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We show that given any finite set of trajectories of a Lipschitz differential inclu-
sion there exists a continuous selection from the set of its solutions that interpolates
the given trajectories. In addition, we present a result on lipschitzian selections.
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1. INTRODUCTION

In this paper we consider differential inclusions of the form

ẋ�t� ∈ F�t� x�� x�0� = ξ� (1)

where F is a set valued map defined on �0� T � × �n and taking values on
closed, nonempty subsets of �n and is lipschitzian with respect to x. There
is a fair amount of results on the existence of a continuous selection of solu-
tions of (1) (see [2, 4, 5, 7]). In the present paper we investigate a related
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problem: Given a finite set of trajectories of (1) starting from distinct ini-
tial points, does there exist a continuous selection from the set of solutions
of (1) that interpolates these trajectories? We use the methodology in [7]
to show that a continuous interpolating selection exists. In particular, any
two solutions of (1) are homotopic along any continuous path that connects
their initial points. This problem is motivated by current research in hybrid
automata [3].

A second result concerns lipschitzian selections. It is well known that if F
has compact, convex values, a lipschitzian vector-field f can be obtained
which is a selection from F . As a result, the solutions to f are a selection
from the set of trajectories of F that is Lipschitz continuous with respect
to the initial condition. However, if a certain trajectory of (1) is specified it
is not clear that there exists a selection from the set of trajectories of (1)
which is Lipschitz continuous with respect to the initial data and also agrees
with the given trajectory. We show that if the map F is convex valued and γ
is a one dimensional submanifold then there exists a selection of solutions
of (1) that agrees with any given trajectory and is Lipschitz continuous on γ.

2. PRELIMINARIES

We denote by 	·	 the Euclidean norm in �n and by d�x�B� the distance
from a point x ∈ �n to a set B ⊂ �n. Also, B�x� r� denotes the open
ball of radius r around a point x ∈ �n. The Hausdorff distance between
two sets A�B ⊂ �n is denoted by dH�A�B�. For an interval I = �0� T �
let ��I� and �ac�I� denote the spaces of continuous and absolutely con-
tinuous functions f � I → �n, endowed with the sup norm �f�∞ and the
norm �f�ac = 	f �0�	 + ∫ T

0 	ḟ �s�	ds, respectively. We denote by �1�I� the
Lebesgue integrable functions on I. Finally, χE stands for the characteris-
tic function of a set E.

The basic assumptions concerning the map F in (1) are as follows:

Assumption A. The set-valued map F � I × �n → 2�n
satisfies:

(a) The values of F are closed, nonempty subsets of �n.
(b) For each x ∈ �n, t �→ F�t� x� is measurable.
(c) There exists k ∈ �1�I� such that, for all x� x′ ∈ �n,

dH�F�t� x�� F�t� x′�� ≤ k�t�	x− x′	� a.e. on I�

3. MAIN RESULTS

Theorem 3.1. Let F satisfy Assumption A and X ⊂ �n be a compact set
with diameter D. Suppose that a set of distinct initial conditions �ξi�Ni=1 ⊂ X



solutions of lipschitz inclusions 567

and corresponding solutions �yi�t��Ni=1 of (1) are given on a time interval
�0� T �. Then there exists a continuous selection of solutions ϕt�ξ� of (1),
defined on t ∈ �0� T �, ξ ∈ X, such that ϕt�ξi� = yi�t�, for i = 1� � � � �N .

Proof. For ξ ∈ X define

δ�ξ� =



1
2 min1≤j≤N 	ξ − ξj	� ξ �= ξi� i = 1� � � � �N

1
2 mini� j 	ξi − ξj	� otherwise.

