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1. Introduction

There is considerable literature on the Harnack inequality for uniformly

elliptic partial differential equations [2], [3], [5]. Harnack’s inequality, apart

from being interesting in its own right, plays a very important role in the

theory of partial differential equations. For example, it is applied to derive

the interior estimates of the gradients of the solutions. Let us first state

this result in the simplest situation. Let Ω be a bounded domain in R
d, Γ
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a closed subset of Ω and u : Ω → R a nonnegative harmonic function, i.e.,

∆u = 0 in Ω. Then there exists a constant C which depends only on the

dimension d, on the diameter of Ω, and on the distance between Γ and ∂Ω,

such that

u(x) ≤ C u(y) , ∀ x, y ∈ Γ .

The Harnack inequality is also valid for both weak and strong solutions of

second-order, uniformly elliptic operators with bounded coefficients [2], [3].

Extensions to unbounded coefficients have also been established [9].

Consider a system of equations in u(x) =
(
u1(x), . . . , un(x)

)
of the form

(Lu)k(x) := Lkuk(x) +
n∑

j=1
j �=k

ckj(x)uj(x) = 0 , 1 ≤ k ≤ n , (1.1)

where n is a positive integer and each Lk is a second-order, uniformly elliptic

operator given by

Lk :=
d∑

i,j=1

ak
ij(x)

∂2

∂xi∂xj
+

d∑
i=1

bk
i (x)

∂

∂xi
+ ckk(x) . (1.2)

The operator L is called cooperative if the coupling coefficients ckj are non-

negative for k �= j.

Definition 1.1. We denote by L(λ, d, n) the class of all cooperative oper-

ators L of the form (1.1)–(1.2), with coefficients ak
ij ∈ C0,1(Rd), bk

i , ckj ∈
L∞(Rd), bounded in L∞-norm by a constant λ ≥ 1, and satisfying the uni-

form ellipticity condition

λ−1‖ζ‖2 ≤
d∑

i,j=1

ak
ij(x)ζiζj ≤ λ‖ζ‖2, for all x, ζ ∈ R

d, 1 ≤ k ≤ n .

A function u is called L-harmonic in a domain Ω ⊂ R
d provided u is a strong

solution of Lu = 0 in the Sobolev space W 2,p
	oc (Ω; Rn), for some p ∈ [1,∞).

Systems of the above form appear in the study of jump diffusion pro-

cesses with a discrete component [1]. In this paper, we obtain analogues
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of Harnack’s inequality for L-harmonic functions of operators in the class

L(λ, d, n). We use the technique introduced by Krylov for estimating the

oscillation of a harmonic function on bounded sets [3]. The main results are

given in Section 2. Section 3 is devoted to proofs and auxiliary results.

After this work was submitted for publication, similar results were re-

ported in [10]. Our work and [10] differ both in methodology and results.

In [10] the authors assume Hölder continuous coefficients, and the proofs are

based on estimates of the Green function in small balls, while this paper,

motivated from a stochastic control problem, assumes only measurable co-

efficients, and the proofs are based on the approach of Krylov. Also, in our

work an averaged coupling matrix (see Definition 2.1) appears explicitly in

the Harnack constant. This enables us to provide a rather general version

of the maximum principle and some further Harnack inequalities valid for a

certain class of supersolutions.

2. Main Results

Throughout the paper, Ω denotes a bounded domain in R
d. We first

establish a weak version of Harnack’s inequality, under general conditions.

Theorem 2.1. Let Γ ⊂ Ω be a closed set. There exists a constant K1 > 0,

depending only on d, n, the diameter of Ω, the distance between Γ and ∂Ω,

and the bound λ, such that for any nonnegative L-harmonic function u in

Ω, with L ∈ L(λ, d, n),

sup
x∈Γ

{
ui(x)

}
≤ K1 max

1≤k≤n
inf
x∈Γ

{
uk(x)

}
, ∀ i ∈ {1, . . . , n} . (2.1)

An inequality stronger than (2.1) is obtained under an irreducibility con-

dition on the coupling coefficients. We need to introduce some additional

notation.

For a measurable set A ⊂ R
d, |A| denotes the Lebesgue measure of A,

while ‖ · ‖p;A denotes the norm of Lp(A), 1 ≤ p ≤ ∞. Also, for A ⊂ Ω,

‖ · ‖k,p;A denotes the restriction to A of the standard norm of W k,p(Ω).
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These norms are extended to vector valued functions u using the convention

‖u‖ =
∑n

i=1 ‖ui‖.

