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Abstract

We consider an adaptive finite state controlled Markov chain with par-
tial state information, motivated by a class of replacement problems. We
present parameter estimation techniques based on the information avail-
able after actions that reset the state to a known value are taken. We
prove that the parameter estimates converge w.p.1 to the true (unknown)
parameter, under the feedback structure induced by a certainty equivalent
adaptive policy. We also show that the adaptive policy is self-optimizing,
in a long-run average sense, for any (measurable) sequence of parameter
estimates converging w.p.1 to the true parameter.

* This work was supported in part by the Texas Advanced Technology Program under Grant No. 003658-

093, in part by the Air Force Office of Scientific Research under Grant AFOSR-91-0033 and in part by the

National Science Foundation under Grant CDR-8803012.

† Systems and Industrial Engineering Department, The University of Arizona, Tucson, Arizona 85721.

‡ Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin,

Texas 78712-1084.

§ Department of Electrical Engineering and Systems Research Center, The University of Maryland,

College Park, Maryland 20742.

1



I. Introduction

In recent years, there has been a considerable amount of work in stochastic adaptive

control [10]–[11]. However, aside from results for linear systems, little progress has been

made on problems with incomplete or noisy state observations. An initial step in this

direction was taken in [1], where the adaptive estimation of the state of a finite state

Markov chain, with incomplete state information, and with the state transition probabilities

depending on unknown parameters, is studied. This adaptive estimation problem is that

of computing recursive estimates of the conditional probability vector of the state at time

t, given all the past observations, when the transition matrix P is not completely known,

i.e., it depends on a vector of unknown parameters θ — this dependence is expressed as

P (θ). In [1] we use the previously derived recursive filter for the conditional probabilities,

and simultaneously recursively estimate the parameters, using the most recent parameter

estimates to update the filter. This adaptive estimation algorithm is then analyzed via the

Ordinary Differential Equation (ODE) Method [12]–[13]. The convergence of the recursive

parameter estimates is established, and optimality of the adaptive state estimator is proved,

in a long-run average sense.

In [7]–[8], we began to investigate the application of similar techniques to the control

of adaptive finite state Markov chains with incomplete observations. One interesting set

of problems for which some results are available when the parameters are known are those

involving quality control, replacement, and repair of a unit in a manufacturing system or

communication network [9], [15], [18]. We formulated the adaptive version of a problem

of this type in the above references; however, the presence of feedback makes this problem

much more difficult than that of [1]. Discontinuities in the optimal control strategies lead to

averaged ODE’s with discontinuous right-hand sides that cannot be handled by currently

available methods.

In this paper we present parameter estimation techniques based on the information

available after actions that reset the state to a known value are taken. At these times,

the (augmented) state process regenerates, its future evolution becoming independent of

the past. We prove (by means of the ODE method) w.p.1 convergence of the parameter

estimates to the true (unknown) parameter θ0, for a parameter estimation scheme of this

type. Then, given any sequence of parameter estimates which converges w.p.1 to θ0, and

which is measurable with respect to the filtration generated by the observations, we show

that a certainty equivalent adaptive policy is self-optimizing. The latter is obtained by

an analysis which uses the known (threshold) structure of optimal policies for problems

with known parameters. Our analysis is of particular interest since the nice formalism

recently presented in [17] cannot be directly applied in the present situation: here the

state is only partially observed and the optimal policy is not a continuous function of θ.
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The methodology exposed in the analysis relies largely on the w.p.1 convergence to θ0 of

the parameter estimates, and the continuity in the parameterization of quantities in the

model, like P (θ) and the solutions to the corresponding optimality equations. Hence, this

methodology is also applicable to a more general situation than the one presented here;

see [6]. In addition, we note that the feedback structure induced by our adaptive policy

obviates the need for, e.g. forced choice schemes, c.f. [11].

