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Abstract

We present results on existence of continuous selections of trajectories of hybrid systems evolving according to Lipschitz
nonlinear inclusions. First, we utilize the Skorohod metric to de4ne both a family of pseudo-metrics and a metric on the set
of trajectories accepted by the hybrid automaton. We show that under a non-Zeno condition the latter metric is complete.
Second, the existence of continuous selections with respect to the family of pseudo-metrics is proved under a relatively mild
assumption of transversality. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Little work has appeared in the literature on hybrid
systems studying the qualitative behavior of their tra-
jectories. This is a di>cult task because hybrid sys-
tems represent a very rich class of dynamical systems.

In this paper we study properties of the set of trajec-
tories of a hybrid system evolving according to Lips-
chitz nonlinear inclusions. Speci4cally, we investigate
the existence of continuous selections of trajectories
with respect to initial conditions. In order to study
continuity in a setting where trajectories can change
discontinuously due to resets of the hybrid system,
we adopt the Skorohod metric for the continuous part
of the hybrid trajectories and augment it using the
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discrete metric on the sequence of locations visited
by the automaton. In this manner, we introduce a
metric topology on the set of trajectories accepted
by the hybrid automaton and present conditions un-
der which this metric space is complete. Our com-
pleteness result asserts that the limit of a Cauchy
sequence of hybrid trajectories is itself a trajec-
tory accepted by the automaton and thus it may be
viewed as regularity property of solutions. Zeno tra-
jectories are excluded by imposing a non-overlap
condition on the guards and resets. Second, the ex-
istence of continuous selections with respect to a
family of pseudo-metrics based on the Skorohod met-
ric is proved under a relatively mild assumption of
transversality.

An early paper by Witsenhausen [10] considers a
model for switching between vector 4elds. The model
eliminates non-determinacy by assuming that transi-
tions are taken at the 4rst time the enabling condition
is reached, enabling conditions are non-overlapping
(also a non-Zeno condition), and the reset map is
the identity. The present work extends this model as
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we permit non-determinacy in several features of our
model: (1) the dynamics follow a di;erential inclu-
sion, (2) multiple enabling conditions (thus, multiple
edges) can be reached from a state, (3) a transition
can be taken at any time while an enabling condi-
tion is active, or not at all, and (4) the reset map is
non-deterministic. A paper by Tavernini [9] considers
a hybrid system with di;erential equations in each lo-
cation. The paper obtains a result on continuity with
respect to initial conditions based on a transversality
hypothesis at the boundary of the enabling regions.
Our result on continuity with respect to initial con-
ditions is closely related, though we make use of a
result by Cellina and Ornelas [4] on continuous se-
lections of Lipschitz inclusions and a more general
transversality condition suitable for inclusions. Also,
the paper by Gupta et al. [7] introduces a metric for 4-
nite trajectories of timed automata. Finally, while this
paper was still under review results on continuity of
solutions of hybrid automata appeared in [8]. The sys-
tems studied in [8] are hybrid automata with complete
vector 4elds at each location. Also, a key assumption
is that the automata are deterministic, i.e., there is a
unique hybrid trajectory for each initial condition, that
the guards are components of the boundary of the do-
main of each location and that this boundary is C1

and the vector 4eld is transversal to it. Moreover, the
topology used in [8] to compare hybrid trajectories is
weaker than our metric topology and hence a param-
eterization of trajectories which is continuous in the
topology utilized in [8] is not necessarily continuous
in ours.

The paper is organized as follows. Section 2 con-
tains some preliminary background on hybrid au-
tomata. Section 3 de4nes a suitable topology for
trajectories of hybrid systems using the Skorohod
metric. The study of continuity with respect to initial
conditions for hybrid systems with Lipschitz inclu-
sions, constituting the main contribution of the paper,
is undertaken in Section 4.

2. Preliminaries

2.1. Notation

We denote by | · | the Euclidean norm and by
d(x; B) the distance from a point x to a set B de4ned

by d(x; B) = inf y∈B |x − y|. B(x; r) denotes the open
ball centered at x of radius r, and A◦ the interior of
a set A. The Hausdor; distance between two sets dH

is dH(A; B) = max{supx∈A d(x; B); supy∈B d(y; A)}.
For an interval I = [t0; t1], let C(I) and Cac(I) denote
the spaces of continuous and absolutely continuous
functions f : I → Rn, endowed with the sup norm
‖f‖∞ and the norm ‖f‖ac = |f(t0)| +

∫
I |ḟ(s)|ds,

respectively. Finally, F(Rn) denotes the space of
di;erential inclusions on Rn and D(I;Rn) the space
of all functions f : I → Rn that are left continu-
ous, limt↑a f(t) = f(a), and have limits from the
right.

