

Systems & Control Letters 44 (2001) 25-34

www.elsevier.com/locate/sysconle

On the controllability of a class of nonlinear stochastic systems $\stackrel{\text{\tiny\sigma}}{\sim}$

Ari Arapostathis^{a, *}, Raju K. George^b, Mrinal K. Ghosh^c

^aDepartment of Electrical and Computer Engineering, University of Texas, Austin, TX 78712, USA ^bDepartment of Applied Mathematics, Faculty of Technology & Engineering, M.S. University of Baroda, Baroda 390001, India ^cDepartment of Mathematics, Indian Institute of Science, Bangalore 560012, India

Received 23 January 2001; received in revised form 15 March 2001

Abstract

We study the controllability properties of the class of stochastic differential systems characterized by a linear controlled diffusion perturbed by a smooth, bounded, uniformly Lipschitz nonlinearity. We obtain conditions that guarantee the weak and strong controllability of the system. Also, given any open set in the state space we construct a control, depending only on the Lipschitz constant and the infinity-norm of the nonlinear perturbation, such that the hitting time of the set has a finite expectation with respect to all initial conditions. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Stochastic controllability; Diffusions; Recurrence

1. Introduction

In this paper, we investigate the weak and strong controllability of the class of nonlinear stochastic systems characterized by the Itô equation

$$dX(t) = AX(t) dt + Bu(t) dt + C dW_t + f(X(t)) dt, \quad X(0) = X_0,$$
(1.1)

where A, B and C are $n \times n$, $n \times l$ and $n \times m$ constant matrices, respectively, and the function f is smooth, bounded and uniformly Lipschitz continuous on \mathbb{R}^n . The *m*-dimensional Brownian motion $\{W_t, \mathcal{F}_t\}_{t\geq 0}$ and the initial distribution X_0 are defined on a complete probability space $(\Omega, \mathcal{F}, \mathcal{P})$ and are independent, while $\{u(t)\}_{t\geq 0}$ is a *feedback control*, i.e., an \mathbb{R}^l -valued process which is progressively measurable with respect to the filtration $\mathcal{F}_t^0 = \sigma\{X(s), s \leq t\}$.

Definition 1.1. System (1.1) is said to be *weakly controllable* if, for any initial state $x_0 \in \mathbb{R}^n$ and any nonempty open set $V \subset \mathbb{R}^n$, there exists a feedback control $\{u(t)\}_{t\geq 0}$ such that the corresponding solution $X(\cdot)$ of (1.1) satisfies

 $P^{x_0}(X(t) \in V, \text{ for some } t > 0) > 0.$ (1.2)

0167-6911/01/\$-see front matter © 2001 Elsevier Science B.V. All rights reserved. PII: S0167-6911(01)00123-2

[†] This work was supported in part by DARPA under Grant F30602-00-2-0588 and in part by a grant from POSTECH.

^{*} Corresponding author.

E-mail address: ari@mail.utexas.edu (A. Arapostathis).

System (1.1) is said to be *strongly controllable* if a feedback control can be found such that (1.2) holds and the hitting time

 $\tau_V = \inf\{t > 0, X(t) \in V\}$

satisfies $E^{x_0}[\tau_V] < \infty$.

Consider the linear system

 $dX(t) = AX(t) dt + Bu(t) dt + C dW_t,$ (1.3)

which is obtained from (1.1) by letting f = 0. Zabczyk has obtained the following necessary and sufficient conditions for the weak and strong controllability of linear system (1.3).

Theorem 1.1 (Zabczyk [9]). (i) Linear system (1.3) is weakly controllable iff
rank[B, AB, ...,
$$A^{n-1}B$$
, C, AC ,..., $A^{n-1}C$] = n. (1.4)

(ii) Linear system (1.3) is strongly controllable iff it is weakly controllable and the matrix A is stable.

Our objective in this paper is to study the controllability properties of the nonlinearly perturbed system (1.1). Using a Lyapunov function approach, Sunahara et al. [7,8], obtained conditions for the stochastic controllability of nonlinear systems. However, those conditions are often difficult to verify. We show that, when the nonlinearity f is a smooth, bounded, uniformly Lipschitz continuous function, the conditions obtained in Theorem 1.1 for linear systems are sufficient for the controllability of (1.1). A result which is utilized in our analysis concerning the controllability of the corresponding deterministic system is presented in Section 2. The main results of the paper are in Section 3.

2. Controllability of the corresponding deterministic system

Consider the nonlinear deterministic system

$$\dot{x} = Ax + Bu + f(x), \tag{2.1}$$

corresponding to stochastic system (1.1). As usual, system (2.1) is said to be controllable if for every $x_0, x' \in \mathbb{R}^n$ and t' > 0, there exist a control $\{u(t), 0 \le t \le t'\}$ such that $x(0) = x_0$ and x(t') = x'.

The following lemma is sufficient for our purpose; however, more general results are known (see [2]).

Lemma 2.1. Suppose that (2.1) satisfies

(1) rank $[B, AB, ..., A^{n-1}B] = n$.

(2) The function f is Lipschitz continuous and bounded on \mathbb{R}^n .

