Forward
Welcome to the refurbished Computer Science Preliminary Exams Study Guide,

The guide is organized in four sections. Each section is being sold separately.
The first three sections are for the three core exams (hardware, software, and
theory). Each one contains the eight most recent exams, along with solutions for
five of them. Some solutions are written by faculty, most by high-scoring stu-

dents. Our thanks go to those anonymous students contributing solutions.

Each section contains a syllabus which indicates the subject areas and reading
material covered by the exam. The fourth section consists only of general descrip-

tions and syllibi for each of the research area orals,

If you have gquestions aboﬁt one of the exams or general questions about prelims,
you can consult the EECS Graduate Information booklet, Kathryn Crabtree, or the
faculty member in charge of prelims (currently Paul Hilfinger). Specific questions
about the exams, such as how the heck do you do question 4 of Spring 86
Software? get answered by your fellow students in the Prelim Review sessions

. which the CSGSA will organize each semester,

Special thanks to David Gedye, who created the modern form of this guide, and to

Joe Konstan.

Steve Lucco(CSGSA Prelim Liason Officer)
Kathryn Crabtree(CS Grad. Assistant and Prelims Coordinator)

Fall 1989
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GUIDELINES FOR THE CORE THECRY EXAM

The past few editions of the examination have haen
quite similar. Students can expect that future editlons
will not be very different from the established model.
Typlically, there are six questions, as Indicated below.
A minimum passing grade is usually gained by achieving
essentially full credit on three questions, plus partial
credit on another.

1.2 Algorithm Design (2 questions)

These questions call for creative design of algorithms for
problems that typlcally invelve graphs or other combinatorial
structures. In order to deal with these questions, the student
should be familiar with well-known principles of design, e.g.,
divide-and~conquer, dynamic programming., depth-first search.
Knowledge of basic data structures, e.g., edge-list representation
of graphs, heaps, 2-3 trees, union-find data structures, is
also assumed as background. It is likely that an estimate of
the {worst-case) running time and/or space requirements of the
algorithm will be part of the question. For thils purpese 1t is
necessary to know such basic facts as the time reguired for
insertion and deletion of keys from a priority queue. The student
may also be required to formulate and sclve simple recurrence
relations in order to cbtain a time bound.

3. Lower Bounding

A typical question of this type ls "Show that such-and-such
problem is at least as difficult as sorting." The student should
understand and be able to apply the declsion-tree model of computation,
and adversary and information-theoretic hounding arguments.

4. Languages, Farticularly Context Eree Languages

“Typical questions are of the form "Iz the intersection of
a context free language with a regular language a regular language?”,
"1s there a decision procedure for determining whether or not a
context-~free grammar ls asmbiguous?", "Prove that the intersection
of two recursively enumerable sets is a recursive set", "Show that
the language L shown below can be accepted by an automaton of type X
{or generated by a grammar of type Y) but cannot be accepted by any
device of type Z". Tha student should have a good working knowledge
of basic definitliong and properties of languages, grammars and machines,
the Chomsky hierarchy, the pumping lemma, the Church-Turing thesis,
proofs of undecidabllity, etc.

5. Machlines, Particularly Finite State Machines

A typical question might be "Construct a finite state machine
with a minimum number of states for recognizing the language
represented by the following regular expression." The student
should know about Mealy vs Moore machines, machines vs automata,
determinism vs nondeterminism, acceptance vs recognitlon, ke
able to carry out state reduction, construct a regular expression
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from an automaton and vice versa. Knowledge sbout the propertiles
of regular sets is assumed. Though the student is not necessarily
expected to have any background knowledge concerning the topic,

it would be fair to ask the student to devise a simple procedure
for state ldentiflcation or homing of a finite state machine.

6. NP-Completeness

It ig traditional to ask for an NP-completeness proof.
Typlcally this is deone by suggesting a known NP-complete problem
as candidate for the problem transformation.
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SYLLABUS QUTLINE FOR THE THECRY CORE PRELIM EXAM
Recommended Courses: CS 170 and T8 172

1., Algorithms and Complexity
[Basse, sectiong 1.1, 1.3, 1.4, 1.5]
- average vs. worst cases analysis
- upper and lower bounds
- 0, o,Jf% notation

2. Ganaral tachnigques for Algorithm Design
divide and congquer
{Aha, Hopcroft and Ullman, sections 2.6, 2.7]
- dynamle programming
{Aho, Hopcreft and Ullman, section 2.5]
- sorrectness proofs using Inductive assertions
[Raase, pp. 17-20]
- fermulating and solving recurrences
- mathods for proving lower bounds
=~ information bound
[Baase, pp. 60-63]
- adversary argument
[Baase, section 1.5]

3. Algorithms to Manipulate Data Structures
- binary search trees
{Aho, Hopcoroft and Ullman, section 4.4}

- 2-3 trees

[Aho, Hoperoft and Ullman, section 4.9]
= AVL trees

(Horowitz and Sahni, pp. 442-456]
- heaps

[Aho, Hoporeft and Ullman, section 3.4]
urtion-find data structure {(omitting analysis)
[Aho, Hopcroft and Ullman, sections 4.6, 4.7]

4. Sorting and Searching
[Reingold, Nievergalt and Deo, sections 6.5, 7.1, 7.3]
binary search
heapsort
quicksort
bucketgsort
hashing
linear time selectien

[ 700 N R T |

5. Graph Algorithms
[Baase, chapter 3}
[Reingold, Nievergelt and Deo, sections 8.1, 8.2]
- edge list and adijacency matrix representation of ¢graphs
- depth-first search and applications of it
- blconnected components, strong components
- breadth-first zearch
- minimum spanning tree
=~ shortest paths

6. Languages .
- basic properties of strings and languages
[Lewig and Papadimitriou, sections 1.8, 1. 9]
- ragular languages, grammars and expressions
[Lewis and Papadimitriou, sections 1.9, 3.2]
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- context free languages and grammars

[Lewis and Papadimitriou, sections 3.1, 3.2}
- unrestricted grammars

[Lewis and Papadimitriou, sectlon 5.2]
~ recursive (i.e.., Turing decidable) and racurs&valy enumerable

{i.e., Turing amaeptahla) languages

[Lewis and Papadimitriou, sections 4.2, 6.1]
- Church's thesis

[Lewiz and Papadimitriou. section 5.1]
- unsalvability

[Lewis and Papadimitriou, section 6.1)
- @.¢. halting problem

7. Machines

- finlte automata

[Lewis and Papadimitriou, sections 2.1, 2.2}
pumping lenma

[Lewls and Papadimitriou, section 2.6]
pushdown automata

{Lewis and Papadimitriou, section 3.3]
Turing machines

[Lewis and Papadimitriou, sections 4.1, 4.2, 4.5, 4.6]
determinism ve. nondeterminism
Church's thesis

[Lewis and Papadimitriou, section 5.1}

]

8. NP-completenass
[Garey and Johnson, pp. 1-62]
- P, NP, NP-~complete problems
- Cook's Theorem
- general understanding of proof
= polynoninal reductions and procf techniquaes

Sections 3, 4, and 5 list several ilmportant algorithms. In each case
you should be akble to:

a} State the algorithm clearly in a notation of your cheice (pidgin
PASCAL is often convenient);

Y Give an informal proof of correcthness;

c) Determine the worst-case executlion time and storage requirements
and, if an elementary proof is possible, the average time and storage
regquirements;

d) Compare the algorithm with others available for the same task;

&) Apply the methods of analysis to other related problems.

