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OPTIMAL CONTROL OF SWITCHING DIFFUSIONS WITH
APPLICATION TO FLEXIBLE MANUFACTURING SYSTEMS*

MRINAL K. GHOSH†, ARISTOTLE ARAPOSTATHIS‡, and STEVEN I. MARCUS§

Abstract. A controlled switching diffusion model is developed to study the hierarchical control
of flexible manufacturing systems. The existence of a homogeneous Markov non-randomized optimal
policy is established by a convex analytic method. Using the existence of such a policy, the existence of
a unique solution in a certain class to the associated Hamilton-Jacobi-Bellman equations is established
and the optimal policy is characterized as a minimizing selector of an appropriate Hamiltonian.
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1. Introduction. We study a controlled switching diffusion process that arises
in numerous applications of systems with multiple modes or failure modes, including
the hierarchical control of flexible manufacturing systems. A flexible manufacturing
system (FMS) consists of a set of workstations capable of performing a number of
different operations and interconnected by a transportation mechanism. An FMS
produces a family of parts related by similar operational requirements or by belonging
to the same final assembly [27]. The rapidly growing range of applicability of FMS in-
cludes metal cutting, assembly of printed circuit boards, integrated circuit fabrication,
automobile assembly lines, etc. Due to their tremendous flexibility, FMS are signifi-
cantly more efficient in many ways than traditional manufacturing systems. However,
the high capital cost of an FMS demands very efficient management of production
and maintenance (repair/replacement) scheduling so that uncertain events such as
random demand fluctuations, machine failures, inventory spoilage, sales returns, etc.
can be taken care of. The large size of the system and its associated complexities
make it imperative to divide the control or management into a hierarchy consisting
of a number of levels. Thus, the overall complex problem is reduced to a number
of manageable subproblems at each level, and these levels are linked by means of a
hierarchical integrative system. We refer to [1], [21], [27] for a detailed description of
these hierarchical schemes. We will confine our attention to the top two levels, viz.

(i) Generation of decision tables, which is accomplished by developing a suitable
mathematical model describing the dynamical evolution of the system. This
is done off-line.

(ii) The flow control level: This plays the central role in the system. It deter-
mines, on line, the production and maintenance scheduling and continuously
feeds the routing control level which calculates route splits, and which in
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turn governs the sequence controller which determines the scheduling times
at which to dispatch parts.

Since the top two levels directly govern the rest, it is of paramount importance to
develop and study an appropriate mathematical model which will facilitate to find on
line implementable optimal feedback policies.

We first present a heuristic description of our model, which is a modified ver-
sion of the model in [1], [21], [27]. The FMS consists of L workstations, with each
workstation having a number Lm of identical machines (m = 1, 2, . . . , L). A fam-
ily of N types of different parts is produced. Let u(t) = [u1(t), . . . , uN (t)]T ∈ R

N

and d(t) = [d1(t), . . . , dN (t)]T ∈ R
N denote the production rate (a control variable)

and the downstream demand rate vectors of this family of parts, respectively. Also,
X(t) = [X1(t), . . . , XN (t)]T ∈ R

N denotes the downstream buffer stock. A negative
value of Xj(t), j = 1, . . . , N , indicates a backlogged demand for part j, while a posi-
tive value is the size of the inventory stored in the buffers. The evolution of X(t) is
governed by the following stochastic differential equations

(1.1)
dX(t)

dt
= u(t) − d(t) + diag

(
σ1, . . . , σN

)
ξ(t),

where σi > 0, i = 1, . . . , N and ξ(t) = [ξ1(t), . . . , ξN (t)]T is an N -dimensional white
noise which can be interpreted as “sales returns”, “inventory spoilage”, “sudden de-
mand fluctuations,” etc. (see [8]).

If Sm(t) denotes the number of operational machines in station m at time t, then
the state of the workstations may be represented by the L-tuple

S(t) =
(
S1(t), . . . , SL(t)

)
.

The evolution of S(t) is influenced by the inventory size and production scheduling,
and can also be controlled by various decisions such as produce, repair, replace, etc.
The dynamics of S(t) can be described as follows:

(1.2) P
{
Sm(t + δt) = � + 1

∣∣ Sm(t) = �
}

=
{

(Lm − �)vm(t) δt + o(δt) for 0 ≤ � < Lm

0 otherwise

where vm(t), m = 1, . . . , L, are suitable control variables. In the uncontrolled case,
vm(t) = γm, which represents the infinitesimal repair rate at station m. These repair
rates may implicitly depend on X(t). This model also allows for a control variable
reflecting the decision as to whether to repair or replace on the basis of the inventory
size. Also,

(1.3) P
{
Sm(t + δt) = � − 1

∣∣ Sm(t) = �
}

=
{

� pm

(
X(t), u(t)

)
δt + o(δt) for 0 ≤ � < Lm

0 otherwise

where pm models the infinitesimal failure rate at the mth station. Equations (1.2) and
(1.3) imply that

P
{
Sm(t + δt) = �1

∣∣ Sm(t) = �2
}

= 0, for |�1 − �2| > 1 .
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With i and j denoting two states of the system, we define

λij(·)δt + o(δt) = P
{
S(t + δt) = j

∣∣ S(t) = i
}
, i �= j

and
λii(·) = −

∑
j �=i

λij(·) .

The machine state S(t) can thus be modeled as a continuous time controlled jump
process taking values in a finite state space. In the uncontrolled case, S(t) becomes a
continuous time homogeneous Markov chain with infinitesimal generator given by the
matrix

[
λij

]
.

The choice of the production rate at each instant is constrained by the capacity
of the currently operational machines. This translates into the requirement that at
each time t the production rates must lie in some set Γ

(
S(t)

)
which depends on the

machine state.
Let yk

mn(t) be the number of type n parts which undergo operation k at the
mth station per unit interval of time and τk

mn(t) the length of time required for the
completion of this operation. The product yk

mn(t) τk
mn(t) is the portion of each unit

time interval that one or more operational machines at station m must dedicate to
perform operation k on type n parts, as dictated by the flow rate yk

mn(t). Since the
amount of work completed at each station per unit time interval cannot exceed the
time available at the operational machines, the following constraint applies

(1.4)
∑

n

∑
k

yk
mn(t)τk

mn(t) ≤ Sm(t) , for all m.

Also, assuming that no material is allowed to accumulate within the system, the
throughput un(t) of type n parts must satisfy

(1.5) un(t) =
∑
m

yk
mn(t) , for all k and n.

Therefore, for each state i, the set Γ(i) is defined as the collection of all production
rates u = [u1, . . . , uN ]T for which, with the machine state S(t) = i, there exist feasible
flow rates yk

mn(t) satisfying (1.4) and (1.5).
The flow control problem can now be stated. Given an initial buffer state X(0) =

x and machine state S(0) = i, we wish to specify a production plan and maintenance
(repair/replacement) policy that minimizes the performance index

(1.6) J(x, i, u, v) = E

[∫ ∞

0

e−αtc
(
X(t), S(t), u(t), v(t)

)
dt

∣∣∣ X(0) = x, S(0) = i

]
,

where c(·) is a ‘cost’ function, α > 0 is a discount factor, u(·) is the production
rate, and v(·) is the maintenance rate. The objective is to find u(·), v(·) for which
the minimum is achieved in (1.6). The ideal production and maintenance policy for
a wide class of cost functions would minimize J by producing parts at exactly the
demand rate, thereby keeping the buffer at zero. Such a policy is generally impossible
because of the failures of the machines and various other uncertainties.

This FMS model motivates the study of a stochastic optimization problem in a
more abstract setting which subsumes the flow control problem in the FMS as a special
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case. This abstract problem is manifested in numerous other situations. In [17] it is
encountered in a hybrid model proposed for the study of dynamic phenomena in large
scale interconnected power networks. Sworder [39], [40] describes possible applications
to macroeconomic models and dynamic renewal problems in general. In addition, it
should be useful at other levels of the hierarchy described in [21].

