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1. Abstract

This report presents two hashing techniques -
Alphabet and Power-Set hashing- that can be applied
simultaneously on deterministic finite automata, to min-
imize their space complexity. It is shown that alphabet
hashing minimizes the number of possible transitions
per state and reduces, to some extent, the number of
states. Power-set hashing is invoked upon building an
automaton from regular expressions and is concerned
with reducing the total number of states. The correct-
ness, minimization capability and error performance of
both techniques are studied throughout the report.

2. Introduction

Automata theory -rooted basically in theoretical
computer science- is a study of an abstract machine, the
automaton, and the specific computational or recogni-
tion function it can have. The theory of finite automata
constitutes the theoretical basis for string matching al-
gorithms that are widely deployed in text editors, com-
pilers, and networks security software.

2.1. Definition and Terminology

Formally defined, a deterministic automaton (DFA), M
is a 5-tuple(Q,q0,A,Σ,δ ) where [1]:

1. Q is a finite set of states.

2. q0 ∈ Q is the start state.

3. A⊆ Q is a distinguished set of accepting state.

4. Σ is a finite input alphabet.

5. δ is a function from Q×Σ into Q, called the tran-
sition function of M.

The transition function δ is extended to apply to a
state and a string rather than a state and symbol. Let
Σ∗ be the set of all finite-length strings formed using

characters from the alphabet Σ, define a new function φ

from Q×Σ∗ to Q such that:

1. φ(q,ε) = q where ε denotes the empty string.

2. for all strings w and input symbols a ∈ Σ:
φ(q,wa) = δ (φ(q,w),a).

The finite automaton begins in state q0 and reads the
elements of the input string, S, one at a time. If the
automaton is in state q and reads input symbol a ∈ Σ,
it makes a transition from q to δ (q,a). For a sub-
string Si, if φ(q0,Si) ∈ A, the sub-string Si is said to
be accepted by M. A language L is any subset of Σ∗,
and the language accepted by M is designated L(M) =
{w|φ(q0,w) ∈ A}. A language is a regular set if it is the
set accepted by some finite automaton.

A nondeterministic finite automaton (NFA) is a 5-
tuple(Q,q0,A,Σ,δ ), where Q, q0, A, and Σ have the
same meaning as for a DFA, but δ is a mapping from
Q× Σ into 2Q, the power set of Q. The function φ :
Q×Σ∗→ 2Q is then extended as follows:

1. φ(q,ε) = {q}.

2. φ(q,wa) = {p| for some state r ∈ φ(q,w), p ∈
δ (r,a)}.

A fundamental theorem on the relation between
DFA and NFA is [2]:

Theorem 1 Let L be the set accepted by a non-
deterministic finite automaton, then there exists a de-
terministic finite automaton that accepts L.

2.2. Hashing for Space Optimization

The space required by a deterministic finite au-
tomaton can be modeled by a |Q| × |Σ| transition ta-
ble. While |Σ| is predefined, the number of states, Q
can grow up exponentially upon transforming a NFA
to an equivalent DFA, making the space for storing the
DFA transition table prohibitively large. The NFA oc-
cupies considerably less space, however, this comes at



the expense of a considerable increase in the processing
time of the string matching and language recognition
algorithms. To break this deadlock, it is proposed in
this paper to utilize hashing techniques to optimize the
size of the transition table while preserving the perfor-
mance advantage of DFA over NFA in terms of process-
ing time. Formally stated, an efficient hashing mecha-
nism transforms an automaton M to another automaton
M′, such that:

1. |QM′ |× |ΣM′ | � |QM|× |ΣM|.

2. L(M)⊆ L(M′).

The second condition is a fundamental condition for the
correctness of hashing. The automata transformation
involved in hashing comes at the expense of an extra
processing stage, the recovering stage defined as: when
a sub-string Si is accepted by M′, a testing procedure is
applied to see if Si ∈ L(M). If Si /∈ L(M), this is called a
false positive hit, and constitutes the hashing overhead.
Thus, developing an appropriate hashing mechanism in-
volves a space-time-accuracy tradeoff. The problems
and techniques of the recovering stage is beyond the
scope of this report.