2.2. Hybrid automata

A hybrid automaton is a tuple H =(Q;�;D; E; G; R)
consisting of the following components:
State space: Q = L×Rn is the state space where L

is a 4nite set of control locations.
Events: � is a 4nite observation alphabet.
Di<erential inclusions: D :L → F(Rn) is a func-

tion assigning a di;erential inclusion to each location.
We use the notation D(l) = Fl.
Control switches: E ⊂ L×�×L is a set of control

switches. Each element e = (l; �; l′)∈E is a directed
edge between a source location l and a target location
l′ with observation �.
Guard conditions: G ⊂ 2R

n
is the set of guard con-

ditions on the continuous states. We use the notation
G(e) = ge ⊆ Rn.
Reset conditions: R is the set of reset conditions.

We use the notation R(e) = re, where re : Rn → 2R
n

is a set-valued map.

2.2.1. Semantics
A state is a pair (l; x)∈Q. �(l) denotes the set of

events possible at l∈L and E(l) denotes the set of
edges possible at l∈L. For �∈�, a �-step is a binary
relation →� ⊂ Q×Q and we write (l; x)→�(l′; x′) i;
(1) e = (l; �; l′)∈E(l), (2) x∈ ge, and (3) x′ ∈ re(x).
A �-step need not be taken even if x∈ ge. Let ’l

t (x)
be a trajectory of Fl starting from x and evolving for
time t. For t ∈R+, a t-step is a binary relation →t ⊂
Q × Q and we write (l; x)→t(l′; x′) i; (1) l = l′,
(2) at t = 0, x′ = x, and (3) for t ¿ 0, x′ = ’l

t (x),
where ’̇l

t (x)∈Fl(’l
t (x)). A trajectory � of H is a

4nite or in4nite sequence � : q0→ 0q1→ 1q2→ 2 · · ·



M. Broucke, A. Arapostathis / Systems & Control Letters 47 (2002) 149–157 151

where qi ∈Q and  i ∈�∪R+. A trajectory is accepted
by H if each qi→ iqi+1 is a t-step or �-step of H ,
and we denote the space of all such trajectories by
H. A step of a trajectory refers to a t-step followed
by a �-step. Associated with the kth step of a tra-
jectory is the data I 0 = [0; t1] or I k = (tk ; tk+1], for
k¿ 1, the time interval of the step, #k = tk+1 − tk ,
its duration, ek = (lk ; �k ; lk+1), the edge, and qk(t) =
(lk ; xk(t)), the state, where lk is 4xed over I k and
xk(t) satis4es ẋk(t)∈Flk (xk(t)). Thus, the step can be
represented as

(lk ; xk(tk+)) # k

→ (lk ; xk(tk+1)) �k

→ (lk+1; xk+1(tk+1+));
(1)

satisfying xk(tk+1)∈ gek and xk+1(tk+1+)∈
rek (xk(tk+1)). We do not exclude the possibility
#k = 0, in which case the step is only a �-step. A
run of H is the projection to the discrete part of a
trajectory in H; namely, a 4nite or in4nite sequence
l0; l1; l2; : : : of admissible locations. We also refer to
x(t):={xk(t): t ∈ I k ; k = 0; 1; : : :} as the continuous
part of the trajectory.

Trajectories in H might exhibit 4nite escape time
for the continuous state, or admit an in4nite num-
ber of �-steps in a bounded time interval (i.e., Zeno
trajectories). Therefore, we de4ne the regular tra-
jectory language %⊂H as those trajectories whose
continuous part belongs to D(R+;Rn) and has a 4-
nite number of discontinuities in any bounded inter-
val of time. Dealing with a subset of all trajectories
might pose di>culties in the analysis especially when
trying to characterize convergence or continuity. For
example, if we employ a topology suitable for func-
tions in D(R+;Rn) it is unclear whether % is open
in H, or whether a converging sequence of elements
of % is always non-Zeno. We introduce a suitable
de4nition below in order to surpass some of these
di>culties.