We will briefly describe this problem formally; a rigorous description will be
given in Section 2. Let S = {1, 2, . . . , M} and let Ui, i = 1, . . . , M , be prescribed
compact metric spaces. For each i, j ∈ S, let b(·, ·, i, ·) : R+ × R

N × Ui → R
N and

λij : R+ ×R
N ×Ui → R, satisfying λij ≥ 0, for i �= j and

∑
j λij(·) = 0. A stochastic

process
(
X(t), S(t)

)
taking values in R

N × S is given by

(1.7) X(t) = X(0) +
∫ t

0

b
(
τ, X(τ), S(τ), u(τ)

)
dτ + diag(σ1, . . . , σN )W (t)

(1.8) P
{
S(t + δt) = j

∣∣ S(t) = i, X(s), S(s), s ≤ t
}

= λij

(
t, X(t), u(t)

)
δt + o(δt),

where σi > 0, i = 1, . . . , N , are constants and W (·) = [W1(·), . . . , WN (·)]T is an N -
dimensional standard Brownian motion. The control u(·) is a U :=

∏N
i=1 Ui-valued

process such that when S(t) = i, u(·) takes values in Ui and u(·) is non-anticipative
with respect to the driving Brownian motion W (t). Let c : R+ × R

N × S × U → R+

be the cost function and α > 0 a prescribed discount factor. Define a cost functional
of the form

(1.9) E

[∫ ∞

0

e−αtc
(
t, X(t), S(t), u(t)

)
dt

]
.

The objective is to find an optimal control policy u(·) which minimizes (1.9) and takes
the feedback form u(t) = v

(
t, X(t), S(t)

)
, for a suitably defined function v. In the

next Section, we will assume appropriate conditions on b and λ which will guarantee
that (1.7), (1.8) are well defined. We note here that for a performance index of
the form (1.9), m, λ, c may be assumed to be independent of t without any loss of
generality. Also, by replacing each Uk by

∏M
k=1 Uk and b(·, i, ·) by its composition

with the projection
∏M

k=1 Uk → Ui, we may assume that each Ui is a replica of a fixed
compact metric space.

We now briefly mention some earlier work leading to ours. The class of controlled
piecewise deterministic models with jump Markov disturbances have been studied by
Sworder [38], Rishel [35], Olsder and Suri [33], Davis [19] and Vermes [42] among
many others. The piecewise deterministic FMS model has been studied by Kimenia
and Gershwin [27], who have developed a heuristic numerical method based on the
maximum principle established in [35]. Akella and Kumar [2] have studied a simplified
model and obtained explicit solutions for one machine producing a single commodity.
In all these papers the jump process is modeled as a continuous time (uncontrolled)
Markov chain. Boukas and Haurie [14], [15] have modified the FMS model of Ki-
menia and Gershwin by introducing new state variables describing machine wear as
well as a control parameter in the jump process; their model incorporates preventive
maintenance. They have obtained a maximum principle, thereby extending Rishel’s
formalism in [35]. They have also considered piecewise deterministic models. To ob-
tain an optimal policy of the feedback type in these models one has to impose very
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strong conditions on terms like b, λ governing the system and stringent restrictions on
the set of allowable policies. At the same time, it is assumed in these models that be-
tween any two successive jumps of S(t), the dynamics governing X(t) is deterministic.
Thus, certain unavoidable ‘environmental’ uncertainties are not taken into account.
These factors restrict the scope of applicability of these models. We have tried to
circumvent these difficulties by adding an additive noise term in the state dynamics.
This is specifically done in order to take into account the various sources of environ-
mental randomness. Addition of this noise removes practically all restrictions imposed
on the set of allowable control policies, thereby substantially enhancing the range of
its applicability. The switching diffusion problem has also been studied by Bensoussan
and Lions [7], using a martingale problem formulation. However, our motivation and
approach are quite different. In [7], it is assumed that for some δ > 0, −λii > δ > 0,
for each i. We have, instead, used a strong formulation which is very important for
practical applications. In our formulation we do not need the condition −λii > δ > 0.
We also refer to [6], [8], [9], [16], [20], [32], [36], [37], [43] for related work.

Our paper is structured as follows. A rigorous description of the mathematical
model of the FMS is given in Section 2. The optimization problem is formulated and
subsequently reduced to an equivalent convex optimization problem, via the study of
associated occupation measures. The compactness of laws is established in Section 3,
the convexity and extremality of occupation measures are studied in Section 4, and
the proof of existence of optimal policies is given in Section 5. Section 6 deals with the
characterization of optimal policies via dynamic programming equations. In Section 7,
we apply our theory to a simplified model and derive some interesting results. Finally,
Section 8 contains some concluding remarks. Note that we have used a convex analytic
approach for this problem, as opposed to the traditional analytic one. For the dis-
counted cost criterion, the latter is more economical and is sketched in the Appendix.
However, the convex analytic approach is interesting in its own right and would be
more flexible and powerful for certain other purposes, e.g., the pathwise average cost
problem or problems with several constraints where the analytic approach does not
seem to be amenable. For (nonswitching) controlled diffusions, these problems have
been treated in [11, Chap. VI] and [12] by a convex analytic approach. We hope our
approach to switching diffusions would be useful in various other situations.

2. Mathematical Model and Preliminaries. Let U be a compact metric
space and S = {1, . . . , M}. Let b = [b1, . . . , bN ]T : R

N ×S×U → R
N . For each i ∈ S,

b(·, i, ·) is assumed to be bounded, continuous and Lipschitz in its first argument
uniformly with respect to the third. For i, j ∈ S, let λij : R

N × U → R be bounded,
continuous and Lipschitz in its first argument uniformly with respect to the second.
Also, assume that for i, j ∈ S, i �= j, λij ≥ 0, and

∑M
j=1 λij = 0, for any i ∈ S.

Let σi > 0, i = 1, 2, . . . , N , be prescribed numbers. For a Polish space Y , B(Y )
will denote its Borel σ-field and P(Y ) the space of probability measures on B(Y )
endowed with the Prohorov topology, i.e., the topology of weak convergence [10]. Let
M(Y ) be the set of all non-negative integer-valued, σ-finite measures on B(Y ). Let
Mσ(Y ) be the smallest σ-field on M(Y ) with respect to which all maps from M(Y )
into N ∪ {∞} of the form µ �−→ µ(B), with B ∈ B(Y ), are measurable. M(Y ) will
always be assumed to be endowed with this measurability structure. Let V = P(U)
and b = [b1, . . . , bN ]T : R

N × S × V → R
N be defined by

(2.1) bi(·, ·, v) :=
∫

U

bi(·, ·, u) v(du) , v ∈ V, i = 1, . . . , N .
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Similarly, for i, j ∈ S, λij : R
N × V → R is defined as

(2.2) λij(·, v) :=
∫

U

λij(·, u) v(du) , v ∈ V, i, j ∈ S.

For i, j ∈ S, x ∈ R
N and v ∈ V, we construct the intervals ∆ij(x, v) of the real line in

the following manner (see also [13], [17]):

∆12(x, v) =
[
0, λ12(x, v)

)
∆13(x, v) =

[
λ12(x, v), λ12(x, v) + λ13(x, v)

)
...

∆1M (x, v) =
[M−1∑

j=2

λ1j(x, v),
M∑

j=2

λ1j(x, v)
)

∆21(x, v) =
[ M∑

j=2

λ1j(x, v),
M∑

j=2

λ1j(x, v) + λ21(x, v)
)

...

∆2M (x, v) =
[ M∑

j=2

λ1j(x, v) +
M−1∑
j=1
j �=2

λ2j(x, v),
M∑

j=2

λ1j(x, v) +
M∑

j=1
j �=2

λ2j(x, v)
)

and so on. For fixed x and v, these are disjoint intervals, and the length of ∆ij(x, v)
is λij(x, v). Now define a function

h : R
N × S × V × R −→ R

by

(2.3) h(x, i, v, z) =
{

j − i if z ∈ ∆ij(x, v)
0 otherwise.

