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Controlled Markov Chains With Safety Upper Bound

Aristotle Arapostathis, Ratnesh Kumar, and Sekhar Tangirala

Abstract—In this note, we introduce and study the notion of safety
control of stochastic discrete-event systems (DESs), modeled as controlled
Markov chains. For nonstochastic DESs modeled by state machines or
automata, safety is specified as a set of forbidden states, or equivalently
by a binary valued vector that imposes an upper bound on the set of
states permitted to be visited. We generalize this notion of safety to the
setting of stochastic DESs by specifying it as an unit-interval valued vector
that imposes an upper bound on the state probability distribution vector.
Under the assumption of complete state observation, we identify: 1) the set
of all state feedback controllers that satisfy the safety requirement for any
given safe initial state probability distribution, and 2) the set of all safe
initial state probability distributions for a given state feedback controller.

Index Terms—Discrete-event system (DES), Markov chain, reliability,
safety specification, stochastic system.

I. INTRODUCTION

Safety control of nonstochastic discrete-event systems (DESs) has
been studied since the pioneering work of [11] and has been subse-
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quently extended by other researchers (see [9]). A nonstochastic DES
is typically modeled as a state machine or an automaton which evolves
in response to occurrence of events. Thesafetycontrol objective is typi-
cally specified in terms of a set of forbidden states that the system must
avoid (or, alternatively, as a set of forbidden event sequences).

The state machine model of nonstochastic DESs is naturally ex-
tended to obtain the Markov chain model of stochastic DESs by as-
sociating a probability measure with each state transition. A Markov
chain is called a controlled Markov chain if the state transition probabil-
ities are functions of control inputs. Prior work on control of stochastic
DESs is primarily onquantitativecontrol objectives, i.e., on optimal
control, where a controller that optimizes a certain performance mea-
sure is computed [1], [4], [5], [8]. The problems of optimal control of
stochastic systems with state constraints have also been studied in [2],
[3], and [6], where the state constraint is given as a constraint over the
set of states that the controlled system should visit.

In order to study thequalitativebehaviors of stochastic DESs, the
formalism of probabilistic languages was introduced in [7], and con-
trol of such behaviors was studied in [10]. Refer to citations in [7] for
other formalisms of modeling qualitative behaviors of stochastic dis-
crete event systems, and their control.

In this note, we introduce the notion of safety control of stochastic
DESs by naturally generalizing it from the setting of nonstochastic
DESs. A safety control objective in the nonstochastic setting can be
viewed as a binary valued vector with the same size as the number of
states. A state is deemed forbidden if and only if the corresponding
entry in that vector is zero. If we represent the states visited under the
supervisory control by a binary valued vector, where an entry is zero
if and only if the corresponding state is not visited, then a controller
meets the safety control objective if and only if this vector is bounded
above by the vector specifying the safety specification. In generalizing
this concept to the stochastic setting, we specify the safety control ob-
jective as an unit-interval valued vector that imposes an upper bound
on the state probability distribution vectors of the system under con-
trol. For example, for a financial portfolio, a constraint of the type that
the probability of ever being bankrupt is bounded above by a certain
number is a safety constraint.

A state probability distribution vector is calledsafeif it is bounded
above by the vector specifying the safety control objective. We study
the problem of safety control of stochastic DESs modeled as controlled
Markov chains under the assumption of complete state observation.
We first obtain a necessary and sufficient condition a state feedback
controller should satisfy so that the controlled system meets the safety
specification, i.e., if the initial state probability distribution vector is
safe, then the state probability distribution vector under the control of
the given state feedback controller always remains safe. Next we iden-
tify the set of all safe initial probability distribution vectors for a given
state feedback controller so that if the initial state probability distribu-
tion vector lies in that set, then the state probability distribution vector
under the control of the given controller is guaranteed to always remain
safe.