Then system (2.1) is controllable.

3. Main results

In this section, we obtain sufficient conditions for the weak and strong controllability of stochastic system (1.1).

Theorem 3.1. Suppose that (1.4) holds. Then, the nonlinear stochastic system (1.1) is weakly controllable.

Proof. Consider the deterministic system

$$\dot{x}(t) = Ax(t) + Bu(t) + Cw(t) + f(x(t)), \quad x(0) = x_0,$$
(3.1)

where both $u(t) \in \mathbb{R}^l$ and $w(t) \in \mathbb{R}^m$ are control parameters. By Lemma 2.1, given any t' > 0 and $x' \in \mathbb{R}^n$, there exist controls $\tilde{u}(\cdot)$ and $\tilde{w}(\cdot)$ which steer $(x_0, 0)$ to (x', t'). Now fix the control $\tilde{u}(\cdot)$ in (3.1), and let V be an

open neighborhood of x'. The accessibility set from x_0 at time t' of (3.1), with control parameter $w(\cdot)$, clearly contains the point x'. It follows from the Stroock–Varadhan support theorem [4] that $P^{x_0}(X(t') \in V) > 0$. \Box

Next we state the strong controllability result.

Theorem 3.2. Suppose that (1.4) holds and that the pair (A, B) is stabilizable. Then (1.1) is strongly controllable.

The proof of Theorem 3.2 is presented in a series of separate theorems and lemmas which comprise the rest of the paper. The following theorem resolves the case when B = 0.

Theorem 3.3. Suppose that B = 0, A is a stable matrix and (A, C) is a controllable pair. Then, the diffusion $\{X(t)\}_{t\geq 0}$ in (1.1) is positive recurrent, i.e., for any nonempty, open set V and $x_0 \in \mathbb{R}^n$, $E^{x_0}[\tau_V] < \infty$.

Proof. Let $Q \in \mathbb{R}^{n \times n}$ be the solution to the Lyapunov equation

$$A^*Q + QA = -I.$$

If $v(x) := x^*Qx$ and L denotes the infinitesimal generator of (1.1) with B = 0, it holds

$$\lim_{\|x\|\to\infty}Lv(x)=-\infty$$

By Theorem 3.1, the system satisfies property (1.2). Therefore, it suffices to show that X(t) has an invariant probability measure (see [1,3,6]). Define the *occupation measures* { ρ_t , $t \in \mathbb{R}_+$ } of $X(\cdot)$ as follows:

$$\int g \, \mathrm{d}\rho_t = -\frac{1}{t} E\left[\int_0^t g(X(s)) \, \mathrm{d}s\right] \quad \text{for } g \in C_b(\mathbb{R}^n)$$

The desired result would follow if we show that $\{\rho_t, t \in \mathbb{R}_+\}$ is tight. For M > 0, choose a compact set $K_M \subset \mathbb{R}^n$ such that

$$\sup_{x\in K_M^c} Lv(x) \leqslant -M.$$

Let $D = \sup_{x \in \mathbb{R}^n} \{Lv(x)\}$. By Itô's formula, assuming the second moment of X(0) is finite,

$$0 \leq E[v(X(t))] = E[v(X(0))] + E\left[\int_0^t I_{\{X(s)\in K_M\}}Lv(X(s))\,\mathrm{d}s\right] + E\left[\int_0^t I_{\{X(s)\in K_M^c\}}Lv(X(s))\,\mathrm{d}s\right]$$

$$\leq E[v(X(0))] + Dt\rho_t(K_M) - Mt\rho_t(K_M^c).$$

Hence,

$$\rho_t(K_M^{\mathbf{c}}) \leq \frac{D}{M+D} + \frac{E[v(X(0))]}{(M+D)t},$$

and the tightness of $\{\rho_t, t \in \mathbb{R}_+\}$ follows. \Box

We now continue with some preliminary analysis needed for the proof of Theorem 3.2. Decomposing (1.1) with respect to the invariant subspace $\Re[B, AB, \dots, A^{n-1}B]$, where \Re denotes the range of a matrix, yields

$$dX_1(t) = A_{11}X_1(t) dt + A_{12}X_2(t) dt + B_1u(t) dt + F_1 dW_t + f_1(X_1(t), X_2(t)) dt$$

$$dX_2(t) = A_{22}X_2(t) dt + C_2 dW_t + f_2(X_1(t), X_2(t)) dt,$$

where $X_1(t) \in \mathbb{R}^{n-d}$, $X_2(t) \in \mathbb{R}^d$ and (A_{11}, B_1) , (A_{22}, C_2) are controllable pairs. Furthermore, we can select feedback of the form $u(t) = KX_1(t)$ such that $A'_{11} := A_{11} + KB_1$ is a stable matrix with spectrum disjoint from that of A_{22} [5]. Thus, if N is the solution of $NA_{22} - A'_{11}N = -A_{12}$, the transformation

$$\begin{pmatrix} I & N \\ 0 & I \end{pmatrix} \begin{pmatrix} A'_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix} \begin{pmatrix} I & -N \\ 0 & I \end{pmatrix} = \begin{pmatrix} A'_{11} & 0 \\ 0 & A_{22} \end{pmatrix}$$