Let
(
X(t), S(t)

)
be the (RN × S)-valued controlled switching diffusion process given

by the following stochastic differential equations

(2.4)

dX(t) = b
(
X(t), S(t), v(t)

)
dt + diag(σ1, . . . , σN ) dW (t)

dS(t) =
∫

R

h
(
X(t), S(t−), v(t), z

)
p(dt, dz),

for t ≥ 0, with X(0) = X0 and S(0) = S0, where
(i) X0 is a prescribed R

N -valued random variable.
(ii) S0 is a prescribed S-valued random variable.
(iii) W (·) = [W1(·), . . . , WN (·)]T is an N -dimensional standard Wiener process

independent of X0, S0.
(iv) p(dt, dz) is an M(R+ × R)-valued Poisson random measure with intensity

dt × m(dz), where m is the Lebesgue measure on R ([25, p. 70]).
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(v) p(· , ·) and W (·) are independent.
(vi) v(·) is a V-valued process with measurable sample paths satisfying the fol-

lowing non-anticipativity property: Let Fv
t = σ{v(s) : s ≤ t} and

F
W,p
[t,∞) = σ

{
W (s) − W (t), p(A, B) : A ∈ B

(
[s,∞)

)
, B ∈ B(R), s ≥ t

}
.

Then Fv
t and F

W,p
[t,∞) are independent.

Such a process v(·) will be called an admissible (control) policy. If v(·) is a
Dirac measure, i.e., v(·) = δu(·), where u(·) is a U -valued process, then it is called an
admissible non-randomized policy. An admissible policy v(·) is called feedback if v(·)
is progressively measurable with respect to the natural filtration of

(
X(·), S(·)

)
. A

particular subclass of feedback policies is of special interest. A feedback policy v(·) is
called a (non-homogeneous) Markov policy if v(·) = ṽ

(
·, X(·), S(·)

)
for a measurable

map ṽ : R+ × R
N × S → V. With an abuse of notation, the map ṽ itself is called a

Markov policy. If ṽ has no explicit time dependence, it is called a homogeneous Markov
policy. Thus, a homogeneous Markov non-randomized policy can be identified with a
measurable map v : R

N × S → U .
If

(
W (·), p(·, ·), X0, S0, v(·)

)
, satisfying the above, are given on a prescribed prob-

ability space
(
Ω,F, P

)
, then under our assumptions on b and λ, equation (2.4) will

admit an a.s. unique strong solution [22, Chap. 3], [25, Chap. 3, Sect. 2c] and X(·) ∈
C(R+; RN ), S(·) ∈ D(R+;S), where D(R+;S) is the space of right continuous func-
tions on R+ with left limits taking values in S. However, if v(·) is a feedback policy,
then there exists a measurable map

f : R+ × C(R+; RN ) × D(R+;S) −→ V

such that for each t ≥ 0, v(t) = f
(
t, X(·), S(·)

)
and is measurable with respect to the

σ-field generated by
{
X(s), S(s) : s ≤ t

}
. Thus, v(·) cannot be specified a priori in

(2.4). Instead, one has to replace v(t) in (2.4) by f
(
t, X(·), S(·)

)
and (2.4) takes the

form

(2.5)

dX(t) = b
(
X(t), S(t), f(t, X(·), S(·))

)
dt + diag(σ1, . . . , σN ) dW (t)

dS(t) =
∫

R

h
(
X(t), S(t−), f(t, X(·), S(·)), z

)
p(dt, dz),

for t ≥ 0, with X(0) = X0 and S(0) = S0. In general, (2.5) will not even admit a weak
solution. However, if the feedback policy is a Markov policy, then the existence of a
unique strong solution can be established. We now introduce some notation which
will be used throughout. Define

L1(RN × S) =
{
f : R

N × S −→ R : for each i ∈ S, f(·, i) ∈ L1(RN )
}
.

L1(RN ×S) is endowed with the product topology of
(
L1(RN )

)M . Similarly, we define
C∞

0 (RN × S), W 2,p
�oc (RN × S), etc. For f ∈ W 2,p

�oc (RN × S) and u ∈ U , we write

(2.6) Luf(x, i) = Lu
i f(x, i) +

M∑
j=1

λij(x, u)[f(x, j) − f(x, i)],
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where

(2.7) Lu
i f(x, i) =

1
2

N∑
j=1

σ2
j

∂2f(x, i)
∂x2

j

+
N∑

j=1

bj(x, i, u)
∂f(x, i)

∂xj

and more generally, for v ∈ V,

(2.8) Lvf(x, i) =
∫

U

Luf(x, i) v(du).

Theorem 2.1. Under a Markov policy v, (2.4) admits an a.s. unique strong
solution such that

(
X(·), S(·)

)
is a Feller process with differential generator Lv.

Proof (Sketch). This proof is based on the technique involving the removal of drift
[41], [10, Thm. 1.4, pp. 10–12]. Clearly, it suffices to prove the result in the interval
[0, T ], for a fixed T > 0. For T > 0, let H be the function space defined by

(2.9) H =
{

g ∈ W 1,2,p
�oc

(
[0, T ] × R

N × S
)
, 2 ≤ p < ∞ : for each i ∈ S,

sup
0≤t≤T

|g(t, x, i)| grows slower than exp(k‖x‖2) for all k > 0
}

.

Fix an i ∈ S. For 1 ≤ j ≤ N , let ϕi(t, x, j) be the unique solution in H (as in (2.9))
of

(2.10)
∂ϕi(t, x, j)

∂t
+ L

v(t,x,j)
j ϕi(t, x, j) = 0

ϕi(T, x, j) = xi ,

where x = (x1, . . . , xN ). Let ϕ = [ϕ1, . . . , ϕN ]T . It can be shown that for fixed
j, ϕ(t, ·, j) is a homeomorphism onto its range for each t ∈ [0, T ]. Set Y (t) =
ϕ
(
t, X(t), S(t)

)
, t ∈ [0, T ]. Using Ito’s formula, it follows that Y (t) satisfies

(2.11) Y (t) = Y (0) +
∫ t

0

[(
Dϕs diag(σ1, . . . , σN )

)
◦ ϕ−1

s

](
Y (s)

)
dW (s)

+
∫ t

0

∫
R

[
ϕs

(
ϕ−1

s (Y (s−)) + h̃
(
ϕ−1

s (Y (s−)), z
))

− Y (s)
]
p(ds, dz),

where Dϕs, ϕ−1
s denote respectively the Jacobian matrix and the inverse map of

ϕ
(
s, ·, S(s)

)
, ‘◦’ indicates composition of functions and

h̃(·, ·, ·) = [0, 0, . . . , 0, h(·, ·, ·)]T ∈ R
N+1.

Now by [41], equation (2.11) has an a.s. unique strong solution which is a Markov pro-
cess. The corresponding claim for

(
X(t), S(t)

)
follows via the homeomorphic property

of ϕ. It remains to show the Feller property. Pick any bounded continuous function
f : R

N × S → R. The system of equations

(2.12)
∂ψ(t, x, i)

∂t
+ Lv(t,x,i)ψ(t, x, i) = 0

ψ(T, x, i) = f(x, i)
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can be shown to have a unique solution in H [18]. Therefore, by Ito’s formula, it
follows that

ψ(t, x, i) = E
[
f
(
X(T ), S(T )

) ∣∣ X(t) = x, S(t) = i
]
,

where the expectation is under the Markov policy v. By Sobolev’s imbedding theorem
[5, p. 53], H ⊂ C

(
[0, T )×R

N×S
)

and hence ψ(t, ·, i) is continuous for each t ∈ [0, T ).
Some comments are in order now.
Remark 2.1.
(i) We have used Ito’s formula for functions in W 1,2,p

�oc (R+ × R
N × S). This

generalization is due to Krylov [28, pp. 121–127] for “classical” diffusions.
Its extension for the present system is routine.

(ii) The well-posedness of the Cauchy problem for the weakly coupled parabolic
system (2.10) has been established in [18] under slightly stronger conditions
on the first order terms. However, in view of the results in [3], [30, Chap. 7],
its extension to the present case is straightforward.

Remark 2.2. We have seen in Theorem 2.1 that under a Markov policy the cor-
responding solution

(
X(·), S(·)

)
of (2.4) is a Markov process. We have the following

converse result. Let v(·) be a feedback policy, such that the corresponding solution(
X(·), S(·)

)
of (2.4) is a Markov process. Then v(·) may be taken to be a Markov

policy. Since we do not need this result, we omit the proof.