Definition 2.1. For Ω ⊂ R
d and L ∈ L(λ, d, n), let CL(Ω) ∈ R

n×n denote

the matrix defined by

[
CL(Ω)

]
ij

:=
‖cij‖1;Ω

|Ω| , for i �= j , i, j ∈ {1, . . . , n} ,

with diagonal entries equal to 0. Given a nonnegative matrix M ∈ R
n×n

and a pair i, j ∈ {1, . . . , n}, we say that j is reachable from i provided that

the ij’th element of
(
I + M

)n−1 is positive, and we denote this by i
M−→ j.

Furthermore, the matrix M is called irreducible if i
M−→ j for all i, j ∈

{1, . . . , n}; otherwise, it is called reducible. We say that L ∈ L(λ, d, n) is µΩ-

irreducible in Ω if there exists an irreducible matrix S ∈ R
n×n, with elements

in {0, 1} and µΩ ∈ R, such that µΩCL(Ω) ≥ S (here, the inequality is meant

elementwise). The class of all µΩ-irreducible operators whose coefficients ak
ij

have a uniform Lipschitz constant γ is denoted by L(λ, d, n, γ, µΩ).

Theorem 2.2. Let Γ ⊂ Ω be a closed set. There exists a positive constant

K2 = K2(Ω, Γ, λ, d, n, γ, µΩ) such that for any nonnegative L-harmonic func-

tion u in Ω, with L ∈ L(λ, d, n, γ, µΩ),

ui(x) ≤ K2uj(y) , ∀ x, y ∈ Γ , i, j ∈ {1, . . . , n} . (2.2)

More generally, if L ∈ L(λ, d, n), and c̃Ω denotes the smallest positive ele-

ment of CL(Ω), then

ui(x) ≤ K ′
2uj(y) , ∀ x, y ∈ Γ , if j

CL(Ω)−−−−→ i , (2.3)

where K ′
2 = K2(Ω, Γ, λ, d, n, γ, 1

c̃Ω
).

Remark 2.1. Let Γ ⊂ Ω and L ∈ L(λ, d, n) be given. Then, for the existence

of a constant K2 > 0 satisfying (2.2) for all nonnegative L-harmonic functions

u in Ω, it is necessary that L be µΩ-irreducible in Ω. Otherwise, there exists

a nontrivial partition {I1, I2} of {1, . . . , n} such that cij = 0 a.e. in Ω, for
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all (i, j) ∈ I1 × I2; therefore, any nonzero L-harmonic function u satisfying

uk = 0, for k ∈ I1, violates (2.2).

There is a fair amount of work in the literature on maximum principles

for cooperative, weakly-coupled systems [6], [7]. In [6], it is assumed that the

coupling coefficients are positive. Note that the notion of irreducibility in

Definition 2.1 is in an ‘average’ sense only and that CL(Ω) may be irreducible

even if
[
cij(x)

]
is reducible at every x ∈ Ω. We state the following version of

the strong maximum principle,which follows immediately from Theorem 2.2,

and does not seem to be available in the existing literature.

Corollary 2.1. Let L ∈ L(λ, d, n) be such that CL(Ω) is irreducible. Then

any nonnegative L-harmonic function u in Ω is either positive in Ω or iden-

tically zero.

It is well known that, in general, there is no Harnack inequality for non-

negative L-superharmonic functions, i.e., functions u satisfying Lu ≤ 0 in Ω,

for an elliptic operator L. Serrin [8] has utilized the maximum principle to

provide a growth estimate in terms of the Harnack constant of a compari-

son function and the value of ‖Lu‖∞, but this estimate does not result in

a Harnack inequality. Theorem 2.2 can be employed to provide a Harnack

constant for all superharmonic functions u for which −Lu lies in a convex

positive cone of L∞. We introduce the following definition.

Definition 2.2. For a measurable set A ⊂ R
d having finite, nonzero measure

and for a constant θ ≥ 1, we define the positive convex cone K(θ, A) ⊂
L∞(A; Rn) by

K(θ, A) :=
{

f ∈ L∞(A; Rn) : f ≥ 0 , min
1≤k≤n

‖fk‖1;A

|A|‖fk‖∞;A
≥ 1

θ

}
.

Suppose, for the moment, that n = 1 and u is a nonnegative function

satisfying Lu = −f in Ω, with L ∈ L(λ, d, 1) and f ∈ K(θ, Ω). We form the

cooperative system
Lv1 + θf(x)

‖f‖∞;Ω
v2 = 0

∆v2 = 0 .

