

Copyright

by

Salim K. Amirdache

2010

The Report Committee for Salim K. Amirdache

Certifies that this is the approved version of the following report:

TSS: A Trading Strategy System

Committee:

Adnan Aziz, Supervisor

Rajat Chaudhry

TSS: A Trading Strategy System

by

Salim K. Amirdache, BSEE

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

May, 2010

For

Leah

 iv

Acknowledgements

I would like to thank my supervisor, Professor Adnan Aziz, for giving me the opportunity

to work on this project, as well as providing me his patience and technical guidance. I

would also like to thank Rajat for his input as my reader and technical expertise. Finally,

I would like to thank my parents, Khaled and Ghozlan, and fiancée, Leah, for their

encouragement in pursuing a Masters Degree, patience, and support.

 v

TSS: A Trading Strategy System

Salim K. Amirdache, MSE

The University of Texas at Austin, 2010

Supervisor: Adnan Aziz

This report presents TSS - a Trading Strategy System developed to let traders

define arbitrarily complex trading strategies in the Java programming language and

evaluate them using historical stock information. In addition, TSS provides access to

Google Trends data for use in meta-strategy definition, and has the ability to return the

best strategy from a family of strategies using data mining algorithms. Finally, TSS is

highly extensible - we can integrate new data feeds by simply extending the interface and

database.

 vi

Table of Contents

List of Tables .. vii

List of Figures .. viii

Introduction ..1

Implementation ..4

Web-based User Interface ...5

Web Server..8

Trading Strategy Language ...8

Strategy Processor ...11

Testing System ..11

Database ..12

Case Study ...13

The Dip Buyer...13

The Data Miner ...15

Summary ..20

 Future Work ..20

Appendix ..22

Bibliography ..25

Vita… ...26

 vii

List of Tables

Table 1: Methods for Series class ..22

Table 2: Methods for Quote class ..22

Table 3: Methods for Quotes class ...23

Table 4: Methods for WekaClassifier class ...24

Table 5: Methods for entering and exiting positions ...10

Table 6: Position manipulation methods..10

Table 7: Database manipulation methods ..24

 viii

List of Figures

Figure 1: Bid and asks entering the market ..2

Figure 2: Diagram of TSS system components ..4

Figure 3: Screen shot of TSS web page..5

Figure 4: Searching the available symbols ...6

Figure 5: Google Chart displaying evaluation results for a single stock 7

Figure 6: Google News search of current stock ...7

Figure 7: TSS Dip Buyer Strategy..13

Figure 8: Dip Buyer chart for INTC ...14

Figure 9: Trading Strategy using Logistic regression16

Figure 10: Output of Classification ..17

Figure 11: Chart using classified trade signals ...18

Figure 12: Chart using slightly modified trading strategy..................................19

 1

Introduction

Trend analysis and prediction play an important role in stock trading. Traders

often predict the future prices of stocks (and more generally commodities, bonds,

currencies, options, and futures) using a variety of information sources including

historical stock prices, technical indicators (functions of the underlying time series),

fundamentals, and news sources. Traders use tools to analyze data for patterns, generate

trading signals, and back-test trading strategies to support trade decisions. The accuracy

and timing of these tools are vital to traders.

The stock market refers to the organized trading of company stocks and

derivatives, including options and futures, on a public market. The stock price refers to

the amount of money required to purchase a single share. The current price of the stock is

the price the last trade was executed. The bid price is the highest price any brokerage firm

will pay for shares of the stock; the ask price is the lowest price a brokerage firm is

willing to sell the stock for. The bid-ask-spread concept is heavily rooted in supply and

demand concepts. The price difference between the bid and ask is referred to as spread.

Over a given period, the number of stocks traded is referred to as volume. In this

period, the stock price fluctuates depending on market conditions. The maximum price

the stock reaches during this period is called the high, while the lowest price is referred to

as the low. Furthermore, the price of the stock at the beginning of the period is called the

opening price, while the price of the stock at the end of the period is called the closing

price.

Figure 1 illustrates the bid and ask requests entering the market for the INTC

stock symbol. Each request has a timestamp, size, and price. A number of methodologies

are used to analyze the stock market.