II. A Partially Observed Binary Replacement Problem

Consider a situation in which a system, such as a machine, production process, or

computer communications network can fail. The (core) state Xt of the system can either

be good (0), or failed (1); let X := {0, 1}. The available control actions (or decisions) are

to operate the system in its current condition (0), or to reset/replace the system to an as

new condition (1); let U := {0, 1}. Assume for the moment that there is an underlying

probability space (Ω,B,P). The process
{
Xt

}
t∈IN0

is modeled as a controlled finite state

Markov chain, where we have that

P
{
Xt+1 = j

∣∣ Xt = i, Xt−1, . . . , X0; Ut = u, Ut−1, . . . , U0

}
= [P (u)]i,j ; t ∈ IN0 := {0, 1, 2, . . .}, (2.1)

and the state transition probability matrices are given as

P (0) =
[

1 − θ θ
0 1

]
; P (1) =

[
1 0
1 0

]
. (2.2)

Here θ ∈ [0, 1] gives the failure rate of the system. Only imperfect observations of
{
Xt

}
t∈IN0

are available in the form of a random process
{
Yt

}
t∈IN

; Yt gives a correct observation of Xt

with probability q, when Ut−1 = 0, whereas if Ut−1 = 1 then Yt = Xt = 0. More precisely,

Yt ∈ Y = {0, 1} and

P
{
Yt+1 = i

∣∣ Yt, . . . , Y1; Xt+1 = i, Xt, . . . , X0; Ut = 0, Ut−1, . . . , U0

}
= P

{
Yt+1 = i

∣∣ Xt+1 = i; Ut = 0
}

=: q , t ∈ IN0 . (2.3)

It suffices to consider only 0.5 ≤ q ≤ 1. The cases q = 0.5 and q = 1 correspond to

the completely unobserved and completely observed situations, respectively; we restrict our

analysis to the situation of strict partial observability, i.e., q < 1. The one-step cost c(x, u) is

defined as c(0, 0) = 0, c(1, 0) = C, c(x, 1) = R, where 0 < C < R. Probability distribution

vectors on X are elements of ∆ :=
{
p ∈ IR2 : p = [1−ρ , ρ] , 0 ≤ ρ ≤ 1

}
. Thus, each p ∈ ∆

can be uniquely identified with a scalar ρ ∈ [0, 1], as indicated. Initially, there is a given

probability 0 ≤ ρ0 ≤ 1 that the system is failed, an action is taken, and the state evolves

according to (2.2); a first observation is received, another action is taken; and so on.
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An (admissible) control law, policy, or strategy π is a rule for selecting the actions

Ut, based on ht = (ρ0, U0, Y1, . . . , Yt−1, Ut−1, Ut), where ht is the available information at

time t. The canonical sample path space is Ω = X × U × (X × Y × U)∞, and B denotes

the Borel σ-algebra obtained by endowing Ω with the discrete topology. Then to each

admissible strategy π and 0 ≤ ρ0 ≤ 1, we associate the average cost

J(π, ρ0) := lim sup
n→∞

Eπ
ρ0

[
1
n

n−1∑
t=0

c(Xt, Ut)

]
, (AC)

where Eπ
ρ0

is the expectation with respect to an appropriate marginal of the (unique) prob-

ability measure Pπ
ρ0

on B induced by ρ0 and the strategy π; see [2], [10]. The optimal (AC)

control (or decision) problem is that of selecting a strategy such that the average cost is

minimized, over all admissible strategies. The optimal (AC) cost function is defined as

Γ(ρ0) := inf
π

{
J(π, ρ0) : π is an admissible strategy

}
, for 0 ≤ ρ0 ≤ 1.

A. Information States

It is well known that the conditional probability distribution process, whose ith com-

ponent is given by

p
(i)
t := Pπ

ρ0

{
Xt = i

∣∣ Yt, . . . , Y1; Ut−1, . . . , U0

}
, t ∈ IN , p0 := [1 − ρ0, ρ0] ,

constitutes an information state (or statistic sufficient for control) [2], [4], [5], [10], [11]; for

this problem, it can be written as pt = [1 − ρt, ρt], where ρt is the conditional probability

of the process being in the failed state.

A separated strategy is a sequence of maps π = (π0, π1, π2, . . .), where πt : [0, 1] → U.