Assumption 1. For each e; e′ in E; ge is a closed set;
re has closed values and d(re(ge); ge′)¿ 0.

If Assumption 1 holds, and under mild conditions
on the inclusion, i.e., each Fl has bounded values and
is upper semicontinuous, then any trajectory of H ,
whose continuous part belongs to D(R+;Rn), satis4es
the non-Zeno condition a priori.

3. Topologies for hybrid systems

We introduce suitable topologies for %, using
the Skorohod metric. The Skorohod metric, denoted
ds(·; ·), was originally used in the study of stochas-
tic processes with right (or left)-continuous sample
paths, such as Poisson processes [2]. Given two func-
tions f∈D(If;Rn) and g∈D(Ig;Rn), ds(f; g) is the
in4mum of &¿ 0 for which there exists a strictly in-
creasing, continuous, surjective function ' : If → Ig
such that

(a) sup
t∈If

|'(t) − t|6 & and

(b) sup
t∈If

|f(t) − g('(t))|6 &.

3.1. The pseudo-metric space (%; dm)

We de4ne a topology on % via a family of
pseudo-metrics that combine the Skorohod metric
on the continuous parts of a pair of trajectories with
the distance between the corresponding runs in the
Cantor topology.

Let �; �̃∈% with � = {lk ; xk(·); tk} and x(·) the
continuous part of �, where xk : (tk ; tk+1] → Rn. We
adopt the analogous notation for �̃. Let x(m); x̃(m),
m¿ 1, denote the restriction of x; x̃ on [0; tm] and
[0; t̃m], respectively. We de4ne the pseudo-metric
dm(·; ·) by

dm(�; �̃) = ds(x(m); x̃(m)) +
m−1∑
k=0

1
2k I(l

k = l̃
k
);

where I(·) is the indicator function. Thus, (%; {dm})
is a topology on % induced by the family of pseu-
dometrics. Also, for 4xed m¿ 0, (%; dm) denotes
the pseudo-metric topology on the m-step trajectories
of %.

3.2. The metric space (%; d∞)

We de4ne a metric topology that utilizes the
Skorohod metric for functions in D(R+;Rn) (see
[5]). This approach has the advantage that prop-
erties of this metric are readily available, though
its de4nition is somewhat more cumbersome. Let
) be the collection of strictly increasing, Lipschitz
continuous functions * :R+ → R+ with *(0) = 0 and
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limt→∞ *(t) = ∞ such that

+(*):= sup
s¿t¿0

∣∣∣∣log
*(s) − *(t)

s− t

∣∣∣∣¡∞:

This function estimates how much *(t) increases rel-
ative to t. Note that when +(*) is large, then the
maximum or minimum rate of change of * is di;er-
ent from one. Also, when +(*) = 0, then * = t. For
f; g∈D(R+;Rn), *∈) and u∈R+ de4ne

d̂s(f; g; *; u):=sup
t¿0

min{1; |f(t ∧ u) − g(*(t) ∧ u)|};

where a∧b=min{a; b}. The Skorohod metric d∞
s (·; ·)

is de4ned by

d∞
s (f; g) =

inf
*∈)

[
max

{
+(*);

∫ ∞

0
e−ud̂s(f; g; *; u) du

}]
:

Let �; �̃∈% be as in Section 3.1. We de4ne the hybrid
metric d∞ by

d∞(�; �̃) = d∞
s (x; x̃) +

∞∑
k=0

1
2k I(l

k = l′k): (2)

It is well known ([5, Theorem 5.6, p. 121]) that
(D(R+;Rn); d∞

s ) is a complete metric space. The
main result of this section is that the metric space
(%; d∞) is also a complete metric space.

Theorem 2. Suppose that H satis?es Assumption 1;
that re has closed values and is upper semicontinuous;
for all e∈E; and that at each location l; Fl has
non-empty; compact; convex values and is upper
semicontinuous. Then (%; d∞) is a complete metric
space.

