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Abstract

We study the controllability properties of the class of stochastic di0erential systems characterized by a linear controlled
di0usion perturbed by a smooth, bounded, uniformly Lipschitz nonlinearity. We obtain conditions that guarantee the weak
and strong controllability of the system. Also, given any open set in the state space we construct a control, depending
only on the Lipschitz constant and the in3nity-norm of the nonlinear perturbation, such that the hitting time of the set
has a 3nite expectation with respect to all initial conditions. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, we investigate the weak and strong controllability of the class of nonlinear stochastic systems
characterized by the Itô equation

dX (t)=AX (t) dt + Bu(t) dt + CdWt + f(X (t)) dt; X (0)=X0; (1.1)

where A; B and C are n× n; n× l and n× m constant matrices, respectively, and the function f is smooth,
bounded and uniformly Lipschitz continuous on Rn. The m-dimensional Brownian motion {Wt;Ft}t¿0 and
the initial distribution X0 are de3ned on a complete probability space (;F;P) and are independent, while
{u(t)}t¿0 is a feedback control, i.e., an Rl-valued process which is progressively measurable with respect to
the 3ltration F0

t = �{X (s); s6 t}.

De�nition 1.1. System (1.1) is said to be weakly controllable if, for any initial state x0 ∈Rn and any nonempty
open set V ⊂ Rn; there exists a feedback control {u(t)}t¿0 such that the corresponding solution X (·) of (1.1)
satis3es

Px0 (X (t)∈V; for some t ¿ 0)¿ 0: (1.2)
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System (1.1) is said to be strongly controllable if a feedback control can be found such that (1.2) holds and
the hitting time

�V = inf{t ¿ 0; X (t)∈V}
satis3es Ex0 [�V ]¡∞.

Consider the linear system

dX (t)=AX (t) dt + Bu(t) dt + C dWt; (1.3)

which is obtained from (1.1) by letting f=0. Zabczyk has obtained the following necessary and suMcient
conditions for the weak and strong controllability of linear system (1.3).

Theorem 1.1 (Zabczyk [9]). (i) Linear system (1:3) is weakly controllable i9

rank[B; AB; : : : ; An−1B; C; AC; : : : ; An−1C] = n: (1.4)

(ii) Linear system (1:3) is strongly controllable i9 it is weakly controllable and the matrix A is stable.

Our objective in this paper is to study the controllability properties of the nonlinearly perturbed system
(1.1). Using a Lyapunov function approach, Sunahara et al. [7,8], obtained conditions for the stochastic
controllability of nonlinear systems. However, those conditions are often diMcult to verify. We show that,
when the nonlinearity f is a smooth, bounded, uniformly Lipschitz continuous function, the conditions obtained
in Theorem 1.1 for linear systems are suMcient for the controllability of (1.1). A result which is utilized in
our analysis concerning the controllability of the corresponding deterministic system is presented in Section
2. The main results of the paper are in Section 3.

2. Controllability of the corresponding deterministic system

Consider the nonlinear deterministic system

ẋ=Ax + Bu+ f(x); (2.1)

corresponding to stochastic system (1.1). As usual, system (2.1) is said to be controllable if for every x0; x′ ∈Rn
and t′¿ 0; there exist a control {u(t); 06 t6 t′} such that x(0)= x0 and x(t′)= x′.

The following lemma is suMcient for our purpose; however, more general results are known (see [2]).

Lemma 2.1. Suppose that (2:1) satis:es
(1) rank[B; AB; : : : ; An−1B] = n.
(2) The function f is Lipschitz continuous and bounded on Rn.

Then system (2:1) is controllable.

3. Main results

In this section, we obtain suMcient conditions for the weak and strong controllability of stochastic system
(1.1).

Theorem 3.1. Suppose that (1:4) holds. Then; the nonlinear stochastic system (1:1) is weakly controllable.