II. NOTATION AND PRELIMINARIES

A Markov chain is represented by a triple (X, P , �0), whereX is a
finite set of states of sizen; P 2 [0; 1]n�n is a state transition matrix
whoseijth entry(P )ij gives the probability of transitioning from state
i to statej; and�0 2 [0; 1]n is a row probability vector giving the initial
state probability distribution, where theith entry�0 gives the proba-
bility of the initial state being theith state. Note that for a Markov chain
we have

j
(P )ij = 1, i.e.,P is a stochastic matrix, and

i
�0 = 1,

i.e.,�0 is a probability distribution function over the set of states. We let
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� denote the set of all such probability distribution functions. For any
k � 0, �k := �0P

k 2 � gives the state probability distribution after
k steps of state transitions.limk!1 �0P

k, if it exists, is called asta-
tionary distributionof P .�� 2 � is said to be aninvariant distribution
of P if ��P = ��, and�̂ � � is said to be aninvariant set of distribu-
tionsof P if � 2 �̂ implies�P 2 �̂ or, equivalently,̂�P � �̂. Note
that a stationary distribution is also an invariant distribution.P is said
to beirreducible if for eachi, j 2 f1; 2; . . . ; ng there existsnij � 0
such that(Pn )ij > 0, i.e., statej can be reached from statei in a
finite number of steps.P is said to beaperiodicif the greatest common
divisor of the setfkj(P k)ii > 0g is 1 for all i 2 f1; 2; . . . ; ng. It is
known that an irreducible and aperiodic state transition matrixP pos-
sesses a unique stationary distribution. A Markov chain is said to be
ergodicif it’s stationary distribution is independent of the initial distri-
bution.

The state of a Markov chain is typically observed through an output
functiong defined over the set of states. Thus, ifx 2 X is the present
state, then the observed output isg(x). A Markov chain is said to be
completely observed if the output function is the identity function. In
this note, we assume this to be the case.

A Markov chain is said to be a controlled Markov chain if its state
transition matrix is a function of its control input. LetU be a finite set
of control inputs of sizeq. Then for eachu 2 U , P (u) denotes the
state transition matrix when the control input isu. A controller is a
map from the set of observations to the set of control inputs. Under the
assumption of complete state observation, a controller is given by a map
U : X ! U so that if the present state isx 2 X, then the controller
selects the control inputU(x) 2 U resulting in the state transition
matrixP (U(x)). When the present state is completely observed, and
is sayi 2 X, then only the transition probabilities of leaving statei
are relevant and are given by theith row of the state transition matrix
P (U(i)). We usePU to denote the state transition matrix obtained by
stacking such rows, i.e., theith row ofPU is theith row ofP (U(i)).
Then, it is easy to see that the state probability distribution vector of
the controlled Markov chain under the control of the state feedback
controllerU : X ! U is determined by the state transition matrixPU ,
i.e., if�0 is the initial state probability distribution vector, then the state
probability distribution vector afterk steps of state transitions is given
by �0P k

U .

III. CONTROLLERSTHAT ENFORCESAFETY

In the following definition, we introduce the notion of safety of a
Markov chain.

Definition 1: Let m 2 [0; 1]n be a unit-interval valued row vector
that imposes a safety specification. A given Markov chain with state
transition matrixP 2 [0; 1]n�n is said to besafewith respect tom if
the state probability distribution vector remains bounded above bym
at all steps, i.e., if for allk � 0, �0P k � m. We use

�m := f� 2 �j� � mg

to denote the set of all safe state probability distribution vectors.
Remark 1: Since for each� 2 � it holds that

i
�i = 1, a non-

trivial safety specificationm 2 [0; 1]n must satisfy
i
mi � 1.

(Otherwise,�m = ;, and there exists no state probability distribu-
tion vector that is also safe). It is also natural to assume that the set of
safe state probability distribution vectors is a proper subset of the set
of all state probability distribution vectors, i.e.,�m � �. This implies
that there existsi 2 f1; . . . ; ng such thatmi < 1.

Example 1 (This example is adopted from [8]):Consider a single
machine which operates in either of its two states, namely, “up” and
“down”. Suppose the probability that the machine maintains its current

state at the next step is given byp (respectively,q) if the current state is
up (respectively, down). Then the state set of the machine is given by
X = fup, downg, and the state transition matrix is given by

PU =
p 1� p

1� q q
:

Note that the state transition matrix is irreducible and aperiodic
wheneverp, q 2 (0; 1), i.e.,0 6= p, q 6= 1.