Technical Analysis

series data [1].

Figure 1: Bid and asks entering the market

2

nalysis, a popular method of predicting future stock prices using time

Bid and asks entering the market

a popular method of predicting future stock prices using time

 3

A number of back-testing tools exist from major trading firms such as Fidelity [2],

Ameritrade [3], and Scottrade [4]. All these tools have a common limitation: the user can

define limited trading strategies using only historical stock prices and simple technical

indicators. However, the Internet is rich with a variety of data sources. For example,

Google Trends [5] provides users with a Search Volume Index - an index that describes

the number of searches performed on the specified keywords daily, and News Reference

Volume – describes the number of times the specified keywords appeared in a Google

news story. Another limitation of the tools in [2-5] is that they do not provide the

flexibility of allowing a user to define a strategy in a general purpose programming

language.

TSS is a system that evaluates arbitrary trading strategies using historical price

data. TSS provides users the ability to define a trading strategy using the Java

programming language. Historical stock prices, technical indicators, and chart analysis

functions are available to the user trading strategies. In addition, trading strategies have

access to information from Google Trends, as well as data mining features such as the

ability to build classification models. The results of the evaluation are presented on visual

charts using Google's Visualization API [6]. Also, users can browse Google News [7]

headlines related to the current symbol while viewing their trading strategy results.

The report organization is as follows: We begin by describing the implementation

of TSS. After that, we will focus on user stories for two stock traders with different

trading philosophies in the Case Study section. TSS is used to provide solutions to both

stock traders and present results in the context of the two user stories. Finally, we will

conclude with a list of future extensions for TSS. We provide low level documentation

for TSS in the Appendix.

 4

Implementation

We used a combination of technologies to implement the TSS Client-Server

architectural model [8]. TSS’s client, a web-based user interface, is hosted from the TSS

custom web server. The web page communicates with the web server to submit trading

strategies and retrieve strategy test results. Trading strategies are written in the Java

programming language and are passed on to the Strategy Processor from the web server

after a trading strategy submission. The Strategy Processor compiles the trading strategy

and launches the Testing system. The Testing system runs the compiled trading strategy

against the symbols available in the database. Once Testing is complete, the web server

passes the results to the web page. The following section describes in detail the

components of TSS and their interaction shown in Figure 2.

Figure 2: Diagram of TSS system components

 5

WEB-BASED USER INTERFACE

Users submit trading strategies for evaluation and view their results using TSS’s

Web-based user interface, shown in Figure 3.

Figure 3: Screen shot of TSS web page

The code editor text box uses the EditArea [9] JavaScript library which provides

text formatting, search and replace, and real-time syntax highlighting. Once the strategy

is written, the Submit button is used to send the trading strategy for evaluation.

AJAX, Asynchronous JavaScript, and XML are used to communicate with the

server using POST or GET HTTP methods [10]. The user is never redirected to another

web page, and only the contents of the web page are updated providing a seamless

experience to the user.

 6

GET methods are commonly used by web applications to retrieve resources from

a server. In TSS, the AJAX GET method is used to retrieve the results symbol names, the

symbol chart data, and files required to view the web page. POST methods are generally

used to submit HTML form data to the server. On a trading strategy submission, the web

page sends the trading strategy within the message body of the AJAX POST request to

the server for processing and evaluation. While the web server is processing the request, a

loading graphic is shown to the user. After the server completes the request, the loading

graphic is removed and a search box is presented to the user. Users can search for the

results of a particular symbol by entering the symbol name in the search text field and

pressing the Get Results button shown in Figure 4.

Figure 4: Searching the available symbols

Once the Get Results button is pressed, a request is sent to the server via AJAX

for the specified symbols results. The symbols results are loaded into a Google Chart as

shown in Figure 5.

 7

Figure 5: Google Chart displaying evaluation results for a single stock symbol

In addition, Google News is integrated via a HTML iFrame into TSS to show

news related to the current stock selected, as seen in Figure 6.