In Bections 6 and 7 the emphasis is on understanding the basic definitions
and properties. Proois will be expected only when they are short and
simple,

Aho, Hopcroft and Ullman: The Design and Analysis of Computer Algorithms
Baase: Computer Algorithms

Garey and Johnson: Computers and Intractabilivy

Horowitz and Sahni: Fundamentals of Data Structures

Lewls and Papadimitriou: Elements ¢f the Theory of Computation

Reingold, Nievergelt and Deo: Combinatorial Algorithms
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Theory Core Exam: Fall 1985
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LD. Number

Fall 1986

This examination contains five questions, Plouse answer each question using & seperste
pieca of paper oo which you heve written your LD). number. You have three hours in which
to work, Paptial credit will be given for ol problems based on your reesoning. All
probleme carry the same weight.

GOOD LUCK
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Problem 1

The system A shown above haa binary input and output, At any time t, gate G (inside A) is
either OR or AND, depending on the output of the finite-atata machine M at time t - 1.

Specifically,

Gute Gattimetin ORifyit - 1) = 0,
Gate G ot time tis AND if gyt » 1) = 1.

{n) Define the states a(t) of a finite-state machine that models the system A.

(b) Draw the trapsition diagram of your model.

{¢) Minimiza the diagram produced in (b) (if not already & minimal Snite-atats machine),

009

z(r}



Problem 2

Lot x and y be two strings of characters from some alpbabet. Counsider the cparations of
deleting » charncter from x and jnserting # character in . We want to determine the
minimum number of such operatione nesded to travsfurin x into y. Deseribe an algorithm
which finds this number and ectiviate its ronning time within O (big Oh; Order). (Nota:
The slgorithm of interest is not the one which transfarms x into v, but the one which
computes the minimum number of operations required for this tranaformation!) The
speediar your algorithm, the more credit you will receive.
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Problem 3

Which of the following problems is decidable and whick is not? Give your reansning.

PROBLEM A

INSTANCE:;

QUESTION:

PHOBLEM B

INSTANCE:

QUESTION:

PRINTING PROBLEM

8 one-taps Turing machine T with  start state Qg & finitely inseribed tape t
marked with a starting position for T, and an integer k = the number of 1's
on tape t. tis infinite in both directions, ¥, = {0,1}, ("0" is the blank
symbol. t contsing O's on ell but k tapa aquares.)

Will TIt] (T started in state q, at the starting position of t) sver print s "1"
(i.6., print & "1" in the place of a "0")?

LOOPING PROBLEM

Same as for Problem A,

Will Tit] lvop, i.e. will TIt] enter the same Turing mnchma mﬁm\mtmn twice
(at two different times)? Recall that 2 Turing ma z_conflp

tuple conaisting of the Turing machine's ntatn Y m tnpo mnﬁmmtinn t, and
the tape squars being scanned %
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Problem 4

Give an sxample of & class of regular languagoes Ly, bgs oo o Ly« + . with the %'opmty that:
(1) The amalleat deterministic finite state sutomaton for Lk requires at loast % states,
wheress (2) a deterministic pushdawn automaton for Ly exists which has O(k) states.
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Problem &

Parta (a} and (bl) are worth 110 credit; (b2} is worth 8710,

(a) State the VERTEX COVER problam (recall that it has to do with the existance of a
sot of nodes that cavers all the edges),

(b) Read the following problem, then answer (b1) and (h2),
PROBLEM: AV CIRCUIT PROBLEM

INSTANCE: A cycle-free circuit with m inputs (m = s positive integer) and 1 output,
which is constructed from 2-input AND gates

and OR gates W i & positive integer k, k < m.

QUESTION: Does there exist a subset of < k input lines such that when these input
lines are 1 (THUE), the sutput is 17

®1) x, =%, Xy Answer the above QUUESTION for the following INSTANCES:

with k = 1:

with & = 2:

b2 Prove that the AV Circuit Problem is NPeomplats,
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Theory Core Exam: Spring 1986
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Spring 1988

C8 Undergraduate Theory Preliminary Examination

Do not tern the page before you hear the stariing gou.
In the mesntime...  Please print your LD. sumber on the cover of your bive book.

Thie examination containg four questions, which are to be snswered in your blue book.

The examination is elosed book: you may not use any texthooks, motebooks, or other written
matetial that you bave brought into the examination room with you. Caleulators, though
URDeCcessary, dre permitted,

You have theee hours in which to work,
Partia} credit will be given for all problems based on your reasoning.
All problems carey equal weight.

GOOP LUCK
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- 112 hour —

1. A straight-line program for computing 2" & a Gnite sequence

-t“*#"“ x"w...ux' ‘
constructed as follows: The Rrst element is 2, Each succeeding element is ¢ither the square of
some previouly computed element or the product of two praviously computed elements. The
aumber of multiplications to evaluate 2 is the number of terms in the shortest such program-
pequence mings 1.

What is the minimum nomber of multiplications to evaluate 2™ Do pot assume that the
ohvious solytion is best!

Frove that s smaller number M multiplications is impossible,
HINT: Don't simply enumerate all possibilitics, Whiie sotne enumeration may be useful, 3 com-
pleiely enumerative lower bound is unnecessary snd boring.
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8, Consider the following TM {Turing Machine) problem:

INPUT: A 1-tape TM on aiphabet {0, 1}, its start state == g5, and 2 fnitely inscribed tape ¢
{t contaizs Os on all but a finite number of tape squares) with pointem to the leftmost 1, the right
most 1, and the starting position.

QUTPUT: YES if the TM balts when started in state g, on the starting position of tape t;

NO if it loops, by which we specificslly mean that it reenters some previously

entered Turing machine conBguration. Recall that » Turing mackine configuration is 3 3-tuple
consisting of the Turing machine’s state ¢, its tape configuration £, axd the tape cell being
scanned ¢,

Does there exist an algorithm for solving the above Turing Mackine problem in each of the
following canes:
1) The algorithm is not required to halt if the Turing machine neither halts nor loope.
2) The algorithm iz required to halt if the TM neither balts nor Joops, in which case it may outs
put anything st sll inciuding YES or NO (i.e., it is permitted to tell 5 lie when the TM neither
balts nor loopst). ‘

Give solid arguments to support your answer.
HINT: Recall the diagonnlization argument used t¢ prove the Halting Problem undecidable.
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A Prove that one of the followiag two problems is NP-complete, and that the other is solvable in
polynomial time.

PROBLEM 1: DIRECTED FEEDBACK ARC SET
INPUT: A directed graph G and o positive integer K.
QUESTION: I shere a set of K edges whose tesnoval from G eliminates all directad cycles?

FROBLEM 2 UNDIRECTED FEEDBACK ARC SET
INFPUT: An undirected graph G and a positive integer ¥,
QUESTION: I thers n set of K edges whose removal from G eliminates sll cycles? ‘

You may assume that the following problem s NP—womplete:

PROBLEM: VERTEX COVER

INFPUT: An undirected graph G snd a positive integer K.

QUESTION: Is there a set § consisting of K vertices of (3, such that every edge of G meets {ie.,
is "covered™ by) at least one veriax in 5?7
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4. Let{z,, 25 - - -, 2,) be an array of peal numlﬂm in the memory of & randomemecens computer,

and let N be z real number which is Irge than }::,. You are to devise ni algorithen to compute
Fo

the uyique real number y such that ﬂmin{:,, §) =N
EXAMPLE: M {z;, 23, "~ -, 2,} = (‘;Iﬁ. 10, 4, 2) and N == 21, then y = 6. Why!?