When πt(·) = π(·) for all values of t, then the policy is said to be stationary. Then the

partially observed, average cost problem is equivalent (i.e., equal minimum costs for each

ρ0) to the completely observed problem, with state ρt and state space [0, 1], of finding a

separated admissible strategy which minimizes

J(π, ρ0) := lim sup
n→∞

Eπ
ρ0

[
1
n

n−1∑
t=0

c(ρt, Ut)

]
,

where c(ρ, u) = (1 − ρ)c(0, u) + ρc(1, u) . Note that c(ρ, 0) = ρC and c(ρ, 1) = R. Using

Bayes’ rule, it is easily shown that ρt can be computed recursively, as follows:

ρt+1 = T (1, ρt, Ut)Yt+1 + T (0, ρt, Ut)(1 − Yt+1) , (2.4)

where

V (1, ρ, 0) = (1 − q)(1 − ρ)(1 − θ) + q[ρ(1 − θ) + θ] = 1 − V (0, ρ, 0), (2.5)

V (1, ρ, 1) = 0 , V (0, ρ, 1) = 1 , (2.6)
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T (0, ρ, 0) =
(1 − q)[ρ(1 − θ) + θ]

V (0, ρ, 0)
, T (1, ρ, 0) =

q[ρ(1 − θ) + θ]
V (1, ρ, 0)

, (2.7)

T (y, ρ, 1) = 0 ; y = 0, 1, ρ ∈ [0, 1] . (2.8)

Here V (y, ρ, u) is interpreted as the (one-step ahead) conditional probability of the obser-

vation being y given the decision u and an a priori probability ρ of the state being failed.

Likewise, T (y, ρ, u) is interpreted as the a posteriori conditional probability of the unit

being failed given that decision u was made, observation y obtained, and an a priori prob-

ability ρ. Let I[A] denote the indicator function of the event A. A well known property of

the process
{
ρt

}∞
t=0

is the following [4].

Lemma 2.1.
{
ρt

}∞
t=0

is a controlled Markov process, and its state transition probabilities

are given by

Pπ
ρ0

{
ρt+1 ∈ B

∣∣ ρt = ρ; Ut = u
}

=
∑
y∈Y

V (y, ρ, u) I
[
T (y, ρ, u) ∈ B

]
=: K(B | ρ, u) , (2.9)

for all (Borel) subsets B of [0, 1].

III. The Structure of Optimal Policies.

Consider the optimal control problem corresponding to each parameter value θ ∈ [0, 1].

Then, the existence of solutions to the corresponding (average cost) optimality equation

follows from the existence of a reset/repair action [6], [9], [15]–[16]. We summarize these

results as follows; dependence on θ is made explicit.

Theorem 3.1. Assume q ∈ [0.5, 1), θ ∈ [0, 1].

(i) There exist a constant 0 ≤ Γ∗
θ ≤ R and a concave, nondecreasing map hθ : [0, 1] →

[0, R], with hθ(0) = 0, such that

Γ∗
θ + hθ(ρ) = min

{
fθ(ρ) ; R

}
, (3.1)

where

fθ(ρ) := ρC +
1∑

y=0

V (y, ρ, 0; θ)hθ(T (y, ρ, 0; θ)). (3.2)

(ii) Any stationary separated policy that achieves the minimum in (3.1) is average cost

optimal; the minimum cost is Γ∗
θ, for any value of ρ0.

The following will be used in the sequel, and its proof is given in the Appendix.
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Corollary 3.1. Assume q ∈ [0.5, 1) and θ ∈ [0, 1].

(i) Any concave and nondecreasing solution hθ(·) of (3.1) is continuous on [0, 1];

(ii) furthermore, there is only one such solution satisfying hθ(0) = 0.

Henceforth, the dependence of Pπ
ρ0

on ρ0 will be omitted, in view of Theorem 3.1.

Equation (3.1) can then be used to determine the structure of the optimal policies [6], [9],

[15].

Theorem 3.2. Assume q ∈ [0.5, 1) and θ ∈ (0, 1].

(i) If
C(1 + θ)

θ
≤ R ⇐⇒ C

R − C
≤ θ ,

then the policy “operate (Ut = 0) for all ρt ∈ [0, 1]” is average cost optimal.

(ii) If

R <
C(1 + θ)

θ
⇐⇒ θ <

C

R − C
,

then there exists a threshold policy which is average cost optimal; i.e., there exists α(θ) ∈
(0, 1) such that it is optimal to operate (Ut = 0) for ρt ∈ [0, α(θ)), and to repair (Ut = 1)

for ρt ∈ [α(θ), 1].

