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qualitative and quantitative results. The insightful understanding of
these dynamics will help prevent ill-behaviors due to discretization
in digital controllers design. Furthermore, it will help make use
of some discretization behaviors for engineering applications such
as oscillations generation. Of particular interest are the dynamical
behaviors of the trajectories within some specified boundaries. There
may be different domains of attractions within the boundaries for
different symbolic sequences. Experience reveals that there might
be rich bifurcating and even chaotic dynamics within such bounded
regions. Further research is undertaken to investigate this kind of
interesting phenomena from the chaos and fractal points of view.
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Linearization of Discrete-Time Systems via Restricted
Dynamic Feedback

Hong-Gi Lee, Ari Arapostathis, and Steven I. Marcus

Abstract—We extend the results from a previous paper of ours to mul-
tiple-input systems, and utilize these to obtain necessary and sufficient con-
ditions for the linearization of discrete-time nonlinear systems via restricted
dynamic feedback. We observe that for discrete-time nonlinear systems, the
bound on the number of delays (or integrators) needed to synthesize the lin-
earizing dynamic feedback differs from the continuous-time analogue.

Index Terms—Dynamic-feedback linearization, nonlinear discrete-time
control systems, restricted dynamic feedback.

I. INTRODUCTION

Linearization is a widely used tool for the control of nonlinear sys-
tems, because well-developed linear system theory techniques can be
applied to the nonlinear plant, once this is linearized. The transfor-
mations employed for linearization usually involve a state coordinate
change and feedback. Linearization via static feedback has been thor-
oughly studied and an abundance of results exist in the literature ap-
plicable to both continuous-time [8], [11], [15], [24] and discrete-time
nonlinear systems [2], [3], [9], [13], [16], [18]. More recently, the use
of dynamic feedback has been investigated, in the hope of augmenting
the class of linearizable systems. However, despite the significant effort
already invested in studying linearization via dynamic state feedback
[1], [4]–[7], [10], [14], [17], [20]–[23], finding verifiable necessary and
sufficient conditions to characterize the class of such linearizable sys-
tems is still an open problem. Restricted dynamic feedback refers to a
compensator in the feedback loop that consists only of pure integrators.
Leeet al. [17] obtained necessary and sufficient conditions for a con-
tinuous-time system to be linearizable via restricted dynamic feedback
by establishing a bound on the maximum number of integrators needed
for the input channels. In this note, we extend the study in [17] to dis-
crete-time systems. The method relies on the multiple-input version of
results in [16].

Consider a smooth nonlinear discrete-time system

x(t+ 1) = f(x(t); u(t)); f(0; 0) = 0 (1)

with statex 2 � ' n and inputu 2 U ' m.
Definition 1: System (1) is linearizable by a state coordinate

change, if there exists a smooth diffeomorphismT : � ! � which
transforms (1) to a reachable linear system, in the variable� = T (x)

�(t+ 1) = A�(t) +Bu(t); � 2 �:
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Definition 2: System (1) is static-feedback linearizable, if there ex-
ists a smooth map
 : ��U ! U such that the feedbacku = 
(x; v)
results in a closed-loop system

x(t+ 1) = f(x(t); 
(x(t); v(t))); x 2 �; v 2 U

which is linearizable by a state coordinate change.
Dynamic state feedback amounts to the use of a controller with

dynamics

z(t+ 1) = g(x(t); z(t); v(t)); z 2 �c '
s; v 2 U (2)

and a smooth maph : ���c � U ! U , which when combined with
(1) yield the closed-loop system with extended state–space�� �c

x(t+ 1)

z(t+ 1)
=

f(x(t); h(x(t); z(t); v(t)))

g(x(t); z(t); v(t))
: (3)

Definition 3: System (1) is dynamic-feedback linearizable, if there
exists a smooth dynamic feedback (2) which yields a closed-loop
system (3) that is linearizable by a state coordinate change.

Definition 4: System (1) is said to be linearizable via restricted dy-
namic feedback of indexd = (d1; . . . ; dm) 2 m

+ , if there exists a
dynamic compensator of the form

zik(t+ 1) =
zik+1(t); if di � 1; 1 � k � di � 1

vi(t); if di � 1; k = di
(4a)

and a smooth feedbackh = (h1; . . . ; hm), defined by

ui = hi(z; v) =
zi1; if di � 1

vi; if di = 0
(4b)

such that the resulting closed-loop system is static-feedback
linearizable.

In this note, we obtain necessary and sufficient conditions for (1) to
be linearizable via restricted dynamic feedback as defined in Definition
4. First, we extend the results in [16] to multiple-input systems and
then we follow the approach in [17]. The results we obtain are very
similar to the continuous-time case. However, the bound obtained on
the number of necessary delays is smaller than the corresponding one
on the number of integrators.