The entries of the state transition matrix can be controlled at any
given state (assuming that the up and down states can be observed). Two
types of control are possible, namely, the intensity of usage, and the
intensity of maintenance. In the up state,p is an increasing function of
the intensity of maintenance, and a decreasing function of the intensity
of usage. In the down state,q is a decreasing function of the intensity
of maintenance, and it does not depend on the intensity of usage (since
the machine is not used in its down state).

Suppose it is desired that at any step the machine is never down
with probability more than 25%. Then, the safety specification for the
machine is given bym = [1 1=4], wherem1 = 1 implies that the
probability of being in the up state can be anything, andm2 = 1=4
implies that the probability of being in the down state must not exceed
1=4 = 25%. We would like to know the constraintsp andq should
satisfy in order for the machine under control to satisfy the desired
safety specification.

In this section, we obtain a necessary and sufficient condition on
PU so that the state probability distribution vectors of the controlled
Markov chain under the state feedback control of the controllerU :
X ! U remain safe at all steps, i.e., whenever�0 2 �m, we also
have�0P k

U 2 �m for all k � 0. Note that this last condition

[�0 2 �m] ) �0P
k
U 2 �m 8k � 0

is equivalent to the condition

[�PU 2 �m 8� 2 �m]

i.e.,�m is an invariant set of distributions ofPU .
Let pj = [pj(1); pj(2); . . . ; pj(n)]

T
denote thejth column ofPU .

Let�j be a permutation off1; 2; . . . ; ng that arranges the entries ofpj

in decreasing order, i.e.,

pj(�j(1))�pj(�j(2))�� � ��pj(�j(n)) 8j 2 f1; 2; . . . ; ng:

Also, definenj to be the smallest integer inf1; 2; . . . ; ng such that

n

i=1

m� (i) � 1 8j 2 f1; 2; . . . ; ng:

Thus, for eachj 2 f1; 2; . . . ; ng, we have

n �1

i=1

m� (i) < 1 �

n

i=1

m� (i)

which is equivalent to

0 < 1�

n �1

i=1

m� (i) � m� (n ): (1)

Theorem 1: It holds that

�PU 2 �m 8� 2 �m
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if and only if

n �1

i=1

m� (i)p
j (�j(i)) + 1�

n �1

i=1

m� (i) pj (�j(nj))�mj

8j 2 f1; 2; . . . ; ng (2)

which can be rearranged to read

pj (�j(nj)) +

n �1

i=1

m� (i) pj (�j(i))� pj (�j(nj)) � mj

8j 2 f1; 2; . . . ; ng: (3)

Proof: Clearly, (2) is necessary; otherwise, if it is violated for
somej 2 f1; 2; . . . ; ng, then definê�(j) 2 � by

8i 2 f1; 2; . . . ; ng : �̂
(j)
� (i)

:=

m� (i); if i < nj

1�
n �1

i=1 m� (i); if i = nj

0; otherwise.

(4)

By construction,
i
�̂
(j)
i = 1. Also, since1�

n �1

i=1 m� (i) > 0 [see
(1)], it follows from the definition of̂�(j) that�̂(j) � 0. These together
imply that �̂(j) 2 �. Next, since�̂(j)

� (n ) = 1 �
n �1

i=1 m� (i) �

m� (n ) [see (1)], it follows from the definition of̂�(j) that�̂(j) � m,
implying �̂(j) 2 �m. On the other hand

�̂(j)PU
j
=

n

i=1

�̂
(j)
� (i)p

j (�j(i))

=

n �1

i=1

�̂
(j)
� (i)p

j (�j(i)) + �̂
(j)
� (n )p

j (�j(nj))

+

n

i=n +1

�̂
(j)
� (i)p

j (�j(i))

=

n �1

i=1

m� (i)p
j (�j(i))

+ 1�

n �1

i=1

m� (i) pj (�j(nj)) + 0 > mj

where the last inequality follows from our hypothesis that (2) is violated
for j. Therefore,̂�(j)PU =2 �m, a contradiction.