2.1. The Optimization Problem. Let c : R
N × S × U → R+ be a bounded,

continuous cost function, and let c : R
N × S × V → R+ be defined as

c(·, ·, v) =
∫

U

c(·, ·, u) v(du) .

Let α > 0 be a prescribed discount factor. Let v(·) be an admissible policy and(
X(·), S(·)

)
the corresponding process. Then the total α-discounted cost under v(·) is

defined as

(2.13) Jv(x, i) := E

[∫ ∞

0

e−αtc
(
X(t), S(t), v(t)

)
dt

∣∣∣ X(0) = x, S(0) = i

]
.

If the laws of X0, S0 are π ∈ P(RN ), ξ ∈ P(S) respectively, then

(2.14) Jv(π, ξ) =
∑

i

∫
RN

Jv(x, i)π(dx) ξ(i).

Let

(2.15) V (x, i) := inf
v(·)

{
Jv(x, i)

}
,

(2.16) V (π, ξ) := inf
v(·)

{
Jv(π, ξ)

}
.

The function V (x, i) is called the (α-discounted) value function. An admissible policy
v(·) satisfying

Jv(π, ξ) = V (π, ξ)
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is called an optimal policy for the initial law (π, ξ). An admissible policy is called
optimal if it is optimal for any initial law. Our aim is to find an admissible optimal
policy which is homogeneous Markov and non-randomized.

We now introduce the (discounted) occupation measures [12]. Let v(·) be an
admissible policy and

(
X(·), S(·)

)
the corresponding process with initial law (π, ξ).

Define the occupation measure ν[π, ξ; v] ∈ P(RN × S × U) by

(2.17)
∫

f dν[π, ξ; v] = αE

[∫ ∞

0

e−αt

∫
U

f(X(t), S(t), u) v(t)(du) dt

]

for f ∈ Cb(RN × S × U). Also, we define

M1[π, ξ] =
{
ν[π, ξ; v] : v(·) is admissible

}
(2.18)

M2[π, ξ] =
{
ν[π, ξ; v] : v(·) is homogeneous Markov

}
(2.19)

M3[π, ξ] =
{
ν[π, ξ; v] : v(·) is homogeneous non-randomized Markov

}
(2.20)

In terms of these occupation measures

(2.21) Jv(π, ξ) = α−1

∫
c dν[π, ξ; v].

We will show in Section 4 that M1[π, ξ] = M2[π, ξ] and that M2[π, ξ] is compact,
convex and Me

2 [π, ξ] ⊂ M3[π, ξ], where Me
2 [π, ξ] is the set of extreme points of M2[π, ξ].

Thus, for a fixed initial law, the optimization problem (2.13) will reduce to a convex
optimization problem in view of (2.21).

3. Compactness of Laws. We will establish the compactness of laws of the
process

(
X(·), S(·)

)
under various policies using the approach in [11, Chap. 2]. Let

π0 ∈ P(RN ), ξ0 ∈ P(S). Let Li[π0, ξ0] ⊂ P
(
C(R+; RN ) × D(R+;S)

)
, i = 1, 2, 3, de-

note the set of laws of
(
X(·), S(·)

)
under all admissible/Markov/homogeneous Markov

policies with fixed initial law (π0, ξ0).
Theorem 3.1. The set L1[π0, ξ0] is compact in P

(
C(R+; RN ) × D(R+;S)

)
.

Proof. It clearly suffices to replace R+ by [0, T ] for arbitrary T > 0. Fix T > 0.
Let

(
Xn(·), Sn(·), Wn(·), pn(·, ·), vn(·), Xn

0 , Sn
0

)
, n ≥ 1, satisfy (2.4) on probability

spaces (Ωn,Fn, Pn) respectively, the laws of Xn
0 , Sn

0 being π0, ξ0 respectively for all
n. Let {fi} be a countable dense subset of the unit ball of C(U). Define βn

j (t) =∫
fj dvn(t), t ∈ [0, T ]. Let B denote closed unit ball of L∞[0, T ] with the topology

given by the weak topology of L2[0, T ] relativized to B. Let E be a countable product
of replicas of B. Since B is compact and metrizable and hence Polish, the same follows
for E. Let βn(·) = [βn

1 (·), βn
2 (·), . . . ], n ≥ 1, viewed as E-valued random variables.

Using the assumed conditions on b, it can be easily shown that for t1, t2 ∈ [0, T ],

E
[
‖Xn(t2) − Xn(t1)‖4

]
≤ K|t2 − t1|2

for some T -dependent K > 0. It follows that the laws of the sequence {Xn(·)} are
tight in P

(
C(R+; RN )

)
. Since S is finite and E is compact, it follows by Prohorov’s

theorem [24, Thm. 2.6, p. 7] that, for A1 ∈ B(R+), A2 ∈ B(R) fixed, the sequence(
Xn(·), Sn(·), βn(·), Wn(·), pn(A1 × A2)

)
converges to a limit(

X(·), S(·), β(·), W (·), p(A1 × A2)
)
.
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Dropping to a subsequence if necessary and invoking Skorohod’s theorem [24, p. 9],
we may assume that all these random variables are defined on a common probability
space and the convergence is a.s. on this probability space. By [11, Lemma II.1.2,
p. 24] we can find a V-valued process v(·) such that βi(t) =

∫
fi dv(t), i ≥ 1. Define

Zn(·) = [Zn
1 (·), . . . , Zn

N (·)]T , Y n(·), n ≥ 1, by

Zn
i (t) = Xn

i (t) −
∫ t

0

bi

(
Xn(s), Sn(s), vn(s)

)
ds, t ≥ 0

Y n(t) = Sn(t) −
M∑

j=1

∫ t

0

λSn(s−),j

(
Xn(s), vn(s)

) (
j − Sn(s−)

)
ds, t ≥ 0

and Z(·) = [Z1(·), . . . , ZN (·)]T , Y (·) by

Zi(t) = Xi(t) −
∫ t

0

bi

(
X(s), S(s), v(s)

)
ds, t ≥ 0

Y (t) = S(t) −
M∑

j=1

∫ t

0

λS(s−),j

(
X(s), v(s)

) (
j − S(s−)

)
ds, t ≥ 0.

Then, by [11, Lemma II.1.3, p. 26] and standard representation theorems for semi-
martingales [25, pp. 172–178] applied to Zi(t) and Y (t), it follows that on an aug-
mented probability space

(
X(·), S(·)

)
satisfies (2.4) for an admissible policy v(·) and

driven by a Wiener process W̃ (·) and a Poisson random measure p̃(·, ·).
We now state the next theorem without proof as it would be almost identical to

the proof of [11, Thm. II.2.1, p. 29], in view of the estimates in [30, p. 582].
Theorem 3.2. The sets L2[π0, ξ0], L3[π0, ξ0] are compact.
Let {vn} be a sequence of homogeneous Markov policies and

(
Xn(·), Sn(·)

)
the

corresponding solutions of (2.4) with Xn(0) = x0, Sn(0) = i0 for all n ≥ 0. Let
pn(t, x0, i0, y, j) be the fundamental solutions corresponding to the operators

(
∂
∂t +

Lvn
)
. Let

(
Xn(·), Sn(·)

)
−→

(
X∞(·), S∞(·)

)
, where the latter is governed by a ho-

mogeneous Markov policy v∞. Then, using the Hölder estimates on pn(t, x0, i0, y, j)
[30, p. 582], one can show the following result as in [10, Thm. II.2.2, p. 33].

Lemma 3.1. For each t > 0, pn(t, x0, i0, ·, ·) −→ p∞(t, x0, i0, ·, ·) in L1(RN ×S).
In other words, the laws of

(
Xn(t), Sn(t)

)
converge to that of

(
X∞(t), S∞(t)

)
in total

variation.
Following [11, p. 30], we topologize the space of all homogeneous Markov policies.

Let
F =

{
v : R

N × S −→ V : v is measurable
}
.