II. PRELIMINARIES AND DEFINITIONS

In this section, we introduce some basic definitions and then extend
the results of [16] to multiple-input systems. We refer the reader to [12],
[19], and other papers in the references for basic results in nonlinear
systems and differential geometry used in this note.

We viewB := �� U , � : B ! � as a vector bundle over�. With
Bx ' U denoting the fiber overx 2 �, we define, for each nonnegative
integerk, thekth product bundleBk by

Bk =
x2�

Bx� � � � �Bx

k times

:

Thus,Bk is a smooth vector bundle over�, and it may also be viewed
as a vector bundle overBk�1, with � : Bk ! Bk�1 denoting the pro-
jection. Also,B0 ' � denotes the zero-section��f0g. The response
of a discrete-time system to a finite input sequence can be conveniently
represented, albeit reversed in time, if one extends the definition of the
system mapf : B ! � to a mapf : Bk ! Bk�1, for k > 0, by

f(x; u1; . . . ; uk) := (f(x; uk); u1; . . . ; uk�1)

where

uj := uj1 . . . ujm
T

2 U ; 1 � j � k:

Also, fork = 0; f is interpreted as a mapf : B0 ! B0, i.e.,f(x; 0) =
(f(x; 0); 0). Then, thekth compositionfk is well-defined as a map
fromBk to�, and more generally as a map fromB` toB(`�k) , where
( � )+ denotes the positive part of( � ). In particular, when the domain

of fk is selected asB, thenfk : B ! B0 ' � is identified as the
k-step impulse response of the system and we denote it asf̂k. In other
words

f̂1(x; u) := f(x; u)

f̂ `(x; u) := f(f̂ `�1(x; u); 0); ` � 2:

Identifying the fiber ofBk overx 2 � with thek-fold productUk '
U�� � ��U , we often use the convenient notationfkx (u

k) = fk(x;uk),
with uk = (u1; . . . ; uk) representing the generic element inUk.

Definition 5: For eachi 2 f1; . . . ; mg, let �i be the smallest non-
negative integer such that

@f̂� +1

@ui
(0) 2 span

@f̂k+1

@uj
(0) k � 0; j < m(�i � k) + i :

The Kronecker indexes of (1) are defined as the collectionf�ig and
are represented by the multiple-index��� = (�1; . . . ; �m) 2 m

+ .
It is well known that if m

i=1 �i = n, then (1) is reachable around
the origin.

For a nonnegative multiple-index`̀̀ = (`1; . . . ; `m) of lengthm, we
set`max := maxf`1; . . . ; `mg andj`̀̀j :=

i
`i. We also define, for

k � 0

U(`̀̀; k) = spanfuji 2 U
k j 1 � i � m; j > `ig

U?(`̀̀; k) = spanfuji 2 U
k j 1 � i � m; j � `ig (5)

and denote by�`̀̀ the projection ofUk = U(`̀̀; k)� U?(`̀̀; k) onto the
first factor.

The three theorems and the remark that follow are a straightforward
extension of the results in [16]. Thus, we omit the proofs. LetF denote
the mapf� +1

0 : U� +1 ! �, and	 stand for the restriction of
f�0 onU?(���; �max).

Theorem 1: System (1) is linearizable by state coordinate change if
and only if

i) m

i=1 �i = n;
ii) F�(@=@u

`
i) is a well-defined vector field, for eachi = 1; . . . ;m,

and` = 1; . . . ; �i + 1.
Furthermore, � = 	�1(x) is a linearizing state coordinate
transformation.

Theorem 2: System (1) is static-feedback linearizable if and only if

i) m

i=1 �i = n;
ii) F�(�i); i = 1; . . . ; �max � 1, are well-defined distributions,

where

�i = span
@

@u`j
1 � j � m; 1 � ` � i : (6)

We also state a useful variant of Theorem 2.
Theorem 3: System (1) is static-feedback linearizable if and only

if there exist smooth functions i : � ! ;  i(0) = 0, defined for
i 2 J+ := fi j �i > 0g, such that

i) m

i=1 �i = n;
ii) (@ i � f̂

`)=(@u) = 0, for i 2 J+, and` = 1; . . . ; �i � 1;
iii) rankf((@ i � f̂

� )=(@u))(0) j i 2 J+g = jJ+j, wherejJ+j
denotes the cardinality ofJ+.