Proof. Consider the deterministic system

ẋ(t)=Ax(t) + Bu(t) + Cw(t) + f(x(t)); x(0)= x0; (3.1)

where both u(t)∈Rl and w(t)∈Rm are control parameters. By Lemma 2.1, given any t′¿ 0 and x′ ∈Rn, there
exist controls ũ(·) and w̃(·) which steer (x0; 0) to (x′; t′). Now 3x the control ũ(·) in (3:1), and let V be an
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open neighborhood of x′. The accessibility set from x0 at time t′ of (3.1), with control parameter w(·), clearly
contains the point x′. It follows from the Stroock–Varadhan support theorem [4] that Px0 (X (t′)∈V )¿ 0.

Next we state the strong controllability result.

Theorem 3.2. Suppose that (1:4) holds and that the pair (A; B) is stabilizable. Then (1:1) is strongly con-
trollable.

The proof of Theorem 3.2 is presented in a series of separate theorems and lemmas which comprise the
rest of the paper. The following theorem resolves the case when B=0.

Theorem 3.3. Suppose that B=0; A is a stable matrix and (A; C) is a controllable pair. Then; the di9usion
{X (t)}t¿0 in (1:1) is positive recurrent; i.e.; for any nonempty; open set V and x0 ∈Rn; Ex0 [�V ]¡∞.

Proof. Let Q∈Rn×n be the solution to the Lyapunov equation

A∗Q + QA=− I:
If �(x):=x∗Qx and L denotes the in3nitesimal generator of (1.1) with B=0; it holds

lim
‖x‖→∞

L�(x)=−∞:

By Theorem 3.1, the system satis3es property (1.2). Therefore, it suMces to show that X (t) has an invariant
probability measure (see [1,3,6]). De3ne the occupation measures {�t; t ∈R+} of X (·) as follows:∫

g d�t =− 1
t
E
[∫ t

0
g(X (s)) ds

]
for g∈Cb(Rn):

The desired result would follow if we show that {�t; t ∈R+} is tight. For M ¿ 0, choose a compact set
KM ⊂ Rn such that

sup
x∈Kc

M

L�(x)6−M:

Let D=supx∈Rn {L�(x)}. By Itô’s formula, assuming the second moment of X (0) is 3nite,

06 E[�(X (t))]=E[�(X (0))] + E
[∫ t

0
I{X (s)∈KM}L�(X (s)) ds

]
+ E

[∫ t

0
I{X (s)∈Kc

M}L�(X (s)) ds
]

6 E[�(X (0))] + Dt�t(KM )−Mt�t(Kc
M ):

Hence,

�t(Kc
M )6

D
M + D

+
E[�(X (0))]
(M + D) t

;

and the tightness of {�t; t ∈R+} follows.

We now continue with some preliminary analysis needed for the proof of Theorem 3.2. Decomposing (1.1)
with respect to the invariant subspace R[B; AB; : : : ; An−1B]; where R denotes the range of a matrix, yields

dX1(t)=A11X1(t) dt + A12X2(t) dt + B1u(t) dt + F1 dWt + f1(X1(t); X2(t)) dt;

dX2(t)=A22X2(t) dt + C2 dWt + f2(X1(t); X2(t)) dt;

where X1(t)∈Rn−d; X2(t)∈Rd and (A11; B1); (A22; C2) are controllable pairs. Furthermore, we can select
feedback of the form u(t)=KX1(t) such that A′11:=A11 + KB1 is a stable matrix with spectrum disjoint from
that of A22 [5]. Thus, if N is the solution of NA22 − A′11N =− A12; the transformation(

