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In this note, we introduce the notion of safety control of stochastic
DESs by naturally generalizing it from the setting of nonstochastic
DESs. A safety control objective in the nonstochastic setting can be
viewed as a binary valued vector with the same size as the number of
Controlled Markov Chains With Safety Upper Bound states. A state is deemed forbidden if and only if the corresponding
entry in that vector is zero. If we represent the states visited under the
Avristotle Arapostathis, Ratnesh Kumar, and Sekhar Tangirala supervisory control by a binary valued vector, where an entry is zero
if and only if the corresponding state is not visited, then a controller
Abstract_n this note. we introduce and studv the notion of safet meets the safety control objective if and only if this vector is bounded
control of stochastic discr’ete—event systems (DESg), modeled as controﬁedapove by the vector SpeCIfyl,ng thg safety spec!flcatlon. In generalizing
Markov chains. For nonstochastic DESs modeled by state machines or this concept to the stochastic setting, we specify the safety control ob-
automata, safety is specified as a set of forbidden states, or equivalently jective as an unit-interval valued vector that imposes an upper bound
by a binary valued vector that imposes an upper bound on the set of on the state probability distribution vectors of the system under con-

states permitted to be visited. We generalize this notion of safety to the ] ; ; ;
setting of stochastic DESs by specifying it as an unit-interval valued vector trol. For example, for a financial portfolio, a constraint of the type that

that imposes an upper bound on the state probability distribution vector. the probability of ever being bankrupt is bounded above by a certain
Under the assumption of complete state observation, we identify: 1) the set humber is a safety constraint.
of all state feedback controllers that satisfy the safety requirement for any A state probability distribution vector is callegfeif it is bounded
giy_en safe initial state pro‘bab‘ility distribqtion, and 2) the set of all safe gpgye by the vector specifying the safety control objective. We study
initial state probability distributions for a given state feedback controller. the problem of safety control of stochastic DESs modeled as controlled
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safety specification, stochastic system. We first obtain a necessary and sufficient condition a state feedback
controller should satisfy so that the controlled system meets the safety
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II denote the set of all such probability distribution functions. For arstate at the next step is given pyrespectivelyy) if the current state is
k> 0,m := moP* € TI gives the state probability distribution afterup (respectively, down). Then the state set of the machine is given by
k steps of state transitionm; _ . o P*, if it exists, is called asta- X = {up, dowr}, and the state transition matrix is given by
tionary distributionof P. #* € II is said to be amvariant distribution
of Pif 7* P = «*, andII C I is said to be amvariant set of distribu- Py — [ p 1= P] .
tionsof P if = € Il implieswP € 1I or, equivalentlylIP C II. Note 1—gq q
that a stationary distribution is also an invariant distributiBris said
to beirreducibleif for eachi, j € {1,2,...,n} there exists:;; > 0 Note that the state transition matrix is irreducible and aperiodic
such that P"i7);; > 0, i.e., statej can be reached from statén a Whenevep, ¢ € (0.1),i.e.,0 # p, ¢ # 1.
finite number of stepsP is said to beperiodicif the greatest common The entries of the state transition matrix can be controlled at any
divisor of the set{k|(P*),; > 0}is1foralli € {1,2,....n}. Itis given state (assuming that the up and down states can be observed). Two
known that an irreducible and aperiodic state transition matrpos- types of control are possible, namely, the intensity of usage, and the
sesses a unique stationary distribution. A Markov chain is said to tgensity of maintenance. In the up states an increasing function of
ergodicif it's stationary distribution is independent of the initial distri-the intensity of maintenance, and a decreasing function of the intensity
bution. of usage. In the down statg,is a decreasing function of the intensity
The state of a Markov chain is typically observed through an outp@t maintenance, and it does not depend on the intensity of usage (since
functiong defined over the set of states. Thusy i€ X is the present the machine is not used in its down state).
state, then the observed outpuyis:). A Markov chain is said to be ~ Suppose it is desired that at any step the machine is never down
completely observed if the output function is the identity function. IWith probability more than 25%. Then, the safety specification for the
this note, we assume this to be the case. machine is given byn = [1 1/4], wherem; = 1 implies that the
A Markov chain is said to be a controlled Markov chain if its stat@robability of being in the up state can be anything, and = 1/4
transition matrix is a function of its control input. L&t be a finite set implies that the probability of being in the down state must not exceed
of control inputs of size;. Then for eacht € U, P(u) denotes the 1/4 = 25%. We would like to know the constrainfsand¢ should
state transition matrix when the control inputis A controller is a Satisfy in order for the machine under control to satisfy the desired
map from the set of observations to the set of control inputs. Under tp@fety specification.