Remark 1: Hypotheses ii) of Theorem 1 and Theorem 2 can be re-
placed by ii’) and ii”), respectively [16], [25].

ii’) [(@=@u`j); ker (F�)] � ker (F�);1 � j � m; ` � �j + 1.
ii”) [�i; ker (F�)] � �i + ker (F�);1 � i � �max � 1.

III. M AIN RESULTS

In this section, we obtain necessary and sufficient conditions for the
discrete-time nonlinear system (1) to be linearizable via restricted dy-
namic feedback. Even though our approach is analogous to the one
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taken for the continuous-time case [17], the proof for the discrete-time
case turns out to be somewhat simpler.

The closed-loop system of (1) with the compensator (4) is of the
form

x(t+ 1)

z(t+ 1)
=

f(x(t); h(z(t); v(t)))

g(z(t); v(t))

= F (x(t); z(t); v(t))

with x 2 � ' n; z 2 jdj andv 2 U ' m.
Consider the mapF k

0 with domainBk0 ' Uk. Recall the defini-
tions in (5), and observe thatker gk0 = U(d; k). Therefore, if we de-
composeUk = U(d; k) � U?(d; k), it follows that the restriction
gk0 : U?(d; k) ! jdj is a linear isomorphism, providedk � dmax.
Next, define the mapSd : Uk ! Uk by

(Sd(uk))ji =
u
j+d
i ; if j + di � k

0; otherwise .

It follows thatkerSd = U?(d; k) and, hence, the restriction ofSd on
U(d; k) is an isomorphism onto its range. In addition, if�� denotes
the projection�� jdj ! � on the first factor, i.e.,��(x; z) = x, we
obtain�� �F k

0 = fk0 �S
d ��d. Therefore, we have the decomposition

F
k
0 = f

k
0 � S

d
; g

k
0 : U(d; k)� U?(d; k)! �� jdj

which is also depicted in the following commutative diagram:

Definition 6: Given d = (d1; . . . ; dm) 2
m
+ , the relative Kro-

necker indexes~���(d) = (~�1(d); . . . ; ~�m(d)) of (1) are defined as
follows. For eachi 2 f1; . . . ;mg; ~�i(d) is the smallest nonnegative
integer such that

@f̂ ~� (d)+1

@ui
(0)

2 span
@f̂k+1

@uj
(0)

k � 0

j < m(~�i(d) + di � dj � k) + i

:

Observe thatj~���(d)j = j���j. From the previous discussion, we obtain
the following corollary to Theorem 2.

Corollary 1: System (1) is linearizable via restricted dynamic feed-
back if and only if there existsd = (d1; . . . ; dm) 2

m
+ , such that,

with

��d := max
1�i�m

f~�i(d) + dig

~Fd := f
�� +1
0 � Sd : U(d; ��d + 1)! �

andf�ig as defined in (6)

i) m

i=1 �i = n;
ii) ~Fd

� (�i), is a well-defined distribution, fori = 1; . . . ; ��d � 1.
Lemma 1: Suppose (1) is linearizable via restricted dynamic feed-

back of indexd = (d1; . . . ; dm), and for some� � 0

~Fd

� (��) = ~Fd

� (��+1) (7)

with �0 := 0. Then, it is also linearizable via restricted dynamic feed-
back of indexd0 = (d01; . . . ; d

0
m), where

d
0
i =

di; if di � �

di � 1; otherwise:

Proof: Let

J� := fi j di � �g J
c
� := fi j di > �g: (8)

We define, for eachi = � + 2; . . . ; ��d

~�i = span
@

@u`j
j 2 Jc�; di < ` � i :

Assumption (7) of the Lemma implies

~Fd

�
@

@u`j
2 ~Fd

� (��); ` � �+ 1; j 2 J�: (9)

We may assume thatJca 6= �, otherwise the conclusion of the Lemma
is trivially true. By (9)

~Fd

� (�i) = ~Fd

� (�� + ~�i); i = �+ 2; . . . ; ��d: (10)

By Corollary 1, ~Fd

� (�i) is a well-defined distribution, for eachi =
1; . . . ; ��d � 1, anddim( ~Fd

� (��� )) = n. By (9), this assertion is
also true for the map̂Fd, which denotes the restriction of~Fd on the
subspace

Û �� +1
� := U �� +1

u
�� +1
j = 0 j 2 J� :

Observe that the maximum in the definition of��d is attained onJc�.
From (9), we deduce that~���(d0) = ~���(d). Hence,��d = ��d�1. Define
the map

' : U(d; ��d + 1) \ Û �� +1
� ! U(d0; ��d + 1)

by

('(u))ji :=
u
j+1
i ; if i 2 Jca; j � di

u
j
i ; otherwise.