Give the most efficient algorithm you can find for solving this problem, Efficiency is measured by
the number of steps required in the worst case ax » functiop of n, Arithmetic operstions, com-
patisons and accesses to array elements each count ss one step. Explain briefly why your a!go-
rithm works and how your time bound was srrived ot.
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Theory Core Exam: Fall 1986
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University of Californis
College of Engineering
Department of Electrieal Enpgineering
snd Computer Sciences
Computer Science Division

Fall 1888

CS THEORY PRELIMINARY EXAMINATION

The six questions count equally. Please write answers in biue books. Brevity and

clarity in your apswers are important.

GOOD LUCK!



KR Fall 1688 Prelim Exam

I two sequences o;,8,...,8, and by by, b, are interleaved, we say that the result-
ing BEQUEDCE €1,C2,.Cms o i3 3 shuffle of the first two, For example,

2,3,3,2,2,54,4,53.23.24,5

is » shufle of 2,3,2,5,4,3,2,4 and 3,2,4,5,2,3,5 since it can be obtahﬂmd by interleav-
ing those two sequences in this way:

23 2,54 3 . 24
3,2 4,5 23

You are to give a dypamic programming algorithm for determining whether or not
a given sequence is a shuflle of two other given sequences. Your algorithm is to run
in Lime O(mn), where m,n aod m + n are the lengths of the three sequences and
m % n.

In a directed graph G with vertex set V and edge set E, vertex is called a
aource if every vertex is reachable from w by a directed path {by convention. v is
automatically reachable from itaelf).

Give an slgorithm, rusping in time O(] V| + |£{), to find a source in G when
one exists, and otherwise to determine that & contain: no source. A bigh-level
description of the algorithm will suffice, but your argument for the upper bound on
execution time should be convincing.

in the element distinctness problem one is given a list of n numbers. The task it to
determine whether the n given numbers are all distinct (i.c., that no two of them
are equal). The primitive slep is to compare two of the numbers, say 7 snd y.
Such a comparison has three possible outcomes: z less than y, 7 equal to y and 2
greater thap y. Derive the best lower bound you eap on the worst-case number of
comparisons required by every algorithm that solves the element distinctness prob-
lem.
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3 Fall 1988 Prelim Exsm

4. Prove that the following problem is NP-complete by showing that it lies in NP and
providing » transformation from SATISFIABILITY.

SET SPLITTING
INSTANCE: Collection C of subsets of a finite set 5.

QUESTION: I there & partition of § into two disjoint subsets 5, and 5, such that ne
subset in C is entirely contained in-either 5, or in 5,7

Ezample: § == {1,2,34) and C contains subsets {1,2,3}, {23}, {1.,4} and {3.4}.
Here the answer is "yes™ since we can choose §; we {1,3) and 5, == {2,4}.

Suggestion; For each instance of SATISFIABILITY, with variables z,,25...,%,, let
the elements of § be the 2n literals z,,25....,%,, ¥ 0., plus a special symbol F
intended to represent the constant value "false”.

5. Let ¥ be an alphabet consisting of the p symbols #;,85,..,0,. Let L & £’ be the
set of all sonempty words # over T such that the last symbol of & does not oecur

elsewhere in 2. Thus

F
L o= U (E“{G;‘})’ a,.

o}
a) Give a nondeterministic finite automaton with p + 7 states that recognizes

the language L;

b) Prove that every deterministic finite automaton that recoguizes L has at least
2P+ 1. 1 states.

Hint: If two input strings ¥ and z lead the deterministic automaton to the same
atate, then y and ¢ must share certain properties. What are these properties?

8. Prove: If L is a context-free Janguage and R is a regular set then L N R is a
context-free language. ‘
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Theory Core Exam: Spring 1987
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University of California
College of Engineering
Department of Electrical Engineering
and Computer Sciences
Computer Seience Division

Spring 1087

CS THEORY PRELIMINARY EXAMINATIONS

The six questions count equally. Please write answers in blue books, Brevity and

clarity in your anawers are important.
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-2 Spring 1987 Prelim Exam

The value of an arithmetic expression depends upon the order in which opera-

tions sre performed. For example, depending upon how one parenthesizes the
expression

E—3%448
one can obtain any one of the following results:

§-3*4+86)=—125
Ew({(83*4)+ 8 = ~13
5—-8)*4+8= 20
B—B3*4)+6= -1
(E—N*4) +6= 14

Given an unparenthesized expression of the form
X1 0p %2 03 Xy e Xyl Oyl Ty

where x,, 25,.%, are operands with kriown real values and 0y, 03,...,0,.1 8T€
specified operations, we wani to parenthesize the expression so as to maximize
its value.

(a) Devise an algorithm to solve this problem in the special case that the
operands are all positive in value and the only operations are -+ and *.
Show how to apply your algorithm to the expression

* * =7 &

Br844T6 L, ., |

{Sketch the algorithm - don't code) The running time of your algorithm

should be bounded by O(a®). Assume constant time for operations on
reals,

(b) Explain how you would modify your sigorithm to deal with the case in

which operands can be positive or negative, and the only operations are
+ and —.

{¢) (Optional), Briefly suggest how you would generalize your algorithm to
deal with multiplications and divisions. (These operations are & bit nas-
tier that + and — because of sign changes. Don't try to cover all cases.
Also don’t worry about division by zero; pretend that it never occurs.)

Given a tree on n vertices with (positive and negative) edge lengths, we wish
ts find a pair of vertices such that the path between them has maximum
length. Describe (in English — don't code) an O(n) algorithm for determining
such a pair of vertices,
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-3- Spring 1987 Prelim Exam

3. Let fxy, £3,..2,} be a set of n distinet keys, where n = mg2". We wish to
partition the set into 2" disjoint subseta 8, 8,,..,8 5 of equal size m, such
that; whenever i < j then every key in §; is less than every key in §;.

(&) Describe a comparison-based algorithm which does this. (No coding
peeded - just explain your strategy clearly,) The more efficient your
algorithm (in terms of O), the more credit you'll receive.

(b) What is the time complexity of your slgorithm?

M

[Note that keys within each subset need not be sorted. It is pessible to
solve the problem in less than O(rlogn) time, if r < loga.)

4. Show that SEQUENCING is NP.omplete by providing an appropriate
transformation from CLIQUE:

CLIQUE
Instance: A graph G = {V.E) and a positive integer k.

Question: Does G contain a clique of size k or more, i.e, & subset V' of V with
tV'| = k such that every two vertices in V' are joined by an edge in £?

SEQUENCING
Instance: A set of n jobs, each requiring one unit of time for execution, with
(i)  a deadline d; for each job j = 1,2,..n,

{ii) precedence constraints on the jobs, specified by an acyclic digraph with
a node for each job,

(iii) a positive integer K.

Question: Is there a sequence, consistent with the precedence constraints, for
processing the jobs on a single machine so that a least K jobs are completed
on or before their deadlines?

As an example, suppose there are five jobs with precedence constraints
specified by the digraph below, with the deadline for each job written by its
node in the digraph. Jobs 1 and 2 must be executed before job 4, but only job
1 must be executed before job 3. The sequence 1, 3, 5, 2, 4 results in only job
2 failing w meet its deadline. (Note that the firut job in the sequence begins
at time ¢ = 0.) ‘ ‘

Hint: For an instance of CLIQUE, create an instance of SEQUENCING with
8 job for each vertex and a job for each edge of G.
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xzqus... e | s maz.,z‘...