results in a block-diagonal structure for A. Therefore, without loss of generality, throughout the rest of the paper we consider the stochastic system

$$dX_1(t) = A_1 X_1(t) dt + Bu(t) dt + C_1 dW_t + f_1(X_1(t), X_2(t)) dt, dX_2(t) = A_2 X_2(t) dt + C_2 dW_t + f_2(X_1(t), X_2(t)) dt,$$
(3.2)

with $X(t) = (X_1(t), X_2(t)) \in \mathbb{R}^{n-d} \times \mathbb{R}^d$. We denote the Lipschitz constant of $f = (f_1, f_2)$ by \mathscr{L}_f , while $\|\cdot\|$ denotes the standard Euclidean norm and $\mathscr{B}(x, r)$ the corresponding open ball of radius r, centered at the point x.

Let

$$\xi_i(t,\tau) := \int_{\tau}^t e^{A_i(t-s)} C_i \, \mathrm{d}W_s, \quad 0 \le \tau < t, \quad i = 1, 2.$$
(3.3)

Since A_1, A_2 are stable, there exist constants $M_0 > 0$, $r_0 > 0$ and $c_0 > 0$ such that, for i = 1, 2, 3

$$\|\mathbf{e}^{A_{i}t}\| \leqslant M_{0}\mathbf{e}^{-r_{0}t} \quad \text{for } t \ge 0, \tag{3.4a}$$

$$E[\|\xi_i(t,\tau)\|^2] \le c_0|t-\tau|, \quad 0 \le \tau < t.$$
(3.4b)

As usual, $\{\theta_t\}_{t\geq 0}$ denotes the standard time-shift on the path space of the process X(t).

In the proof of Theorem 3.2, the control is constructed explicitly and is in the class defined below.

Definition 3.1. We say that an \mathbb{R}^l -valued process $\{u(t)\}_{t\geq 0}$ is in the class \mathscr{U}_s if there is a constant T > 0, and a bounded measurable function $g: \mathbb{R}^{n-d} \times \mathbb{R} \to \mathbb{R}^l$ such that $u(t) = g(X_1(kT), t)$, for all $t \in [kT, (k+1)T)$, and all $k \in \mathbb{N}_0$.

Clearly, if the control $\{u(t)\}_{t\geq 0}$ is in the class \mathcal{U}_s , then (3.2) has a \mathscr{P} -a.s. unique strong solution on each interval $[kT, (k+1)T), k \in \mathbb{N}_0$.

Lemma 3.4. For any given $x' = (x'_1, x'_2) \in \mathbb{R}^{n-d} \times \mathbb{R}^d$, $\varepsilon > 0$ and $T_0 > 0$, define the event

$$\mathscr{H}(\varepsilon, T_0) := \left\{ \sup_{0 \le t \le T_0} \left\| \int_0^t e^{A_2(t-s)} [f_2(X_1(s), X_2(s)) - f_2(x_1', X_2(s))] \, \mathrm{d}s \right\| < \frac{\varepsilon}{4} \exp\left(-\frac{M_0 \mathscr{L}_f}{r_0}\right) \right\}.$$

Also, define the hitting time

$$\tau_2 := \inf\{t > 0, \ X_2(t) \in \mathscr{B}(x_2', \varepsilon/2)\}$$

$$(3.5)$$

and let $K \subset \mathbb{R}^d$ be a compact set. Then there exist a constant $m = m(K, \varepsilon, x'_2)$ such that for any \mathscr{F}_t -optional time v satisfying $\mathscr{P}(v < \infty) = 1$ and $\mathscr{P}(X_2(v) \in K) = 1$, and for any control $\{u(t)\}_{t \ge 0} \in \mathscr{U}_s$, and all $T_0 > 0$,

$$\mathscr{P}(\tau_2 \circ \theta_v - v < T_0 \,|\, \mathscr{F}_v) \geqslant \mathscr{P}(\theta_v^{-1} \mathscr{H}(\varepsilon, T_0) \,|\, \mathscr{F}_v) - \frac{m}{T_0}, \quad \mathscr{P}\text{-}a.e.$$

Proof. Consider the diffusion

$$dZ(t) = A_2 Z(t) dt + C_2 dW_t + f_2(x'_1, Z(t)) dt, \quad t \ge 0,$$
(3.6)

defined on the same probability space as (3.2) and let

 $s_2 := \inf\{t > 0, \ Z(t) \in \mathscr{B}(x'_2, \varepsilon/4)\}.$

Since, by Theorem 3.3, $\{Z(t)\}_{t\geq 0}$ is positive recurrent,

$$m := \sup_{z \in K} \{ E^z[s_2] \}$$

$$(3.7)$$

is a finite constant. Let $\{\tilde{X}(t)\}_{t\geq 0}$ be the diffusion governed by

$$d\tilde{X}_{1}(t) = A_{1}\tilde{X}_{1}(t) dt + Bu(t) dt + C_{1} dW_{t} + f_{1}(\tilde{X}_{1}(t), \tilde{X}_{2}(t)) dt, d\tilde{X}_{2}(t) = A_{2}\tilde{X}_{2}(t) dt + C_{2} dW_{t} + [I_{\{t \leq v\}}f_{2}(\tilde{X}_{1}(t), \tilde{X}_{2}(t)) + I_{\{t > v\}}f_{2}(x'_{1}, \tilde{X}_{2}(t))] dt,$$
(3.8)