I N

0 I

)(
A′11 A12
0 A22

)(
I −N
0 I

)
=

(
A′11 0

0 A22

)
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results in a block-diagonal structure for A. Therefore, without loss of generality, throughout the rest of the
paper we consider the stochastic system

dX1(t)=A1X1(t) dt + Bu(t) dt + C1 dWt + f1(X1(t); X2(t)) dt;

dX2(t)=A2X2(t) dt + C2 dWt + f2(X1(t); X2(t)) dt;
(3.2)

with X (t)= (X1(t); X2(t))∈Rn−d ×Rd. We denote the Lipschitz constant of f=(f1; f2) by Lf; while ‖ · ‖
denotes the standard Euclidean norm and B(x; r) the corresponding open ball of radius r, centered at the
point x.
Let

'i(t; �):=
∫ t

�
eAi(t−s)Ci dWs; 06 �¡ t; i=1; 2: (3.3)

Since A1; A2 are stable, there exist constants M0¿ 0; r0¿ 0 and c0¿ 0 such that, for i=1; 2;

‖eAit‖6M0e−r0t for t¿ 0; (3.4a)

E[‖'i(t; �)‖2]6 c0|t − �|; 06 �¡ t: (3.4b)

As usual, {*t}t¿0 denotes the standard time-shift on the path space of the process X (t).
In the proof of Theorem 3.2, the control is constructed explicitly and is in the class de3ned below.

De�nition 3.1. We say that an Rl-valued process {u(t)}t¿0 is in the class Us if there is a constant T ¿ 0;
and a bounded measurable function g :Rn−d×R→ Rl such that u(t)= g(X1(kT ); t); for all t ∈ [kT; (k +1)T );
and all k ∈N0.

Clearly, if the control {u(t)}t¿0 is in the class Us, then (3:2) has a P-a.s. unique strong solution on each
interval [kT; (k + 1)T ); k ∈N0.

Lemma 3.4. For any given x′ =(x′1; x
′
2)∈Rn−d × Rd; -¿ 0 and T0¿ 0; de:ne the event

H(-; T0) :=
{

sup
06t6T0

∥∥∥∥
∫ t

0
eA2(t−s)[f2(X1(s); X2(s))− f2(x′1; X2(s))] ds

∥∥∥∥¡ -
4
exp
(
−M0Lf

r0

)}
:

Also; de:ne the hitting time

�2 := inf{t ¿ 0; X2(t)∈B(x′2; -=2)} (3.5)

and let K ⊂ Rd be a compact set. Then there exist a constant m=m(K; -; x′2) such that for any Ft-optional
time v satisfying P(v¡∞)= 1 and P(X2(v)∈K)= 1; and for any control {u(t)}t¿0 ∈Us; and all T0¿ 0;

P(�2 ◦ *v − v¡T0 |Fv)¿P(*−1
v H(-; T0) |Fv)− m

T0
; P-a:e:

Proof. Consider the di0usion

dZ(t)=A2Z(t) dt + C2 dWt + f2(x′1; Z(t)) dt; t¿ 0; (3.6)

de3ned on the same probability space as (3.2) and let

s2 := inf{t ¿ 0; Z(t)∈B(x′2; -=4)}:
Since, by Theorem 3.3, {Z(t)}t¿0 is positive recurrent,

m := sup
z∈K

{Ez[s2]} (3.7)

is a 3nite constant. Let {X̃ (t)}t¿0 be the di0usion governed by

dX̃ 1(t)=A1X̃ 1(t) dt + Bu(t) dt + C1 dWt + f1(X̃ 1(t); X̃ 2(t)) dt;

dX̃ 2(t)=A2X̃ 2(t) dt + C2 dWt + [I{t6v}f2(X̃ 1(t); X̃ 2(t)) + I{t¿v}f2(x′1; X̃ 2(t))] dt;
(3.8)
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de3ned on (;F;P), and with the same initial distribution as X (0). Note that the conditional law of X̃ 2(v+t)
given Fv is the same as the law of Z(t) (with initial distribution Z(0)=X2(v)). Letting