Figure 6: Google News search of current stock

 8

WEB SERVER

A custom multi-threaded web server was developed for TSS to consume HTTP

POST and GET requests. When a GET request is received, the contents of the file

specified is returned. When a POST request is received the server assumes that a trading

strategy was submitted. The trading strategy is extracted from the POST payload and sent

to the Strategy Processor. Once the Testing is complete, the strategies output is returned

in the client's POST request response.

TRADING STRATEGY LANGUAGE

Users write trading strategies using Java and are provided access to the Java Util

package; therefore, users have the ability to use data structures such as Lists and Maps

contained in the Collections framework, and useful classes such as Date and Calendar. In

addition, users have access to a number of data structures for manipulating historical

stock quote data, functions to make trades, and perform data mining tasks.

Series

This class provides a generic container for an array of values of the same type. A

Series of the specified type is constructed from an input array. Values of a series are

accessed using accessor functions, and various technical indicators can be applied to the

series data. For example, if a user wanted to access the 10th value in the Series s, they

would call the function s.get(10).

 9

The Series class uses TA-lib [11], a technical analysis library, to perform the

technical analysis calculations. Table 1 in the Appendix provides a summary of the

available methods of the Series class.

Quote

This class encapsulates a stock's historical data. TSS uses daily stock data; thus, a

single stock quote refers to the set of information: open, close, low, high, and volume of a

single given day. For instance, if a user required the opening price from the Quote class

q, they would call the method q.getOpen(). Table 2 in the Appendix provides a

summary of the available methods of the Quote class.

Quotes

This class contains a single stock's complete historical data available in the

database. There are number of methods available to access the data. For example, a user

can request a specific attribute of the stock such as Opening price for a particular day

using the function open(index), where index represents the day. Each daily quote

corresponds to a numerical index, such that the first quote is 0, and the last quote is n.

The quotes are sorted by date in ascending order. Table 3 in the Appendix describes the

methods available for the Quotes class.

WekaClassifier

Weka [12] is an open source Java library implementing a set of machine learning

algorithms for data mining tasks. The TSS WekaClassifier class provides access to the

Weka's classification and regression analysis tools. For example, a user can build a

 10

classifier by supplying training data, classifier name, and range to

BuildClassifier() method. After that, a user can classify test data using the

Classify() method. Table 4 in the Appendix summarizes the methods of the

WekaClassifier class.

We provide an example of the WekaClassifier in the Case Study section of this

report.

Trading System Utility Functions

The trading strategy can submit various types of orders for entering and exiting

positions. A position object contains the number of shares purchased and the daily stock

Quote that was purchased. Table 5 describes the methods accessible for opening and

closing positions.

Method Description

void buyAtMarket(int
quoteIndex, int numberOfShares)

Buy the specified number of stocks at the
closing price of the specified trading day.

void sellAtMarket(int
quoteIndex, Position pos)

Sell the opened position with the specified
trading day closing price.

Table 5: Methods for entering and exiting positions

In addition, TSS provides the methods in Table 6 to manipulate opened positions.

Method Description

Position getFirstOpenPosition() Returns the first open position.

Position getNextOpenPosition()
Returns the next open position. If there are
no more open positions, return null.

Table 6: Position manipulation methods

 11

Default Data

For each stock symbol available in the database, the trading strategy is run.

During that run, the default stock symbol's data is accessible without the need to create a

Quotes class.

STRATEGY PROCESSOR

The web server invokes the Strategy Processor once a trading strategy submission

is identified. The Strategy Processor inserts the trading strategy coded in Java into a

UserProgram class, and compiles the created UserProgram object using Java’s Runtime

class – essentially invoking a shell and running the Java compiler on UserProgram and

then executing UserProgram on a JVM. The UserProgram class inherits the Quotes class

such that default stock data is available within the UserProgram. In addition, the trading

system utility methods are defined by the UserProgram class. If compilation is successful,

the Testing System is launched; however, if the compilation fails, the error(s) are

returned to the web server to be returned to the web page.

TESTING SYSTEM

The Testing System is launched by the Strategy Processor once compilation of the

UserProgram is successful. The system is responsible for retrieving stock data from the

database and executing the compiled UserProgram for each available symbol. Once

execution is complete for a single stock, the transactions generated during the run are

evaluated. The results of the evaluation are written to files stored on the web server.