Topologize F as in [11, p. 30]. Then F is a compact metric space. Its topology is
determined by the following convergence criterion [11, Lemma II.2.1, p. 32].

Lemma 3.2. Let f ∈ L2(RN ×S)∩L1(RN ×S), g ∈ Cb(RN ×S×U) and vn → v
in F . Then

(3.1)
∫

RN

f(x, i)
∫
S

g(x, i, ·) dvn(x, i) dx −→
n→∞

∫
RN

f(x, i)
∫
S

g(x, i, ·) dv(x, i) dx

for each i ∈ S. Conversely, if (3.1) holds for all such f, g and i ∈ S, then vn → v in
F .
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Let L(v) denote the law of
(
X(·), S(·)

)
when X(0) = x0, S(0) = i0 and the

homogeneous Markov policy v is used. Using Lemma 3.1, the following theorem can
be proved exactly the same way as in [11, Thm. II.2.3, p. 34].

Theorem 3.3. The map v �−→ L(v) from F into P
(
C(R+; RN ) × D(R+;S)

)
is

continuous.

4. Convexity and Extremality of Occupation Measures. In this Section
we will study the properties of the occupation measures ν[π, ξ; v] introduced in (2.17),
following the approach in [12].

Lemma 4.1. The sets M1[π, ξ], M2[π, ξ], M3[π, ξ] as defined in (2.18)–(2.20) are
compact.

Proof. This follows from Theorems 3.1 and 3.2.
Lemma 4.2. For each fixed initial law (π, ξ), M1[π, ξ] = M2[π, ξ].
Proof. Let ν[π, ξ; v] ∈ M1. Disintegrate it as

(4.1) ν[π, ξ; v](dx × {i} × du) = ν[π, ξ; v](dx × {i}) v(x, i)(du),

where ν[π, ξ; v] is the marginal of ν[π, ξ; v] on R
N × S and v(x, i) is a version of the

regular conditional law defined ν[π, ξ; v] a.s. Pick any version from this equivalence
class and keep it fixed henceforth. The map v(·, ·) obviously defines a homogeneous
Markov policy. Let

(
X ′(·), S′(·)

)
be the solution of (2.4) with v(·) replaced by v′(·) =

v
(
X ′(·), S′(·)

)
and with initial law (π, ξ). Let f ∈ Cb(RN × S × U) and let

(4.2) ϕ(x, i) = E

[∫ ∞

0

e−αt

∫
U

f
(
X ′(t), S′(t), u

)
v′(t)(du) dt

∣∣∣ X ′(0) = x, S′(0) = i

]
.

Using the strong Markov property of
(
X ′(·), S′(·)

)
(this follows from the Feller prop-

erty) and the local solvability of weakly coupled systems of elliptic equations [31,
Chap. 7, p. 388] it can be shown by employing standard arguments involving Ito’s
formula that ϕ(x, i) is the unique solution in W 2,p

�oc (RN ×S)∩Cb(RN ×S), 2 ≤ p < ∞,
to

(4.3) Lv(x,i)ϕ(x, i) − αϕ(x, i) +
∫

U

f(x, i, u) v(x, i)(du) = 0.

Define a process Y (·) by

Y (t) =
∫ t

0

∫
U

e−αsf(X(s), S(s), u) v(s)(du) ds + e−αtϕ
(
X(t), S(t)

)
.

Then

E[Y (t)] − E[Y (0)] = E[Y (t)] −
M∑

j=1

∫
RN

ϕ(x, j) π(dx) ξ(j)(4.4)

= E

[∫ t

0

e−αs
[
Lv(s)ϕ

(
X(s), S(s)

)
− αϕ

(
X(s), S(s)

)
+

∫
U

f
(
X(s), S(s), u

)
v(s)(du)

]
ds

]
.
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Letting t → ∞ and using the definition of v(·, ·) and (4.3), it follows that the right-
hand side in (4.4) tends to zero (cf. [11, Thm. 4.2, pp. 40–42]). Thus,

lim
t→∞

E[Y (t)] = E[ϕ(X0, S0)]

= E[ϕ(X ′
0, S

′
0)].

Since f ∈ Cb(RN × S × U) was arbitrary, it follows that ν[π, ξ; v] = ν[π, ξ; v].
Let ν[π, ξ; v] ∈ M2[π, ξ]. By a routine extension of the inequality [28, p. 66] it

follows that ν[π, ξ; v] (as in (4.1)) is absolutely continuous with respect to the product
of the Lebesgue measure on R

N and the counting measure on S and therefore has a
density ϕ[π, ξ; v]. Let ν̃[π, ξ; v] be the marginal of ν[π, ξ; v] on S. With ‘supp’ denoting
the support of a measure, let

(4.5) supp(ν̃[π, ξ; v]) = S1[π, ξ; v] ⊂ S.

It is not difficult to see that ϕ[π, ξ; v](x, i) > 0 a.e. x ∈ R
N , i ∈ S1[π, ξ; v] and

ϕ[π, ξ; v](x, i) = 0 for i ∈ S \ S1[π, ξ; v]. For f ∈ W 2,p
�oc (RN × S) define

(4.6) Lv
αf(x, i) = Lv(x,i)f(x, i) − αf(x, i) .

Then, ϕ[π, ξ; v] is the unique solution in L1(RN × S) to:

(4.7)

M∑
i=1

∫
RN

Lv(x,i)
α g(x, i)ϕ(x, i) dx = −

M∑
i=1

∫
RN

g(x, i)π(dx)ξ(i)

M∑
i=1

∫
RN

ϕ(x, i) dx = 1 , ϕ(x, i) ≥ 0 ,

for every g ∈ C∞
0 (RN × S). Using the above, we will show that M2[π, ξ] is convex.

Lemma 4.3. The set M2[π, ξ] is convex.
Proof. Let v1, v2 be two homogeneous Markov policies and 0 ≤ a ≤ 1. Define a

homogeneous Markov policy by

(4.8) v(x, i) =
aϕ[π, ξ; v1](x, i)v1(x, i) + (1 − a)ϕ[π, ξ; v2](x, i)v2(x, i)

aϕ[π, ξ; v1](x, i) + (1 − a)ϕ[π, ξ; v2](x, i)

for (x, i) ∈ R
N ×

{
S1[π, ξ; v1]∪S1[π, ξ; v2]

}
and arbitrary otherwise. Let f ∈ C∞

0 (RN ×
S). It is easy to see that

Lv(x,i)
α f(x, i) =

aϕ[π, ξ; v1](x, i)Lv1(x,i)
α f(x, i) + (1 − a)ϕ[π, ξ; v2](x, i)Lv2(x,i)

α f(x, i)
aϕ[π, ξ; v1](x, i) + (1 − a)ϕ[π, ξ; v2](x, i)

.

Let ϕ(x, i) = aϕ[π, ξ; v1](x, i) + (1 − a)ϕ[π, ξ; v2](x, i). From (4.7) and (4.8) it follows
that ϕ = ϕ[π, ξ; v]. Thus

ν[π, ξ;v](dx × {i} × du)
= ϕ[π, ξ; v](x, i) dx v(x, i)(du)
= aϕ[π, ξ; v1)(x, i) dx v1(x, i)(du) + (1 − a)ϕ[π, ξ; v2](x, i) dx v2(x, i)(du)

=
(
aν[π, ξ; v1] + (1 − a)ν[π, ξ; v2]

)
(dx × {i} × du).
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Let

(4.9) I[π, ξ] =
{
ν[π, ξ; v] ∈ P(RN × S) : ν[π, ξ; v] ∈ M2[π, ξ]

}
,

where ν[π, ξ; v] is as in (4.1).
The proof of the next lemma is analogous to that of [12, Lemma 3.2]. We present

a brief sketch describing the essential ideas.
Lemma 4.4. The set I[π, ξ] is compact in P(RN × S) in total variation.
Proof. By a routine extension of the inequality [28, p. 66] to the present case,

ϕ[π, ξ; v] will be uniformly bounded in Lp(RN ). For the sake of convenience, assume
that the initial condition is (x0, i0) ∈ R