IV. The Adaptive Binary Replacement Problem

If the parameter θ is unknown, we cannot compute ρt, nor can we directly solve the

optimal control problem. The enforced certainty equivalence approach which we will adopt

involves simultaneously computing recursive estimates θ̂t of the unknown parameter, and ρ̂t

of the information state, and using the latest available parameter estimate in the filtering

equation (2.4) to compute the next estimate ρ̂t+1; the decision Ut is made taking θ̂t and

ρ̂t as if they were the true (correct) values. Let Θδ := [δ, δ′] be the parameter set in

which θ̂t is allowed to take its values, where δ is an arbitrarily small positive number and

δ′ = min
{
1, C

R−C − δ
}
. For decision-making, we define the set OP =

{
π(· ; θ)

}
θ∈Θδ

of

optimal threshold policies described above, parameterized by θ. Thus, we conclude from

Theorem 3.2 (ii) that 0 < α(θ) < 1, for each θ ∈ Θδ, where α(θ) denotes the dependence

of the threshold on θ. We also let θ0 denote the (unknown) true value of the parameter,

which we assume to be constant and an element of the interior of Θδ. The following result,

on the continuity in θ of the optimal cost, the value function and the threshold, is proved

in [3, Theorem A.1].

Theorem 4.1. Assume q ∈ [0.5, 1). Let 0 < δ < 1. Then for θ ∈ Θδ, we have that:

(i) the pair (Γ∗
θ, hθ) is continuous in θ;

(ii) there exists a unique α(θ) ∈ (0, 1) such that fθ(α(θ)) = R;
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(iii) α(·) is continuous on Θδ.

Observe that by Theorem 4.1 (iii) and since Θδ is compact, there is a number α∗ < 1

such that, for all θ ∈ Θδ, 0 < α(θ) ≤ α∗.

A. Adaptive Policy.

Given a sequence of estimates
{
θ̂t

}∞
t=0

of θ0, compute the control action at each time

t ∈ IN0 by

Ut = π(ρ̂t; θ̂t), π(· ; ·) ∈ OP, (4.1)

where the conditional probability estimate is computed recursively via

ρ̂t+1 =T (1, ρ̂t, π(ρ̂t; θ̂t); θ̂t+1) · Yt+1

+ T (0, ρ̂t, π(ρ̂t; θ̂t); θ̂t+1) · (1 − Yt+1), ρ̂0 = ρ0. (4.2)

We will denote by πa the policy given by (4.1) and (4.2).

B. Parameter Estimation.

There are a number of ways to compute the estimates θ̂t; we consider here only recursive

schemes. One method, discussed in [7]–[8], updates the parameter estimate θ̂t at each time

step t, and is similar to that used for adaptive estimation in [1]. However, the analysis of

convergence is very difficult, due to the complex feedback structure induced. We concentrate

here on algorithms which update θ̂t after each repair. The advantage of this approach is that

when a repair event occurs, the state of the system is reset to the “as new” state, and thus

the processes of interest are identically distributed between these events. On the other hand,

the convergence rate may be too slow, and thus some forcing may be needed to accelerate

the convergence. Algorithms that take advantage of analogous regenerative behavior in

some queueing problems, by updating after each busy period, have been presented in [13].

The next result is a direct consequence of [3, Theorem A.2].

Theorem 4.2. Under the adaptive policy πa, regeneration occurs infinitely often (i.o.),

i.e.,

Pπa{
Ut = 1, i.o.

}
= 1 .

Let τk be the kth repair time under πa (i.e., the kth time such that Ut = 1). Since Uτk
=

1, then Xτk+1 = 0, Uτk+1 = 0, and Yτk+2 is observed. Hence, the state is known perfectly

at τk + 1 and the observations
{
Yτk+2 : k = 1, 2, . . .

}
form an independent identically

distributed (i.i.d.) sequence of Bernoulli random variables, with Pπa{Yτk+2 = j} = λj(θ0),

j = 0, 1, where

λ1(θ) := (1 − θ)(1 − q) + θq = 1 − λ0(θ) . (4.3)
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This sequence provides information about the transition from Xτk+1 = 0 to Xτk+2, and

thus can be used to estimate θ0. Define Y k := Yτk+2. The sequence
{
Y k

}∞
k=0

is i.i.d., its

distribution depending only on the true parameter θ0 and the reliability of the measuring

device (q).