Two hashing mechanisms are studied in this re-
port: alphabet hashing and power-set hashing. Alpha-
bet hashing optimizes the |Σ| factor and may also de-
crease the number of states, while power-set hashing is
targeted at minimizing the number of states during the
transformation of an NFA to its equivalent DFA. The
rest of the report is organized as follows: Section 3 stud-
ies alphabet hashing on a specific class of automata, the
pattern matching automata, and shows some simulation
results on the effectiveness of this method. Section 4
introduces the concept of regular expression and proves
that alphabet hashing concept can be extended to any
finite automata.Next, the power-set hashing method is
proposed and its efficiency is illustrated through simu-
lation results.

3. Alphabet Hashing for Pattern Matching

The pattern-matching problem can be formalized
as follows: Given an alphabet Σ, set of patterns P⊂ Σ∗,
and string S ∈ Σ∗, find all integer pairs, (i,m), such that
Si+1−m···i ∈ P.
The pattern matching algorithm typically works by
building a finite automaton M as a pre-processing step
and feeding S as the input string to M. If a substring
Si has φ(q0,Si) ∈ A, this means a pattern of P matches
a suffix of |Si|. A method to construct the finite
automaton M is described next. A string Si is called
a prefix of S j if S j = SiW for W ∈ Σ∗ (and a suffix if

S j = WSi). Define the set Pe = {p ∈ Σ∗|p is a prefix of
a pattern in P}. Establish a bijection b between Pe and
the set of states, Q, and let δ (b(pi),a) = {b(p j)|p j is
the longest suffix of pia and p j ∈ Pe}.

3.1. Definition

The concept of alphabet hashing is based on map-
ping the alphabet Σ to a smaller alphabet Σ′. The pattern
set, P, and the input strings are mapped using the same
mapping function and an automaton M′ is built for the
new pattern set P′. A direct result of this mapping is
a decrease in the horizontal dimension of the transition
table by |Σ|/|Σ′| times. To show the validity of this ap-
proach, the following lemma is proven.

Lemma 2 Let M’ be the automaton obtained by ap-
plying the mapping function h on the alphabet Σ, then
h(L(M))⊆ L(M′)

Proof. : Let a string x ∈ L(M), then there exist a suffix
y of x such that y ∈ P. Since x and y are mapped by the
same function h, h(y) ∈ h(P) = P′ and h(y) is a suffix
of h(x), therefore h(x) ∈ L(M′). �

3.2. Analysis

In addition to the obvious reduction in the horizon-
tal dimension of the transition table, alphabet hashing
reduces the number of states (i.e. vertical dimension),
while -on the other hand- it introduces false negative
hits where the automaton M′ accepts a string that in not
in L(M). For a first order analysis, we assume that the
symbols of the patterns and of the input string occur in-
dependently according to a pre-defined probability dis-
tribution. Let |Σ|= a, |Σ′|= a′, α1 · · ·αa be the symbols
of Σ, and pi and qi denote the probability of occurrence
of αi in the patterns and input string respectively, then
by the above assumption, p(S = αi · · ·αk) = qi · · ·qk.
Let Pi and P′i be the set of distinct prefixes of length i in
the original and image pattern sets respectively(|Pi|= Xi
and |P′i | = X ′

i ), then the total reduction in the number
of states is ∑(Xi−X ′

i ). Consider the prefix of length
m, to every possible prefix v associate the random vari-
able Rv = 1 if v ∈ P′i and 0 otherwise. Take X = Xm
and X ′ = X ′

m, then under the reasonable assumption that
X << am:

E(X ′|X) = ∑
v∈Σ′m

E(Rv|X)

≈∑
v

(1− (1− pv)X ) = a′m−∑
v

(1− p)X .

2



where pv is the probability of occurrence of v as deter-
mined by the probability distribution p′. Applying the
inequalities:

1− xp≤ (1− p)x ≤ 1− xp+0.5x2 p2

we get:

X − (1/2)X2
∑ pv

2 ≤ E(X ′|X)≤ X

Table1 below shows how the lower bound stated above
is varied along a′ and X , for a uniform distribution. As
can be noticed from the data above, for a′ > 4 no real
reduction happens in the ratio of X ′/X :

Table 1.
a’ 2 4 8 16 32

X=103 0.8779 1 1 1 1
X=104 -0.2207 0.9997 1 1 1
X=105 -11.2070 0.997 1 1 1
X=106 -121.0703 0.97 1 1 1

Considering the hashing function: h(αi) = αimoda′ ,
it is reasonable for a′ << a to assume that the probabil-
ity distribution of the elements of Σ′ (i.e. p′i) is uniform
regardless of the probability distribution in the original
alphabet, therefore: E(X ′|X) = a′m−a′m(1−a′−m)X .