Proof. Let {�j; j∈N} ⊂ (%; d∞); with �j = {lkj ;
xkj (·); tkj }; be a Cauchy sequence; where xkj :
(tkj ; t

k+1
j ] → Rn is a solution of ẋkj ∈Flkj

(xkj ). Let xj(·)
denote the continuous part of �j. By (2); {xj}j∈N is
Cauchy in (D(R+;Rn); d∞

s ) and thus converges to
some x∈D(R+;Rn). We must show that x is the con-
tinuous part of a trajectory �∈% and d∞(�j; �) →
0; as j → ∞. By Proposition 5.2 in [5; p. 118];
limj→∞ d∞

s (xj; x) = 0 if and only if there exists

{*j} ⊂ ) such that limj→∞ +(*j) = 0 and

lim
j→∞

sup
06t6T

|xj(t) − x(*j(t))| = 0 for all T ¿ 0:

(3)

Note also that limj→∞ +(*j) = 0 implies that

lim
j→∞

sup
06t6T

|*j(t) − t| = 0 for all T ¿ 0: (4)

Since the inclusion Fl has compact values and is up-
per semicontinuous; it follows that all solutions that lie
in a bounded domain are equicontinuous [6; Lemma
2; p. 78]. Using this fact along with (3)–(4) and As-
sumption 1; one can show that x(t) has at most a 4-
nite number of discontinuities in each bounded time
interval. Moreover; if {tk}k¿1 are the discontinuity
points of x; then tkj → tk as j → ∞. Since {�j} is
Cauchy; for each k ∈N there exists j0=j0(k)∈N such
that d∞(�j0 ; �j)¡ 1=2k ; ∀j¿ j0. This implies lkj =lkj0 ;
∀j¿ j0. Set lk = lkj0 and ek = (lk ; �k ; lk+1). Let xk

denote the restriction of x on (tk ; tk+1]. The equicon-
tinuity of xj(t) on bounded domains along with (3)
–(4) implies that xkj (t) → xk(t); as j → ∞; uni-
formly on compact subsets of (tk ; tk+1). Hence; by
Corollary 1 in [6; p. 77]; xk is a solution of the inclu-
sion ẋk ∈Flk (xk) on (tk ; tk+1). By left-continuity we
have xkj (t

k+1) → xk(tk+1) which implies; since gek

is closed; that xk(tk+1)∈ gek . The existence of right
limits along with equicontinuity yields xkj (t

k+) →
xk(tk+); and since the graph of rek is closed; it follows
that xk(tk+)∈ rek (xk−1(tk)). Therefore; �j converges
to �:={lk ; xk(·); tk} in (%; d∞).

4. Continuity with respect to initial conditions

Continuity with respect to initial conditions for hy-
brid systems with Lipschitz di;erential inclusions is
established under a transversality condition, stated
in De4nition 6. Let �0 be a trajectory starting from
q0 ∈Q. We show that if �0 satis4es the transversality
condition, and under mild assumptions on the automa-
ton stated in Assumption 3, there exists a continuous
selection of trajectories from (%; dm) in a neighbor-
hood of q0. Implicit in the de4nition of transversality
is that the steps of the trajectory have non-zero dura-
tion, i.e., pure �-steps are excluded. The reason for this
is the following. Consider a parameterized family of
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trajectories �2={lk2; xk2(·); tk2}, with 2∈ [0; 1], and sup-
pose that for some k ∈N, #k0 = tk+1

0 − tk0 =0, but #k2 ¿ 0
for 2¿ 0. Also suppose that |xk−1

2 (tk2)− xk2(t
k
2+)| and

|xk2(tk+1
2 )−xk+1

2 (tk+1
2 +)| are bounded below by a posi-

tive constant as 2 → 0. Then, �2 cannot converge to �0

in (%; dm) (note that in the weaker topology utilized
in [8] convergence under these circumstances is pos-
sible). In other words if �0 has a step of zero duration
at one location, this in general forces any continuous
selection of trajectories, in the vicinity of �0, to also
have a corresponding step of zero duration. Satisfying
this would involve conditions on the composition of
successive reset maps, which we prefer to avoid.

Consider the problem

ẋ∈F(x); x(0) = 3; (5)

on a time interval [0; T ], where 3 ranges over a com-
pact X ⊂ Rn with diameter 5. In addition, we assume
the following.

Assumption 3. The set-valued map F satis4es:

(a) The values of F are closed; non-empty subsets of
Rn.

(b) There exists K ¿ 0 such that dH(F(x); F(x′))6
K |x − x′|; for all x; x′ ∈Rn.