M is a Mealy-type finite-state machine whose transition diagram is showsn on
top right. (A Mealy machine has an output associated with every input) P is
& box with two input terminals (esch accepting symbols from {0,1/) and two
output terminals (each generating symbols from {0,1). P is related to M as
follows: Let x, ¥y X3 x, X5 Xg.. be an input sequence to M which yields the
output sequence z; zy zy &, Z5 . then the sequences x, %y ¥g.. and
Xy X4 X, When applied to P in parailel, cause the output terminals of P to
generate 2y za Zj... and zg 24 Zg... (For example, if the input sequence 100111,
when applied to M, yields the output sequence 111010, then the pair of input

gequences 101 and 011, when applied to P, yield the pair of output sequences
111 and 100.)

Draw the transition diagram of a Mealy machine which represents P.

6. Let G be a context-free grammar. We say that s nponterminal A is self-
embedding if and only if there exists a string uAv, where u and v are any
strings of terminals and nonterminals, sach that

+
A mwm» uAv.

041



-6 Spring 1987 Prelim Exam

(Important Note: u or v, or both, may be empty strings.)

(a) Describe an algorithm to test whether a specific nuntarmmal of & given
context-free grammar is self-erabedding.

(b) Show that if G has no self-embedding nonterminal, then L(G) is a regu-
lar language. :
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University of Californis, Berkeley
Department of Flectrical Engineering
and Computer Sciences
Computer Science Division

Fall 1087

C8 THEORY PRELIMINARY EXAMINATIONS

The six questions count equally. Plesse write answers In blue books.
Brevity and clarity in your answers are important.

GOOD LUCK !
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-3~ Fall 1087 Prellm Exam

You are given st items 2y, .. .,%,. Suppose that most of them are the same.
More precisely, define a majorily ilem as one that occurs more than n /2
times. Suppose there is & majority item. The only operation you may per-
form on items is to compare two of them.

Do only one of the following problems: (you receive eredit as indicated)

a) (half credit) Suppose the result of each comparison is one of * <7, ">7,
and "=". Show how to find the majority item in Ofn} comparisons.

b) (3/4 credit) Suppose the result of each comparison is one of "==" and
.4 Show how to find the majority item in Ofnlogn) comparisons.

¢} {full credit) Suppose the result of each compatison is one of =" and
"5£”. Show how to find the majority jtem in O{n) comparisons,

Give an algorithm to determine the length of the longest directed path in a
directed acyelic graph with n vertices and m edges.

Credit for this problem depends on the efficiency of your solution. What is
the asymptotic running time of your algorithm?

Let A be an nXn matrix whose entries are real numbers. Assume that

along any column and along any row of A the entries appear in (increasing)
sorted order.

a) Design an efficent algorithm that decides whether a resl number 2

appears in A. How many entries of A does your algorithm “look at” in
the worst case?

b} Prove a lower bound for the number of elements of A that any such
algorithm has to consider in the worst case. {the bigher the bound the
higher the credit)
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«3n t*all 1987 Prellm Exam

a) Given a context-free grammar ¢ and a word 2, is it recursively decid-
able (i.e. Turing decidable) whether there exists a word y such that

zyeL{G)

b) Given & context-free grammar G and a word z, Is it recursively decid-
able (i.e. Turing decidable) whether there exists a word y such that

sy ¢ LGN

Hint: The following problems are undecidable for general context free
grammars G and G

LGINL(G") = D
L(G) =5’

L(G) == L{G")
L{GY is CFL
L{G)NL(G") is CFL

Outline 3 decision procedure for the following problem:
Input: Regular expression denoting the language L
Question: Is there a string in L whose reversal is not in L?

You may use any of the usual textbook algorithms that operate on represen-
tations of regular languages as steps in your procedure.

Prove that the following problem is NP-complete:
DOMINATING SET

Instance: Graph G =(V,E), positive integer K< | V1.

Question: Is there a dominating set of size K or less for G, i.e., a subset
ViV with 1V €K such that for all u€V~V7 there is . pgV! for which
{u,v}EE?

Hint: Use a reduction that involves SAT,
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“Ba Full 1087 Prelim Exam

You are given n items x,, ... ,r,. Suppose that most of them are the same,
More precisely, define a majority ifem as one that occurs more than n/2
times. Suppose there is a majority itern. The only operation you may per-
form on items is to compare two of them.

Do only one of the following problemas: (you recetve credit as indicated)

a) (half credit) Suppose the result of each comparison is one of "7, "7,
and "==", Show bow to find the majority itemn in Ofn) comparisons.

b) (3/4 credit) Suppose the result of each comparison is one of "=" and
724", Show how to find the majority item in O(nlogn} comparisons.

¢} (full credit) Suppose the result of each comparison is one of "==" and
"4, Show how to find the majority item in O(n) comparisons.

Give an algorithm to determine the length of the longest directed path in a
directed acyclic graph with n vertices and m edges.

Credit for this problem depends on the efficiency of your solution. What is
the asymptotic running time of your algorithm?

Let A be an nXn matrix whose entries are real numbers. Assume that
along any column and along any row of A the entries appear in {increasing)
sorted order.

a) Design an efficent algorithm that decides whether a real number z
appears in A. How many entries of A does your algorithm *‘lock at" in
the worst case?

b) Prove a lower bound for the number of elements of A that any such

algorithm has to consider in the worst case. {the higher the bound the
higher the credit)
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a8 Fall 1987 Prelim Exam

a) Given a context-free grammar & and a word z, is it recursively decid-
able {ie. Turing decidable) whether there exists a word y such that
zyel(G)

b) Given a context-free grammar & and a word 2z, is it recursively decid-

able (i.e. Turing decidable) whether there exists a word ¥ such that
ty ¢ LG

Hint: The {ollowing problems are undecidable for general context free
grammars G and G

LCNLG) =90
LGy =%’
L{G) = L{G"

I{GYis OFL
L{G)NL{G") is CFL

Qutline a decision procedure for the following problem:
Inpui: Regular expression denoting the language L
Question: Is there a string in [ whose reversal is not in L?

You may use any of the usual textbook algorithms that operate on represen-
tations of regular languages as steps in your procedure.

Prove that the following problem is NP-complete:
DOMINATING SET

Instance: Graph & ==(V E), positive integer K < | V],

Guestion: Is there a dominating set of size K or less for ¢, ie., a subset
VICV with | VI <K such that for all ueV—V? there is a vEV' for which
{u,0}€E?

Hint: Use a reduction that involves SAT.
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Theory Core Exam: Spring 1988



Page 1 of 13 pages

Spring 1988

C5 Undergraduate Theory Preliminary Examination

* Do mot turn the page before you hear the starting gun.

* In the meaptime . . . Please print your I.D. number here:

-
* This examination contains five questions. The ﬁymbcliqéP‘ appearing by
Problems 2B, 4C, and 5 indicates above-average difficulty.

* You ara to put all your work, ineluding seratchwork, on the pages of this
examination.

* The examination is closed book: you may not use any textbooks, notebooks,
bluebooks, or other written y material that you have brought incte the
examination room with you. Calculators, though unnecessary, are permitted.