5



Clearly, (v1, v2) = (u, θ−1‖f‖∞;Ω) is a nonnegative solution and c̃Ω ≥ 1.

Therefore, from (2.3), we deduce Harnack’s inequality for u by setting λ =

max{λ, θ} and µΩ = 1 in the Harnack constant K2.

For the elliptic system in (1.1)–(1.2), this procedure leads to the following:

Corollary 2.2. Let Γ ⊂ Ω be a closed set and u a nonnegative function

satisfying −Lu ∈ K(θ, Ω). The following are true:

(i) If L ∈ L(λ, d, n, γ) then (2.1) holds, with a Harnack constant

K1K2(Ω, Γ, max{λ, θ}, d, 2n, γ, 1) .

(ii) If L ∈ L(λ, d, n, γ, µΩ), then (2.2) holds with a constant

K2(Ω, Γ,max{λ,
θ

µΩ
}, d, 2n, γ, µΩ) .

3. Proofs of the Results

If u ∈ W 2,p
	oc (Ω; Rn), for some p ∈ [1,∞), is a solution of Lu = f in Ω and

f ∈ L∞(Ω; Rn), then u ∈ W 2,p
	oc (Ω; Rn), for all p ∈ [1,∞). This fact follows

from the interior Lp estimates for second derivatives of uniformly elliptic

equations and the well known Sobolev inequalities. However, the natural

space for some considerations is W 2,d. This is the case, for example, for the

Aleksandroff estimate (Lemma 3.2) and the comparison principle [2] which

states that if ϕ,ψ ∈ W 2,d
	oc (Ω; Rn)

⋂
C0(Ω; Rn) satisfy Lϕ ≤ Lψ in Ω and

ϕ ≥ ψ on ∂Ω, then ϕ ≥ ψ in Ω.

Let u ∈ W 2,d
	oc (Ω; Rn) be a nonnegative solution of Lu = 0 in Ω, with L ∈

L(λ, d, n). Augmenting the dimension of the domain, let I ⊂ R be a bounded

open interval and define the function v : Ω × I → R
d by v(x, xd+1) :=

u(x) exp
(√

nλxd+1

)
, and the operator L̃ ∈ L((n + 1)λ, d + 1, n) by

L̃k := Lk +
∂2

∂x2
d+1

− nλ + ckk .
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Then L̃v = 0, and any Harnack estimates obtained for L̃-harmonic func-

tions clearly hold for u. Observe that the coefficients c̃kj of the opera-

tor L̃ form a sub-stochastic matrix, i.e., they satisfy
∑n

j=1 c̃kj ≤ 0, for all

k = 1, . . . , n. Hence, without loss of generality, we restrict the proofs to op-

erators in L(λ, d, n) and L(λ, d, n, γ, µΩ) whose coupling coefficients form a

sub-stochastic matrix, and we denote the corresponding classes by L0(λ, d, n)

and L0(λ, d, n, γ, µΩ), respectively.

Let UΩ (U−
Ω) denote the space of all nonnegative functions u ∈

W 2,d
	oc (Ω; Rn)

⋂
C0(Ω; Rn), satisfying Lu = 0 (Lu ≤ 0) in Ω, for some

L ∈ L0(λ, d, n). If ξ ∈ R, then u ≥ ξ is to be interpreted as ui ≥ ξ,

for all i ∈ {1, . . . , n}, and if ξ = (ξ1, . . . , ξn) ∈ R
n, then u ≥ ξ ⇐⇒ ui ≥ ξi,

for all i ∈ {1, . . . , n}. In general, all scalar operations on R
n-valued functions

are meant to be componentwise. For greater clarity, we denote all R
n-valued

quantities by a bold letter. If Γ is a closed subset of Ω, x ∈ Ω, and ξ ∈ R
n
+,

we define

Ψx

(
UΩ, Γ ; ξ

)
:= inf

u∈UΩ

{
u(x) : u ≥ ξ on Γ

}
.

Lastly, deviating from the usual vector space notation, if D is a cube in R
d

and δ > 0, δD denotes the cube which is concentric to D and whose edges

are δ times as long.

We start with a measure theoretic result, announced in [4]. For a proof

see [2].

Lemma 3.1. Let K ⊂ R
d be a cube, Γ ⊂ K a closed subset, and 0 < α < 1.

Define

Q :=
{
Q : Q is a subcube of K and |Q⋂

Γ | ≥ α|Q|
}

Γ̃ :=
⋃

Q∈Q

(
3Q

⋂
K) .