X̂ 2(t):=X2(t)− X̃ 2(t)

and using (3.2) and (3.8), we form the triangle inequality

‖X̂ 2(v+ t)‖6
∥∥∥∥
∫ t

0
eA2(t−s)[f2(X1(v+ s); X2(v+ s))− f2(x′1; X2(v+ s))] ds

∥∥∥∥
+
∫ t

0
Lf‖eA2(t−s)‖ ‖X̂ 2(v+ s)‖ ds; P-a:e:

By applying the Gronwall Lemma and using (3.4a), we obtain

‖X̂ 2(v+ t)I*−1
v H(-;T0)

‖¡-=4; P-a:e: ∀t ∈ [0; T0]:

It follows that

{�2 ◦ *v − v¿T0} ∩ *−1
v H(-; T0) ∩ {X̃ 2(v+ t)∈B(x′2; -=4) for some t ¡T0}

is a P-null set. Hence,

P(�2 ◦ *v − v¡T0 | Fv)¿ 1−P(*−1
v Hc(-; T0) |Fv)−P(s2 ◦ *v − v¿T0 |Fv)

¿P(*−1
v H(-; T0) |Fv)− m

T0
; P-a:e:

Corollary 3.5. Let

SR :=
2M0

r0
‖f‖∞ exp

(
M0Lf

r0

)
:

Suppose R1¿R0¿ SR; and de:ne v1 = 0; and recursively; for k =1; 2; : : : ;

v2k = inf{t ¿ v2k−1; X2(t)∈B(0; R0)};
v2k+1 = inf{t ¿ v2k ; X2(t) �∈ B(0; R1)}: (3.9)

Then for all x∈Rn and all controls in the class Us

Ex[vk ]¡∞ ∀k ∈N:
Moreover; there exists a constant �= �(R0; R1) such that

E[v2k+2 − v2k |Fv2k ]¡ �; P-a:e:; ∀k ∈N:

Proof. Consider the di0usion in (3.6), de3ned on the same probability space, with initial value Z(0)=X2(0),
and let R′0:=R0 − SR; R′1:=R1 + SR. De3ne v′1 = 0, and recursively, for k =1; 2; : : : ;

v′2k = inf{t ¿ v′2k−1; Z(t)∈B(0; R′0)};
v′2k+1 = inf{t ¿ v′2k ; Z(t) �∈ B(0; R′1)}:

Subtracting (3.6) from (3.2) and applying the Gronwall Lemma as in the proof of Lemma 3.4, we deduce
that Ẑ(t):=X2(t)− Z(t) satis3es

‖Ẑ(t)‖6 SR; P-a:e: ∀t¿ 0:

Consequently, we have vk6 v′k ; P-a:e:, for all k ∈N, and the results follow from the positive recurrence and
strong Markov property of Z(t).
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Lemma 3.6. For any given -¿ 0; T0¿ 0 and 5¿ 0; there exists a control {u0(t)}t¿0 in the class Us such
that P(*−1

t′ H (-; T0) |Ft′)¿ 1− 5; P-a:e:; for all t′¿ 0.

Proof. For N ∈N, let

6(N ):=
(
4c0T 2

0

N

)1=3
: (3.10)

Note that if N is large enough, the following inequalities hold:

6(N )6max

{
5- exp(−M0Lf=r0)

4M0(3‖f‖∞ + T0Lf)
;

√
c0T0

M0‖f‖∞ ; T0
}
; (3.11)

(e‖A1‖T0=N − 1)‖x′1‖6
6(N )
4
: (3.12)

Fix such an N and let

t‘:=
‘T0
N
; ‘=0; 1; : : : : (3.13)

The feedback control {u0(t)}t¿0 ∈Us is de3ned by

u0(t):=

{
’(t; 6(N )=N; t‘; X1(t‘); x′1) for t ∈ [t‘; t‘ + 6(N )=N ); ‘=0; 1; : : :

0 otherwise;
(3.14)

where

’(t; 6′; s; x1; x′1:=B
∗eA

∗
1 (s+6

′−t)W−1
c (6′)(x′1 − eA16

′
x1);