* You have three hours in which to wark.
* Partial credit will be given for all problems baged on your reasoning.
[Fach of the parts below carries equal weight

Do 6 of those 7 parts.
If you answer all 7, your grade will be based on the best b. ]

Problem Fage Grade
1 3 R
o . 2A 5 R
R .
7 e
2

c%flS 11

TOTAL:
MAX = 60

GOOD LUCK

066



PROBLEM 1

CHOCOLATE BAR PRUBLEM

You are given an m ¥ n Hershey Bar

which you are to crack into mn 1 % 1 pleces. oy

An elementary move {(step) takes a{ 2 f plece

and cracks it along & vertical or horizontal edge:

¥

oar

-l
X A

How many steps does it take to completely reduce the o x n bar
te 1 x 1 pleces?
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PROBLEM 2

A. Draw the TRANSITION DIAGRAM of the MINIMAL, DETERMINISTIC finite~state
automata Al, AZ and A3 which accept the following sets (respectively):

(1 ri= {0,137}
(11) R2 = {00,01,10,11}*

(11i) R3 = R} - RZ {i.e., all strings that are in R} but not in R2)
\ L l’/ {Remember to minimizel)

“g‘é)hli. Let R 5.{0,11* be a regular set. Defineﬁm {x‘é[ﬂ,l}*
Iz YR regular? '

xxGR}.
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PROBLEM 3

lse the NP-completeness of HAMILTON CYCLE to prove that 1f.Pqé NP then
BAMILTON PATH § P.

HAMILTON PATH

INPUT: A graph G.

QUESTION: Does G have a Hamilton path?

A Hpmflton path Is a path that scarts at some node u, ends at a
different node v, and goes through all other nodes once snd only once.
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PROBLEM 4

Insert the language classes given in A into the table in B in order so that
ecach language tlass ia contained in the clags immediately below ir. Then
£i1l in each entry of table B with . or m {if you don't know).

A, Language Classes: 1.
2.
3.
4,
L
6.
7.

¥ (polynomial time bounded)

Regulay

Context free

Recursively enumerable

NP (nondeterministic polynomial time hounded)
Recursive

PIPACE (polynomial space bounded)

B, Is the given class of languages closed under the given operation?

INTERSECTION UNLON COMPLEMENTATION (£*-L)
LANGUAGE CLASS N \J -
o e e e e =

hY N
G}P C. Prove your answers for

N, U, T ¥in the case of context free languages.
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Ny 11
”@‘ PROBLEM 5

You are given a weighted graph G » (V,E,W) and a2 minimum spanning trea T of G,
borh given by adjacency lists. Suppose the weight of 1 edge of G 1s changed.
How would you update the spanning tree?

Morice that there are &4 types of update. Each type of updaté should be as
efficient as you can make it. In particular, O(JVl) is better than O({ED).

Without loss of generality, you way assume that all edge welghts are always
different.
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Addendum to Froblem 5.

More formally you may assume that the single chapge in weight is specified
as [u, v, edge~type, old-weight, new-weight] where (u,v} is the edge whose
weight 1s chaenged and edge-type epecifies whether (u,v) i1s a tree-edge or
not {i{.e. {(u,v) & T?).

We may classify the change as being one of 4 kinds: according to whether
{u,v) € T or not and whether the welght of (u,v) increases or decreaaes.
In each of the four cases your algorithm should be s efficient an
possible; you can specify the new minimum spanning tree T' by specifying
how it differs from T (i.e. output T-T' and T'-T).
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Page I of 13 pag&ﬁ

’ Spring 1984

€5 Undergraduate Theory Preliminary Examinatiom

* Do pot turn the page before you hear the starting gun.

# In the meantime . . . Please print your 1.D. number here: \ A&“ .
Y

/
o {ny
* This examination contains five questions. The aymbulﬂcéﬁh appearing by
Problems 2B, 4C, and 5 indicates above~average difficulty.

* You are to put all your work, including peratehwork, on the pages of this
examination,

* The examination is closed book: you may not use any textbooks, notebooks,
bluebooks, or orher written material that you have brought inte the
examination room with you. Calculators, though unmecessary, are permitted.

#* You have three hours in which to work.

* Partial credit will be given for all problems based on your reasoning.

[Each of the parts below carries equal weight

bo 6 of those 7 parts.
If you answer all 7, your grade will be based on the best 6.]

Problem Fage Grade
1 3 Lo |
V2 5 e
W o
3 ; lo

PRE

N
i : i1
,
TOTAL: é@
MAX = 60

GORD LUCK
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CHOCOLATE BAR PROBLEM . Li]

PROBLEM 1

You are given an m X n Hershey Bar

which you are to crack inte an 1 x J pleces. m
An elementary move (step) takes a{ x £ piece

and cracks 1t along a vertical or horizontal edge:

2 P!

j ‘ 1 . e

How many steps does it take to completely reduce the m x n bar
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PROBLEM 2

A. Draw the TRANSITION DIACGRAM of the MINIMAL, DETERMINISTIC finite-state
automata Al, AZ and A3 which accept the following sets {(respectively):

(1)  RL= {o,13*{1},
(1)  ®2 = {00,01,10,1}*

(1{f) R3 = Rl « R2 (i.e., all strings that are in Rl but pot in R2)

ol {Remember to minimize!)

~YF%B. Let R € {0,1}* be a regular ser. Define VR = {x€fo,1}*
Is YR regular?

o4 i \/ AU S¥hin er‘av‘%ok-\“ ke
() —_U?\.tmﬁ\*‘ﬂ» D _K’“\?@ﬂ A}%i%o
-H-“—SCD 2> " -

xxiR}.

O

'J ooy, PeuI 2= Lo.3Y),
G This 18 oft w0 Srioge




Gr = W\?\\ LYY
O -ﬂ\ k f:) | P
Gavavdae. R ew R ol @ alcep \lo M A=

sonarChesr .
WR= lx\ oz e Ry

Qoo oAd o N\{iﬁh-&-"}:’ S

dle, )= Y N e a2

e van diloeietly e W ﬁ ol g
phates  CuR 00 (2

M#}%—WMC\C L@?*}:;\E&m L (&;:") - :
o, ) o e Yt SR
[ Graras wret, Jx € R

"



") BLANK PAGE -’ 6

PRSP A X CXAB e B ooy T, et

Tt w |
ol lask on€ Qasice ok  daado Yo »-,&,D..e. '\U""& sl .
Gro L{,mw ereceprs = .o“:'uwa AX 4 Y af:elp)& *.

' ' o Yed
pesae TV e X0 T v vy
ge b mm\wm&ﬁ%ﬂﬂ Ea
7 Q - u\%“h ﬂ\n\@f‘a
%' ovaee 8o, %) = Conp b thi
AT s mm s Y

SCCDW*X)()" q,j L F 2 Konce

078



) \

Hu c—"') N

PROBLEM 3 (’a.\o\) -
-~

Use the NP-completenmess of HAMILTON CYCLE to prove that 1f P # NP then
HBAMILTON PATE § 2. “

Sk te WAR-
HAMILTON PATE (ﬁ‘o‘“""“’&?‘ )

INPUT: A graph G.
QUESTION: Does G have a Hamilton path?