28

defined on $(\Omega, \mathcal{F}, \mathcal{P})$, and with the same initial distribution as X(0). Note that the conditional law of $\tilde{X}_2(v+t)$ given \mathcal{F}_v is the same as the law of Z(t) (with initial distribution $Z(0) = X_2(v)$). Letting

$$\hat{X}_2(t) := X_2(t) - \tilde{X}_2(t)$$

and using (3.2) and (3.8), we form the triangle inequality

$$\|\hat{X}_{2}(v+t)\| \leq \left\| \int_{0}^{t} e^{A_{2}(t-s)} [f_{2}(X_{1}(v+s), X_{2}(v+s)) - f_{2}(x_{1}', X_{2}(v+s))] ds \right\|$$

+
$$\int_{0}^{t} \mathscr{L}_{f} \|e^{A_{2}(t-s)}\| \|\hat{X}_{2}(v+s)\| ds, \quad \mathcal{P}\text{-a.e.}$$

By applying the Gronwall Lemma and using (3.4a), we obtain

$$\|\hat{X}_2(v+t)I_{\theta_v^{-1}\mathscr{H}(\varepsilon,T_0)}\| < \varepsilon/4, \quad \mathscr{P}\text{-a.e.} \quad \forall t \in [0,T_0].$$

It follows that

$$\{\tau_2 \circ \theta_v - v \ge T_0\} \cap \theta_v^{-1} \mathscr{H}(\varepsilon, T_0) \cap \{\tilde{X}_2(v+t) \in \mathscr{B}(x_2', \varepsilon/4) \text{ for some } t < T_0\}$$

is a *P*-null set. Hence,

$$\mathcal{P}(\tau_{2} \circ \theta_{v} - v < T_{0} \mid \mathscr{F}_{v}) \ge 1 - \mathcal{P}(\theta_{v}^{-1} \mathscr{H}^{c}(\varepsilon, T_{0}) \mid \mathscr{F}_{v}) - \mathcal{P}(s_{2} \circ \theta_{v} - v \ge T_{0} \mid \mathscr{F}_{v})$$
$$\ge \mathcal{P}(\theta_{v}^{-1} \mathscr{H}(\varepsilon, T_{0}) \mid \mathscr{F}_{v}) - \frac{m}{T_{0}}, \quad \mathcal{P}\text{-a.e.} \qquad \Box$$

Corollary 3.5. Let

$$\bar{R} := \frac{2M_0}{r_0} \|f\|_{\infty} \exp\left(\frac{M_0 \mathscr{L}_f}{r_0}\right).$$

Suppose $R_1 > R_0 > \overline{R}$, and define $v_1 = 0$, and recursively, for k = 1, 2, ...,

$$v_{2k} = \inf \{ t > v_{2k-1}, X_2(t) \in \mathscr{B}(0, R_0) \},\$$

$$v_{2k+1} = \inf\{t > v_{2k}, X_2(t) \notin \mathscr{B}(0, R_1)\}.$$
(3.9)

Then for all $x \in \mathbb{R}^n$ and all controls in the class \mathscr{U}_s

$$E^{x}[v_{k}] < \infty \quad \forall k \in \mathbb{N}.$$

Moreover, there exists a constant $\gamma = \gamma(R_0, R_1)$ such that

 $E[v_{2k+2} - v_{2k} | \mathscr{F}_{v_{2k}}] < \gamma, \quad \mathscr{P}\text{-a.e.}, \quad \forall k \in \mathbb{N}.$

Proof. Consider the diffusion in (3.6), defined on the same probability space, with initial value $Z(0) = X_2(0)$, and let $R'_0 := R_0 - \bar{R}$, $R'_1 := R_1 + \bar{R}$. Define $v'_1 = 0$, and recursively, for k = 1, 2, ...,

$$\begin{split} & v_{2k}' = \inf\{t > v_{2k-1}', \ Z(t) \in \mathscr{B}(0, R_0')\}, \\ & v_{2k+1}' = \inf\{t > v_{2k}', \ Z(t) \notin \overline{\mathscr{B}(0, R_1')}\}. \end{split}$$

Subtracting (3.6) from (3.2) and applying the Gronwall Lemma as in the proof of Lemma 3.4, we deduce that $\hat{Z}(t):=X_2(t)-Z(t)$ satisfies

$$\|\hat{Z}(t)\| \leq \bar{R}, \quad \mathcal{P} ext{-a.e.} \quad \forall t \geq 0.$$

Consequently, we have $v_k \leq v'_k$, \mathscr{P} -a.e., for all $k \in \mathbb{N}$, and the results follow from the positive recurrence and strong Markov property of Z(t). \Box

Lemma 3.6. For any given $\varepsilon > 0$, $T_0 > 0$ and $\alpha > 0$, there exists a control $\{u_0(t)\}_{t \ge 0}$ in the class \mathscr{U}_s such that $\mathscr{P}(\theta_{t'}^{-1}\mathscr{H}(\varepsilon, T_0) | \mathscr{F}_{t'}) > 1 - \alpha$, \mathscr{P} -a.e., for all $t' \ge 0$.