Wc(6′):=
∫ 6′

0
eA1sBB∗eA

∗
1 s ds:

(3.15)

We continue with the derivation of the estimate in the lemma. De3ne

J‘:=
[
t‘ +

6(N )
N
; t‘+1

)
; J :=

∞⋃
‘=0

J‘;

D:={t ∈ [t′; t′ + T0]: ‖X1(t)− x′1‖¿6(N )};

Ĩ:=
∫ t′+T0

t′
‖f2(X1(s); X2(s))− f2(x′1; X2(s))‖ ds:

By splitting the integral Ĩ on D∩ J; D∩ J c and [t′; t′ + T0] \D, and with : denoting the Lebesgue measure
on the real line, we obtain

Ĩ6 2‖f‖∞:(D ∩ J ) + 2‖f‖∞6(N ) + T0Lf6(N ); P-a:e: (3.16)

If t ∈D ∩ J‘, an easy calculation yields

‖X1(t)− x′1‖6 ‖(eA1(t−t‘−6(N )=N ) − I)x′1‖+ ‖'1(t; t‘)‖

+
∫ t

t‘

‖eA1(t−s)‖ ‖f1(X1(s); X2(s))‖ ds (3.17)

6 (e‖A1‖T0=N − 1)‖x′1‖+ ‖'1(t; t‘)‖+ T0N M0‖f‖∞; P-a:e:;

where '1 is de3ned in (3.3). By (3.11), 62(N )6 c0T0=M0‖f‖∞; which combined with (3.10) yields
T0
N
M0‖f‖∞6 6(N )

4
: (3.18)
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By (3.12), (3.17) and (3.18),

‖X1(t)− x′1‖6 ‖'1(t; t‘)‖+ 6(N )2
; P-a:e: ∀t ∈D ∩ J‘: (3.19)

Using the estimate in (3.19), the Chebyshev inequality, and (3.4b), we obtain

P(‖X1(t)− x′1‖¿6(N ) |Ft′)6P(‖'1(t; t‘)‖¿ 6(N )
2

|Ft′)

6
4c0(t − t‘)
62(N )

; P-a:e: ∀t ∈D ∩ J‘: (3.20)

Integrating (3.20), yields

E[:(D ∩ J ) |Ft′ ] =
∫
D∩J

P(‖X1(t)− x′1‖¿6(N ) |Ft′) dt

=
∞∑
‘=0

∫
D∩J‘

P(‖X1(t)− x′1‖¿6(N ) |Ft′) dt

6
2c0T 2

0

N62(N )
=
6(N )
2
; P-a:e: (3.21)

By (3.16), using (3.21) and (3.11),

E[Ĩ |Ft′ ]6 2‖f‖∞E[:(D ∩ J ) |Ft′ ] + 2‖f‖∞6(N ) + T0Lf6(N )

6 (3‖f‖∞ + T0Lf)6(N )

6
5-
4M0

exp
(
−M0Lf

r0

)
; P-a:e: (3.22)

Finally, the estimate

P(*−1
t′ Hc(-; T0) |Ft′)6P

(
M0Ĩ¿

-
4
exp

(
−M0Lf

r0

)∣∣∣∣Ft′

)

6
4M0

-
exp
(
M0Lf

r0

)
E[Ĩ |Ft′ ]; P-a:e:;

together with (3.22), yields the desired result.

Using the right-continuity of the process X (t), a standard technique allows Lemma 3.6 to be strengthened
as follows:

Corollary 3.7. Let v be a P-a.e. :nite; Ft-optional time; and {u0(t)}t¿0 the control constructed in
Lemma 3:6. Then it holds that P(*−1

v H(-; T0) |Fv)¿ 1− 5; P-a:e:

We conclude with the proof of Theorem 3.2.