Under Assumption 3, an absolutely continuous so-
lution to (5) exists for each 3∈X [6]. Let 30 ∈X and
x(·) be a solution of (5) such that x(0)=30. It is shown
in [4] that there exists a selection ’t(3) from the set
of solutions of (5) which is continuous in 3∈X and
such that ’t(30) = x(t). Such a selection is found by
constructing a sequence of approximate trajectories,
{’j

t (3)}∞j=0 which are shown to form a Cauchy se-
quence in the normed space Cac([0; T ]). In particular,
this sequence can be chosen to satisfy

‖’j(3) − ’j−1(3)‖ac6 5
(

(KT ) j

j!
+

e2KT

2 j+1

)
:

Thus,

‖’j(3) − ’0(3)‖ac6 5(eKT + e2KT ); ∀j∈N;

where

’0
t (3) = 3 +

∫ t

0
’̇s(30) ds

is the initial guess of the approximate trajectories.
Hence, we obtain the estimate

‖’j(3) − ’(30)‖ac6 5(eKT + e2KT + 1)6 35e2KT ;
∀j∈N: (6)

Assumption 4. The automaton H satis4es the fol-
lowing:

(a) The inclusion ẋ∈Fl(x) at each location l satis4es
Assumption 3.

(b) For each e∈E; ge is either a closed; n-dimensional
topological manifold with boundary; or an embed-
ded (n− 1)-dimensional C1 submanifold.

(c) re is a lower semicontinuous reset map from Rn

to the closed; convex subsets of Rn.

Remark 5. Assumption 4(c) makes possible the use
of Michael’s selection theorem [1].

The following de4nition is essential for our main
result. See Fig. 1.

De#nition 6. Let e=(l; �; l′) and x(t); be a solution of
ẋ∈Fl(x) de4ned for t ∈ [t0; t1]; with t0 ¡t1 and such
that x(t1)∈ ge. We say that x(·) is transversal to ge at
x(t1) if it ful4lls the following requirements:

(1) If ge is an (n − 1)-dimensional submanifold we
require that the solution x(t) of ẋ∈Fl(x) can be
suitably extended on some interval (t1; s1]; s1 ¿t1
in a manner that for some open neighborhood V
of x(t1) and local coordinates u=(u1; : : : ; un) cen-
tered at x(t1) and mapping V homeomorphicaly
onto some open neighborhood of Rn; and satisfy-
ing un(V ∩ ge) = 0;

ẋ(t) · ∇un(v)¿1; ∀v∈V; a:e: on {t: x(t)∈V}:
(2) If ge is a topological n-manifold with boundary we

require that the solution x(t) of ẋ∈Fl(x) can ei-
ther be continued on some interval (t1; s1]; s1 ¿t1
in a manner that

x(t)∈ ge◦; ∀t ∈ (t1; s1]; (7a)

or there exists s0 ∈ [t0; t1) such that

x(t)∈ ge◦; ∀t ∈ [s0; t1): (7b)

Note that if x(t1) is an interior point of ge then (7b)
is trivially satis4ed.
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Fig. 1. Transversal trajectory of a hybrid system with di;erential inclusions.

We say that � = {lk ; xk(·); tk}, whose steps are de-
noted as in (1), is a transversal trajectory if xk(t) is
transversal to gek at xk(tk+1) for all k.

Remark 7. If the enabling region is n-dimensional
and has a di;erentiable boundary; a simple condition
su>ces for the solution to be continued in the interior
of the region. Using the notation of De4nition 6 and
denoting by Tx(t1)ge the tangent space to ge at x(t1)
and by nx(t1) the unit normal to Tx(t1)ge in the direc-
tion of go

e ; we require that F(x(t1)) contains a vector
: such that 〈:; nx(t1)〉¿ 0; where 〈·; ·〉¿ 0 is the stan-
dard inner-product in Rn.

The transversality assumption allows for the fol-
lowing construction.

Lemma 8. Let ẋ∈Fl(x) be a Lipschitz inclusion sat-
isfying Assumption 3; and let x(t); t ∈ [t0; t1]; be a so-
lution that is transversal to ge; e = (l; �; l′); at x(t1).
Then there exist s1¿ t1; an open neighborhood W of
x(t0); and a continuous selection’ :W → Cac([t0; s1])
of solutions of ’̇∈Fl(’) satisfying:
(a) ’t(x(t0)) = x(t); t ∈ [t0; t1].
(b) there exists a continuous #̃ :W → [t0; s1]; satisfy-

ing #̃(x(t0)) = t1; such that ’#̃(3)(3)∈ ge; ∀3∈W .
(c) if ge is (n − 1)-dimensional; there exists

s0 ∈ (t0; t1) such that; with u denoting the coor-
dinates in De?nition 6;