Then either Γ̃ = K or |Γ̃ | ≥ 1
α |Γ |.

Next we state a variant of the weak maximum principle of A. D. Alexan-

droff. This particular form of the estimate is derived by first using a trans-
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formation to remove the first-order terms and then dominating the Ld norm

with the L∞ norm. The steps of the proof are quite standard and are there-

fore omitted.

Lemma 3.2. There exist constants C1 > 0 and κ0 ∈ (0, 1] such that, if

D ⊂ R
d is any cube of volume |D| ≤ κ0, and ϕ ∈ W 2,d

	oc (D)
⋂

C0(D) satisfies

Lkϕ ≥ f in D, and ϕ = 0 on ∂D, with f ∈ Ld(D) and L ∈ L(λ, d, n), then

sup
x∈D

{
ϕ(x)

}
≤ C1|D|1/d‖f‖d;D .

For the remainder of this section, D denotes an open cube in R
d of volume

not exceeding the constant κ0 in Lemma 3.2.

Lemma 3.3. There exist constants β0 > 0 and α0 < 1 such that, if Γ is a

closed subset of some cube D ⊂ R
d satisfying |Γ | ≥ α0|D|, then

inf
x∈ 1

3 D
Ψx

(
U

−
D, Γ ; ξ

)
≥ β0ξ , ∀ ξ ∈ R

n
+ .

Proof. Observe that if u ∈ U
−
D, then each component uk satisfies Lkuk ≤ 0

on D. Define ϕ′, ϕ′′ ∈ W 2,d
	oc (D)

⋂
C0(D) by

Lkϕ′ = −IΓ , Lkϕ′′ = −IΓ c , in D

and ϕ′ = ϕ′′ = 0 , on ∂D .

Then ϕ := ϕ′ + ϕ′′ satisfies Lkϕ = −1 in D and ϕ = 0 on ∂D. Without loss

of generality, suppose D is centered at the origin and consider the function

ψ(x) :=
d∏

i=1

(
|D|2/d − 4x2

i

)
.

Clearly, ψ = 0 on ∂D and ψ > 0 in D; moreover, there exists a positive

constant C2 such that

inf
x∈ 1

3 D

{
ψ(x)

}
≥ C2|D|2/d‖Lkψ‖∞;D , ∀ L ∈ L0(λ, d, n) .
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Therefore, by the comparison principle

ϕ(x) ≥ ψ(x)
‖Lkψ‖∞;D

≥ C2|D|2/d , ∀ x ∈ 1
3D . (3.1)

Using Lemma 3.2, we obtain

ϕ′ ≤ C1|D|1/d|Γ |1/d = C1|D|2/d

(
|Γ |
|D|

)1/d

ϕ′′ ≤ C1|D|1/d|Γ c|1/d = C1|D|2/d

(
1 − |Γ |

|D|

)1/d
.

(3.2)

By (3.1) and (3.2),

ϕ′(x) ≥ C2|D|2/d − C1|D|2/d

(
1 − |Γ |

|D|

)1/d
, ∀ x ∈ 1

3D .

On the other hand, since Lkϕ′ = 0 in D\Γ and ϕ′ = 0 on ∂D, the comparison

principle yields

inf
x∈ 1

3 D

{
uk(x)

}
≥ ξk

C2 − C1

(
1 − |Γ |

|D|

)1/d

C1

(
|Γ |
|D|

)1/d
. (3.3)

Selecting α0 to satisfy

α0 ≥ 1 −
( C2

2C1

)d

,

inequality (3.3) yields

inf
x∈ 1

3 D
uk(x) ≥ C2ξk

2C1
.

Hence, the claim follows with β0 = C2
2C1

. �

Lemma 3.4. For each δ > 0, there exists k′
δ > 0 such that if Q ⊂ (1 − δ)D

is a subcube of an open cube D ⊂ R
d, then

Ψx

(
U

−
D, 1

3Q; ξ
)
≥ k′

δξ , ∀ x ∈ 3Q
⋂

(1 − δ)D , ∀ ξ ∈ R
n
+ .
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Proof. Let B(r) ⊂ R
d denote the ball of radius r centered at the origin. We

claim that there exists a constant m0 > 0 such that if r ≤ 1, then

inf
x∈B( 3r

4 )
Ψx

(
U

−
B(r), B

(
r
4

)
; ξ

)
≥ m0 ξ , ∀ ξ ∈ R

n
+ . (3.4)

In order to establish (3.4) we use the function

ϕ(x) := exp
{

16λ2(d + 1)
(
1 − ‖x‖2

r2

)}
− 1 , x ∈ B(r) ,

which satisfies Lkϕ(x) ≥ 0, for all L ∈ L0(λ, d, n), provided ‖x‖ ≥ r
4 and

r ≤ 1. By the comparison principle, (3.4) holds with

m0 =
e7λ2(d+1) − 1
e15λ2(d+1) − 1

.