Note that by Theorem 4.2 and the strong law of large numbers we have that

1
n

n∑
k=1

Y k −→
n→∞

λ1(θ0), Pπa

–a.s. . (4.4)

Let θ̂n := θ̂τn+2. Then, setting

λ1(θ̂n) =
1
n

n∑
k=1

Y k ,

where λ1(·) is defined in (4.3), we obtain a sequence of strongly consistent parameter esti-

mates
{
θ̂n

}
. Also, a prediction error-based algorithm can be formulated. Since the obser-

vations take only the values {0, 1}, then the prediction error in this case is

εn(θ) = Y n − λ1(θ) . (4.5)

However, in order to have θ̂n ∈ Θδ, a projection mechanism is required. A stochastic

approximation-type recursive algorithm which is designed to minimize Eπa

[ 12εn(θ)2] is then

θ̂n+1 = ΠΘδ

(
θ̂n + 1

n+1 R−1
n+1ψnεn(θ̂n)

)
, θ̂0 ∈ Θδ, (4.6a)

where the map ΠΘδ
is a projection into the interior of Θδ. Also, Rn can be computed in

different ways, e.g. if Rn = (2q − 1)2, then we obtain a recursive (and projected) version of

the scheme obtained from (4.4) above. We choose to use

Rn+1 = Rn + 1
n+1

(
ψ2

n − Rn

)
, R1 = 1,

ψn = − ∂
∂θ εn(θ)

∣∣∣
θ=

ˆ
θn

= ∂
∂θ λ1(θ) = 2q − 1.

(4.6b)

The following can then be shown using the techniques in [12], [13].

Theorem 4.3. Consider the algorithm (4.6). The sequence
{
θ̂n

}∞
n=0

converges Pπa

–a.s.,

as n → ∞, to the set of limit points of the ODE

θ̇(t) = −R−1(t)(2q − 1)2(θ(t) − θ0) ,

Ṙ(t) = (2q − 1)2 − R(t) .
(4.7)

Since θ0 is assumed to lie in the interior of Θδ, all solutions of the ODE (4.7) leave

the interior of Θδ invariant and thus the projection operator ΠΘδ
need not be considered in

the averaged equations. It is straightforward to show that (4.7) is globally asymptotically

stable with unique limit point θ0. In the natural way, we define θ̂t to be constant between

updates: θ̂t := θ̂n, t ∈
{
τn + 2, τn + 3, . . . , τn+1 + 1

}
. We thus have the following result,

which is a direct consequence of Theorem 4.2.
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Corollary 4.1. Assume q ∈ (0.5, 1). Then the sequence
{
θ̂t

}∞
t=0

converges to θ0, as t → ∞,

Pπa

–a.s..

Remark 4.1: Let π be any separated policy satisfying πt(0) = 0, for all t ∈ IN0, and

Pπ
{
Ut = 1, i.o.

}
= 1. Then the results above will also hold if π is used instead of πa.

V. Average Cost Optimality of the Adaptive Policy

We examine next the long-run average performance of the adaptive policy πa given by

(4.1) and (4.2). Let Ft be the σ-algebra generated by the observations up to time t, i.e.,

Ft = σ(Y1, . . . , Yt). Note that {θ̂t} of Corollary 4.1 satisfies the following conditions:

(E1) θ̂t is Ft-measurable, and θ̂t ∈ Θδ, for all t ∈ IN0;

(E2) θ̂t → θ0, Pπa

–a.s..

Consider also the weaker condition:

(E2′) θ̂t → θ0, in probability under Pπa

.

Let
{
θ̂t

}∞
t=0

be any sequence of parameter estimates satisfying (E1) and (E2′); we will show

that the corresponding adaptive policy πa is self-optimizing, i.e., J(πa, ρ0) = Γ∗
θ0

, for all

0 ≤ ρ0 ≤ 1. In the case where
{
θ̂t

}∞
t=0

satisfies (E2), we will show the stronger sample path

result

lim
n→∞

1
n

n−1∑
t=0

c(ρt, Ut) = Γ∗
θ0

, Pπa

–a.s. . (5.1)

The method we use to verify these self-optimizing properties of πa is motivated by

techniques in [14] and [17]. However, the verification here does not fit in the same framework,

due to (a) discontinuity of π(· ; ·) ∈ OP in both its arguments and (b) the fact that the

cost c(ρ, u) is an explicit function of u. We have that T (y, ρ, u; θ) is continuous in θ. Using

this and the fact that regeneration occurs infinitely often, the following is shown in the

Appendix.