’̇t(3) · ∇un(’t(3))¿ 1
2 ; a:e: on[s0; s1];

∀3∈W:

Proof. We 4rst consider the case when ge is
(n − 1)-dimensional. By the transversality assump-
tion there exists an open neighborhood V of x(t1) and
coordinates u :V → Rn such that x can be continued
to (t1; s1] for some s1 ¿t1 and

ẋ(t) · ∇un(v)¿ 1; a:e: on {t: x(t)∈V}; ∀v∈V:
(8)

Select times t′1 ¡t1; t′′1 ∈ (t1; s1] and 5′ ¿ 0 such that

B(x(t); 5′) ⊂ V; ∀t ∈ [t′1; t
′′
1 ]; (9)

and if necessary shrink 5′ even further so that

un ¡ 0 on B(x(t′1); 5
′) and un ¿ 0 on B(x(t′′1 ); 5′):

(10)

We use the construction in [4]. First, choose 5¿ 0
to satisfy

35e2K(t′′1 −t0)6 5′; (11a)

25Ke2K(t′′1 −t0) sup
v∈V

|∇un(v)|6 1
2 : (11b)

Let {’j
t (3)}∞j=0 denote the sequence of approxi-

mate solutions in Cac([t0; t′′1 ]), with 3 in B(x(t0); 5),
converging to ’t(3) uniformly in Cac([t0; t′′1 ]). Let
30:=x(t0). We claim that, for all 3∈B(30; 5)

’̇t(3) · ∇un(’t(3))¿ 1
2 ; a:e: on [t′1; t

′′
1 ]: (12)

In order to prove this claim, using the construction
in [4], we can derive the following property char-
acterizing the sequence {’j

t }∞j=0. Corresponding to
each j¿ 0, and to each 3∈B(30; 5), there exists
a 4nite partition {Ii(3)}nji=1 of [t0; t′′1 ], and a 4nite
subset of B(30; 5), denoted by <j = {3‘

i , 06 ‘6
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j− 1; 16 i6 nj} (<j not depending on 3) such that
the following estimate holds a.e. on Ii(3), for i =
1; : : : ; nj,

|’̇‘
t (3

‘
i ) − ’̇‘−1

t (3‘−1
i )|

6 5K
[
(K(t − t0))‘−1

(‘ − 1)!
+

e2K(t−t0)

2‘

]
; ‘6j − 1;

|’̇ j
t (3) − ’̇ j−1

t (3j−1
i )|

6 5K
[
(K(t − t0)) j−1

(j − 1)!
+

e2K(t−t0)

2 j

]
: (13)

From (13), using a triangle inequality, we obtain

|’̇ j
t (3) − ’̇0

t (3
0
i )|6 5K[eK(t−t0) + e2K(t−t0)]

6 25Ke2K(t′′1 −t0); (14)

a.e. on Ii(3). By (6) and (11a),

|’j
t (3) − x(t)|6 5′; ∀t ∈ [t0; t′′1 ]; ∀3∈B(30; 5):

(15)

Next, by (15) and (9), ’j
t (3)∈V , for all 3∈B(30; 5),

t ∈ [t′1; t
′′
1 ] and j∈N. Hence, combining (8), (11b) and

(14), and using the fact that ’̇0
t (3

0
i ) = ẋ(t), for all

i = 1; : : : ; nj, a triangle inequality yields

’̇ j
t (3) · ∇un(’

j
t (3))

¿ ẋ(t) · ∇un(’
j
t (3))

−|∇un(’
j
t (3))| · |’̇ j

t (3) − ’̇0
t (3

0
i )|

¿ 1 − 1
2 = 1

2 ; a:e: on [t′1; t
′′
1 ]; ∀3∈B(30; 5):

Passing to the limit as j → ∞, we establish (12).
Parts (a) and (c) of the Lemma follow if we select
W = B(30; 5). In order to establish part (b), 4rst note
that by (10) and (15)

un(’t′1 (3))¡ 0 and un(’t′′1 (3))¿ 0; ∀3∈W:
(16)

Hence (12) and (16) imply that for each 3∈W ,
there exists a unique #̃(3)∈ (t′1; t

′′
1 ) satisfying

un(’#̃(3)(3)) = 0, or equivalently, ’#̃(3)(3)∈ ge. To
prove continuity of #̃(·), we argue by contradiction.
Suppose {3(k)} ⊂ W is a sequence converging to
3∗ ∈W , as k → ∞, but #̃(3(k)) 9 #̃(3∗). Then along
some subsequence also denoted by {3(k)}, #̃(3(k)) →
#̃∗ for some #̃∗ = #̃(3∗). It follows that ’#̃(3(k))(3(k)) →
’#̃∗(3∗), and hence, un(’#̃(3(k))(3(k))) → un(’#̃∗(3∗)).