N × S. As in [11, Lemma 5.2, p. 44] we can
show by considering appropriate estimates on the weakly coupled systems of elliptic
equations [31, Chap. 7] that for any bounded open set A such that A ⊂ R

N \ {x0}
and i ∈ S \ {i0} there exists a β > 0 and a K ∈ (0,∞) such that

(4.10)
∣∣ϕ[x0, i0; v](y, i) − ϕ[x0, i0; v](z, i)

∣∣ ≤ K‖y − z‖β , y, z ∈ A,

under any choice of a homogeneous Markov policy v. By Theorem 3.2, I[x0, i0] is
compact in the Prohorov topology of P(RN ×S). Let

{
ν[x0, i0; vn]

}
be a sequence in

I[x0, i0] and ν[x0, i0; v∞] a weak limit point of
{
ν[x0, i0; vn]

}
. We need to show that

ϕ[x0, i0; vn] −→ ϕ[x0, i0; v∞] in L1(RN ×S). The equicontinuity of
{
ϕ[x0, i0; vn]

}
fol-

lows from (4.10). Also (4.10) together with the uniform Lp-estimates implies pointwise
boundedness. Thus, by the Arzela-Ascoli theorem, we may drop to a subsequence, if
necessary, to conclude that for each i ∈ S,

ϕ[x0, i0, vn](·, i) −→ ψ(·, i),

for some ψ(·, i), uniformly on compact subsets of R
N . By the uniform Lp-estimates

the convergence is also in L1(RN ). Thus

(4.11)
∫

RN

ϕ[x0, i0; vn](y, i)f(y) dy −→
n→∞

∫
RN

ψ(y, i)f(y) dy,

for all f ∈ Cb(RN ). But (4.11) certainly holds with ϕ[x0, i0; v∞](·, i) replacing ψ(·, i).
Therefore, ϕ[x0, i0; v∞] ≡ ψ.

We are now in a position to characterize the extreme points of M2[π, ξ]. Let v be
a homogeneous Markov policy such that, for each x ∈ R

N and i ∈ S,

(4.12) v(x, i) = av1(x, i) + (1 − a)v2(x, i),

where a ∈ (0, 1) and v1, v2 are distinct homogeneous Markov policies, i.e., there exists
at least one i0 ∈ S such that v1(·, i0) and v2(·, i0) differ on a set of strictly positive
measure. The proof of the next lemma closely follows that of [12, Lemma 3.3]; we
therefore present only a brief sketch of the proof.

Lemma 4.5. Let v be as in (4.12). Then, ν[π, ξ; v] is not an extreme point of
M2[π, ξ].

Proof. We will show that if v satisfies (4.12), then there are homogeneous Markov
policies ṽ1, ṽ2 and b ∈ (0, 1) such that

ν[π, ξ; v] = bν[π, ξ; ṽ1] + (1 − b)ν[π, ξ; ṽ2] .
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It suffices to find b ∈ (0, 1) and ṽ1, ṽ2 satisfying

(4.13) v(x, i) =
bϕ[π, ξ; ṽ1](x, i)ṽ1(x, i) + (1 − b)ϕ[π, ξ; ṽ2](x, i)ṽ2(x, i)

bϕ[π, ξ; ṽ1](x, i) + (1 − b)ϕ[π, ξ; ṽ2](x, i)

for (x, i) ∈ R
N ×

{
S1[π, ξ; ṽ1] ∪ S1[π, ξ; ṽ2]

}
(see (4.5)). For R > 0, let v′1, v

′
2 be

homogeneous Markov policies defined by

(4.14) v′j(x, i) =
{

vj(x, i), ‖x‖ ≤ R

v(x, i), ‖x‖ > R
i ∈ S, j = 1, 2.

Let v(·) be a given homogeneous Markov policy. Define a homogeneous Markov policy
v′′2 via

v(x, i) = av′1(x, i) + (1 − a)v′2(x, i)(4.15)

=
bϕ[π, ξ; v′1](x, i)v′1(x, i) + (1 − b)ϕ[π, ξ; v](x, i)v′′2 (x, i)

bϕ[π, ξ; v′1](x, i) + (1 − b)ϕ[π, ξ; v](x, i)

for (x, i) ∈ R
N ×

{
S1[π, ξ; v′1) ∪ S1[π, ξ; v]

}
and arbitrary otherwise. The arguments

used in the proof of [12, Lemma 3.3] mutalis mutandis will ensure a suitable choice of
b ∈ (0, 1) such that v′′2 is a genuine homogeneous Markov policy. Fix a b ∈ (0, 1) as
in (4.15). Given a homogeneous Markov policy v(·), we obtain v′′2 (·) via (4.15). Thus,
we have a map ν[π, ξ; v] �−→ ν[π, ξ; v′′2 ] from I[π, ξ] to I[π, ξ]. Using Lemma 4.6, it
can be shown as in the proof of [11, Lemma 3.3] that this map is continuous in the
total variation. By Schauder’s fixed point theorem [26, p. 220], this map has a fixed
point. In other words, there exists a homogeneous Markov policy v′′2 such that

v(x, i) =
bϕ[π, ξ; v′1](x, i)v′1(x, i) + (1 − b)ϕ[π, ξ; v′′2 ]v′′2 (x, i)

bϕ[π, ξ; v′1](x, i) + (1 − b)ϕ[π, ξ; v′′2 ](x, i)

for (x, i) ∈ R
N ×

{
S1[π, ξ; v′1] ∪ S1[π, ξ; v′′2 ]

}
. Since v′1 �= v on a set of strictly positive

measure for sufficiently large R, v′′2 �= v′1 on this set. Thus

ν[π, ξ; v] = bν[π, ξ′; v′1] + (1 − b)ν[π, ξ; v′′2 ]

as desired.
The results in this Section are now summarized as follows.
Theorem 4.1. M1[π, ξ] = M2[π, ξ], and M2[π, ξ] is compact and convex, and

each of its extreme points corresponds to some ν[π, ξ; v], where v is a homogeneous
Markov non-randomized policy.

5. Existence of an Optimal Policy. Using the results of the previous Section,
we will establish the existence of an optimal policy.

Theorem 5.1. There exists a homogeneous Markov optimal policy.
Proof. Let (π, ξ) ∈ P(RN ) × P(S) such that supp(π) = R

N and supp(ξ) = S.
Since c is bounded and continuous the map M2[π, ξ] � ν �−→

∫
c dν is continuous.

Thus, there exists a homogeneous Markov policy v∗ such that

Jv∗(π, ξ) = min
v

{
Jv(π, ξ) : v is homogeneous Markov

}
.
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By Lemma 4.2, it follows that

Jv∗(π, ξ) = V (π, ξ) .

Therefore, v∗ is optimal for the initial law (π, ξ). We will show that v∗ is optimal
for any initial law. It suffices to show that v∗ is optimal for any initial condition
(x, i) ∈ R

N × S. Suppose there exist (x0, i0) ∈ R
N × S and a homogeneous Markov

policy v such that

(5.1) Jv(x0, i0) < Jv∗(x0, i0).

Using the fact that the solution of (2.4) under a Markov policy is a Feller process, it
can be easily shown that the function Jv(x, i) is continuous in x for each v. Thus,
(5.1) holds in a neighborhood B of x0. Define a policy v′ by

v′(t) = v∗
(
X(t), S(t)

)
I{X0 �∈ B} + v′

(
X(t), S(t)

)
I{X0 ∈ B},

where
(
X(·), S(·)

)
is governed by v′(·). Then, it is easily shown that

Jv′(π, ξ) < Jv∗(π, ξ),

which is a contradiction. Thus, v∗ is optimal.
Theorem 5.2. There exists a homogeneous Markov non-randomized optimal pol-

icy.
Proof. Let v∗ be as in Theorem 5.1. Let Me

2 [π, ξ] be the set of extreme points
of M2[π, ξ]. Since M2[π, ξ] is compact, by Choquet’s theorem [34], ν[π, ξ; v∗] is the
barycenter of a probability measure m supported on Me

2 [π, ξ]. Therefore,

(5.2)
∫

c dν[π, ξ; v∗] =
∫

Me
2 [π,ξ]

(∫
c dµ

)
m(dµ).