Using the fact that for ∑i=1···n ri = c, min{∑ri
x| =

c(c/n)x, it is can be shown -by setting r to 1− pv where
c = am−1- that the uniform probability distribution of
the alphabet characters yields the maximum ratio of
X ′/X . To illustrate this point, 2 hashing methods are
applied on a set of 1000 strings of length 6 through
12: the first is the conventional moda′ hashing function,
while the second sorts the alphabet characters in terms
of decreasing probability and hashes a fraction r(0.3)
of them to the a smaller alphabet subset Σ” ⊂ Σ′, i.e.
a” < a′, while the rest of the characters are hashed using
the conventional moda′ method. As can be seen from
fig1, the second hashing technique yields further reduc-
tions in the number of prefixes, however, a quantitative
description of this reduction is dependant on the prob-
ability distribution of Σ and the hashing metrics (i.e.
a”,r, · · · ). It must be noticed, that X ′ < min(X ,a′m), so
if X >> a′m, a low value of X ′/X means that the set of
prefixes is saturated, and thus if the length of patterns is
m, approximately every string will be accepted and thus
the hashing technique breaks down.

To estimate the number of false negative hits
caused by hashing, we consider a pattern set of X ′ pat-
terns of length m, then the expected number of hits
(hit occurrence of matched pattern) for a string S is
(|S| −m + 1)E(W ), where given a string s of length m

sampled according to the distribution q′(defined previ-
ously), W is the random variable that is 1 if s matches
any of the X patterns in the pattern set and 0 otherwise,
therefore:

E(W |X ,X ′) = X ′. ∑
v∈Σ′m

(qv pv)

⇒ E(W |X) = ∑(X .p(X). ∑
v∈Σ′m

(qv pv))

= (∑X .p(X))(∑(qv pv)) = E(X).∑(qv pv)

While E(V ) gives the number of false negative and
true positive cases, it is reasonable to assume that the
probability of the latter case is too small, and thus that
E(V ) is approximately equal to the average number of
false negative hits. As can be noticed from the above
equations, hashing methods play a central role in the
rate of error expected: informally stated, if statistical
hashing can obtain qv and pv that have incompatible
probability distributions i.e. low frequency characters in
the patterns have relatively high frequency in the string
and/or vice-versa, it can reduce the error significantly,
however if the two patterns are compatible, uniform
hashing will be obviously perform better in terms of er-
ror probability.

3.3. Experiments and Conclusion

To investigate the performance of alphabet hash-
ing, 2 sets of patterns were tested across a string of 108

randomly generated characters: the first one contains
patterns with a minimum length of 14, while the sec-
ond contains patterns with a minimum length of 8 (set1
∈ set2). Uniform hashing was applied over the 2 sets.
Figure 2 shows the reduction in the number of states for
the automata of the 2 sets across the degree of hashing.
As can be seen, this reduction is negligible for large a′

but the curve become steeper as a′ decreases. Figure
3 shows the number of errors associated with the de-
gree of hashing, which illustrates clearly the steep na-
ture of the error performance curve, as well as the inef-
ficiency of hashing to very small alphabet subsets. As
expected, pattern sets with small lengths are more prone
to error than the larger-length pattern sets. Next, statis-
tical hashing is applied on the the pattern set 1, with
an extreme choice of Σ” = {0} and r 0.25. The table
below shows the number of states in the case of statis-
tical versus uniform hashing. while extreme statistical
hashing (i.e. having high r and low a”) decreases sig-
nificantly the number of states, the error performance
depends upon the compatibility of the probability dis-
tributions of the characters in the string as compared
to that of the patterns. To illustrate this point, 2 hy-
pothetical cases were considered in the Figure4. The
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Table 2.
a’ statistical hashing uniform hashing
16 702 6055
8 682 5964
4 588 5613
2 295 4556

first case is when the probability distribution of char-
acters in the string is equivalent to that in the pattern
set(compatibility), across the case when the characters
are uniformly chosen from the alphabet Σ(partial non
compatibility). As is shown, the compatibility case has
a significantly large error rate as compared to the error
rate of the incompatible case, which are both inferior
to the uniform hashing. The common error floor is the
result of the fact that high frequent characters in the pat-
terns are also frequent in the strings(with difference in
frequency). While statistical hashing conditions may be
unrealistic, its idea can be extended to multi-character
hashing(2 to 4), where the probability distribution then
may be significantly different (this, however, adds to the
string hashing complexity).