Proof. For $N \in \mathbb{N}$, let

$$\delta(N) := \left(\frac{4c_0 T_0^2}{N}\right)^{1/3}.$$
(3.10)

Note that if N is large enough, the following inequalities hold:

$$\delta(N) \leq \max\left\{\frac{\alpha\varepsilon\exp(-M_0\mathscr{L}_f/r_0)}{4M_0(3\|f\|_{\infty} + T_0\mathscr{L}_f)}, \sqrt{\frac{c_0T_0}{M_0\|f\|_{\infty}}}, T_0\right\},\tag{3.11}$$

$$(e^{\|A_1\|T_0/N} - 1)\|x_1'\| \leq \frac{\delta(N)}{4}.$$
(3.12)

Fix such an N and let

$$t_{\ell} := \frac{\ell T_0}{N}, \quad \ell = 0, 1, \dots$$
 (3.13)

The feedback control $\{u_0(t)\}_{t\geq 0} \in \mathscr{U}_s$ is defined by

$$u_{0}(t) := \begin{cases} \varphi(t; \delta(N)/N, t_{\ell}, X_{1}(t_{\ell}), x_{1}') & \text{for } t \in [t_{\ell}, t_{\ell} + \delta(N)/N), \quad \ell = 0, 1, \dots \\ 0 & \text{otherwise,} \end{cases}$$
(3.14)

where

$$\varphi(t; \delta', s, x_1, x_1' := B^* e^{A_1^*(s+\delta'-t)} W_c^{-1}(\delta') (x_1' - e^{A_1\delta'} x_1),$$

$$W_c(\delta') := \int_0^{\delta'} e^{A_1 s} B B^* e^{A_1^* s} \, \mathrm{d}s.$$
(3.15)

We continue with the derivation of the estimate in the lemma. Define

$$J_{\ell} := \left[t_{\ell} + \frac{\delta(N)}{N}, t_{\ell+1} \right), \quad J := \bigcup_{\ell=0}^{\infty} J_{\ell},$$

$$\mathscr{D} := \{ t \in [t', t' + T_0] : \|X_1(t) - x_1'\| > \delta(N) \},$$

$$\tilde{\mathscr{I}} := \int_{t'}^{t'+T_0} \|f_2(X_1(s), X_2(s)) - f_2(x_1', X_2(s))\| \, \mathrm{d}s.$$

By splitting the integral $\tilde{\mathscr{I}}$ on $\mathscr{D} \cap J$, $\mathscr{D} \cap J^{c}$ and $[t', t' + T_0] \setminus \mathscr{D}$, and with μ denoting the Lebesgue measure on the real line, we obtain

$$\tilde{\mathscr{I}} \leq 2\|f\|_{\infty}\mu(\mathscr{D}\cap J) + 2\|f\|_{\infty}\delta(N) + T_0\mathscr{L}_f\delta(N), \quad \mathscr{P}\text{-a.e.}$$
(3.16)

If $t \in \mathcal{D} \cap J_{\ell}$, an easy calculation yields

$$\begin{aligned} \|X_{1}(t) - x_{1}'\| &\leq \|(e^{A_{1}(t-t_{\ell}-\delta(N)/N)} - I)x_{1}'\| + \|\xi_{1}(t,t_{\ell})\| \\ &+ \int_{t_{\ell}}^{t} \|e^{A_{1}(t-s)}\| \|f_{1}(X_{1}(s),X_{2}(s))\| \,\mathrm{d}s \\ &\leq (e^{\|A_{1}\|T_{0}/N} - 1)\|x_{1}'\| + \|\xi_{1}(t,t_{\ell})\| + \frac{T_{0}}{N}M_{0}\|f\|_{\infty}, \quad \mathscr{P}\text{-a.e.}, \end{aligned}$$

$$(3.17)$$

where ξ_1 is defined in (3.3). By (3.11), $\delta^2(N) \leq c_0 T_0/M_0 ||f||_{\infty}$, which combined with (3.10) yields

$$\frac{T_0}{N}M_0\|f\|_{\infty} \leqslant \frac{\delta(N)}{4}.$$
(3.18)

By (3.12), (3.17) and (3.18),

$$\|X_1(t) - x_1'\| \leq \|\xi_1(t, t_\ell)\| + \frac{\delta(N)}{2}, \quad \mathscr{P}\text{-a.e.} \quad \forall t \in \mathscr{D} \cap J_\ell.$$

$$(3.19)$$

Using the estimate in (3.19), the Chebyshev inequality, and (3.4b), we obtain

$$\mathcal{P}(\|X_{1}(t) - x_{1}'\| > \delta(N) \,|\, \mathcal{F}_{t'}) \leqslant \mathcal{P}(\|\xi_{1}(t, t_{\ell})\| > \frac{\delta(N)}{2} \,|\, \mathcal{F}_{t'})$$

$$\leqslant \frac{4c_{0}(t - t_{\ell})}{\delta^{2}(N)}, \quad \mathcal{P}\text{-a.e.} \quad \forall t \in \mathcal{D} \cap J_{\ell}.$$
(3.20)