(11)

We obtain

F̂d = f
�� +1

0 � Sd � ' = ~Fd � ': (12)

Combining (10)–(12), we conclude that

~Fd

� (�i) =
~Fd

� (�i); if i � �
~Fd

� (�i+1); if � < i � ��d

and the proof follows from Corollary 1.
Lemma 2: If (1) is linearizable via restricted dynamic

feedback of indexd = (d1; . . . ; dm), and for some� 2
f1; . . . ; ��dg;dim( ~Fd

� (��)) = n, then it is also linearizable
via restricted dynamic feedback of indexd0 = (d01; . . . ; d

0
m), defined

by

d
0
i = minfdi; (�� 1)g; i = 1; . . . ;m:

Proof: Let F : � � �c � U ! � � �c denote the closed-loop
system map, with a compensator of indexd. To simplify the nota-
tion, let ��� denote the Kronecker indexes of the closed-loop system,
i.e., �i = ~�i(d) + di; i = 1; . . . ;m. Recall the definition ofJ� in
(8), and suppose thatJc��1 6= �. By Theorem 3, there exist smooth
functions i : ���c ! such that properties ii)–iii) hold. Observe
that we may choose i; i 2 J��1 \ J+, so that these are independent
of the coordinatesfzj j j 2 Jc��1g. Indeed, we may select a collection
f i j i 2 J��1\J+g such that eachd i is orthogonal to the involutive
distribution(F �� +1

0 )�(�� �1 + �0), where

�0 = span
@

@u`j
j 2 Jc��1; 1 � ` � dj
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and at the same time

rank
@ i � F̂

�

@u
(0) i 2 J��1 \ J+ = jJ��1 \ J+j: (13)

Also,f j jj 2 Jc��1g may be selected in such a manner that eachd j
is orthogonal to(F �� +1

0 )�(�� �1 +�00), with

�00 = span
@

@u`i
i 2 J��1 \ J+; 1 � ` � �i

and they satisfy the rank condition analogous to (13). We use the de-
compositionu = (�u; �uc) where�u = fui j i 2 J��1 \ J+g and�uc

consists of the remaining input coordinates. By construction

@ i � F̂
�

@�uc
(0) = 0 8i 2 J��1 \ J+: (14)

By (13) and (14)

rank
@ i � F̂

�

@�u
(0) i 2 J��1 \ J+ = jJ��1 \ J+j: (15)

Equation (14), together with property ii) of Theorem 3, yields

rank
@ j � F̂

�

@�uc
(0) j 2 Jc��1 = jJc��1j: (16)

We claim that if we modify the collectionf j j j 2 Jc��1g by selecting
 j(x; z) := z

j
1 , ii) and iii) of Theorem 3 still hold. Indeed, forj 2

Jc��1, since�j = dj , and

 j � F̂
`(x; z; u) =

z
j

`+1; if 1 � ` � dj � 1

uj ; if ` = dj
(17)

property ii) follows. Also, (17) implies (16) and

@ j � F̂
�

@�u
(0) = 0 8j 2 Jc��1: (18)

Property iii) follows from (14)–(16).
Consider now the compensator with indexd0 and denote byF 0 and

���0 be the corresponding system map and Kronecker indexes of the
closed-loop system, respectively. Since�0i = �i, for i 2 J��1, and
�0j = �j � 1, for j 2 Jc��1, property i) of Theorem 3 holds. Let the
collectionf ig be as selected beforehand. Note that these are well de-
fined in the new state–space. Property ii) of Theorem 3 easily follows.
Also, (15), (16), and (18) hold forF 0 and���0, which together imply
iii).

Using Lemma 1, we obtain the following.
Lemma 3: Suppose (1) is linearizable via restricted dynamic feed-

back of indexd = (d1; . . . ; dm) and di � 1, for 1 � i � m.
Then, it is also linearizable via restricted dynamic feedback of index
d
0 = (d01; . . . ; d

0

m), whered0i = di � 1, for 1 � i � m.
Proof: Suppose thatdi � 1, for all i 2 f1; . . . ;mg. Then, we

have

~Fd

� (�0) = ~Fd

� (�1) = 0:

The rest follows by Lemma 1.
Lemma 3 implies that if (1) is linearizable via restricted dynamic

feedback, then the linearizing compensator (4) can be chosen so as to
satisfydmin := minfd1; . . . ; dmg = 0. This of course means that a
single-input discrete-time nonlinear system is linearizable via restricted
dynamic feedback only if it is static-feedback linearizable.