It follows that if B(r) is centered at y, and x is a point in D such that the

distance between ∂D and the line segment joining x and y is at least r, then

Ψx

(
U

−
D, B

(
r
4

)
; ξ

)
≥ (m0)	 ξ , with / =

⌈
4‖x−y‖−r

2r

⌉
, (3.5)

for all ξ ∈ R
n
+. If we define

k′
δ := m

	(δ)
0 , /(δ) :=

⌈ 6
√

d

min{1, δ}
⌉

,

then an easy calculation, using (3.5) with r = min
{

2
3 , δ

2

}
|Q|1/d, establishes

the result. �

Lemma 3.5. Suppose there exist constants ε and θ such that if Γ ⊂ (1−δ)D

is a closed subset of some cube D and ξ ∈ R
n
+, then

inf
x∈ 1

3 D
Ψx

(
U

−
D, Γ ; ξ

)
≥ εξ, whenever |Γ | ≥ θ|D| .

Then there exists a constant kδ > 0 such that

inf
x∈ 1

3 D
Ψx

(
U

−
D, Γ ; ξ

)
≥ εkδξ, whenever |Γ | ≥ α0θ|D| ,
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where α0 is the constant in Lemma 3.3.

Proof. Suppose |Γ | ≥ α0θ|D| and let y ∈ Γ̃ , with Γ̃ as defined in Lemma 3.1

corresponding to α = α0 and K = (1 − δ)D. Then there exists a subcube

Q ⊂ K such that |Γ ⋂
Q| ≥ α0|Q| and y ∈ 3Q

⋂
K. We use the identities,

Ψx

(
U

−
D, Γ ; ξ

)
≥ Ψx

(
U

−
D, Γ̃ ; inf

y∈Γ̃
Ψx

(
U

−
D, Γ ; ξ

))
(3.6)

and

Ψy

(
U

−
D, Γ ; ξ

)
≥ Ψy

(
U

−
D, 1

3Q; inf
z∈ 1

3 Q
Ψz

(
U

−
D, Γ ; ξ

))
≥ Ψy

(
U

−
D, 1

3Q; inf
z∈ 1

3 Q
Ψz

(
U

−
Q, Γ

⋂
Q; ξ

))
. (3.7)

By Lemma 3.3,

inf
z∈ 1

3 Q
Ψz

(
U

−
Q, Γ

⋂
Q; ξ

)
≥ β0ξ , (3.8)

while from Lemma 3.4, we obtain Ψy

(
U

−
D, 1

3Q;β0ξ
)
≥ β0k

′
δξ, for all y ∈

3Q
⋂

K. Hence, combining (3.7) and (3.8), we obtain

inf
y∈Γ̃

Ψy

(
U

−
D, Γ ; ξ

)
≥ kδξ , with kδ := β0k

′
δ . (3.9)

By Lemma 3.1, |Γ̃ | ≥ 1
α0

|Γ | ≥ θ|D|. Therefore, by hypothesis,

inf
x∈ 1

3 D
Ψx

(
U

−
D, Γ̃ ; kδξ

)
≥ εkδξ ,

which along with (3.6) and (3.9) yield the desired result. �

Proposition 3.1. The following estimates hold:

(i) Let D be a cube and Γ ⊂ (1 − δ)D a closed subset. Then for all

ξ ∈ R
n
+,

inf
x∈ 1

3 D
Ψx

(
U

−
D, Γ ; ξ

)
≥ β0

(
|Γ |
|D|

)ρ(δ)

ξ , ρ(δ) :=
log kδ

log α0
, (3.10)
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where the constants α0, β0 and kδ are as in Lemma 3.3 and

Lemma 3.5.

