similarly, the synthesis of

richer systems, such as those which include timing functionality
and statistical behavior, can be studied in our framework.

In a broader context, the ideas brought forward in this paper
demonstrate the power and elegance of employing mathemat-
ical logic to solve problems in design automation. We hope this
paper will motivate researchers in EDA to learn more about
mathematical logic; we recommend the excellent textbook of
Enderton [9] to interested readers.
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