Since v∗ is optimal, it follows from (5.2) that there exists a ν[π, ξ; v] ∈ Me
2 [π, ξ] such

that ∫
c dν[π, ξ; v∗] =

∫
c dν[π, ξ; v] .

Thus, v is also optimal. By Theorem 4.1 it is non-randomized.

6. Dynamic Programming Equations. Using the existence results of the
previous Section, we will now derive the dynamic programming or Hamilton-Jacobi-
Bellman equations (HJB) which in our case will be a weakly coupled system of quasi-
linear elliptic equations, and then characterize the optimal policy as a minimizing
selector of an appropriate “Hamiltonian”. The HJB equations for our problem are

(6.1) αψ(x, i) = inf
u∈U

{
Luψ(x, i) + c(x, i, u)

}
.

Theorem 6.1. The value function V (x, i) is the unique solution of (6.1) in the
space W 2,p

�oc (RN × S) ∩ Cb(RN × S) for any 2 ≤ p < ∞.
Proof. We have already seen in the proof of Theorem 5.1 that V (x, i) ∈ Cb(RN ×

S). Let v∗ be a homogeneous Markov non-randomized optimal policy and
(
X(·), S(·)

)
the corresponding solution of (2.4). Then, for (x, i) ∈ R

N × S,

(6.2) V (x, i) = E

[∫ ∞

0

e−αtc
(
X(t), S(t), v∗(X(t), S(t))

)
dt

∣∣∣ X(0) = x, S(0) = i

]
.
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By standard arguments (see the arguments following (4.2)), V (x, i) is the unique
solution in W 2,p

�oc (RN × S) ∩ Cb(RN × S), for any 2 ≤ p < ∞, of

(6.3) αV (x, i) = Lv∗(x,i)V (x, i) + c
(
x, i, v∗(x, i)

)
.

Suppose there exist x0 ∈ R
N , i0 ∈ S, u ∈ U and δ > 0 such that

αV (x0, i0) > LuV (x0, i0) + c(x0, i0, u) + δ .

Then, by the continuity of V (·, i0), the above will hold in a neighborhood N(x0) of
x0. Define a homogeneous Markov non-randomized policy ṽ as follows:

ṽ(x, i) =
{

v∗(x, i) if (x, i) �∈ N(x0) × S
u if (x, i) ∈ N(x0) × S.

Then
αV (x, i0) > Lṽ(x,i0)V (x, i0) + c

(
x, i0, ṽ(x, i0)

)
+ δI

{
x ∈ N(x0)

}
.

It is easily seen that
V (x, i0) ≥ Jṽ(x, i0) + δ′

for some δ′ > 0, which is a contradiction. Hence, V (x, i) satisfies (6.1). Let V ′ be
another solution of (6.1) in the desired class. Then it can be shown using standard
arguments (cf. [11, Thm. III.2.4, pp. 69–70]) that

|V (x, i) − V ′(x, i)| ≤ 2Ke−αt,

where K > 0 is a constant. Letting t → ∞, V ≡ V ′.
Corollary 6.1. Assume that for each i ∈ S, c(·, i, ·) is Lipschitz in its first

argument uniformly with respect to the third. Then V (x, i) is the unique solution of
(6.1) in C2(RN × S) ∩ Cb(RN × S).

Proof. It suffices to show that V is C2. Since V (x, i) ∈ W 2,p
�oc (RN × S) for any

2 ≤ p < ∞, by Sobolev’s imbedding theorem, V (x, i) ∈ C1,γ(RN × S), for 0 < γ < 1,
γ arbitrarily close to 1, and hence by our assumptions on b, λ, c, it is easy to see that

αV (x, i) − inf
u∈U

{ N∑
j=1

mj(x, i, u)
∂V (x, i)

∂xj
+

M∑
j=1

λij(x, u)
(
V (x, j) − V (x, i)

)
+ c(x, i, u)

}

is in C0,γ . By elliptic regularity [23, p. 287] applied to (6.1) (V replacing ψ), we
conclude that V ∈ C2,γ .

Theorem 6.2. A homogeneous Markov non-randomized policy v is optimal if
and only if

(6.4)
N∑

j=1

mj

(
x, i, v(x, i)

)∂V (x, i)
∂xj

+
M∑

k=1

λik

(
x, v(x, i)

)(
V (x, k) − V (x, i)

)
+ c

(
x, i, v(x, i)

)

= inf
u∈U

{ N∑
j=1

mj(x, i, u)
∂V (x, i)

∂xj
+

M∑
k=1

λik(x, u)
(
V (x, k) − V (x, i)

)

+ c(x, i, u)
}

, a.e. x ∈ R
N , i ∈ S .
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Proof. The ‘necessity’ part is contained in the proof of Theorem 6.1. We establish
the sufficiency. Let v(·, ·) satisfy (6.4). The existence of such a v is guaranteed by a
standard measurable selection theorem [4, Lemma 1]. Let v′ be any other homogeneous
Markov non-randomized policy. By standard arguments involving Ito’s formula and
the strong Markov property, we conclude that

Jv(x, i) ≤ Jv′(x, i), a.e. x ∈ R
N , i ∈ S .

Hence, by Lemma 4.2,
Jv(x, i) ≤ Jv(x, i)

for any admissible policy v. Thus, v is optimal.
Remark 6.1. Thus far, we have assumed that the cost function c is bounded.

However, this condition can be relaxed, as we show in the Appendix.

7. An Application to a Simplified Model. We consider a modified version of
the model studied in [2]. Suppose there is one machine producing a single commodity.
We assume that the demand rate is a constant d > 0. Let the machine state S(t) take
values in {0, 1}, S(t) = 0 or 1, according as the machine is down or functional. Let
S(t) be a continuous time Markov chain with generator[

−λ0 λ0

λ1 −λ1

]
.

The inventory X(t) is governed by the Ito equation

(7.1) dX(t) = (u(t) − d) dt + σ dW (t),

where σ > 0. The production rate u(t) is constrained by

u(t) =
{

0 if S(t) = 0
∈ [0, R] if S(t) = 1.

Let c : R → R+ be the cost function which is assumed to be convex and Lipschitz
continuous. Let α > 0 be the discount factor and let V (x, i) denote the value function.
In this case V (x, i) is the minimal non-negative C2 solution of the HJB equation

(7.2)


 σ2

2 V ′′(x, 0) − dV ′(x, 0)
σ2

2 V ′′(x, 1) − min
u∈[0,R]

{
(u − d)V ′(x, 1)

}


=
[

λ0 + α −λ0

λ1 α − λ1

] (
V (x, 0)
V (x, 1)

)
−

(
1
1

)
c(x) .

Using the convexity of c(·), it can be shown as in [2] that V (·, i) is convex for each i.
Hence, there exists an x∗ such that

(7.3)
V ′(x, 1) ≤ 0 for x ≤ x∗

≥ 0 for x ≥ x∗.

From (7.2), it follows that the value of u which minimizes (u − d)V ′(x, 1) is

u =
{

R if x ≤ x∗

0 if x ≥ x∗.
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At x = x∗, V ′(x∗, 1) = 0 and therefore any u ∈ [0, R] minimizes (u−d)V ′(x, 1). Thus,
in view of Theorem 6.2, we can choose any u ∈ [0, R] at x = x∗. To be specific, we
choose u = d at x = x∗. It follows that the following homogeneous Markov non-
randomized policy is optimal

(7.4) v(x, 0) = 0 , v(x, 1) =




R if x < x∗

d if x = x∗

0 if x > x∗.

We note at this point that the piecewise deterministic model, in general, would
lead to a singular control problem when V ′(x, 1) = 0 [2], [27]. In [2] Akella and Kumar
have obtained the solution of the HJB equation (this would be (7.2) without the second
order term) in closed form and have computed an explicit expression for x∗. They
have shown that a policy of the type (7.4) is optimal among all homogeneous Markov
non-randomized policies. In our case, the additive noise in (7.1) induces a smoothing
effect to remove the singular situation; in addition, our results imply that the policy
(7.4) is optimal among all admissible policies. The only limitation of our model is
that it would, in general, be very difficult to solve (7.2) analytically. Therefore, one
must rely on numerical methods to compute an optimal policy of the type (7.4).