To show sufficiency, suppose (2) holds. Let� 2 �m, and fix an
arbitraryj 2 f1; 2; . . . ; ng. We have

(�PU)j =

n

i=1

�� (i)p
j (�j(i))

=

n �1

i=1

�� (i)p
j (�j(i))+

n

i=n

�� (i)p
j (�j(i))

�

n �1

i=1

�� (i)p
j (�j(i))+

n

i=n

�� (i) pj (�j(nj))

=

n �1

i=1

�� (i)p
j (�j(i))+ 1�

n �1

i=1

�� (i)

� pj (�j(nj))

= pj (�j(nj))+

n �1

i=1

�� (i) pj (�j(i))� pj (�j(nj))

� pj (�j(nj))+

n �1

i=1

m� (i) pj (�j(i))� pj (�j(nj))

�mj

where the first inequality follows from the fact that�j arranges entries
of pj in a decreasing order; the second inequality follows from the
assumption that� 2 �m which implies�� (i) � m� (i), and from
the definition of�j which gives us thatpj(�j(i))� pj(�j(nj)) � 0
for all i 2 f1; . . . ; nj � 1g; and the final inequality follows from (3).
This completes the proof.

Remark 2: It follows from Theorem 1 that the problem of verifying
whether a given state feedback controller can enforce a given safety
specification for an arbitrary initial safe state ispolynomially decid-
able, and requires the verification ofn inequalities given by (2) or,
equivalently, (3).

Remark 3: Theorem 1 provides a necessary and sufficient condi-
tion that a state transition matrixPU of a given state feedback based
controller should satisfy for it to enforce the given safety specification.
It should be mentioned that the condition given by (4) can be used to
characterize the set of all safety enforcing controllers. We explore this
through an example in Example 2.

Remark 4: Note that, in light of the definition of̂�(j) given in (4),
it follows that the condition of Theorem 1 can be rewritten in a simpler
form as

�̂(j)pj � mj 8j 2 f1; . . . ; ng (5)

where recall thatpj is thejth column of the state transition matrixPU .
Example 2: We continue with the example of single machine con-

sidered in Example 1. We analyze this example by first assuming that
p � 1�q (or, equivalently,q � 1�p), and next assuming the reverse,
namely,p � 1 � q.

Whenp � 1 � q, �1(i) = i and�2(i) = j for i 6= j 2 f1; 2g.
Sincem = [1 1=4], this givesni = i for i = 1; 2. In order to obtain a
condition onp andq so that the controlled Markov chain of the machine
satisfies the safety specification, we construct�̂(j) for j = 1; 2 using
(4) and substitute it in (5).

It follows from (4) that

�̂(1) = [ 1 0 ] �̂(2) =
3

4

1

4
:

Substituting this into (5) gives us

1:p+ 0:(1� q) � 1
3

4
:(1� p) +

1

4
:q �

1

4

or, equivalently

3p� q � 2:

Whenp � 1�q,�1(i) = j and�2(i) = i for i 6= j 2 f1; 2g. Since
m = [1 1=4], this givesni = j for i 6= j 2 f1; 2g. In this situation,
(4) yields

�̂(1) =
3

4

1

4
�̂(2) = [ 1 0 ]:
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Substituting this into (5) gives us

3

4
:p+

1

4
:(1� q) � 1 1:(1� p) + 0:q �

1

4

or, equivalently

(3p� q � 3) (4p � 3):

Thus, for the controlled Markov chain to satisfy the safety specifica-
tion we must have either[p � 1� q] ^ [3p� q � 2] or [p � 1� q] ^
[3p� q � 3]^ [4p � 3]. Since[p � 1� q] implies[3p� q � 3� 4q]
which is stronger than[3p � q � 3], the latter can be simplified to
[p � 1 � q] ^ [4p � 3]. So, for a state feedback based safety en-

forcing controller with state transition matrixPU =
p 1� p

1� q q
,

we must have

[(p � 1� q) ^ (3p� q � 2)] _ [(p � 1� q) ^ (4p � 3)] :

IV. I NVARIANT SAFE STATES OF A CONTROLLER

In the previous section, we obtained a condition on the state transi-
tion matrix,PU , of a state feedback controller so that�PU 2 �m for
all � 2 �m, i.e., the invariant safe states of the controller is the entire
set of safe states. When the condition of Theorem 1 fails, the invariant
safe state set of a state feedback controller may still be nonempty, even
if it is not the entire set of safe states. In this section, we compute the
supremal invariant safe set of a state feedback controller, which exists.
The computation is iterative and terminates in a finite number of steps.