A Hamilton path 1s & path that starts at sowe node w, ends at a
different node v, and goes through all cther nodea cnce and only onca.
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PROBLEM 4

Insert the language clagses given in A into the table in B in order so that
each language class is contained in the class immediately below it. Then
£i11 in each entry of table B with [YES], or [ 7] (4f you don't know).
A. lLanguage Classes: 1. P {polynomial time bounded)

2. PRegular

3, Context free

4, Recursively enumerable

5. NP (nondeterministic polynomial time bounded)
6. Recursive

7. PSPACE (polynomial space bounded)

B. Is the given class of languages closed under the given operation?

INTERSECTION UNION COMPLEMENTATION (£*-1)
LANGUAGE CLASS n U ——
/ Regulos. Ye s Yeg Neg |
Getexs Wee. W Neg ™No.
Veg. Yes
PR TN - Nes Yed
PSPAC : W Ve o Yéﬁ"
Reundive. Nesg Neg
| Rewsnely eoumde. Y3 Yea Yed
‘“::(%Pfc. Prove your amswers for /1, U, "Fin the case of context free languages,
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'@‘ PROBLEM 5 T w w\d . w5t @

You are given a welghted graph G = (V,E,W) and a2 minimum spanning tree T of G,
both given by adjacency lists. Suppose the weight of 1 edge of G 1s ehanged.
How would you update the spanning tree?

Not{ice that there ate 4 types of update. Each type of update should be as
eificient as you can make it. In particulsr, O(JVl) is better than oliED).

Without loss of generality, you may assume that all edge weights are always
different. A o AN Y (_:w&ﬁ\etla w5y Ade .
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Fall 1988

C8 Undergraduate Theory Preliminary Examination

Do NOT turn the page before you hear the starting gun.

In the interim, please print your II} number here:

This is a ¢losed book exam with SIX questions. Blank pages are included between
some questions. so make sure you read all of them.

Put all your answers, including your reasoning, on the pages of this examination.
Partial credit can be given if you show your work,

All questions carry equal points, but are not guaranteed to be of equal difficulty.
You have three hours to answer all six questions.

Good Luck !
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1. Let G be a directed graph with n vertices and ¢ edges. The transitive closure of ¢
is a graph H 2 © with the same vertices as G such that u — v.is an edge of H if
and only if there is a directed path in G from u to v

(a) If G is an acyclic directed graph, give an algorithm for computing its transitive
closure that runs in time O(ne).

(b) Assuming an (X ne) algorithm for acyclic digraphs, give an algorithm that
computes the transitive closure of a general digraph in time O(ne).

You can assume the existence of efficient algorithms for the following problems:

TOPOLOGICAL SORTING

Given a directed, acyclic graph G with n vertices, a topological sort is a one-to-one,
onto function f : V(G) — {1,...,n}, such that whenever ¥ — v is an edge of G, we
have f{u)} < f{v). An acyclic digraph can be topologically sorted in time Ofn + e).

STRONG COMPOXNENTS

Given a directed graph G. a strongly connected component is & maximal subgraph
F ¢ @, such that for every pair of vertices u and » in F, there is a path from u
to v. The strongly connected components of a directed graph can be computed in
time Qin 4 e}
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7. Civen an unsorted list of real numbers x;, 2y, ..., 2., the CLOSEST PAIRS PROB-

LEM is to compute a function ¢ : {1,...,n} — {1,...,n} such that 2y, is the
closest number in the list to z;. In other words c{i) = j where § # 1 and {z; — ;!
is minimized.
Now consider & computational mode} where comparisons are allowed between ',
and between differences of z;'s. Give a lower bound on the worst-case running
time for any algorithm which solves the closest pairs problem, i.e. which computes
(i), £ = 1,2,...,m, in this model
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3. The figure below shows a “neural” network. Each neuron (triangle) can output
cither a 0 or a 1. The output is 1 iff a weighted sum of the input values is at
least as great as a threshold, which is the number inside the triangle. The inputs
are either excitatory (weight = 1) which are represented as circles containing plus
signs, of inhibitory (weight = ~1) which are shown as circles with minus signs. The
input to the network is either 0 or 1 at all times, and initially, all neurons have zero
output.

(a) Construct an equivalent finite state machine which is in an accepting state
whenever the output of the network is a 1. Assume a small delay through the
neurons, but compute only the stable states of the network, i.e. when the input
changes, follow the signals through the network until a steady state is reached.
You will find that the network is symmetric enough that some transitions
will be non-deterministic. (Checksum: your non-deterministic machine should
have 3 states)

(b) Give an equivalent deferministic finite state machine, and minimize the nusm-
ber of states.

QUTPUT

INPUT

g
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4. Given a language Ly, let L, denote the language that contains all strings in Ly, plus
all strings that can be obtained by substituting a different symbol in one position.
For example, if Lg is a language over the symbols a,b,c and

Ly = {a,abb}

then

Ly = Lg U {b, ¢, bbb, cbb,aab, ach, aba, abe}

{a) Y Ly is regular, does it follow that L, is also regular 7 Prove or disprove.

{b) If Ly is context-free, does it follow that L, is context-free ? Prove or disprove.

-F
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5. Let [a;, &), i = 1,2,...,n be n closed intervals on the real line, We say that a set
5 of points covers the intervals if

[, Bl NS 5 @, fori=1,2,...,n
{a) Deseribe an efficient algorithm for finding a covering set of minimum cardinal-
ity. Estimate the worst-case running time in big-oh notation.

(b} Now suppose each interval is an arc of a circle. The covering set we are looking
for is a finite set of rays. as shown below, Describe an efficient algorithm for
finding a minimum covering set and estimate its worst-case running time.

N34
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8. Next we generalize the covering problem to disconnected sets. In contrast to ques-
tion 5, which concerned single intervals, we now consider sets A; which are unions
of two intervals in the real line, 4; = {a;, k| U [, di], and we seek a set § of points
which covers the A;, so that

ANS#0 fori=12,...,n
Show that deciding if there is a k-point covering set is NP-complete. You may want

to use the fact that the VERTEX COVER problem is NP-complete:

VERTEX COVER
INSTANCE: A graph G = (V, E) and a positive integer k& < |V].

QUESTION: Is there a rertez cover of size k or less for G, that is, a subset V' C V
such that (V') € k and for each edge {u,v} &€ E, at least one of uand v belongs to
V.
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1(a)

" ipgt, use topological sort to order the vertices of G. Let sore[ll
. the ith vertex in the ordering, and let infv] be a list of the

in-neighbors of the vertex v, i.e. the vertices u such that u -3 v is

an edge of G. For each vertex v, we create a list reach{v] of the

vertices that can reach v. Then to compute the transitive closure, we

do

for $ = 1 ton do
v s sort[i]
reachiv] 1= in{v]} : vertices that can reach v lneclude its in-neighbors
for w in in{v] do
reach{v} := reach{v] + reachlul
endfor ‘
endfor

+ plus the vertices that can reach its
; ln-neighbors

Then H is the graph whose vertices are the vertices of G, and
whose edges are all edges of the form u -» v, where u 12 in
reach{v].

We assume inductively that reash{ul] contalns all the vertices that
can reach u for any u less than v in the ordering, and it follows that
after the ith step, reachiv] will contain all vertices that can reach v.