But un(’#̃(3(k))(3(k))) = 0 implying un(’#̃∗(3∗)) = 0
which contradicts the uniqueness of #̃(3∗). This proves
part (b).

We now turn to the case where ge is a topological
n-manifold with boundary. Suppose that (7a) applies.
Let {’t(·); t ∈ [t0; s1]} be a continuous selection of so-
lutions of ’̇∈Fl(’), de4ned on some open neigh-
borhood U of 30 = x(t0). Using the continuity of the
selection, we pick an open neighborhood W ⊂ U of
30 such that ’s1 (3)∈ g◦

e , for all 3∈W . Let ? :W →
[t0; s1] be de4ned by

?(3):=inf{s∈ [t0; s1] :’t(3)∈ ge◦; ∀t ∈ (s; s1]}:

The multivalued map T de4ned on W by T(3):=
[?(3); s1] has closed, convex values and satis4es
T(30):=[t1; s1]. It is also lower semicontinuous. To
establish this fact we argue by contradiction. If not,
then for some 3′ ∈W , an open neighborhood N of
T(3′), and a sequence {3(k)} ⊂ W converging to 3′,
we must have T(3(k))∩N= ∅, for all k ∈N. Select
s′ ∈T(3′) ∩N, s′ = ?(3′). Then ’s′(3′)∈ g◦

e . Since
s′ ∈ T(3(k)), for each k ∈N, there exists s(k) ∈ (s′; s1)
such that ’s(k) (3(k))∈ @ge. Let s∗ be a subsequential
limit of {s(k)}. Passing to the limit as k → ∞ along
this subsequence, we conclude that ’s∗(3′)∈ @ge.
However, s∗¿ s′ and therefore s∗ ¿?(3′), yielding
a contradiction. Applying Michael’s selection theo-
rem we obtain a continuous selection #̃ :W → [t0; s1],
passing through t1 at 30. By construction ’#̃(3)(3)∈ ge,
for all 3∈W . In the event that (7b) applies, the proof
is analogous.

Theorem 9. Suppose H satis?es Assumption 4 and
let �0 be a transversal trajectory of H with initial
state q0 = (l0; 30)∈Q. For each m¿ 0; there exists
a neighborhood (l0; U ) of q0; with U ⊂Rn open; and
A(t; 3); a selection of trajectories of H; such that
A(t; 30) = �0(t) and 3 �→ A(·; 3) is continuous in
(%; dm).

Proof. Suppose that �0 has an m step run l0; : : : ; lm−1;
each step represented by (1); and visits the enabling
conditions g0; : : : ; gm−1; with r0; : : : ; rm−1 denoting the
corresponding reset maps. Observe that in order for
3 �→ A(·; 3) to be continuous in (%; dm); the m-step
run of t �→ A(t; 3) must be independent of 3 and
therefore must equal l0; : : : ; lm−1.
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Fig. 2. Theorem 9: Continuity with respect to initial conditions.

First consider the reset of the kth step (see Fig. 2).
Since rk is locally selectionable, by Michael’s Selec-
tion Theorem, there exists a continuous selection r̃k

of rk , satisfying

r̃k(xk(tk+1)) = xk+1(tk+1+): (17)

Therefore, given an open neighborhood Wk+1 of
xk+1(tk+1+), there exists an open subset V k con-
taining xk(tk+1) such that r̃k(V k ∩ gk) ⊂ Wk+1. If
xk(tk+1)∈ gk , then by Lemma 8, for each open set V k

containing xk(tk+1), there exists an open neighbor-
hood Wk of xk(tk+), a time t̂k+1¿ tk+1, a continuous
selection  k :Wk → Cac([0; t̂

k+1 − tk ]) of solutions

of  ̇
k

= Flk ( k), and a continuous map #̃k :Wk →
[0; t̂k+1 − tk ] such that

 k
t (xk(tk+)) = xk(t + tk); t ∈ (0; tk+1 − tk ];

#̃k(xk(tk+)) = tk+1 − tk ;

 k
#̃k (w)(w)∈V k ∩ gk ; ∀w∈Wk: (18)

An iteration of the above arguments yields, for each
k = 0; : : : ; m − 1, open sets Wk and V k along with a
continuous selections  k and continuous maps r̃k and
#̃k , as de4ned above, such that (17) and (18) hold.