assumption of complete state observation, a controller is given by amap this section, we obtain a necessary and sufficient condition on
U : X — U so that if the present statedisc X, then the controller Py so that the state probability distribution vectors of the controlled
selects the control input(») € U resulting in the state transition Markov chain under the state feedback control of the contréiler
matrix P(Z4(x)). When the present state is completely observed, and — U remain safe at all steps, i.e., whenewer € Il..,, we also

is sayi € X, then only the transition probabilities of leaving state havemo % € II,,, for all k > 0. Note that this last condition

are relevant and are given by tith row of the state transition matrix

P(U(3)). We usePy to denote the state transition matrix obtained by [mo € IL,,] = [Wopﬁ €ll,, Vk> 0]

stacking such rows, i.e., théh row of P is theith row of P(14(i)).

Then, it is easy to see that the state probability distribution vector isfequivalent to the condition

the controlled Markov chain under the control of the state feedback

controllerl/ : X — U is determined by the state transition matfx, [Py € 10, Vr € 11,,]

i.e., if my is the initial state probability distribution vector, then the state

probability distribution vector aftef steps of state transitions is giveni.e.,II,, is an invariant set of distributions @, .

by mo Pf. Letp’ = [p?(1),p’(2).....p"(n)]" denote thgth column of Py.
Leto; be a permutation of1, 2, ..., n} that arranges the entries;of
ll. CONTROLLERS THAT ENFORCESAFETY in decreasing order, i.e.,

In the following definition, we introduce the notion of safety of a
Markov chain.
Definition 1: Letm € [0, 1]" be a unit-interval valued row vector

P (0;(1)2p (0;(2)>+-2p (0j(n))  Vj€{l,2,...,n}.

Also, definen; to be the smallest integer i1, 2, ..., such that
that imposes a safety specification. A given Markov chain with state " ger )
transition matrixP € [0, 1]"*" is said to besafewith respect ton if n;
the state probability distribution vector remains bounded above by Z My iy > 1 vie{1,2,... .n}.

. . . I =
at all steps, i.e., if for alk > 0, 7o P* < m. We use i—1
Thus, for eacly 1,2,...,n}, we have
IL, := {w € Olx < m} ’ b€ {1, n}
77j—1 n;
to denote the set of all safe state probability distribution vectors. > e <1 ma )
Remark 1: Since for eachr € 1II it holds that) ., =, = 1, a non- i=1 i=1

trivial safety specificationn € [0,1]" must satisfyd ", m; > 1.
(Otherwise,II,, = 0, and there exists no state probability distribu-
tion vector that is also safe). It is also natural to assume that the set of -
safe state probability distribution vectors is a proper subset of the set 0<1— Z Mo (i) < Mg (n) (@)
of all state probability distribution vectors, i.él,,, C II. This implies !
that there exists € {1,...,n} such thatn; < 1.