Lemma 5.1. If θ̂t → θ0, as t → ∞, in probability under Pπa

(Pπa

–a.s.), then |ρ̂t−ρt| → 0,

as t → ∞, in probability under Pπa

(Pπa

–a.s.).

Then, we have the following.

Theorem 5.1. Assume q ∈ (0.5, 1).

(i) If
{
θ̂t

}∞
t=0

satisfies (E1) and (E2 ′), then πa is self-optimizing.

(ii) If in addition
{
θ̂t

}∞
t=0

satisfies (E2), then πa is self-optimizing in a sample-path sense,

i.e., (5.1) holds.
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Proof: (i) Let Φθ(· , ·) denote Mandl’s discrepancy function, corresponding to the param-

eter value θ ∈ Θδ, i.e., for ρ ∈ [0, 1] and u ∈ U

Φθ(ρ, u) := c(ρ, u) +
∑
y∈Y

V (y, ρ, u; θ)hθ(T (y, ρ, u; θ)) − Γ∗
θ − hθ(ρ).

Then by (2.5)–(2.8), Corollary 3.1 and Theorem 4.1, Φθ(ρ, u) is continuous in both ρ ∈ [0, 1]

and θ ∈ Θδ. Furthermore, since Θδ is compact, then Φθ(ρ, u) is uniformly continuous and

bounded in (ρ, θ) ∈ [0, 1] × Θδ; thus, Φθ̂t
(ρ̂t, u) is uniformly integrable, for each u ∈ U.

Therefore, for each u ∈ U, we have

∣∣Φθ̂t
(ρ̂t, u) − Φθ0(ρt, u)

∣∣ −→
t→∞

0 , L1(Pπa

),

and since U is finite,

Eπa

{
Φθ0(ρt, π(ρ̂t; θ̂t))

}
−→
t→∞

0, (5.2)

where we used the fact that Φθ̂t
(ρ̂t, π(ρ̂t; θ̂t)) = 0, since π(· ; θ) ∈ OP minimizes the opti-

mality equation (3.1), for the parameter value θ ∈ Θδ. The result then follows from (5.2);

see [2], [10], [14], [17].

(ii) If the convergence is in the stronger Pπa

–a.s. sense, then similarly as above, we obtain

that

Φθ0(ρt, π(ρ̂t; θ̂t)) −→
t→∞

0, Pπa

–a.s. ,

from which the result follows. ��
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Appendix

For ease of notation, we will write

V y(ρ; θ) := V (y, ρ, 0; θ), T y(ρ; θ) := T (y, ρ, 0; θ) , (A.1)

We quote the following useful result from [3].
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Lemma A.1. Let q ∈ [0.5, 1), ρ ∈ [0, 1] and θ ∈ (0, 1]. Then

(i) T 1(ρ, θ) ≥ T 0(ρ, θ) and the inequality is strict for q ∈ (0.5, 1), ρ ∈ [0, 1) and

θ ∈ (0, 1).

(ii) T y(ρ, θ) is monotone nondecreasing with respect to both ρ and θ.

(iii)
∣∣V y(ρ, θ) − V y(ρ′, θ′)

∣∣ ≤ |ρ − ρ′| + |θ − θ′|.
(iv)

∣∣T y(ρ, θ) − T y(ρ′, θ′)
∣∣ ≤ (

q
1−q

) {
(1 − θ)|ρ − ρ′| + (1 − ρ′)|θ − θ′|

}
.

(v) The iterates of T 1(· , θ) converge uniformly and monotonically to 1.

Proof of Corollary 3.1: (i) Let θ ∈ (0, 1] be fixed. Continuity of hθ(·) on (0, 1] is

immediate since hθ(·) is concave and nondecreasing. To show that it is continuous at 0

observe that T y(0; θ) > 0, for y = 0, 1, and thus T y(·; θ) maps a neighborhood of 0 into

(0, 1]. Thus, the continuity of T y(·; θ) and V y(·; θ) on [0, 1] (see Lemma A.1) along with

that of hθ(·) on (0, 1] imply the continuity of fθ(·) on [0, 1], which in turn implies, in view

of (3.1), that hθ(·) is continuous on [0, 1].