Theorem 4: If (1) is linearizable via restricted dynamic feedback,
then a compensator of indexd can be chosen, satisfyingdmin = 0,
anddmax � n � 1, yielding the estimate

jdj � (m� 1)(n� 1): (19)

Proof: By Lemma 1, we may choose the indexd so that

dim( ~Fd

� (�i)) < dim( ~Fd

� (�i+1)); 0 � i � ��d � 1:

Thus,��d � n. Sincedim( ~Fd

� (��� )) = n, applying Lemma 2, we
can choosed such thatdmax � ��d � 1. Therefore,dmax � n � 1.
Also, by Lemma 3,d can be chosen, so as to satisfydmin = 0. Hence,
the estimate in (19) follows.

IV. EXAMPLES

By the results of the previous section, the validity of the conditions
for linearization via restricted dynamic feedback needs to be verified
only over a finite set of indexes. Therefore, we have obtained a set of
decidable necessary and sufficient conditions. The bounds for the com-
pensator index in Theorem 4 are sharp, as can be seen by the following
example.

Example 1: Consider the system

x1(t+ 1) = x2(t) +

m

i=2

x1(t)ui(t)

x`(t+ 1) = x`+1(t) for ` = 2; . . . ; n� 1

xn(t+ 1) =

m

i=1

ui(t):

This system is linearizable via restricted dynamic feedback of index
d1 = 0 anddi = n � 1, for i = 2; . . . ; m. However, it cannot be lin-
earized if the index of the compensator is below the bound established
in Theorem 4. An anonymous referee pointed out the following inter-
esting observation concerning this example. Consider, for simplicity,
the casen = 3 andm = 2, i.e.,

x1(t+ 1)

x2(t+ 1)

x3(t+ 1)

=

x2(t) + x1(t)u2(t)

x3(t)

u1(t) + u2(t)

:

Whenx1 is bounded away from 0, the static feedback

u1 = v2 �
v1 � x2

x1
u2 =

v1 � x2

x1
(20)

yields the linear system

x1(t+ 1)

x2(t+ 1)

x3(t+ 1)

=

v1(t)

x3(t)

v2(t)

:

Using restricted dynamic feedback in the form of the compensator
z1(t+1) = z2(t); z2(t+1) = v2(t), avoids the singularity atx1 = 0
that arises in the static feedback in (20).

Example 2: Consider the system

x1(t+ 1)

x2(t+ 1)

x3(t+ 1)

=

x2(t) + x1(t)u2(t)

u1(t)

u2(t)

: (21)

The system in (21) is linearizable via restricted dynamic feedback of
index(d1; d2) = (0; 1). This feedback yields the closed-loop system

x1(t+ 1)

x2(t+ 1)

x3(t+ 1)

z1(t+ 1)

=

x2(t) + x1(t)z1(t)

v1(t)

z1(t)

v2(t)

: (22)
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If we define new state variables�1 = x1; �2 = x2 + x1z1; �3 = x3,
and�4 = z1, (22) transforms to

�1(t+ 1)

�2(t+ 1)

�3(t+ 1)

�4(t+ 1)

=

�2(t)

v1(t) + (x2(t) + x1(t)z1(t))v2(t)

�4(t)

v2(t)

(23)

and, in turn, (23) can be linearized via the static state feedback

v = 
(x; z; v0) =
v0

1 � (x2 + x1z1)v
0

2

v0

2

:

In the following example, we present a system which is not
linearizable via restricted dynamic feedback, but is dynamic-feedback
linearizable.

Example 3: Consider the system

x1(t+ 1)

x2(t+ 1)

x3(t+ 1)

=

x2(t) + x1(t)(u1(t) + u2(t))

u1(t)

u1(t) + u2(t)

: (24)

The application of Theorem 4, shows that (24) is not linearizable via
restricted dynamic feedback. However, if we letu1 = v1 andu2 =
v2� v1, then (24) transforms to (21). Therefore, (24) is dynamic-feed-
back linearizable.

V. CONCLUSION

We have formulated the problem of linearization via restricted
dynamic feedback for discrete-time nonlinear systems in analogy to
the continuous-time version [17]. We have shown that if a discrete-time
nonlinear system is linearizable via restricted dynamic feedback, it
is also linearizable without using a delay for at least one of the
inputs. This means that the class of single-input systems linearizable
by dynamic feedback is no larger than the class linearizable by static
feedback, a fact which which also holds for continuous-time systems
[17], [22]. We have also obtained sharp upper bounds on the number
of delays necessary for the input channels. This bound isn � 1,
for each channel, whereas the analogous bound for the number of
integrators used in the continuous-time case is2n�3 [17]. Our results
yield verifiable necessary and sufficient conditions for linearization
of discrete-time nonlinear systems via restricted dynamic feedback.
However, the problem of linearization via general dynamic feedback
is still wide open.
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