(ii) There exists a real function F defined on [0, 1], satisfying F (θ) > 0

for θ > 0, such that if Γ ⊂ D is a closed subset of a cube D, then

inf
x∈ 1

3 D
Ψx

(
U

−
D, Γ ; ξ

)
≥ F

(
|Γ |
|D|

)
ξ , ∀ ξ ∈ R

n
+ . (3.11)

Proof. Part (i) is direct consequence of Lemmas 3.3 and 3.5. For part (ii),

choose δ = |Γ |
4d|D| . Then,

|Γ ⋂
(1 − δ)D|
|D| ≥ |Γ |

|D| −
(
1 − (1 − δ)d

)
≥ |Γ |

|D| − dδ ≥ 3|Γ |
4|D| . (3.12)

Since

Ψx

(
U

−
D, Γ ; ξ

)
≥ Ψx

(
U

−
D, Γ

⋂
(1 − δ)D; ξ

)
,

then if we let

F (θ) := β0

(
3θ
4

)ρ( θ
4d )

,

the bound in (3.11) follows from (3.10) and (3.12). �

Proposition 3.2. If D is a cube, u ∈ UD and q = F
(

1
2

)
, with F (·) as

defined in Proposition 3.1 (ii), then

osc(uk; 1
3D) ≤

(
1 − q

2

)
max

1≤k≤n
sup
x∈D

{
uk(x)

}
, ∀ k ∈ {1, . . . , n} ,

where osc(f ;A) denotes the oscillation of a function f over a set A.

Proof. Let
Ma

k := sup
x∈ 1

3 D

{
uk(x)

}
, Ma := max

1≤k≤n
Ma

k

ma
k := inf

x∈ 1
3 D

{
uk(x)

}
, ma := min

1≤k≤n
ma

k

and M b, mb be the corresponding bounds relative to D. Consider the sets

Γ
(k)
1 :=

{
x ∈ D : uk(x) ≤ Mb+mb

2

}
Γ

(k)
2 :=

{
x ∈ D : uk(x) ≥ Mb+mb

2

}
.
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Suppose |Γ (k)
1 | ≥ 1

2 |D|. Since M b −u is nonnegative and M b −uk ≥ Mb−mb

2

in Γ
(k)
1 , applying Proposition 3.1 (ii), we get

M b − uk(x) ≥ q
M b − mb

2
, ∀ x ∈ 1

3D .

Consequently, Ma
k ≤ M b − q Mb−mb

2 , and since ma ≥ mb, we obtain

Ma
k − ma ≤ M b − mb − q Mb−mb

2 ≤
(
1 − q

2

)
M b . (3.13)

On the other hand, if |Γ (k)
2 | ≥ 1

2 |D|, the analogous argument relative to the

nonnegative function u, yields

Ma − ma
k ≤

(
1 − q

2

)
M b , (3.14)

and the result follows by (3.13)–(3.14). �

Proposition 3.3. There exists a constant M1 > 0 such that, for any u ∈
UD

sup
x∈ 1

9 D

{
ui(x)

}
≤ M1 max

1≤k≤n
inf

x∈ 1
9 D

{
uk(x)

}
, ∀ i ∈ {1, . . . , n} .

Proof. Let β0 be as in Lemma 3.3 and ρ(·) and q as in (3.10) and Proposi-

tion 3.2, respectively. Define

ρ :=
1

dρ( 2
3 )

and q0 :=
(1 − q

4 )
(1 − q

2 )
. (3.15)

We claim that the value of the constant M1 may be chosen as

M1 :=
4q0

qβ0

[
27n1/d

2
(
qρ
0 − 1

)]1/ρ

. (3.16)

We argue by contradiction. Suppose u violates this bound and let{
x(1), . . . , x(n)

}
denote the points in 1

9D where the minima of u are attained,

i.e.,

inf
x∈ 1

9 D

{
uk(x)

}
= uk(x(k)) , 1 ≤ k ≤ n .

13



Without loss of generality, suppose that max
1≤k≤n

{
uk(x(k))

}
= 1 and that for

some y0 ∈ 1
9D and k0 ∈ {1, . . . , n}, uk0(y0) = M > aM1, with a > 1. Using

the estimate for the growth of the oscillation of u in Proposition 3.2, we then

show that u has to be unbounded in 1
3D. By hypothesis, M

a exceeds M1 in

(3.16) and, in order to facilitate the construction which follows, we choose

to express this as

1
9

+ 3n1/d

( 4a

qβ0M

)ρ ∞∑
i=0

( 1
q0

)iρ

<
1
3

. (3.17)

For ξ > 0, define

D(ξ)
k :=

{
x ∈ 1

3D : uk(x) ≥ ξ
}

, D(ξ) :=
⋃

1≤k≤n

D(ξ)
k .