Example 1 (This example is adopted from [8Eonsider a single  Theorem 1: It holds that
machine which operates in either of its two states, namely, “up” and
“down”. Suppose the probability that the machine maintains its current wPy € Iy, Vr € I,

which is equivalent to

=1
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if and only if

nj—1 ) n;—1 )

Z me,p’ (o;(0) + | 1 - Z me, ) | P (05(ng)) <my
=1 =1

vji€e{l,2,....n} 2)

which can be rearranged to read

n;—1

P (oj(n;))+ Z Mo (i) [pf (o;(i)) — P’ (a]'(n]'))] < my

=1

vy €4{1,2,...,n}. 3)
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;1 n;—1
Y T b (i) (1= D mo
=1 =1

X pj (oj(n5))
njfl

P e )+ Y T [P’7 (i) —p’ (0,7('"/,7))]
=1

<P (@ m))+ D Moo [P (04(0) = # (03(n1))]

<my

where the first inequality follows from the fact that arranges entries
of p? in a decreasing order; the second inequality follows from the

) S assumption that € I, which implies, .,y < m, ), and from

Proof: Clearly, (2) is necessary; otherwise, if it is violated fokne definition ofo; which gives us thap’ (¢ (i) — p’ (o ;(n;)) > 0
somej € {1,2,....n}, then definet"’) € II by foralli € {1,...,n; — 1}; and the final inequality follows from (3).

This completes the proof. [ ]

Remark 2: It follows from Theorem 1 that the problem of verifying

whether a given state feedback controller can enforce a given safety

Mo (i) if i <nj
=491 ?:’;1 Mo iy, ifi=mn; (4)
0, otherwise.

specification for an arbitrary initial safe statepslynomially decid-
able and requires the verification of inequalities given by (2) or,
equivalently, (3).

Remark 3: Theorem 1 provides a necessary and sufficient condi-

B - tion that a state transition matri, of a given state feedback based
By construction} . frlm = 1.Also, sincel =771 m, ;) > 0[see controller should satisfy for it to enforce the given safety specification.
(1)), it follows from the definition oft ") that#(*) > 0. These together It should be mentioned that the condition given by (4) can be used to

imply that#) € II. Next, sincer'”

aj(n

,=1- f_fl_l Mo (i) < characterize the set of all safety enforcing controllers. We explore this
; = <

Mo, () [5€€ (1)], it follows from the definition o ) that#() < m, through an example in Example 2.

implying #) € II,,,. On the other hand

Remark 4: Note that, in light of the definition of-*) given in (4),

it follows that the condition of Theorem 1 can be rewritten in a simpler

n form as
= (7) _ ~(1) T
(Tr PM)J' B ;ﬂ-dj(ii)p (e5(0)) #pi < mj vy €e{l,....,n} (5)
b . ) where recall thap’ is the;jth column of the state transition mattd; .
= frgjj)(i)P] (o;(i) + ﬁ((r]])(nj)]?] (ai(n;)) Example 2: We continue with the example of single machine con-
=1 sidered in Example 1. We analyze this example by first assuming that
L G ) p > 1—¢ (or, equivalentlyg > 1 — p), and next assuming the reverse,
+ Z Mo, ()P (a;(7)) namely,p < 1 —gq.
=gt Whenp > 1 — ¢, 01(7) = ¢ andox(:) = j fori # j € {1,2}.
—— Sincem = [1 1/4], this givesn; = i fori = 1, 2. In order to obtain a
— Z Mo 0’ (0,(i)) cor?di_tion orp andg so tha_t_the_controlled Markov chain of the m:_:lchine
= ’ satisfies the safety specification, we constrifct for j = 1,2 using

(4) and substitute it in (5).

n;—1

+[1- Z Mo (i) P (o;(n)) +0>m;

=1

where the last inequality follows from our hypothesis that (2) is violated

It follows from (4) that

=11 0] fr@):ﬁ ﬂ

for j. Thereforez?) Py, ¢ 1I1,,,, a contradiction. Substituting this into (5) gives us

To show sufficiency, suppose (2) holds. Lete II,,, and fix an
arbitrary; € {1,2,..., n}. We have

(wPu)j = Z Tfaj(i)Pj (0(8))
=1

nj—1 n

. o op (@) + D woywmp’ (05(0)
=1 i=n

n

IN

i —1
Z Ty (05(0)+
=1

Tai(iy | P (05(n)))
J

1=n;

¢ <

3 1
lp+0(1-¢) <1 Z-(l—p)—l-/ 1

]

or, equivalently

3p—q2>2.