Integrating (3.20), yields

$$E[\mu(\mathscr{D} \cap J) | \mathscr{F}_{t'}] = \int_{\mathscr{D} \cap J} \mathscr{P}(||X_1(t) - x_1'|| > \delta(N) | \mathscr{F}_{t'}) dt$$
$$= \sum_{\ell=0}^{\infty} \int_{\mathscr{D} \cap J_{\ell}} \mathscr{P}(||X_1(t) - x_1'|| > \delta(N) | \mathscr{F}_{t'}) dt$$
$$\leq \frac{2c_0 T_0^2}{N\delta^2(N)} = \frac{\delta(N)}{2}, \quad \mathscr{P}\text{-a.e.}$$
(3.21)

By (3.16), using (3.21) and (3.11),

$$E[\tilde{\mathscr{I}} | \mathscr{F}_{t'}] \leq 2 \|f\|_{\infty} E[\mu(\mathscr{D} \cap J) | \mathscr{F}_{t'}] + 2 \|f\|_{\infty} \delta(N) + T_0 \mathscr{L}_f \delta(N)$$

$$\leq (3 \|f\|_{\infty} + T_0 \mathscr{L}_f) \delta(N)$$

$$\leq \frac{\alpha \varepsilon}{4M_0} \exp\left(-\frac{M_0 \mathscr{L}_f}{r_0}\right), \quad \mathscr{P}\text{-a.e.}$$
(3.22)

Finally, the estimate

$$\begin{aligned} \mathscr{P}(\theta_{t'}^{-1}\mathscr{H}^{\mathsf{c}}(\varepsilon,T_{0}) \,|\, \mathscr{F}_{t'}) &\leq \mathscr{P}\left(M_{0}\tilde{\mathscr{I}} \geq \frac{\varepsilon}{4}\exp\left(-\frac{M_{0}\mathscr{L}_{f}}{r_{0}}\right) \,\middle|\, \mathscr{F}_{t'}\right) \\ &\leq \frac{4M_{0}}{\varepsilon}\exp\left(\frac{M_{0}\mathscr{L}_{f}}{r_{0}}\right) E[\tilde{\mathscr{I}} \,|\, \mathscr{F}_{t'}], \quad \mathscr{P}\text{-a.e.}, \end{aligned}$$

together with (3.22), yields the desired result. \Box

Using the right-continuity of the process X(t), a standard technique allows Lemma 3.6 to be strengthened as follows:

Corollary 3.7. Let v be a \mathcal{P} -a.e. finite, \mathcal{F}_t -optional time, and $\{u_0(t)\}_{t\geq 0}$ the control constructed in Lemma 3.6. Then it holds that $\mathcal{P}(\theta_v^{-1}\mathcal{H}(\varepsilon,T_0) | \mathcal{F}_v) > 1 - \alpha$, \mathcal{P} -a.e.

We conclude with the proof of Theorem 3.2.

Proof of Theorem 3.2. Let *V* be a given open neighborhood of $x' = (x'_1, x'_2) \in \mathbb{R}^{n-d} \times \mathbb{R}^d$. Choose $\varepsilon > 0$ such that $\mathscr{B}(x'_1, \varepsilon) \times \mathscr{B}(x'_2, 2\varepsilon) \subset V$. Next select R_0 and R_1 large enough so that the hypothesis of Corollary 3.5 is satisfied and, in addition, $\mathscr{B}(x'_2, \varepsilon) \subset \mathscr{B}(0, R_0)$ and

$$R_1 > 4\sqrt{c_0 T_0} + M_0 \left(R_0 + \frac{\|f\|_{\infty}}{r_0} \right).$$
(3.23)

Set $K = \mathscr{B}(0, R_0)$ and let *m* be the corresponding value of $m(K, \varepsilon, x'_2)$ defined in Lemma 3.4. Also, let $T_0 = 32 m$ and $\alpha = \frac{1}{32}$. Finally, choose a positive integer *N* such that (3.11) and (3.12) hold and, in addition, the following

31

A. Arapostathis et al. | Systems & Control Letters 44 (2001) 25-34

inequalities are satisfied:

$$N > 32 \frac{c_0 T_0}{\varepsilon^2},$$

$$(e^{2\|A_2\|T_0/N} - 1) \left(\|x_2'\| + \frac{\varepsilon}{2} \right) + \frac{2T_0}{N} M_0 \|f\|_{\infty} < \frac{\varepsilon}{2}.$$
(3.24a)
(3.24b)