Let �B(ηj� δ�ηj���q0
j=1 be a finite subcover of the cover �B�ξ� δ�ξ���ξ∈X of

X, and let �ψj�q0
j=1 be a partition of unity subordinate to it. Note that each

ξi belongs to exactly one member of this subcover. For each ξ ∈ X, let

Ij�ξ� =
[
T

j−1∑
i=1

ψi�ξ�� T
j∑

i=1

ψi�ξ�
]
� 1 ≤ j ≤ q0�

We define a partition �J1� � � � � JN� of �1� � � � � q0�, by

Jk = �j � 	ηj − ξk	 < 	ηj − ξ$	� $ > k�⋂{
j � 	ηj − ξk	 ≤ 	ηj − ξ$	� $ ≤ k

}
�

for 1 ≤ k < N , and

JN = �1� � � � � q0� \
N−1⋃
k=1

Jk�

Let

αk�ξ� t� =
∑
j∈Jk

χIj�ξ��t�� k = 1� � � � �N�

It follows from the previous definitions that Jk �= � and αk�ξk� t� = 1, for
all k ∈ �J1� � � � � JN�. In addition,

N∑
k=1

αk�ξ� t� = 1� ∀ξ ∈ X� ∀t ∈ �0� T ��

Consider the family of functions �ϕ0
t �ξ�� ⊂ �ac��0� T �� given by

ϕ0
t �ξ� = ξ +

∫ t

0

∑
1≤k≤N

αk�ξ� t�ẏk�t�� (2)

Note that ϕ0
t �ξk� = yk�t�. We obtain the estimate

d
(
ϕ̇0
t �ξ�� F

(
t� ϕ0

t �ξ�
)) ≤ max

1≤k≤N
dH�F�t� yk�t��� F�t� ϕ0

t �ξ���

≤ k�t� max
1≤k≤N

[
	ξk − ξ	 +

∫ t

0
	ẏk�s�

− ∑
1≤$≤N

α$�ξ� s�ẏ$�s� 	 ds
]

≤ Lk�t�� (3)
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where

L = D+ min
i� j

∫ T

0
	ẏi�s� − ẏj�s�	ds�

Note that, for ξ� ξ′ ∈ X, ∣∣ϕ0
t �ξ� − ϕ0

t �ξ′�
∣∣ ≤ L� (4)

Choose v0
t �ξ� to be a measurable selection from F�t� ϕ0

t �ξ�� such that∣∣ϕ̇0
t �ξ� − v0

t �ξ�
∣∣ = d

(
ϕ̇0
t �ξ�� F

(
t� ϕ0

t �ξ�
))

(5)

and set

ϕ1
t �ξ� = ξ +

∫ t

0

q0∑
j=0

χIj�ξ��s�v0
s �ηj�ds� (6)

It follows from (2), (3), and (6) that

∣∣ϕ̇1
t �ξ� − ϕ̇0

t �ξ�
∣∣ =

∣∣∣∣∣
q0∑
j=0

χIj�ξ��s�v0
t �ηj� −

∑
1≤k≤N

αk�ξ� t�ẏk�t�
∣∣∣∣∣

≤ max
j� k

dH
(
F�t� ϕ0

t �ηj��� F
(
t� yk�t�

))
= max

j� k
dH

(
F
(
t� ϕ0

t �ηj�
)
� F

(
t� ϕ0

t �ξk�
))

≤ Lk�t�� (7)

By (4),

d
(
ϕ̇1
t �ξ�� F

(
t� ϕ0

t �ξ�
)) ≤ max

1≤j≤q0

d
(
v0
t �ηj�� F

(
t� ϕ0

t �ξ�
))

≤ max
1≤j≤q0

dH
(
F
(
t� ϕ0

t �ηj�
)
� F

(
t� ϕ0

t �ξ�
))

≤ Lk�t�� (8)

Therefore, by (6) and (7),

d
(
ϕ̇1
t �ξ�� F

(
t� ϕ1

t �ξ�
)) ≤ d

(
ϕ̇1
t �ξ�� F

(
t� ϕ0

t �ξ�
))

+dH
(
F
(
t� ϕ0

t �ξ�
)
� F

(
t� ϕ1

t �ξ�
))

≤ Lk�t� + Lk�t�g�t��
where

g�t� =
∫ t

0
k�s�ds�
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Using the method in [7], we can construct a sequence ϕn � X �→ �ac��0� T ��
of continuous maps, satisfying ϕn

0�ξ� = ξ, ϕn
t �ξi� = yi�t�, for all i =

1� � � � �N , and

∫ t

0
	ϕ̇n

s �ξ� − ϕ̇n−1
s �ξ�	ds ≤ L

[
gn�t�
n!