Whenp < 1—g¢,0:1(i) = jando, (i) = i fori # j € {1,2}. Since
m = [1 1/4], this givesn; = j fori # j € {1,2}. In this situation,
(4) yields

frU):E ﬂ #0=[1 o).
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Substituting this into (5) gives us or, equivalently
%p—l—i.(l—q) <1 1.(1-p)+04g< % 20 < Illilil <%)
entl Define
or, equivalent o
q y Asy = (1= c0)n* + 2oL, )
3p—q<3 4p > 3).
(Bp—q¢<3) (4p=3) Then
Thus, for the controlled Markov chain to satisfy the safety specifica- 4) 0 < 2o := Inir_l?:l((Ti —)/(1-a])) <1, ands < 1;
tion we must have eithdp > 1 —¢g]A[3p—g¢ > 2]or[p < 1—¢q] A 5) m € A, impliesw P € IL,,., forall k > 0.
[B3p—q < 3]A[4p > 3]. Sincelp < 1 — ¢] implies[3p — ¢ < 3 —4¢] Proof: To see the first part, note that singé € II,,, we have

which is stronger thaf3p — ¢ < 3], the latter can be simplified to fori = 1,...,n, 77 < m; < 1. This impliesm; — #; > 0 and
[p < 1-gq]A[4p > 3]. So, for a state feedback based safety ed-— «; > 0. Hencemin,((m; — «})/(1 — x})) > 0. Also, since for

- . o p 1—p eachi = 1,..., n, m; < 1,itfollows thatm; — n; < 1 -« or,
forcing controller with state transition matrit, = L . ‘ ' equivalently(m; — 77)/(1— 1) < 1, Le.min’, ((ms — 77)/(1
we must have 7¢)) < 1. Sincell,,, C II, there exists somee {1,...,n} such that

m; < 1, which impliesmin?_, ((m; — x7)/(1 — 7;)) < 1. Thus, we

(p>1-q)ABp—qg>2)]VIp<1—g)A(4p > 3)]. have0 < Zp = minf—,((m; — ;) /(1 — w})) < 1. Sincezy < Zo,

we also have, < 3 < 1.
To see the second part, first note that from the definition,ofve

IV. INVARIANT SAFE STATES OF ACONTROLLER have

In the previous section, we obtained a condition on the state transi- [v; : (1 — =) + o < mi] © [(1 — g0)7” + 201 < m]
tion matrix, P, of a state feedback controller so that,, € II,, for
all = € I, i.e., the invariant safe states of the controller is the entifgherel is the vector with all entries 1. So, for anye II, it holds that
set of safe states. When the condition of Theorem 1 fails, the invariant
safe state set of a state feedback controller may still be nonempty, even (1—zo)m* +2om < (L—20)7" + 201 < m
if it is not the entire set of safe states. In this section, we compute the
supremal invariant safe set of a state feedback controller, which exigisiaplishing that
The computation is iterative and terminates in a finite number of steps.
Given a state transition matrii, of a state feedback controller, we Acy = (1= go)7* + 2011 C IL,,..
use the following to denote the sets of all invariant safe states:

. . So, it suffices to show thah., Py C A.,. Form € II, consider
m| Vo €Il:aPy €1} [(1 - g0)n™ + eon]Pu € Acy Py. Then
7n|7T0 € ﬂ = WDPZI; S ﬂ vk Z O}

= 4

[(1 - 50)7‘1'* + .S()ﬂ'] P[,{ = (1 - Eo)ﬂ'* =+ E(]Tl'l € AEO

It is obvious thatP is closed under intersection, and its unique in- . . ,
fimal element is the empty set. Similarf, is closed under union and, Wherér™ I = 7" andn Iy := = € IL. u
hence, possesses a unique supremal element, denolgl fhe fol- A theorem providing an algorithm to compuii, follows.

lowing theorem provides a test of polynomial complexity forverifying% Theorem 3: Supposef, is irreducible and aperiodic and that its
the nonemptiness dly. unique) invariant distributiom™ lies in the interior ofll,,,. Lete > 0

Theorem 2: Given a state transition matriky, let Iy, C II,,, be satisfy the hypothesis of Lemma 1 and defikg, as in (6). Consider

the supremal set of invariant safe stategof Then, T, is nonempty € following iterative computation:
if and only if an invariant distribution of, is safe.