Proof of Theorem 3.2. Let V be a given open neighborhood of x′ =(x′1; x
′
2)∈Rn−d ×Rd. Choose -¿ 0 such

that B(x′1; -)×B(x′2; 2-) ⊂ V . Next select R0 and R1 large enough so that the hypothesis of Corollary 3.5 is
satis3ed and, in addition, B(x′2; -) ⊂ B(0; R0) and

R1¿ 4
√
c0T0 +M0

(
R0 +

‖f‖∞
r0

)
: (3.23)

Set K =B(0; R0) and let m be the corresponding value of m(K; -; x′2) de3ned in Lemma 3.4. Also, let T0 = 32 m
and 5= 1

32 . Finally, choose a positive integer N such that (3.11) and (3.12) hold and, in addition, the following
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inequalities are satis3ed:

N ¿ 32
c0T0
-2
; (3.24a)

(e2‖A2‖T0=N − 1)
(
‖x′2‖+

-
2

)
+

2T0
N
M0‖f‖∞¡ -

2
: (3.24b)

We apply the control {u0(t)}t¿0 de3ned in (3.13)–(3.15), with the parameters T0 and N as speci3ed above.
De3ne the hitting times �1 and �′2 by

�1:=inf{t ¿ 0; X1(t)∈B(x′1; -)};
�′2:=inf{t ¿ �2; X2(t) �∈ B(x′2; 3-=2)};

where �2 is de3ned in (3.5). Recall the de3nition of {vk}k∈N in (3.9). With �V denoting the hitting time of
the set V , observe that

{�V ◦ *v2k ¡ v2k+1} ⊃ {�2 ◦ *v2k ¡ v2k+1} ∩ {�2 ◦ *v2k 6 �1 ◦ *v2k ¡ �′2 ◦ *v2k}
⊃ {�2 ◦ *v2k − v2k ¡T0} ∩ {v2k+1 − v2k ¿T0}

∩
{
�′2 ◦ *v2k − �2 ◦ *v2k ¿

T0 + 6(N )
N

}

∩
{
�2 ◦ *v2k 6 �1 ◦ *v2k ¡ �2 ◦ *v2k +

T0 + 6(N )
N

}
: (3.25)

Next, we bound the probabilities of the complements of the sets on the right-hand side of (3.25), for k ∈N.
By Lemma 3.4 and Corollary 3.7,

P(�2 ◦ *v2k − v2k¿T0 |Fv2k )6 1−P(*−1
v2k H(-; T0) |Fv2k ) +

m
T0

¡ 1− (1− 5) + m
T0

=
1
16
; P-a:e: (3.26)

By (3.2) and (3.4a), for t¿ 0,

‖X2(v2k + t)‖6 eA2tX2(v2k)‖+ ‖'2(v2k + t; v2k)‖

+
∫ v2k+t

v2k

‖eA2(v2k+t−s)‖ ‖f2(X1(s); X2(s))‖ ds

6M0R0 + ‖'2(v2k + t; v2k)‖+ M0

r0
‖f‖∞; P-a:e: (3.27)

From (3.27), using the Submartingale inequality, and the bounds in (3.4b) and (3.23), we obtain

P(v2k+1 − v2k6T0 |Fv2k )6P

(
sup

06t62T0
‖X2(v2k + t)‖¿R1 |Fv2k

)

6
1
16
; P-a:e: (3.28)

By a similar calculation, using the inequalities (3.24a)–(3.24b), we obtain

P

(
�′2 ◦ *v2k − �2 ◦ *v2k ¡

T0 + 6(N )
N

∣∣∣∣Fv2k

)
6

1
4
; P-a:e: (3.29)

Last, consider the event

A:=
{
�26 �1¡�2 +

T0 + 6(N )
N

}
:
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For a P-a.e. 3nite, Ft-optional time �, de3ne ;(�):=�N=T0��T0=N . Observe that ;(�) takes values, P-a.e., in
the set {t‘: ‘∈N0}, de3ned in (3.13). Thus, we obtain the estimate∣∣∣∣