+ 4
2n

n∑
i=1

�2g�t��i
i!

+ 1
2n

]
� (9)

d
(
ϕ̇n
t �ξ�� F

(
ϕn
t �ξ�

)) ≤ Lk�t�
[
gn�t�
n!

+ 4
2n

n∑
i=0

(
2g�t�)i
i!

]
� (10)

The construction is accomplished by induction, as follows: For n ≥ 2,
using the Proposition in [7], select δn > 0 such that 	ξ − ξ′	 < δn implies

∫ T

0
	φ̇n−1

t �ξ� − φ̇n−1
t �ξ′�	dt ≤ L

2n
�

Define

δn�ξ� =




min
{
L
2n � δn�

1
2 min1≤j≤N 	ξ − ξj	

}
� ξ �= ξi� i = 1� � � � �N

min
{
L
2n � δn�

1
2 mini� j 	ξi − ξj	

}
� otherwise.

Let �B�ηn
j � δn�ηn

j ���qnj=1 be a finite subcover of the cover �B�ξ� δn�ξ���ξ∈X
of X, and let �ψn

j �qnj=1 be a partition of unity subordinate to it. Note that
each ξi belongs to exactly one member of this subcover. For each ξ ∈ X,
let

Inj �ξ� =
[
T

j−1∑
i=1

ψn
i �ξ�� T

j∑
i=1

ψn
i �ξ�

]
� 1 ≤ j ≤ qn�

In analogy to (5)–(6), choose vn−1
t �ξ� to be a measurable selection from

F�t� ϕn−1
t �ξ�� such that

	ϕ̇n−1
t �ξ� − vn−1

t �ξ�	 = d
(
ϕ̇n−1
t �ξ�� F(t� ϕn−1

t �ξ�))
and set

ϕn
t �ξ� = ξ +

∫ t

0

qn∑
j=0

χInj �ξ��s�vn−1
s �ηn

j �ds�

The estimates in (9)–(10) can be easily proved by induction (see [7]).
It follows by (9) that the sequence �ϕn�ξ�� is uniformly Cauchy in

�ac��0� T �� and thus it converges uniformly to a continuous map ϕ � X �→
�ac��0� T ��. In turn, (10) implies that ϕt�ξ� is a solution of (1).
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Let ξ0 ∈ X and x�·� be a solution of (1) such that x�0� = ξ0. As shown
in [7], there exists a sequence of approximate trajectories, �ϕm

t �ξ��∞m=0
which forms a Cauchy sequence in the normed space �ac��0� T �� and con-
verges to the continuous selection ϕt�ξ�. In particular, this sequence can
be chosen to satisfy

�ϕm�ξ� − ϕm−1�ξ��ac ≤ D

(
gm�T �
m!

+ e2g�T �

2m+1

)
�

where D is the diameter of the compact set X. Thus,

�ϕ�ξ� − ϕ0�ξ��ac ≤ D
(
eg�T � + e2g�T �)�

where

ϕ0
t �ξ� = ξ +

∫ t

0
ϕ̇s�ξ0�ds�

Hence, we have the estimate

�ϕ�ξ� − ϕ�ξ0��ac ≤ D
(
eg�T � + e2g�T � + 1

) ≤ 3De2g�T �� (11)

We conclude with a result providing a lipschitzian selection along a path
in �n of solutions of a Lipschitz inclusion having compact, convex values.