We apply the control $\{u_0(t)\}_{t\geq 0}$ defined in (3.13)–(3.15), with the parameters T_0 and N as specified above. Define the hitting times τ_1 and τ'_2 by

$$\tau_1 := \inf\{t > 0, X_1(t) \in \mathscr{B}(x'_1, \varepsilon)\},\\ \tau'_2 := \inf\{t > \tau_2, X_2(t) \notin \overline{\mathscr{B}(x'_2, 3\varepsilon/2)}\},$$

where τ_2 is defined in (3.5). Recall the definition of $\{v_k\}_{k\in\mathbb{N}}$ in (3.9). With τ_V denoting the hitting time of the set V, observe that

$$\{ \tau_{V} \circ \theta_{v_{2k}} < v_{2k+1} \} \supset \{ \tau_{2} \circ \theta_{v_{2k}} < v_{2k+1} \} \cap \{ \tau_{2} \circ \theta_{v_{2k}} \leqslant \tau_{1} \circ \theta_{v_{2k}} < \tau_{2}' \circ \theta_{v_{2k}} \}$$

$$\supset \{ \tau_{2} \circ \theta_{v_{2k}} - v_{2k} < T_{0} \} \cap \{ v_{2k+1} - v_{2k} > T_{0} \}$$

$$\cap \left\{ \tau_{2}' \circ \theta_{v_{2k}} - \tau_{2} \circ \theta_{v_{2k}} \geqslant \frac{T_{0} + \delta(N)}{N} \right\}$$

$$\cap \left\{ \tau_{2} \circ \theta_{v_{2k}} \leqslant \tau_{1} \circ \theta_{v_{2k}} < \tau_{2} \circ \theta_{v_{2k}} + \frac{T_{0} + \delta(N)}{N} \right\}.$$

$$(3.25)$$

Next, we bound the probabilities of the complements of the sets on the right-hand side of (3.25), for $k \in \mathbb{N}$. By Lemma 3.4 and Corollary 3.7,

$$\mathcal{P}(\tau_{2} \circ \theta_{v_{2k}} - v_{2k} \ge T_{0} | \mathscr{F}_{v_{2k}}) \le 1 - \mathcal{P}(\theta_{v_{2k}}^{-1} \mathscr{H}(\varepsilon, T_{0}) | \mathscr{F}_{v_{2k}}) + \frac{m}{T_{0}}$$

$$< 1 - (1 - \alpha) + \frac{m}{T_{0}} = \frac{1}{16}, \quad \mathscr{P}\text{-a.e.}$$
(3.26)

By (3.2) and (3.4a), for $t \ge 0$,

$$\|X_{2}(v_{2k}+t)\| \leq e^{A_{2}t}X_{2}(v_{2k})\| + \|\xi_{2}(v_{2k}+t,v_{2k})\| + \int_{v_{2k}}^{v_{2k}+t} \|e^{A_{2}(v_{2k}+t-s)}\| \|f_{2}(X_{1}(s),X_{2}(s))\| ds \leq M_{0}R_{0} + \|\xi_{2}(v_{2k}+t,v_{2k})\| + \frac{M_{0}}{r_{0}}\|f\|_{\infty}, \quad \mathscr{P}\text{-a.e.}$$

$$(3.27)$$

From (3.27), using the Submartingale inequality, and the bounds in (3.4b) and (3.23), we obtain

$$\mathcal{P}(v_{2k+1} - v_{2k} \leqslant T_0 \,|\, \mathcal{F}_{v_{2k}}) \leqslant \mathcal{P}\left(\sup_{0 \leqslant t \leqslant 2T_0} \,\|X_2(v_{2k} + t)\| > R_1 \,|\, \mathcal{F}_{v_{2k}}\right)$$

$$\leqslant \frac{1}{16}, \quad \mathcal{P}\text{-a.e.}$$
(3.28)

By a similar calculation, using the inequalities (3.24a)-(3.24b), we obtain

$$\mathscr{P}\left(\left.\tau_{2}^{\prime}\circ\theta_{v_{2k}}-\tau_{2}\circ\theta_{v_{2k}}<\frac{T_{0}+\delta(N)}{N}\right|\mathscr{F}_{v_{2k}}\right)\leqslant\frac{1}{4},\quad\mathscr{P}\text{-a.e.}$$
(3.29)

Last, consider the event

$$\mathscr{A} := \left\{ \tau_2 \leqslant \tau_1 < \tau_2 + \frac{T_0 + \delta(N)}{N} \right\}.$$

32

For a \mathscr{P} -a.e. finite, \mathscr{F}_t -optional time τ , define $\lambda(\tau):=\lceil N/T_0\tau\rceil T_0/N$. Observe that $\lambda(\tau)$ takes values, \mathscr{P} -a.e., in the set $\{t_\ell: \ell \in \mathbb{N}_0\}$, defined in (3.13). Thus, we obtain the estimate