De4ne  ̃
k
:Wk → V k ∩ gk by  ̃

k
(w):= k

#̃k (w)(w).

From the continuity of w �→  k
t (w) and w �→ #̃k(w),

the absolute continuity of t �→  k
t (w), and the triangle

inequality

| ̃ k
(w) −  ̃

k
(w′)|6 | k

#̃k (w)(w) −  k
#̃k (w′)(w)|

+| k
#̃k (w′)(w) −  k

#̃k (w′)(w
′)|;

we conclude that  ̃
k
is continuous on Wk . Let U =W 0

and de4ne for 3∈U

Dk(3) = r̃k−1 ◦  ̃
k−1 ◦ · · · ◦ r̃0 ◦  ̃

0
(3);

k = 1; : : : ; m; D0(3) = 3;

tk(3) =
k−1∑
‘=0

#̃‘ ◦ D‘(3);

I 0(3) = [0; t1(3)]; I k(3) = (tk(3); tk+1(3)];

A(t; 3) = {(lk ;  k
t−tk (3) ◦ Dk(3)); t ∈ I k(3)}m−1

k=0 :

It follows that each tk(·) is continuous on U . To show
continuity of A(·; ·) in (%; dm), we 4x 3′ ∈U and
de4ne

*(t)=
t − tk(3′)

tk+1(3′) − tk(3′)
; t∈I k(3′); k = 0; : : : ; m− 1:

Also, for each 3∈U we construct the functions '3 and
s3 with domain [0; tm(3′)] by de4ning on each I k(3′),
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k = 0; : : : ; m− 1,

'3(t) = *(t)tk+1(3) + (1 − *(t))tk(3);

s3(t) = *(t)min{tk+1(3); tk+1(3′)}
+(1 − *(t))max{tk(3); tk(3′)}:

Note that '3 : [0; tm(3′)] → [0; tm(3)] is strictly in-
creasing, continuous, and surjective. Also, for 3 su>-
ciently close to 3′,

min{tk+1(3); tk+1(3′)}¿max{tk(3); tk(3′)}

and hence

s3(t)∈I(3; 3′):=
m−1⋃
k=0

(I k(3′) ∩ I k(3)): (19)

In addition, from the continuity of tk(·) on U it follows
that

|t − '3(t)| →
3→3′

0

and

|t − s3(t)| →
3→3′

0 uniformly on [0; tm(3′)]: (20)

In order to avoid introducing new notation we identify
A with the continuous part of the trajectories. While
it is certainly not the case that A(t; ·), is continuous
on U , for arbitrary t, it holds that

sup
t∈I(3;3′)

|A(t; 3′) −A(t; 3)| →
3→3′

0; (21)

where I(3; 3′) is de4ned in (19). Therefore, if we
form the triangle inequality

|A(t; 3′) −A('(t); 3)|6 |A(t; 3′) −A(s3(t); 3′)|
+ |A(s3(t); 3′) −A(s3(t); 3)|
+|A(s3(t); 3) −A('3(t); 3)|

and let 3 → 3′, the 4rst and third term on the
right-hand side converge by (20) and the uniform ab-
solute continuity of t → A(t; ·), on each I k(·), while
the middle term converges by (19) and (21), and the

convergence is uniform in t ∈ [0; tm(3′)]. Therefore,

dm(A(t; 3); A(t; 3′)) →
3→3′

0;

and the proof is complete.

5. Conclusions

We have introduced some useful analytical tools
and have demonstrated the existence of continuous
selections of trajectories of hybrid automata with
Lipschitz di;erential inclusions with respect to initial
conditions. We believe that the basic properties of
hybrid trajectories presented here will be useful in
establishing new connections between observation
equivalences for hybrid automata, including those
that are bisimulations, and qualitative features of tra-
jectories starting from equivalent points. This type of
investigation was started in [3].
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