The algorithm runs in time O(ne) since the inner for is executed
exactly e times, once for each edge of G, and it invelves a set union
of two vertex sets containing at mest n vertices, an O(n) operation.

ror a general digraph G, first find the strongly connected gomponénts
of G, and form its superstructure graph G'. The vertices of G' are the
strong components of G, and there is an edge between tuwo vertices vO
> v1 of G' iff there is an edge hetween tuy variices ul -> ul of G,
such that u0 lies in the strong component vO, and ul lies in vi. G is
clearly acyolie,

Now compute the transitive closure of §' using the algorithm from
part {a), and let H' be the result, Then we compute

verticas(H} iz vertices(G)

for v in vertices{H'} do ; Join all pairs ol vertices within a strong
for w0 in v de : component with arces in both directions.
Por ut in v and ul <> ud do
edges(H) 1= edges{H) + (u0 -> ul)
endfor
endfor
endfor

for e in edges(H') do ; Then we add an edge ul -> u) whenever ul and ul
vQ 1z tafl{e) ; lie in distinct strong components, and bhere ls
vl = head{e) ; an edge betwsen these components in H'
for ud in v0O do ‘
for ul in vl do
edgas(H) 1z edges(H) + (u0 -> ul)
endfor
endfor

endfor | 097
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1{b) (contd.)

Computing the strong components and the superstructure G' takes time
O{n+e). Now since G' has at most as many edges and vertilces as G,
eomputing its transitive closure takes time O(ne). The last step ls
the computation of H from H'. But if we look at the two inner loops
where edges of H are added, it i=s not difficult to see that a
different edge ud -» ul is added each time through the loop. This
follows because the strong components partition the vertices of &, and
distinet strong components will contain disjoint sets of vertices.
So the running time of this step Iz bounded by the number of edges
in the transitive clozure, Y.

We olaim that H hag size Ofne).

ASIDE: clearly H hasz size 0(n"2) but this may be larger than O{ne).
The graph G may not be weakly connected, so it Is possible to have & (< n.

H haz size O{ne) because if v -» v is an edge of H, there must be some
edge w -> v of G, i.e. some edge must point into v or v would not be
reachable. The number of reachable vertices in H iz at meost e, since
at most e vertices of G lie at the end of edges. Finally, each
reachable vertex of H can be reached by at most u-1 other vertices, so
the total number of edges of H is at most e{n-1) which is Q(ne),

NOTE: A slight strengthening of the above argument shows that
the bound on the size of H iz O(min(n~2,8"2)).

2. The gimplest way to derive a lower bound ls to show that there are many
possible sequences e¢[1],2[2),...,¢[n}, and then give an information-theoretic
lower bound on the number of tests necessary to salect one of them,

Suppese our real numbers xi are some permutation of the sequence
1,4,9,16,25,36,.... The nearest neighbor of each xi (except 1)} is the
predecessor of xi in the seguence.

There Wwill be exactly one pair of indices i,} such that ¢[i} = ] and
¢{j} = i, corregsponding to the positions of the numbers 1 and 4.

Since cfk) for the other vertices is the predecessor of xk in the
ordering, the remaining o[k} uniquely determine the order of the xi's.
Since there are n! possible arderings, there must be at least as many
distinet sequences of ofk]'s, so a lower bound on computing the c[k]'s
is leg{nt!) which {3 Omegaln log n). :
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4.(a)

(b)

5.(a)

Answers to Fall 1988 Undergraduate Theory Prelim

E. L, Lawler

L, is regular, There are various ways to prove this. One way is by indue-
tion over the form of regular expressions. Another is as follows: Since Ly
is regular, it has an FSA. Construct a nondeterministic FSA for L, as fol-
lows. Make Make two copies of the transition diagram for the FSA for Ly,
priming all the states in the second copy. Then add transitions from the
first copy of the diagram to the second copy as follows. For sach transition
{q,r) on a symbal a, provide a transition (g,r") on each of the symbols in
X ~ {a}. Since L, is accepted by this nondeterministic F8A, L is regular.

L, is context free. Again there are various ways to prove this, One way is
by a construction involving PDAs, similar to that in part (a), Another is by
modifying a grammar for Ly We indicate this modification by example.
Suppose Lo generated by the following grammar, with a,b,c as terminals:

8§ w-» SA | ABe
A ~-BAlab
B —-+ ke

Let unprimed nonterminals allow terminal subsitutions and primed unter.
minals allow no substitutions. Then a grammar for L, is as follows:

S -—=+8A|SA'|A'Be|AB'c |A'B'al A'B'b
§'——+8'A'A'B'e :
A-—BA|BA |ab{bb]|ch|aa]ae

A'-_“*B’Af ab
B —-»be|ae]ce|bal|bb
B’ be

(By specialization to right/left linesr grammars, this construction alse
works for part {a).)

A covering set 8§ must contain at least one point x such that
x % b, = minfb). Any such point x covers a subset of the intervals
{a;, b;] with a; = by, And by, itself covers all such intervals, Therefore
there exista 2 minimum cardinality covering set that contains by;,, and no
other points to the left of it. It follows that the following procedure com-
putes an optimal covering set §:
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(b)

- 2.

1= {12,..n}
5 =0

while ( = @) {
buin = minfd; | 1€}
§ = Su{bmin};
=1 —{i]o6; = byph

With a priority queue that supports the operations MIN-a;, MIN-b,
DELETE MIN-J;, each carried vut in Q(logna) time, the procedure can be
implemented to run in O{nlogn) time.

If there is some point on the circle that is not contained in at least one of
the n arcs, then the preblem is like that in part (a). So suppose this is not
so. Without loss of generality, we may assume that a minimum cardinality
covering set § contains only right endpoints of arcs, i.e., "clockwise" right
endpoints. There mre n such endpoints. If one chooses 2 given right end.
point to be in § and eliminates all the arcs that are covered by it, the
remaining problem is like that in part (a). This means that the problem
reduces to at most n problems like that in part (a). Hence the problem can
be solved in O(n? logn) time,

CGiven a set of k points, it iz easy to check that they cover all regions Af,
Hence the problem is in NP

The problem is NP-complete, by transformation from VERTEX COVER:
Let @ = (V,E) be the given graph. Assign the n vertices to any n distinct
points on the real line. For each edge {u,v} create & region A; that is the
union of the two intervals [¥,u] and [v,v]. Quite clearly & has a vertex
cover of size & or less if and only if there i3 a covering set 8§ of the same
gize,

int
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UNIVERSITY OF CALIFORNIA
tollege of Engineezing
Department of Electrical Engineering
and Computer Science
Computer Bcience Division

Spring 1989

¢S5 THEORY PRELIMINARY EXAMINATION

Do BOT turn this page before you hear the starting gun.
You have three hours to complete all guesticens.
This is a closed book examination.

there are SIX cuestions. They all carry egual number of points,
but are not necessarily of equal difficulry.

put all calculations and answers in blue books.

Write your ID number on the front cover of evexry pook,

G0OD LUCK !
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PROBLEM 1

Lev a = (a(‘l}ra(-z)r v} and b = (b(l,rb(a)r-u-rb{n)) e
arrays, each consisting of n distinct integers in increasing prder.
Assume that no integer OCCUIS in both & and k. Give the fastest
algorithm you can for finding the n'th-smallest eiement in the urion
af the Lwo &Irays. .

[Bint: How would you decide whether a pazticular element ali) is
among the n smallest elements in the union of the two arzays?)

PROBLEM 2

% set of vertices $ in graph G is said to be independent if no
two vertices in K are adjacent; § is said to be a maximum
independent set in G if it is independent in G, and no independent
smt in G containe more vertices tnhan § does,

Give the fastest algorithm you can find for the following problem:

TNEUT: A tres T, represented viz adjacency 1isis (i.e. for each
ver-ex v, & linked list of vertices adjacent to ¥ ig given).
OUTFUT: The number of vertices in the maximuam independent set of T.

grate the running time of your algorithm as 2 function of the number
of vertices in T.