∣∣∣∣X1
(
;(�) +

6(N )
N

)
− x′1

∣∣∣∣
∣∣∣∣6

∣∣∣∣
∣∣∣∣'1
(
;(�) +

6(N )
N
; ;(�)

)∣∣∣∣
∣∣∣∣

+
∫ ;(�)+6(N )=N

;(�)
‖eA1(;(�)+6(N )=N−s)‖ ‖f1(X1(s); X2(s))‖ ds

6
∣∣∣∣
∣∣∣∣'1
(
;(�) +

6(N )
N
; ;(�)

)∣∣∣∣
∣∣∣∣+ 6(N )N M0‖f‖∞

¡
∣∣∣∣
∣∣∣∣'1
(
;(�) +

6(N )
N
; ;(�)

)∣∣∣∣
∣∣∣∣+ -

2
; (3.30)

where the last inequality follows from (3.24b). Also, since �6 ;(�)¡�+ T0=N , utilizing (3.30) and (3.24a),
we obtain

P(*−1
v2k A

c |Fv2k )6P

(∣∣∣∣
∣∣∣∣X1
(
;(�2 ◦ *v2k ) +

6(N )
N

)
− x′1

∣∣∣∣
∣∣∣∣¿-

∣∣∣∣Fv2k

)

6P

(∣∣∣∣
∣∣∣∣'1
(
;(�2 ◦ *v2k ) +

6(N )
N
; ;(�2 ◦ *v2k )

)∣∣∣∣
∣∣∣∣¿ -

2

∣∣∣Fv2k

)

6
4c06(N )
N-2

¡
6(N )
8T0

6
1
8
; P-a:e: (3.31)

Combining (3.25) with the estimates in (3.26), (3.28), (3.29) and (3.31), we obtain

P(�V ◦ *v2k ¿ v2k+1 |Fv2k )¡
1
2
; P-a:e:; ∀k¿ 1: (3.32)

It follows from (3.32) that

Px(�V ¿ v2k+1)¡
(
1
2

)k
; ∀k ∈N; ∀x∈Rn: (3.33)

Since from Corollary 3.5, E[v2k+2 − v2k |Fv2k ]¡ � ∀k ∈N, and also Ex[v2]¡∞, for all x∈Rn, it is fairly
standard to show (see [9]), using (3.33), that Ex[�V ]¡∞, for all x∈Rn.

4. Concluding remarks

In addition to weak and strong controllability, Zabczyk [9] provides a characterization of controllability, a
property de3ned by the requirement that the probability in (1.2) be 1. In the case of a nonlinearly perturbed
system, it seems diMcult to 3nd suMcient conditions for controllability without further knowledge of the
structure of f. The Lyapunov function criterion in [1] could serve as a starting point. However, results based
on this criterion would have to use the explicit form of the perturbation f, since recurrence may change under
small perturbations.
The boundedness assumption on f cannot be relaxed in general. Note that even if f is linear the results

do not hold without assuming stability. Finally, the control we constructed does not depend on the explicit
form of the nonlinear perturbation, and it results in a 3nite expectation for �V for all initial states.

References

[1] R.Z. Hasminskii, Stochastic Stability of Di0erential Equations, Sijtho0 & Noordho0, Alphen aan den Rijn, Netherlands, 1980.
[2] J. Klamka, On the controllability of perturbed nonlinear systems, IEEE Trans. Automat. Control AC 20 (1975) 170–172.



34 A. Arapostathis et al. / Systems & Control Letters 44 (2001) 25–34

[3] W. Kliemann, Recurrence and invariant measures for degenerate di0usions, Ann. Probab. 15 (1987) 690–707.
[4] H. Kunita, Supports of di0usion processes and controllability problems, in: K. Itô (Ed.), Proceedings of International Symposium on
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