(ii) Now suppose h
(1)
θ and h

(2)
θ are any two solutions of (3.1), satisfying h

(1)
θ (0) = h

(2)
θ (0) = 0,

and let ρ̃ ∈ [0, 1] satisfy

h
(1)
θ (ρ̃) − h

(2)
θ (ρ̃) = sup

ρ∈[0,1]

{
h

(1)
θ (ρ) − h

(2)
θ (ρ)

}
. (A.2)

We distinguish two cases.

First, suppose that h
(2)
θ (ρ̃) �= R − Γ∗

θ. With f
(1)
θ (·) and f

(2)
θ (·) suitably defined, we

obtain
h

(1)
θ (ρ̃) − h

(2)
θ (ρ̃) = min

{
f

(1)
θ (ρ̃) , R

}
− f

(2)
θ (ρ̃) ≤ f

(1)
θ (ρ̃) − f

(2)
θ (ρ̃)

=
1∑

y=0

V y(ρ̃; θ)
{
h

(1)
θ

(
T y(ρ̃; θ)

)
− h

(2)
θ

(
T y(ρ̃; θ)

)}
.

Since V 0(ρ̃; θ) + V 1(ρ̃; θ) = 1 and V 1(ρ̃; θ) > 0, we conclude that h
(1)
θ (ρ̃) − h

(2)
θ (ρ̃) =

h
(1)
θ

(
T 1(ρ̃; θ)

)
− h

(2)
θ

(
T 1(ρ̃; θ)

)
, and thus (A.2) still holds if we replace ρ̃ with T 1(ρ̃; θ). By

induction, for each n ∈ IN,

h
(1)
θ

(
(T 1)n(ρ̃; θ)

)
− h

(2)
θ

(
(T 1)n(ρ̃; θ)

)
= sup

ρ∈[0,1]

{
h

(1)
θ (ρ) − h

(2)
θ (ρ)

}
. (A.3a)

Second, suppose that h
(2)
θ (ρ̃) = R − Γ∗

θ. Observe that h
(1)
θ (ρ̃) − h

(2)
θ (ρ̃) ≥ 0 (since

h
(1)
θ (0) = h

(2)
θ (0)) and therefore, necessarily, h

(1)
θ (ρ̃) = R − Γ∗

θ. Invoking the fact that

hθ(·) is nondecreasing, we conclude that

h
(1)
θ

(
(T 1)n(ρ̃; θ)

)
− h

(2)
θ

(
(T 1)n(ρ̃; θ)

)
= 0 , n ∈ IN . (A.3b)
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From Lemma A.1 (v), (T 1)n(ρ̃; θ) converges to 1 as n → ∞. Taking the limit, as n → ∞,

in (A.3a) and (A.3b), yields

h
(1)
θ (1) − h

(2)
θ (1) = sup

ρ∈[0,1]

{
h

(1)
θ (ρ) − h

(2)
θ (ρ)

}
≥ 0 . (A.4)

Interchanging the roles of h
(1)
θ and h

(2)
θ in (A.4), we finally conclude that h

(1)
θ = h

(2)
θ . ��

We need the following definition.

Definition A.1: For n ∈ IN, let Dn denote the set of multi-indices of length n, in {0, 1},
i.e., dn ∈ Dn is of the form dn =

(
d(1), . . . , d(n)

)
, d(i) ∈ {0, 1}. If k ≤ n then dk ≺ dn

denotes that dk agrees with the first k coordinates of dn, while dk ⊂ dn denotes that dn is

the concatenation d� · dk · dm, for some multi-indices d� and dm, with / + k + m = n. Let

Θn
δ , n ≥ 0 denote the n-fold product of the parameter space. For a sequence

{
θ̂t

}∞
t=0

⊂ Θδ

and a positive integer n ≤ t, we define

θ̂n
t :=

(
θ̂t−n+1, . . . , θ̂t

)
∈ Θn

δ .

For the map T y(ρ; θ), defined in (A.1), and a multi-index dn ∈ Dn, T dn(·; θ̂n
t ) denotes the

n-fold composition T d(n)
(
T d(n−1)

(
· · · ; θ̂t−1

)
; θ̂t

)
, and is the identity map if n = 0.