If 1k ∈ R
n
+ stands for the vector whose k-th component is equal to 1 and the

others 0, then

u(x(k)) ≥ Ψx(k)

(
UD,D(ξ)

k ; ξ1k

)
, ∀ k ∈ {1, . . . , n} , (3.18)

while, on the other hand, Proposition 3.1 yields

Ψx(k)

(
UD,D(ξ)

k ; ξ1k

)
≥ β0

(
|D(ξ)

k |
|D|

)ρ( 2
3 )

ξ1k , ∀ k ∈ {1, . . . , n} . (3.19)

By (3.18)–(3.19) and using (3.15), we obtain the estimate

|D(ξ)| ≤
∑

1≤k≤n

|D(ξ)
k | ≤

∑
1≤k≤n

(
uk(x(k))

ξβ0

)ρd

|D| ≤ n

(
1

ξβ0

)ρd

|D| , (3.20)

for all ξ > 0. Choosing ξ = qM
4 , we have by (3.20)∣∣∣∣{x ∈ 1

3D : max
1≤k≤n

{
uk(x)

}
≥ qM

4

}∣∣∣∣ ≤ n

(
4

qβ0M

)ρd

|D| .

Hence, if Q0 is a cube of volume |Q0| = n
(

4a
qβ0M

)ρd|D| centered at y0, then

osc(uk0 ;Q0) >
(
1 − q

4

)
M . (3.21)
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By Proposition 3.2 and (3.21), there exists y(1) ∈ 3Q0 and k1 ∈ {1, . . . , n}
such that

uk1(y
(1)) >

(1 − q
4 )

(1 − q
2 )

M = q0M .

Note that (3.17) implies that 3Q0 ⊂ 1
3D. This allows us to repeat the

argument above, this time choosing ξ = q0
qM
4 in (3.20) and a cube Q1

of volume n
(

4a
q0qβ0M

)ρd|D| centered at y(1), to conclude that there exists

y(2) ∈ 3Q1 and k2 ∈ {1, . . . , n} such that uk2(y
(2)) ≥ q2

0M . Inductively, we

construct a sequence
{
y(i), ki, Qi

}∞
i=0

satisfying, for all i = 0, 1, . . . ,

y(0) = y0 ∈ 1
9D

⋂
Q0 , y(i) ∈ Qi

⋂
3Qi−1 ,

|Qi|1/d = n1/d
(

1
q0

)iρ( 4a
qβ0M

)ρ|D|1/d ,

uki(y
(i)) ≥ qi

0M .

(3.22)

The inequality in (3.17) guarantees that y(i) ∈ 1
3D, for all i. Hence, (3.22)

implies that u is unbounded in 1
3D, and we reach a contradiction. �

Theorem 2.1 now follows via the standard technique of selecting an appro-

priate cover of Γ consisting of congruent cubes and applying the estimates

in Proposition 3.1 and Proposition 3.3.

We next proceed to prove Theorem 2.2. We need the following lemma.

Lemma 3.6. Let D ⊂ R
d be a cube, L ∈ L0(λ, d, 1, γ), and f ∈ K(θ, D).

There exists a constant C ′ = C ′(|D|, λ, d, γ, θ) > 0 such that if ϕ is a solution

to the Dirichlet problem Lϕ = −f on D, with ϕ = 0 on ∂D, then

inf
x∈ 1

3 D

{
ϕ(x)

}
≥ C ′‖f‖∞;D.

Proof. First note that the Dirichlet problem has a unique strong solu-

tion ϕ ∈ W 2,p
	oc (D)

⋂
C0(D), for all p ∈ [d,∞). Then, arguing by con-

tradiction, suppose there exists a sequence of operators
{
L(m)

}∞
m=1

⊂
L0(λ, d, 1, γ), with coefficients

{
a
(m)
ij , b

(m)
i , c(m)

}
, and a sequence of functions
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{
f (m)

}∞
m=1

⊂ K(θ, D), with ‖f (m)‖∞;D = 1, such that the corresponding so-

lutions
{
ϕ(m)

}∞
m=1

satisfy

inf
x∈ 1

3 D

{
ϕ(m)(x)

}
<

1
m2

, m = 1, 2, . . . .

By Proposition 3.1,

∣∣∣{x ∈ (1 − δ)D : ϕ(m)(x) ≥ 1
m

}∣∣∣ ≤ (
1

β0m

)1/ρ(δ)

|D| , ∀δ > 0 . (3.23)

Since the sequence ϕ(m) is bounded in L∞(D) (by Lemma 3.2), it follows

from (3.23) that ϕ(m) → 0 in Lp(D), as m → ∞, for all p ∈ [1,∞). For

any subcube D′ = δD, with δ < 1, and p ∈ [1,∞), we use the well known

estimate

‖ϕ(m)‖2,p;D′ ≤ C ′′(‖ϕ(m)‖p;D + ‖f (m)‖p;D

)
,

for some constant C ′′ = C ′′(|D|, p, δ, λ, d, γ), to conclude that the first and

second derivatives of ϕ(m) converge weakly to 0 in Lp(D′), for all p ∈ [1,∞).