Theorem 3.2. Suppose that F satisfies Assumption A and, in addition,
suppose that it has compact, convex values, and it is upper semicontinuous
in �t� x�. Let γ � �−1� 1� �→ �n be a continuous, injective path parameterized
by its arc-length; i.e., 	θ′ − θ	 is the arc-length of the segment from γ�θ� to
γ�θ′�. Let ξ0 �= γ�0�, and x�t�, t ∈ �0� T �, be a solution of the inclusion
ẋ = F�t� x�, with x�0� = ξ0. Then there is a selection ϕt�ξ�, ξ ∈ γ��−1� 1��,
of solutions of the inclusion such that ϕt�ξ0� = x�t� and

�ϕ�γ�θ�� − ϕ�γ�θ′���∞ ≤ 3	θ− θ′	e2g�T �� for all θ� θ′ ∈ �−1� 1��
Proof. Let Jn be the set of the binary rationals of the form k/2n, where

−2n ≤ k ≤ 2n, and set ξnk �= γ�k/2n�. For each n ∈ � we construct a con-
tinuous selection ϕn of solutions of the inclusion as follows. First, obtain
a continuous selection interpolating x�t� on a ball of radius 1/2n, centered
at ξ0, and denote its restriction on γ��−1/2n� 1/2n�� by ϕn� 0. Proceed iter-
atively to define, in the same manner, for each k = 1� � � � � 2n, a selection
ϕn�k interpolating ϕ

n�k−1
t �ξnk� on �ξnk� ξnk+1�. Repeat the analogous proce-

dure for negative k. Let ϕn be the selection which agrees with each ϕn�k

on its domain of definition. If ξ ∈ γ��k/2n� �k + 1�/2n��, for some k ≥ 0,
noting that ξnk is centered in the ball on which ϕn�k is defined, the esti-
mate (10) yields

�ϕn�ξ� − ϕn�ξnk��∞ = �ϕn�k�ξ� − ϕn�k�ξnk��∞
≤ 3	ξ − ξnk	e2g�T � ≤ 3

2n
e2g�T �� (12)
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and

�ϕn�ξ� − ϕn�ξnk+1��∞ ≤ �ϕn�ξ� − ϕn�ξnk��∞ + �ϕn�ξnk� − ϕn�ξnk+1��∞
≤ 6

2n
e2g�T �� (13)

For k < 0, the estimates in (11)–(12) are interchanged. Suppose ξ = γ�θ�,
ξ′ = γ�θ′�, and k < k′ are such that k/2n ≤ θ ≤ �k+ 1�/2n and �k′ − 1�/
2n ≤ θ′ ≤ k′/2n. Using a triangle inequality, we obtain from (11)–(12),

�ϕn�ξ�−ϕn�ξ′��∞≤�k′−k+1� 3
2n
e2g�T � ≤3	θ′−θ	e2g�T �+ 9

2n
e2g�T �� (14)

Since F is compact valued and upper semicontinuous, the family of solu-
tions �ϕn�ξ��n� ξ is equicontinuous [6]. Therefore, for each ξ, there exists
a subsequence which converges uniformly. Using Cantor’s diagonal princi-
ple we can extract a subsequence, also denoted by �ϕn�, which converges
at every point of the countable set J = ⋃�ξkm � k�m ∈ ��. Let ξ = γ�θ�
be arbitrary. Given ε > 0, using (13), select a dyadic rational θ̃ and N0 > 0
large enough such that, with ξ̃ �= γ�θ̃�, on the one hand

�ϕn�ξ� − ϕn�ξ̃��∞ ≤ ε

4
� for all n ≥ N0� (15)

while at the same time, since �ϕn�ξ̃�� is Cauchy,

�ϕn�ξ̃� − ϕm�ξ̃��∞ ≤ ε

2
� for all n�m ≥ N0� (16)

Hence, by (15)–(16),

�ϕn�ξ� − ϕm�ξ��∞ ≤ �ϕn�ξ� − ϕn�ξ̃��∞ + �ϕn�ξ̃� − ϕm�ξ̃��∞
+ �ϕm�ξ� − ϕm�ξ̃��∞

≤ ε

4
+ ε

2
+ ε

4
= ε� for all n�m ≥ N0�

showing that �ϕn�ξ�� is Cauchy for all ξ. Let ϕ be the limit of �ϕn�. Since F
is convex and continuous, ϕ, being the uniform limit of solutions, is itself
a solution of the inclusion. Taking limits as n → ∞ in (13), we obtain the
desired result.
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