Given a state transition matrixPU of a state feedback controller, we
use the following to denote the sets of all invariant safe states:

P := f�̂ � �mj 8� 2 �̂ : �PU 2 �̂g

= f�̂ � �mj�0 2 �̂) �0P
k
U 2 �̂ 8k � 0g:

It is obvious thatP is closed under intersection, and its unique in-
fimal element is the empty set. Similarly,P is closed under union and,
hence, possesses a unique supremal element, denoted by�U . The fol-
lowing theorem provides a test of polynomial complexity for verifying
the nonemptiness of�U .

Theorem 2: Given a state transition matrixPU , let �U � �m be
the supremal set of invariant safe states ofPU . Then,�U is nonempty
if and only if an invariant distribution ofPU is safe.

Proof: To see the necessity, note that if�̂ 2 P , its topological
closure as well as its convex hull are also elements ofP . Therefore,
�U , the supremal element ofP must be closed and convex. Thus, if
�U 6= ;, then it follows that it also contains an invariant distribution,
��, of PU . Hence,�� is a desired invariant distribution ofPU that is
also safe.

To see the sufficiency, suppose�� 2 �m is an invariant distribu-
tion of PU that is also safe. Then, obviously,f��g 2 P . This implies
f��g � �U , i.e.,�� 2 �U , which proves the nonemptiness of�U .

Next, we compute the supremal invariant safe set�U assuming
that the state transition matrixPU is irreducible and aperiodic, and its
unique invariant distribution is safe (lies in the interior of�m). Note
that from Theorem 2 this guarantees that�U is nonempty. We first
state the following lemma.

Lemma 1: Assume that�� is an invariant distribution ofPU that
lies in the interior of�m. Let "0 be a number satisfying

"0 (1� ��i ) � mi � ��i ; i = 1; . . . ; n (6)

or, equivalently

"0 �
n

min
i=1

mi � ��i
1� ��i

:

Define

�" =(1� "0)�
� + "0�: (7)

Then

4) 0 � �"0 := minni=1((mi � ��i )=(1� ��i )) < 1, and"0 < 1;
5) � 2 �" implies�P k

U 2 �m, for all k � 0.
Proof: To see the first part, note that since�� 2 �m, we have

for i = 1; . . . ; n, ��i � mi � 1. This impliesmi � ��i � 0 and
1� ��i � 0. Hence.mini((mi � ��i )=(1� ��i )) � 0. Also, since for
eachi = 1; . . . ; n, mi � 1, it follows thatmi � ��i � 1 � ��i or,
equivalently,(mi���i )=(1���i ) � 1, i.e.,minni=1((mi���i )=(1�
��i )) � 1. Since�m � �, there exists somei 2 f1; . . . ; ng such that
mi < 1, which impliesminni=1((mi � ��i )=(1� ��i )) < 1. Thus, we
have0 � �"0 = minni=1((mi � ��i )=(1� ��i )) < 1. Since"0 � �"0,
we also have"0 � �"0 < 1.