4. Hashing for Regular Expressions

The languages accepted by finite automata can be
described by simple expressions called regular expres-
sions. These expressions are based on three operations
that are applied on 1 or 2 languages to result in a new
language. Let R and S be two languages accepted by
finite automata with regular expressions r and s, the op-
erations that can be applied on them are:

1. Union (r + s): L = {x ∈ Σ∗|x ∈ R or x ∈ S}

2. Concatenation(rs): L = {xy ∈ Σ∗|x ∈ R and y ∈ S}

3. Closure(r∗): L = {x ∈ Σ∗|x ∈ Ri for i≥ 0}

A basic theorem on the relation between finite au-
tomata and regular expressions is:

Theorem 3 Let L be the set of languages accepted by
finite automata and let L’ be the set of languages that
are denoted by regular expressions, then L≡ L′. [2]

In this section the idea of alphabet hashing is extended
to regular expressions and some results on its perfor-
mance are shown. Then, power-set hashing is intro-
duced and some primary results concerning its effec-
tiveness are presented.

4.1. Alphabet Hashing in Regular Expressions

Applying Alphabet hashing over regular expressions
satisfy the fundamental condition that L(M) ⊆ L(M′),
as is proven in the following lemma:

Lemma 4 Let r be a the regular expression accepted
by some automaton M, then applying alphabet hashing
on r, results in an expression r′ that is expressed by the
automaton M′ such that h(L(M))⊆ L(M′)

Proof. : The proof is based on induction on the number
of operators in a regular expression.

Consider a regular expression with 0 operators, then by
definition h(L(M))≡ L(M′)⇒ h(L(M))⊆ L(M′). Sup-
pose this is true for languages R and S having a number
of operators less than i. Consider the three expressions

1. r+s: let t ∈ h(L(Mr+s)) then there exist a string t0,
such that t0 ∈ L(Mr+s) and h(t0) = t. Therefore,
t0 ∈ L(Mr) or t0 ∈ L(Ms), then h(t0) ∈ L(M′

r′) or
h(t0) ∈ L(M′

s′), so h(t0) ∈ L(M′
r′)∪L(M′

s′), so t =
h(t0) ∈ L(M′

r′+s′).

2. rs : let t ∈ h(L(Mrs)) then there exist some string
t0, such that t0 ∈ L(Mrs) and h(t0) = t therefore
t0 = t01t02 such that t01 ∈ L(Mr) and t02 ∈ L(Ms).
Thus, h(t01) ∈ L(M′

r′) and h(t02) ∈ L(M′
s′), so t =

h(t01)h(t02) ∈ L(M′
r′s′).

3. r∗ : Let t ∈ h(L(Mr∗)) then there exist some string
t0, such that t0 ∈ L(Mr∗) and h(t0) = t. There-
fore, there exist some integer n ≥ 0 such that t0 =
t01 · · · t0n and t0i ∈ L(Mr), so h(t0) = h(t01) · · ·h(t0n)
and h(t0i) ∈ L(M′

r′), then t = h(t0) ∈ L(M′
r′∗

). �

To test the change in the number of states and the
error rate incurred by alphabet hashing, regular expres-
sions are generated randomly and a string having char-
acter uniform probability distribution is input to the cre-
ated automata. The samples show similar behavior, a
sample of which is shown in the table below.

Table 3.
a’ number of states number of false positives
32 250 0
16 250 0
8 262 0
4 286 1
2 314 812

As is noticed, hashing has increased the number of
states slightly, the reason of which is not analyzed yet.
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However, supported by the analysis and results of the
previous part, it can be predicted that alphabet hash-
ing does not produce a major error-efficient reduction, if
ever, in the number of states. To deal with this limitation
in alphabet hashing, another hashing method, power-set
hashing, is presented next.