Proof: To see the necessity, note thaflife 7, its topological = A,
closure as well as its convex hull are also element® oTherefore, o™ .= {w €M, |nPy € H("*l)}
Iy, the supremal element & must be closed and convex. Thus, if
I, # 0, then it follows that it also contains an invariant distribution, = {77 €M, |nP; € Azo} Vi > 1.
x*, of Py. Hence,r™ is a desired invariant distribution d%, that is
also safe. Then, there exists a finite integley such thafl*o T = (ko) = 11,,.
To see the sufficiency, suppos€ € Il,,, is an invariant distribu- Proof: If the aforementioned iteration does not terminate in finite

tion of I, that is also safe. Then, obviouslyr™} € P. This implies steps, then there exists a sequefe€’ }52, C II,, such thatr'®) ¢
{7r*} C Uy, i.e.,n* € I, which proves the nonemptinessldf;,. m  [1(*+Y _ 1(*) Therefore

Next, we compute the supremal invariant safe gt assuming
that the state transition matrik, is irreducible and aperiodic, and its (%) Pl ¢ A, vj < kandk > 0. (8)
unique invariant distribution is safe (lies in the interiorldf,). Note

that from Theorem 2 this guarantees thkf is nonempty. We first | et 7 be any limit point of{z(*)}. Since P is irreducible and ape-

state the following lemma. o S riodic, 7P — #* ask — oc. Hence, there exists' > 0 such
Lemma 1: Assume thatr™ is an invariant distribution of?, that that 7% lies in the interior ofA;, for all & > k'. By continuity,
lies in the interior ofil,,,. Let<, be a number satisfying #PE —2® Pk — 0ask — oo, from which we deduce that there

existsk” > k' suchthatr®") P} € A, , which contradicts (8). Thus,
co(l—a}) < my —af, i=1,....n (6) theiteration terminates at some finitg. It is clear thafI*°) ¢ P. We
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can also show that it is the supremal elemerf?oTo see this, suppose V. CONCLUSION

s . S s ; ~ pk *
IT € P and7 € II. Then, sincetFy; — 7” ask — oo, we deduce In this note, we introduced the notion of safety specification for sto-

- (k) . (ko)
thatz € IT"™, for some_k 20, _to conclude that € H ’ . chastic DESs. A safety specification is given as a unit-interval valued
Example 3: We continue with the example of single machine €O ector that imposes an upper bound on the state robability distribution
sidered in Example 1. As previously noted, the state transition maty] P bp P

» 1—p7 o _ _ U&ctor. Under the assumption of complete observation, we first obtain a
Py = il — ‘ } is aperiodic and irreducible wheh # p, condition that the transition matrix of a state feedback controller must
¢ # 1. So, under this Condition it possesses a unique invariant distRtisfy so that safety is enforced for arbitrary safe initial states. Next,
bution* satisfying we determine the invariant set of safe states of a given state feedback
controller, so that if the system starts in one of the states in the invariant
set, then it always remains in that set. The last result (Theorem 3) is ob-
tained in the setting of irreducible and aperiodic chains, but the result
only relies on the ergodicity of the chain (in which the limiting distri-

or, equivalently bution is independent of the initial distribution), and so the result also
applies to the ergodic Markov chains.

mpt+m.(l—gq)=m = +m=1

m.(l—-p)=m.(1—¢q) w1 +m =1
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It follows from (9) thatz, > 0. Also, sincep, ¢ # 1, we have

p+qg<2<3p+3¢<6
SdIp—qg—2<4—4q
3p—q—2

- <1
4(1-q)
S5 < 1.
Next
Iz =1 3p—q—=2_32-p—q)
4(1—¢) 41-¢q)
and, hence

32-p—a) « w—q-2,
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The algorithm of Theorem 3 terminates in a finite number of itera-
tions, and upon termination computég .
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