These files are retrieved by the web page when a user requests the results for a particular

stock.

 12

DATABASE

The UpdateDatabase class is used to manipulate a SQLite [13] database that's

populated with historical stock quote data pulled in from Yahoo Finance [14]. SQLlite is

a popular software library that implements a self-contained, serverless, zero-

configuration, transactional SQL database engine.

The database schema is as follows:

• There is a table called listofsymbols - which has one symbol per

row.

• For each symbol in listofsymbols, there is a table, which has a

number of rows - each row corresponds to data for a particular day.

Table 7 in the Appendix describes the database manipulation methods for the

UpdateDatabase class.

The updateSymbol method sends queries describing the contents of the

requested data to Yahoo Finance to download a CSV file containing historical stock

quotes. For example, consider the following query:

http://ichart.finance.yahoo.com/table.csv?s=INTC&a=00&b=1&c=2009&d=11&

e=31&f=2009&g=d

When submitted, Yahoo Finance returns a CSV file containing the daily historical

stock quote data for the symbol INTC from January 1, 2009 to December 31, 2009. Each

row in the CSV file corresponds to 1 day of stock quote data. The default data returned

contains the following information:

• Date - Trading day date

• Open – The stock’s opening price

• High – The stock’s maximum price for the time interval

• Low – The stock’s minimum price for the time interval

 13

• Close – The stock’s closing price

• Volume – The volume of stock traded

Case Study

In this section, we will examine two trading strategies that take advantage of

TSS's features.

THE DIP BUYER

A dip buying strategy generates a buy signal when the current price is a specific

percentage below the previous day's closing price. A sell signal is identified when the

closing price is a specific percentage above the previous day's closing price. Thus, the

stock trader buys on the lows and sells on the highs. Figure 7 illustrates the dip buyer

strategy in TSS.

Figure 7: TSS Dip Buyer Strategy

 14

The trading strategy can be broken up into two sections. In the first section, lines

14 to 17 in Figure 7, the system buys the stock at market price (the close price) if the

current day’s closing price (close(i)) is 2% below the previous day’s closing price

(close(i-1)). An open position of 1000 shares is created and added to the positions

array.

In the second section, lines 3 to 10 in Figure 7, we loop over any open positions

and sell if the position meets the criteria to sell:

1. Today's closing price is 2% above the previous day's closing price.

2. A profit can be made.

The results of the trading strategy run for the stock symbol INTC is shown in

Figure 8. The strategy was run on 1 years worth of INTC data. We see that if the stock

trader followed the trading signals indicated, we would have made $30.71 K in profit.

Figure 8: Dip Buyer chart for INTC

 15

THE DATA MINER

In this example, we will look at a more complex trading strategy using TSS's data

mining functions. The data miner uses Logistic regression [15] to classify input data to

derive future buy and sell signals. Logistic regression is a popular method to describe the

relationship between explanatory variables and a Boolean outcome. The Boolean

outcome variable is expressed as a probability between two possible outcomes. In this

case, the explanatory variables are technical indicators, and the outcome is an up or down

trend. A subset of the available historical stock data is used as training data to generate

the regression coefficients. These coefficients are stored in the built classifier for use in

future classification of test data. The data miner uses the generated trend signals to make

trading decisions. In Figure 9, we show an example trading strategy using the data mining

functions.

 16

Figure 9: Trading Strategy using Logistic regression

The trading strategy must first assemble the input data used to train the classifier

model. For the independent or explanatory variables, the strategy uses the simple moving

average with a 15 day period, and a Relative Strength index with a 15 day period shown

on lines 19 and 20 respectively. The 3rd column of the input data is the classification we

want to achieve. To build this series, we simply compare the current day's close price

 17

with the next day’s close price. If the slope is positive, we classify the {SMA, RSI} tuple

as true; otherwise, the slope is negative, and we classify the tuple as false.

On line 24, we make the call to build the Logistic classifier. Note that we classify

the input data from 0 to trainingCount. That is, we split the available historical stock data

into a training set and a test set. In this case, we use 66% of the available data to train the

classifier model. Even though we passed in the entire array of generated data, the

BuildClassifier function will only look at the data within the specified start and end

range.