We now discuss the manufacturing model studied in [27] as described in the intro-
duction. The machine state S(t) is again a prescribed continuous time Markov chain
taking values in S = {1, . . . , M}. For each i ∈ S, the production rate u = (u1, . . . , uN )
takes values in Ui, a convex polyhedron in R

N . The demand rate is d = [d1, . . . , dN ]T .
In this case, if the cost function c : R

N → R+ is Lipschitz continuous and convex, it can
be shown that for each i ∈ S, the value function V (·, i) is convex. But from this fact
alone optimal policies of the type (7.4) cannot be obtained. However, since an optimal
homogeneous Markov non-randomized policy v(x, i) is determined by minimizing

N∑
j=1

(uj − dj)
∂V (x, i)

∂xj

over Ui, v(x, i) takes values at extreme points of Ui. Thus, for each machine state
i, an optimal policy divides the buffer state space into a set of regions in which the
production rate is constant. If the gradient ∇V (x, i) is zero or orthogonal to a face of
Ui, a unique minimizing value does not exist. But again, in view of Theorem 6.2, we
may prescribe arbitrary production rates at those points where ∇V (x, i) = 0, and if
∇V (x, i) is orthogonal to a face of Ui, we can choose any corner of that face. Hence,
once again, we can circumvent the singular situation.

8. Concluding Remarks. We have analyzed the optimal control of switching
diffusions with a discounted criterion on the infinite horizon. The model allows a very
general form of coupling between the continuous and the discrete components of the
process. We have shown that there exists a homogeneous, non-randomized Markov
policy which is optimal in the class of all admissible policies. Also, the existence of a
unique solution in a certain class to the associated Hamilton-Jacobi-Bellman equations
is established and the optimal policy is characterized as a minimizing selector of an
appropriate Hamiltonian.

The primary motivation for this study is a class of control problems encountered
in flexible manufacturing systems. By explicitly taking into account the noise present
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in the dynamics, we are able to remove singularities arising in the noiseless situation.
In addition, we show that hedging type policies are optimal in a much wider class of
non-anticipative policies than previously considered. We have confined our attention
to the flow control level only. However, our results can be used to study control
problems at other levels in hierarchical manufacturing systems [21], as well as control
problems in other hybrid systems (see, e.g., [17], [38], [39]).

Here we have studied only the discounted criterion. Following [12], we can obtain
similar results for the finite horizon and exit time criteria. However, the long-run
average cost problem is more involved and is currently under study.
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Appendix. Note that by the arguments of Section 5 we can establish the exis-
tence of a homogeneous Markov non-randomized policy for each fixed initial law. The
independence of the optimal policy of the initial law results from the dynamic pro-
gramming characterization of the optimal policy via Theorem 6.2. Using probabilistic
arguments, dynamic programming equations can be derived by suitably adapting the
approach in [11, Chap. 3]. However, we will present in a brief sketch an alternative
analytical approach, which parallels that used for classical diffusions in [29].

We assume that for each i ∈ S, c(·, i, ·) is Lipschitz in its first argument uniformly
with respect to the third. We further assume that for each x ∈ R

N and i ∈ S, the
value function V (x, i) < ∞. (This assumption may be replaced by some ergodicity
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hypotheses of the process under some homogeneous Markov policy.) Let BR =
{
x ∈

R
N : ‖x‖ < R

}
. Consider the Dirichlet problem on BR

(A.1)
inf
u∈U

Luϕ(x, i) = αϕ(x, i) , in BR × S

ϕ(x, i)
∣∣∣
∂BR

= 0 .

The existence of a unique solution ϕR(x, i) of (A.1) in W 2,p
�oc (RN × S), 2 ≤ p < ∞, is

guaranteed by [31, Thm. 5.1, p. 422]. Thus, to each R > 0 there corresponds a solution
ϕR to (A.1) belonging to W 2,p

�oc (RN × S), for 2 ≤ p < ∞. Using elliptic regularity
results as in Corollary 6.1, it follows that ϕR(x, i) ∈ C2,γ(BR × S), 0 < γ < 1, γ
arbitrarily close to 1. Let vR be a homogeneous Markov non-randomized policy which
is a minimizing selector in (6.4). Standard arguments involving Ito’s formula yield

(A.2) ϕR(x, i) = E

[∫ τR

0

e−αtc
(
X(t), S(t), vR(X(t), S(t))

)
dt

∣∣∣ X(0) = x, S(0) = i

]

= inf
u(·)

E

[∫ τR

0

e−αtc
(
X(t), S(t), u(t)

)
dt

∣∣∣ X(0) = x, S(0) = i

]
,

where τR is the hitting time of ∂BR of the process X(·). Clearly ϕR(x, i) ≤ V (x, i) and
it can be easily seen from (A.2) that ϕR(x, i) is increasing in R. Let R′ > R. Then,
by the interior estimates [31, pp. 398–402], {ϕR′}R′>R is bounded in BR uniformly
in R′ and {∇ϕR′}R′>R is bounded in W 1,2(BR × S) uniformly in R′. By Sobolev’s
imbedding theorem, W 1,2(BR × S) ↪→ L2+ε(BR × S), for some ε > 0. Then, by
suitably modifying (4.10) of [31, p. 400], we obtain

‖ϕR′‖W 2,2+ε(BR×S) ≤ KR ,

where KR is a constant which does not depend on R′. (The modification is needed
because of the factor ε > 0, but it is routine.) Repeating the above procedure over
and over again, we conclude that {ϕR′}R′>R is uniformly bounded in W 2,p(BR), for
2 ≤ p < ∞. Since W 2,p(BR) ↪→ W 1,p(BR) and the injection is compact, it follows that
{ϕR} converges strongly in W 1,p(BR). Thus, given any sequence {Rn}, Rn → ∞, as
n → ∞ and for any fixed integer N ≥ 2, we can choose a subsequence {Rni

} such that
{ϕRni

} converges strongly in W 1,p(BN−1). Using a suitable diagonalization, we may
assume that {ϕRni

} converges strongly in W 1,p(BN−1) for each integer N ≥ 2. Let ψ

be a limit point of {ϕRni
}. It can be shown as in [5, p. 148] (see also [31, p. 420]) that

inf
u∈U

{ N∑
k=1

bk(x, j, u)
∂ϕRni

(x, j)
∂xk

+
M∑

�=1

λj�(x, u)
(
ϕRni

(x, �) − ϕRni
(x, j)

)
+ c(x, j, u)

}

−→
ni→∞

inf
u∈U

{ N∑
k=1

bk(x, j, u)
∂ψ(x, j)

∂xk
+

M∑
�=1

λj�(x, u)
(
ψ(x, �) − ψ(x, j)

)
+ c(x, j, u)

}

strongly in Lp(BN−1). Therefore, ψ ∈ W 1,p
�oc (RN × S) and ψ satisfies

inf
u∈U

Luψ(x, i) = αψ(x, i)



optimal control of switching diffusions 23

in D′(RN ×S), i.e., in the sense of distributions. By elliptic regularity, ψ ∈ W 2,p
�oc (RN ×

S), 2 ≤ p < ∞. Therefore, as in Corollary 6.1, it follows that ψ ∈ C2,γ(RN × S),
0 < γ < 1, γ arbitrarily close to 1. Let v be a minimizing selector corresponding to
ψ. Then, by standard arguments involving Ito’s formula, it can be shown that

ψ(x, i) = E

[∫ ∞

0

e−αtc
(
X(t), S(t), v(X(t), S(t))

)
dt

∣∣∣ X(0) = x, S(0) = i

]

= inf
u(·)

E

[∫ ∞

0

e−αtc
(
X(t), S(t), u(t)

)
dt

∣∣∣ X(0) = x, S(0) = i

]
.

Thus, ψ(x, i) = V (x, i). In this situation, (6.1) does not have a unique solution in
general, but V (x, i) can be identified as a minimal nonnegative solution of (6.1) in
C2(RN × S). The assertion of Theorem 6.2 is also valid in this case.