$$\begin{aligned} \left\| X_{1} \left(\lambda(\tau) + \frac{\delta(N)}{N} \right) - x_{1}' \right\| &\leq \left\| \xi_{1} \left(\lambda(\tau) + \frac{\delta(N)}{N}, \lambda(\tau) \right) \right\| \\ &+ \int_{\lambda(\tau)}^{\lambda(\tau) + \delta(N)/N} \left\| e^{A_{1}(\lambda(\tau) + \delta(N)/N - s)} \right\| \left\| f_{1}(X_{1}(s), X_{2}(s)) \right\| ds \\ &\leq \left\| \left| \xi_{1} \left(\lambda(\tau) + \frac{\delta(N)}{N}, \lambda(\tau) \right) \right\| + \frac{\delta(N)}{N} M_{0} \| f \|_{\infty} \\ &< \left\| \left| \xi_{1} \left(\lambda(\tau) + \frac{\delta(N)}{N}, \lambda(\tau) \right) \right\| + \frac{\varepsilon}{2}, \end{aligned}$$
(3.30)

where the last inequality follows from (3.24b). Also, since $\tau \leq \lambda(\tau) < \tau + T_0/N$, utilizing (3.30) and (3.24a), we obtain

$$\mathcal{P}(\theta_{v_{2k}}^{-1}\mathscr{A}^{c} | \mathscr{F}_{v_{2k}}) \leq \mathscr{P}\left(\left|\left|X_{1}\left(\lambda(\tau_{2} \circ \theta_{v_{2k}}) + \frac{\delta(N)}{N}\right) - x_{1}'\right|\right| > \varepsilon \middle| \mathscr{F}_{v_{2k}}\right)$$

$$\leq \mathscr{P}\left(\left|\left|\xi_{1}\left(\lambda(\tau_{2} \circ \theta_{v_{2k}}) + \frac{\delta(N)}{N}, \lambda(\tau_{2} \circ \theta_{v_{2k}})\right)\right|\right| > \frac{\varepsilon}{2} \middle| \mathscr{F}_{v_{2k}}\right)$$

$$\leq \frac{4c_{0}\delta(N)}{N\varepsilon^{2}} < \frac{\delta(N)}{8T_{0}} \leq \frac{1}{8}, \quad \mathscr{P}\text{-a.e.}$$

$$(3.31)$$

Combining (3.25) with the estimates in (3.26), (3.28), (3.29) and (3.31), we obtain

$$\mathscr{P}(\tau_{V} \circ \theta_{v_{2k}} \ge v_{2k+1} \mid \mathscr{F}_{v_{2k}}) < \frac{1}{2}, \quad \mathscr{P}\text{-a.e.}, \quad \forall k \ge 1.$$

$$(3.32)$$

It follows from (3.32) that

$$P^{x}(\tau_{V} \ge v_{2k+1}) < \left(\frac{1}{2}\right)^{k}, \quad \forall k \in \mathbb{N}, \quad \forall x \in \mathbb{R}^{n}.$$

$$(3.33)$$

Since from Corollary 3.5, $E[v_{2k+2} - v_{2k} | \mathscr{F}_{v_{2k}}] < \gamma \ \forall k \in \mathbb{N}$, and also $E^x[v_2] < \infty$, for all $x \in \mathbb{R}^n$, it is fairly standard to show (see [9]), using (3.33), that $E^x[\tau_V] < \infty$, for all $x \in \mathbb{R}^n$. \Box

4. Concluding remarks

In addition to weak and strong controllability, Zabczyk [9] provides a characterization of *controllability*, a property defined by the requirement that the probability in (1.2) be 1. In the case of a nonlinearly perturbed system, it seems difficult to find sufficient conditions for controllability without further knowledge of the structure of f. The Lyapunov function criterion in [1] could serve as a starting point. However, results based on this criterion would have to use the explicit form of the perturbation f, since recurrence may change under small perturbations.

The boundedness assumption on f cannot be relaxed in general. Note that even if f is linear the results do not hold without assuming stability. Finally, the control we constructed does not depend on the explicit form of the nonlinear perturbation, and it results in a finite expectation for τ_V for all initial states.

References

[2] J. Klamka, On the controllability of perturbed nonlinear systems, IEEE Trans. Automat. Control AC 20 (1975) 170-172.

^[1] R.Z. Hasminskii, Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, Alphen aan den Rijn, Netherlands, 1980.

- [3] W. Kliemann, Recurrence and invariant measures for degenerate diffusions, Ann. Probab. 15 (1987) 690-707.
- [4] H. Kunita, Supports of diffusion processes and controllability problems, in: K. Itô (Ed.), Proceedings of International Symposium on SDE, Kyoto, 1976, pp. 163–185.
- [5] W.J. Rugh, Linear System Theory, 2nd Edition, Prentice-Hall, Englewood Cliffs, NJ, 1996.
- [6] A.V. Skorokhod, Asymptotic Methods in the Theory of Stochastic Differential Equations, Translations of Mathematical Monographs, Vol. 78, American Mathematical Society, Providence, RI, 1989.
- [7] Y. Sunahara, S. Aihara, K. Kishino, On the stochastic observability and controllability for nonlinear systems, Internat. J. Control 22 (1975) 65-82.
- [8] Y. Sunahara, T. Kabeuchi, Y. Asad, S. Aihara, K. Kishino, On stochastic controllability for nonlinear systems, IEEE Trans. Automat. Control AC 19 (1974) 49–54.
- [9] J. Zabczyk, Controllability of stochastic linear systems, Systems Control Lett. 1 (1981) 25-30.