Once classification is complete, we test the classifier using the remaining 33% of

historical stock data. Note that the data array is the same for building and classifying.

This allows us to generate a percentage that describes how accurate the classifier

predicted the test data. On line 29, the classifier model and the prediction percentage,

shown in Figure 10, is printed.

Figure 10: Output of Classification

 18

We see that during this run the model correctly identified 41% of the test data.

Using the classification results, we make trading decisions for buying and selling the

stock. The outcome of these decisions is shown in Figure 11.

Figure 11: Chart using classified trade signals

From the chart, we see that if we followed the trade signals generated, we would

have made $430. Note that, TSS assumes that the user has infinite income available.

TSS's strength lies in how easily we can modify the trading strategy and launch

another run. Instead of using a 15 day period for SMA for one of the explanatory

variables, let us change it to SMA(5). In this run, we see that only 39% of the test data

was predicted correctly. However, we see in Figure 12 that we would have made $2,890

in profit.

 19

Figure 12: Chart using slightly modified trading strategy

 20

Summary

In this report, we described the architecture and implementation of TSS - a system

to evaluate trade strategies written in Java. We demonstrated TSS’s viability through two

case studies: one using technical indicators, and the other data mining tasks.

TSS can be extended in many ways.

FUTURE WORK

• Realistic Settings:

o Liquidity: TSS ignores some fundamental trading issues. For example, we

assume that there is an unlimited amount of stock volume as well as

money to purchase the stocks. Thus we would like to add features for

specifying the initial cash pool and only making trades when funds are

available.

o Slippage: When an order is filled, there can be a difference or spread

between the price of what the user put the market order for, and the price

that fills the order. This slippage is a feature we would like to add to TSS.

o Trade Commissions: We would like to add the ability for a user to specify

a trade commissions in TSS.

o Cash Interest: In reality, funds that are held in cash will accumulate

interest.

• When a trade strategy evaluation is complete, TSS does not report any positions

that are still open. TSS should report any open positions to the user, and factor

them into the profit.

• Multiple User Accounts: At the moment, a single user may use the system to

generate evaluations. We would like to extend this such that multiple users may

 21

submit trading strategies to TSS, and their performance can be reported in

sortable order.

• TSS only supports the types of orders: buy at market value, and sell at market

value. We would like to add additional order types such as buy at limit.

• TSS uses daily historical stock quote data. We would like to extend the model to

use real-time intraday quote data, and allow us to run a trading strategy on it

automatically.

• Once TSS has the ability to automatically run trading strategies, we would like

TSS to alert users when a trade signal is identified.

 22

Appendix

Method Description

void Series<T>(T input[])
Creates a Series of type T from the inputted
array.

Series<Double> SMA(int period)

Returns a Series of type Double that
contains the Simple Moving Averages of
the contained Series data using the
specified period.

Series<Double> EMA(int period)

Returns a Series of type Double that
contains the Exponential Moving Averages
of the contained Series data using the
specified period.

T get(int index)
Returns the value found at the specified
index position.

int size() Returns the size of the Series.

Series<Double> RSI(int period)

Returns a Series of type Double that
contains the Relative Strength Index of the
contained Series data using the specified
period.

Series<Double> TRIMA(int
period)

Returns a Series of type Double that
contains the Triangular Moving Average of
the contained Series data using the
specified period.

Table 1: Methods for Series class

Method Description

Date getDate() Returns the trading Date for the quote.
double getOpen() Return the trading day's opening price.

double getHigh()
Return the trading day's maximum stock
price.

double getLow()
Return the trading day's minimum stock
price.

double getClose() Return the trading day's closing price.
long getVolume() Return the trading day's volume.

double getAdjClose()
Returns the trading day's closing price
adjusted for dividends and splits.

Table 2: Methods for Quote class

 23

Method Description

Date date(int index)
Returns the trading day's date for the
specified trading day index.

double open(int index)
Returns the trading day's opening price for
the specified trading day index.

double low(int index)
Returns the trading day's lowest price for
the specified trading day index.

double high(int index)
Returns the trading day's highest price for
the specified trading day index.

double close(int index)
Returns the trading day's closing price for
the specified trading day index.

long volume(int index)
Returns the trading day's volume for the
specified trading day index.

double adjClose(ind index)
Returns the trading day's adjusted closing
price for the specified trading day index.