To see the second part, first note that from the definition of"0, we
have

[8i : (1� "0)�
�

i + "0 � mi], [(1� "0)�
� + "01 � m]

where1 is the vector with all entries 1. So, for any� 2 �, it holds that

(1� "0)�
� + "0� � (1� "0)�

� + "01 � m

establishing that

�" = (1� "0)�
� + "0� � �m:

So, it suffices to show that�" PU � �" . For � 2 �, consider
[(1 � "0)�

� + "0�]PU 2 �" PU . Then

[(1� "0)�
� + "0�]PU = (1� "0)�

� + "0�
0 2 �"

where��PU = �� and�PU := �0 2 �.
A theorem providing an algorithm to compute�U follows.
Theorem 3: SupposePU is irreducible and aperiodic and that its

(unique) invariant distribution�� lies in the interior of�m. Let � > 0
satisfy the hypothesis of Lemma 1 and define��" as in (6). Consider
the following iterative computation:

�(0) :=��"

�(k) := � 2 �mj�PU 2 �(k�1)

= � 2 �mj�P
k
U 2 ��" 8k � 1:

Then, there exists a finite integerk0 such that�(k +1) = �(k ) = �U .
Proof: If the aforementioned iteration does not terminate in finite

steps, then there exists a sequencef�(k)g1k=1 � �m such that�(k) 2
�(k+1) � �(k). Therefore

�(k)P j

U
=2 ��" 8j � k andk � 0: (8)

Let ~� be any limit point off�(k)g. SincePU is irreducible and ape-
riodic, ~�P k

U ! �� ask ! 1. Hence, there existsk0 � 0 such
that ~�P k

U lies in the interior of��" for all k � k0. By continuity,
~�P k

U � �(k)P k
U ! 0 ask ! 1, from which we deduce that there

existsk00 > k0 such that�(k )P k
U 2 ��" , which contradicts (8). Thus,

the iteration terminates at some finitek0. It is clear that�(k ) 2 P . We
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can also show that it is the supremal element ofP . To see this, suppose
�̂ 2 P and�̂ 2 �̂. Then, sincê�P k

U ! �� ask ! 1, we deduce
that�̂ 2 �(k), for somek � 0, to conclude that̂� 2 �(k ).

Example 3: We continue with the example of single machine con-
sidered in Example 1. As previously noted, the state transition matrix

PU =
p 1� p

1� q q
is aperiodic and irreducible when0 6= p,

q 6= 1. So, under this condition it possesses a unique invariant distri-
bution�� satisfying

��1 :p+ ��2 :(1� q) = ��1 ��1 + ��2 = 1

or, equivalently

��i :(1� p) = ��2 :(1� q) ��1 + ��2 = 1:

Solving for�� from these two equations yields

�� =
1� q

2� p� q

1� p

2� p� q
:

For the unique invariant distribution�� to be safe (so that the
supremal invariant set of safe distributions is nonempty), we must have

1� q

2� p� q
� 1 ^

1� p

2� p� q
�

1

4

, [True ^ (3p� q � 2 � 0)]

, [3p� q � 2 � 0] : (9)

Sincem = [1 1=4]

�"0 = min
m1 � ��1
1� ��1

= 1;
m2 � ��2
1� ��2

=
m2 � ��2
1� ��2

=
3p� q � 2

4(1� q)
:

It follows from (9) that�"0 � 0. Also, sincep, q 6= 1, we have

p+ q < 2, 3p+ 3q < 6

, 3p� q � 2 < 4� 4q

,
3p� q � 2

4(1� q)
< 1

, �"0 < 1:

Next

1� �"0 =1�
3p� q � 2

4(1� q)
=

3(2� p� q)

4(1� q)

and, hence

��" =
3(2� p� q)

4(1� q)
�� +

3p� q � 2

4(1� q)
�:

The algorithm of Theorem 3 terminates in a finite number of itera-
tions, and upon termination computes�U .

V. CONCLUSION

In this note, we introduced the notion of safety specification for sto-
chastic DESs. A safety specification is given as a unit-interval valued
vector that imposes an upper bound on the state probability distribution
vector. Under the assumption of complete observation, we first obtain a
condition that the transition matrix of a state feedback controller must
satisfy so that safety is enforced for arbitrary safe initial states. Next,
we determine the invariant set of safe states of a given state feedback
controller, so that if the system starts in one of the states in the invariant
set, then it always remains in that set. The last result (Theorem 3) is ob-
tained in the setting of irreducible and aperiodic chains, but the result
only relies on the ergodicity of the chain (in which the limiting distri-
bution is independent of the initial distribution), and so the result also
applies to the ergodic Markov chains.
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