In turn, since W 2,p
0 (D′) ↪→ W 1,p

0 (D′) is compact for p > d, using the stan-

dard approximation argument, we deduce that ∂ϕ(m)

∂xi
converges in Lp(D′)

strongly, for all i = 1, . . . , d. Also, since the sequence
{
a
(m)
ij

}
is uniformly

Lipschitz, we can extract a subsequence which converges uniformly. The

previous arguments combined imply that
{
L(m)ϕ(m)

}
converges weakly to 0

in Lp(D′), p ∈ [1,∞). On the other hand, if we choose δ ≥
(
1 − 1

2θ

)1/d, an

easy calculation yields,∫
D′

f (m)(x) dx ≥ |D|
2θ

, m = 1, 2, . . . ,

resulting in a contradiction. �

Proof of Theorem 2.2. Let L ∈ L0(λ, d, n, γ, µΩ) and S =
[
sij

]
as in Def-

inition 2.1. Select a collection
{
D	, / = 1, . . . , /0

}
of disjoint, congru-

ent open cubes, whose closures form a cover of Γ , in such a manner that

3D	 ⊂ Ω, 1 ≤ / ≤ /0, and D :=
	0⋃

	=1

D	 is a connected set satisfying
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|D| ≤
(
1 − 1

2λµΩ

)
|Ω|. It follows that 2µΩCL(D) ≥ S. Therefore, for each

pair i, j ∈ {1, . . . , n}, i �= j, there exists /(i, j) ∈ {1, . . . , /0} such that

‖cij‖∞;D�(i,j) ≥
‖cij‖1;D�(i,j)

|D	(i,j)|
≥ sij

2µΩ
. (3.24)

Define a collection
{
ϕij

}
i �=j

⊂ W 2,d
	oc (D	(i,j))

⋂
C0(D	(i,j)), by

Liϕij = −cij in D	(i,j) , and ϕij = 0 on ∂D	(i,j) .

Then, by Lemma 3.6 and (3.24), there exists a constant C ′ > 0, such that

ϕij(x) ≥ C′

2µΩ
sij , ∀ x ∈ 1

3D	(i,j) , i �= j . (3.25)

By the comparison principle,

ui(x) ≥ ϕij(x) inf
z∈D�(i,j)

{
uj(z)

}
, ∀ x ∈ D	(i,j) , i �= j . (3.26)

By Proposition 3.1, (3.25) and (3.26),

ui(y) ≥ F
(

1
9d

)
inf

x∈ 1
3 D�(i,j)

{
ui(x)

}
(3.27)

≥ ε′F
(

1
9d

)
sij inf

z∈D�(i,j)

{
uj(z)

}
, ∀ y ∈ D	(i,j) , i �= j .

Moreover, provided 3Dk ⊃ Dk′ , 1 ≤ k, k′ ≤ /0, Proposition 3.1 also asserts

that

inf
x∈Dk

{
u(x)

}
≥ F

(
1
3d

)
inf

x∈Dk′

{
u(x)

}
,

from which we deduce that

inf
x∈Dk

{
u(x)

}
≥

(
F

(
1
3d

))	0
inf

x∈D�

{
u(x)

}
, ∀ k, / ∈ {1, . . . , /0} . (3.28)

Therefore, by (3.27) and (3.28), for all i �= j,

inf
x∈D

{
ui(x)

}
≥

(
F

(
1
3d

))	0
inf

y∈D�(i,j)

{
ui(y)

}
≥ C′

2µΩ
F

(
1
9d

)(
F

(
1
3d

))	0
sij inf

z∈D�(i,j)

{
uj(z)

}
≥ C′

2µΩ
F

(
1
9d

)(
F

(
1
3d

))2	0
sij inf

x∈D

{
uj(x)

}
,
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and in turn, the irreducibility of S implies that, for all i, j ∈ {1, . . . , n},

inf
x∈D

{
ui(x)

}
≥

(
C′

2µΩ
F

(
1
9d

)(
F

(
1
3d

))2	0
)n−1

inf
x∈D

{
uj(x)

}
. (3.29)

The result follows by combining (3.29) and the estimate in Theorem 2.1

relative to the closed set D ⊂ Ω. �
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