You may assume without procf the properties ci any texthook algczithm
rhat you wish to us¢ as a svbroutine.

FROBLEM 3

11 ie & SORTED list of 10 puttbers; LZ is an UNSORTED list of
10 pumbers. You may assume +hat the 20 numbers in 11 and L2
sve distinct. Detexmine the worst-case information~theoretic
lower bound on the number oI comparisons reguired to find:

{a) The 5th smallest number among the 20 numbers in L1 and L2.

() The 5th and 6th smallest numbers among the 20 numbers in
11 and LZ.

e —— L E—————

FPROBLEM 4

(a) Prove that the following language over the aliphabet {a,b,<}
is pot context free: the set of all strings containing equal
numbers of a’‘s, b’'s and ¢'s. .

s : Vi o ’ s
g?/ﬁiv anéﬁnf&rmal description of “nondegezministic pé}ﬁgwwn
. aufomatdn that/accepts, the complement of vhe followidg

1 nc_maég\: {well v & (2;b)% ), 7 4
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PROBLEM 5

e 48— —n

{a) M and M’ are Mealy machines., In gach machine, x{L), z {t) and

= (t) dencte the input, ocutput and internal svate, respectively,
at time t. Shown below are the {incomplete) transition tables
for these machines.

M M’
wit) Js(t+1)} ] =(%) zey laqe+l) | zle)
Nﬂl T T~ [0 TL 1611
i- 1tz jote 1/ irlar ot
2 AL ERL 2 2rtaraio
3 L at

t+ is known that M and M' are EQUIVALENT; howevexr, thay age NOT
TEOMORFHIC (i,e. one cannbt be cbtzined from the other simply by

renaming states).

n the micging entries in the vable, (The answer is not

i1l 4
nigue; any corIect one will do.)

-
1

g

(b} The se= of etrings T, is represented by the regular expression
R, = 1o

{where + denotes the OR operator). The set of strings Tzﬁis
represented by the regular expression

R, = ((0+2) *1)*

site a regu.az expression R which represents the set oi gtrings
w o= Ty [B should wse only the concatenation {(*}, itewation (*)
nd OR (+) operatlonsi don't use the - opezator.)

PROBLEM &

i - ——

Frove that the following problem is Np-complete.

BISJIOINT PATHES PROELEM

hw——#“nmﬁ”--m--ﬂ-—w_-%

INPUT: An undirected graph G and a sequence
(s (1,0 (2) ) (8(2),6€2))y «onr (s k), s (k)]
of paizs of vertices in G, where all 2% vertices are distinct.
QUESTION: Does G contain kx paths such that:
(1) for i = 1,2,...1%, the i'th path joins s(i) with t{i), and
{(ii) no two of the k paths have & vertex in commeon ¥

[Bint: Give & polynomial-time transformation from the satiasfiability
problem to the disjoint paths problem. The transformation should be such
that an instance of the satisfiability pzoblem with % clauses transforms
te an instance of the disjoint paths problem requiring k paths.]

noe
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for j = 1,2,...,k and for each variable x; in c{ji):

(33— 1)

fFor j = 1,2....,% and for each complemented variable X, in

ED-D—ED

The path chosen to connect S(i) with T(i) detarmines & truth-
value setting., If the upper path is taken, then X; ig false; if
the 1lower path is taken, then x; {8 true. It is possibie to
connact the remaining source-sink pairs if and only 1f this
truth-value setting satisfies all the clauses, This establishes
that SAT is polynomial-time transformable to OPP, and thus that
DPP 18 NP-complate.
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Solutions to Questions 1,2,4 and & on the Theory Prelim
R.M. kKarp

1, €all a(i) small if it is among the n smallest elements, and
otherwise large. Clearly a(i) is small if and only 4f it is less
than bin-i+1}, Algse, the small elements of array a precade the
targe ones. Therefore, by binary search, we can determine, in
TIg(n+1)1 comparisons, which elements of the a-array are small. If
none are small then b{n) is the nth-smallest elemant, If al(j) is
the tast small element in the a-array, then the nth-smallest
element is max(a(j), b(n-j)). The algorithm requires t + 1g(n+i )\
comparisons.,

Z. Let T be rooted at some vertex r. Clearly, there is a maximum
independent set containing a1l the lesaves of this rooted tree,
Applying this observation inductively, wa can build a maximum
independent set 3 by moving from the leaves to tha root, appiying
the Following rdle: vertex x is in § 1f and only if none of its
children is in §. The set $ can be constructed in time O(n) as a
hyproduct of a depth-Ffirst gsearch of the rooted tree. The
membarship of each vertex in % is determined on the last visit to
that wvertex {when 4t gets popped from the depth-first search
stack), Whenaver g vertex enters 5§ it marks its parent.
ineligible, and a vertex x enters 5 only +f it hasn't baen marked
ineligible by the time it is popped from the stack.

4, Let L be the given Yanguage, and assume For cmntrad1ct1on that
i is context-free. Let R be the reguiar language a®n’ ™. Then LaR
is context-free, since the intersection of a context-fraoe
1anguage with a regular language is context-free. Note that LaR =
[a“ b ™ n%rD} By the pumping temma, every sufficiently long
string 1in LaR s of the form uvwxy, where v and x are not both
ampty and, for all i, uvtwxly lies in L R. MNeither v nor x
contains two distinct letters, since the occurrences of those
fetters would be interleaved in uv*wx*y. Haence some letter is
misging From vx, and all thres Yetters cannot ocour with egua)l
fraguency in uviwx™y. This contradiction establishes that L is
not context-fres.

5, The Disjoint Paths Problem (DPR) lies +in NP, since there is a
palynomial-time algoerithm to check whether a given set of paths
ties in &, 15 vertex~disjoint, and has the corract end-points.

Te prove that DPP is NP-complete we give a reduction from
Satisfiability (SAT). Let an instance of S8AT have clauses C{1)},

c{2),...,C(k) and variables x, , %,,..., X,. The corresponding DPP
instance will bhave the n+k source-sink pairs (8{1),T(1))},...,
{(&(n}, T(n)) and {(a(1),5(1)),...,{s{k),t{k)) and additional
vertices x;;and ¥eg » Tor i =1,2,...,nmand § = 1,2,...,k.

Its graph will be the union of the following subgraphs:

for 1 = $,2,..,.,0




1
Doi 3 ST on

e ’ PN
L‘*) Grate 14 awd Moart aiwanlf-"“t £ “Lﬁh‘iu‘hu!‘!\ l“‘_J TWL;J

c‘-‘-"\"'-u‘( e M”"\l“ﬂ-ﬁml.
= 'H.g t“msia.s LT e.v-ia'n**“ T"Lf‘
B U R o
A, VY
(Fewie, oot oavd &ty Ye reduaifle we wot here
i~y yi~af

(M hﬂ"-’! "&’ﬁﬂ "H /
Dagg.'ﬂd PRI I ‘
o o
Y e 1 a i) o v et
N I N 1y VI oo

o _
yv2deo v e
{TLQF‘-'-* are othare vm\ﬁ-q-q.) .

by o, o¥ylon)T: = (forya¥i)F:
' g,
Q :
o
° -" R § ply

'L\' u!‘ -
P,
B A

’ ‘kb that !")e:rmh:

r
—

= (1 +ou*i{om)) (o + Herg) ¥

A (Tle-e ore otlar {um&-)
110