Lemma A.2. Let θ ∈ (0, 1), dn ∈ Dn, 0 < δ0 < 1 and suppose that

T di(0; θ) ≤ 1 − δ0, ∀di ≺ dn, i = 1, . . . , n . (A.5)

Then
d

dθ
T dn(0; θ) ≤ q

δ0(1 − q)θ
T dn(0; θ) . (A.6)

Proof: With r := 1−q
q and |dk| :=

∑k
i=1 d(i), dk ≺ dn, we inductively obtain

T dk(0; θ)
1 − T dk(0; θ)

=
θ

∑k−1
i=1 r2|di|−i(1 − θ)i

r2|dk|−k(1 − θ)k
, k = 1, . . . , n . (A.7)

Let ρk := T dk(0; θ), and βk := r2|dk|−k(1 − θ)k. The hypothesis in (A.5) is equivalent to

θ

k−1∑
i=1

βi ≤
(1 − δ0)

δ0
βk . (A.8)

Differentiating (A.7) and using (A.8), we obtain,

d

dθ

(
ρn

1 − ρn

)
=

1
θ

ρn

1 − ρn
+

θ
∑n−1

k=1(n − k)βk

(1 − θ)βn

≤ 1
θ

ρn

1 − ρn
+

(
1 + 1−δ0

δ0θ

)
ρn

(1 − θ)(1 − ρn)

=
ρn

δ0θ(1 − θ)(1 − ρn)
. (A.9)
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By Lemma A.1 (i) and (ii), we have the following estimate

1 − T dn(0; θ) ≤ 1 − T 0(0; θ) ≤ q(1 − θ)
(1 − q)

,

which, in conjunction with (A.9) yields (A.6). ��

Proof of Lemma 5.1: Observe that

ρ̂t I
[
Uk = 1 : k < t

]
∈

{
T dn(0; θ̂n

t ) : dn ∈ Dn , 0 ≤ n ≤ t − k − 1
}

, (A.10)

and the analogous relation holds for ρt if we replace θ̂n
t by θ0 in (A.10). By Lemma A.1

(ii), it is true in general that

T dn(0; min{θ̂n
t }) ≤ T dn(0; θ̂n

t ) ≤ T dn(0; max{θ̂n
t }) . (A.11)

Recalling that 0 < δ ≤ θ0 < 1, choose η such that
[
θ0 − η, θ0 + η

]
⊂ (δ, 1) ∩ Θδ. Since

α(θ) ≤ α∗ < 1 on Θδ, using Lemma A.1 (i)–(ii), we have

ρ̂t I
[
Uk = 1 , θ̂i ∈ [θ0 − η, θ0 + η] : i = k + 2, . . . , t

]
≤ T 1(α∗; θ0 + η) < 1 . (A.12)

In view of (A.10)–(A.12), utilizing Lemma A.2 (with δ0 := 1−T 1(α∗; θ0+η)), and the mean

value theorem, we conclude that given ε > 0 there exists a neighborhood Vε ⊂
[
θ0−η, θ0+η

]
of θ0 such that

|ρ̂t − ρt| I
[
Uk = 1 , θ̂i ∈ Vε : i = k + 2, . . . , t

]
≤ q diam (Vε)

δ0(1 − q)δ
≤ ε , (A.13)

where diam (Vε) denotes the diameter of Vε. Now, let ε > 0 be chosen. If θ̂t → θ0, Pπa

–a.s.,

then, outside a set of probability 0, θ̂t → θ0 and, by Theorem 4.2, Uk = 1 for infinitely

many integers k, along every sample path. Consider an arbitrary such sample path and

choose integers n0 ≤ n1 ∈ IN such that θ̂t ∈ Vε for all t ≥ n0 and Un1 = 1. Then, by (A.13),

|ρ̂t − ρt| ≤ ε, ∀t > n1, along the sample path.

On the other hand, if θ̂t → θ0 in probability under Pπa

then defining

An
t :=

{
Uk = 0 : t ≤ k ≤ t + n

}
, t, n ∈ IN ,

and applying [3, Theorem A.2], choose n0 ∈ IN such that Pπa{
An0

t−n0

}
< ε

2 , for all t > n0.

There exists an integer n1 ∈ IN, n1 > n0, such that Pπa{
θ̂n0

t �⊂ Vε

}
< ε

2 for all t > n1.

Therefore, by (A.13),

Pπa{
|ρ̂t − ρt| > ε

}
≤ Pπa{

θ̂n0
t �⊂ Vε

}
+ Pπa{

An0
t−n0

}
< ε , ∀t > n1 ,

and the proof is complete. ��
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