4.2. Power-Set Hashing

The power-set hashing method tries to minimize
the number of states in a deterministic finite automata
through linking it to its equivalent non-deterministic au-
tomaton, which is typically used in building the automa-
ton from a regular expression. Consider a NFA Mn, and
its equivalent DFA M, then a 1-to-1 mapping f can be
made from set of states of M, Q, to the power set of the
set of states of Mn, Qn. Power-set hashing is defined as:
A state q ∈ Q can be hashed to another state q′ if
f (q)⊆ f (q′).
The following lemma shows that power-set hashing pre-
serves the fundamental property of hashing.

Lemma 5 If an automaton M′ is obtained from au-
tomaton M by power-set hashing a state q to another
state q′, then L(M)⊂ L(M′).
Proof. : To prove the above lemma we prove another
lemma:

Lemma 6 for q1,q2 ∈ Q, if f (q1) ⊆ f (q2), then
f (φ(q1,w))⊂ f (φ(q2,w)), for any string w.

Proof. :The proof is done by induction on the number
of characters of w. If w = 1, let qnc ∈ f (φ(q1,w));
therefore, there exist a state qn ∈ f (q1) such that qnc ∈
δ (qn,w). We have qn ∈ f (q1)⇒ qn ∈ f (q2), and thus
qnc ∈ f (φ(q2,w)) -(the n index means an NFA state )-
then f (φ(q1,w))⊂ f (φ(q2,w)). Next, we apply the in-
duction step on the string length L+1 assuming that it
holds for string lengths ≤ L. Let v = w1 · · ·wL, then
f (φ(q1,v))⊂ f (φ(q2,v)). Now consider q11 = φ(q1,v)
and q22 = φ(q1,v), we have f (q11)⊆ f (q22), therefore,
f (φ(q11,wL+1))⊂ f (φ(q22,wL+1)). �

Now let x ∈ L(M), and consider two cases:

1. x has no prefix x1···i such that φ(q0,x1···i) = q1,
then no change will happen to φ(q0,x1···i) for i =
1 · · · |x|, and thus φ(q0,x) =φ ′(q0,x).

2. x has at least one prefix x1···i such that
φ(q0,x1···i) = q1, let i be the minimum of these
indices, then φ(q0,x1···i) = q1, and since f (q1) ⊆
f (q2) by definition of power-set hashing, then
f (φ(q1,xi+1,...,|x|)) ⊂ f (φ(q2,xi+1,...,|x|)). There-
fore, if f (φ(q0,x)) contains an accepting NFA

state sn, then sn ∈ f (φ ′(q0,x)), and thus x ∈
L(M′). �

The performance of power-set hashing depends on
the details of the hashing mechanism. For example,
power-set hashing may provide a bridge between the
states that are frequently passed by and the states that
are infrequently passed by but that have a high prob-
ability of reaching an accepting state. Since no hash-
ing method is developed, no informative results about
the error performance of power-set hashing are pre-
sented. To estimate the reduction in the number of
states, power-set hashing was applied on a DFA ob-
tained from an NFA of a regular expression, under the
following rule: state q1 is hashed to a non-accepting
state q2 if 1) f (q1) ⊆ f (q2), 2) | f q2| ≤ | f q2|+ 1, and
3) if q1 is already not hashed into(i.e. no state q3 was
hashed into q1. The results are shown in the table be-
low:

Table 4.
m Q Q’ Q’/Q
16 1618 658 0.4
16 3233 1040 0.32
161 3233 139 0.03
162 470 230 0.49
2 643 271 0.42

256 409 211 0.5

(1)Condition 3 is relaxed.
(2)Condition 2 is relaxed into | f q2| ≤ | f q2|+4.

As can be seen, even under the conservative and
un-optimized hashing described above, the number
of states is reduced into 1/2 to 1/3 of their original
value (and even reaches 0.03 when the third condition
was relaxed) which indicates that power-set hashing is
highly efficient for state minimization.

5. Conclusion and Future Work

Two hashing techniques aimed at optimizing the
space occupied by a finite automaton were investigated.
Primary results show that these two mechanisms mini-
mize the transition table associated with the automaton
across both vertical and horizontal dimensions. More
results and analysis for both types of hashing in the case
of regular expressions is still needed, to get more insight
into the error-performance as well as the issues of state
minimization.
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