Series<Date> dateSeries()
Returns a Series class of all the Date's of
the stock.

Series<Double> openSeries()
Returns a Series class of all the Opening
prices of the stock.

Series<Double> lowSeries()
Returns a Series class of all the low's of the
stock.

Series<Double> highSeries()
Returns a Series class of all the high's of
the stock.

Series<Long> volumeSeries()
Returns a Series class of all the volume's of
the stock.

Series<Double> closeSeries()
Returns a Series class of all the closing
price's of the stock.

public Series<Double>
adjCloseSeries()

Returns a Series class of all the adjusted
closing price's of the stock.

Quote getQuote(int index)
Returns a Quote class for the specified
trading day index.

int size()
Returns the number of trading day's
available.

String getSymbol()
Returns the stock symbol for the Quotes
class.

int quotescount()
Returns the number of Quotes (trading
days) available.

void Quotes(String symbol)
Creates and populates a Quotes class with
data for the specified stock symbol.

Table 3: Methods for Quotes class

 24

Method Description

void BuildClassifier(
 String classifierName,
 Series[] in_data,
 String[] columnTitles,
 int start,
 int end)

Build the specified classifier with the
provided training data.

String[] Classify(
 Series[] in_data,
 String[] columnTitles,
 int start,
 int end)

Return the results of the classification on
the provided test data.

void PrintInformation() Print information about the built classifier.

void PrintSource()
If the classifier is sourcable, print the
source code that implements the build
classifier.

void setDebugOutput(Boolean
value)

Enable or Disable printing of debug
information during the building of the
classifier.

Table 4: Methods for WekaClassifier class

Method Name Description

createDatabase Creates the database, deleting data that
existed previously.

addSymbol Add a symbol into the listofsymbols table.
Create a table for the symbol and populate
it with the symbol’s historical stock quote
data.

deleteSymbol Remove a symbol from the listofsymbols
table and drop the table for the symbol.

updateSymbol Populate the symbol’s table with historical
stock quote data.

GetDatabaseAsMap Get the database as a map from symbols
(e.g., "XOM") to a list of QuoteRecords.
These records are sorted in ascending order
by date.

Table 7: Database manipulation methods

 25

Bibliography

[1] Lo, et al., The Econometrics of Financial Markets

[2] Fidelity Back-Test Trading Strategies,

http://eresearch.fidelity.com/backtesting/landing

[3] Ameritrade StrategyDesk,

http://www.tdameritrade.com/tradingtools/strategydesk.html

[4] Scottrade Back-Testing Tool,

http://www.scottrade.com/scottradeelite_online_trading_platform/backtesting.asp

[5] Google Trends, http://www.google.com/trends

[6] Google Visualization API,

http://code.google.com/apis/visualization/interactive_charts.html

[7] Google News, http://news.google.com/

[8] Client-Server model, http://en.wikipedia.org/wiki/Client-server_model

[9] EditArea, http://www.cdolivet.com/editarea/

[10] HTTP Made Really Easy, http://www.jmarshall.com/easy/http

[11] TA-Lib, http://www.ta-lib.org/

[12] Weka, http://www.cs.waikato.ac.nz/ml/weka/

[13] SQLite, http://www.sqlite.org/

[14] Yahoo Finance, http://finance.yahoo.com/

[15] Logistic Regression, http://en.wikipedia.org/wiki/Logistic_regression

 26

Vita

Salim K. Amirdache graduated from the University of Texas at Austin with a Bachelor of

Science in Electrical Engineering in December of 2004. He began his career as an

OpenGL Driver Developer at 3DLabs for workstation 3D graphics cards. Shortly after, he

joined the Visual Computing Group at Intel Corp to work on the OpenGL Graphics

Driver for the Larrabee project. In January of 2007, he entered the Graduate School at the

University of Texas at Austin and enrolled in the Software Engineering Program.

Permanent Address: 8203 Ganttcrest Dr

 Austin, Texas, 78749

This report was typed by Salim K. Amirdache

