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Abstract

This paper studies the problem of the existence of stationary optimal policies for finite state controlled Markov chains, with compact
action space and imperfect observations, under the long-run average cost criterion. It presents sufficient conditions for existence of solutions
to the associated dynamic programming equation, that strengthen past results. There is a detailed discussion comparing the different
assumptions commonly found in the literature.
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1. Introduction

Since the pioneering work by Bellman [2] in the 1950s,
Markov decision processes (MDPs) have formed a very ac-
tive research topic due to their wide applicability to prob-
lems in operations research, communication networks, eco-
nomics, and other fields. Special attention has been paid to
the study of models with partial observations. Whereas the
finite state completely observed model is fully understood,
the introduction of system state estimation results in some
mathematical challenges, and there is still ample work that
remains to be done on partially observed models. This is
particularly true for the long-run average optimal control
problem.

We adopt the model in [1,9] for a partially observed
Markov decision process (POMDP) with finite state space
S = X × Y, with X = {1, 2, . . . , n} and Y = {1, 2, . . . , m}.
We denote the set of natural numbers by N, and the set of
non-negative integers by N0. We use capital letters to de-
note random processes and variables and lower case letters
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to denote the elements of a space. Thus, we denote the state
process by {Xt, Yt }t∈N0

, and refer to the second component
Yt as the observation process. The action space U is assumed
to be a compact metric space. The dynamics of the process
are governed by a transition kernel on X × Y given X × U,
which may be interpreted as

Qij (y, u) := Prob (Xt+1 = j, Yt+1 = y|Xt = i, Ut = u).

For fixed y and u, we view Q(y, u) as an n × n substochas-
tic matrix. We assume that u �→ Q(y, u) is continuous, and
that the running cost is a lower semi-continuous function c :
X × U → R+. Only the second component of {Yt } is avail-
able for control purposes and reflecting this we call a se-
quence of controls {Ut } admissible if for each t, Ut is condi-
tionally independent of {Xt ′ , t ′ � t} given {Yt ′ , Ut ′−1, t

′ � t}.
The objective is to minimize over all admissible {Ut } the
cost

lim sup
T →∞

1

T

T∑
t=0

E[c(Xt , Ut )]. (1)

It is well known that for a POMDP model, one can derive
a completely observed (CO) model which is equivalent to
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the original model in the sense that for every control policy
in the POMDP model there corresponds a policy in the CO
model that results in the same cost, and vice versa. For a
discounted optimal control problem over an infinite horizon,
the contraction property of the dynamic programming oper-
ator guarantees the existence of stationary optimal policies,
and thus the problem is adequately characterized. In con-
trast, for the long-run average optimal control problem there
are numerous examples for which the associated dynamic
programming equation has no solution [12].

A commonly used method for studying the problem of
existence of solutions to the average cost dynamic program-
ming equation (ACOE) is the vanishing-discount method, an
asymptotic method based on the solution of the much bet-
ter understood discounted cost problem [6–8,10,12]. There
are two main reasons why this approach is chosen. First, the
theorem of Tauber which relates the asymptotic behavior of
Cesaro sums to the behavior of its discounted averages. Sec-
ond, it is well known, at least in the case of finite state and
action models, that if the ACOE admits a bounded solution,
then one such solution can always be obtained as the limit
of a sequence of differential discounted value functions, as
the discount factor tends to 1. In Theorem 7 we extend this
result to models with a compact action space.

Most of the well known sufficient conditions for the ex-
istence of solutions to the ACOE, including Ross’s renewa-
bility condition [14], Platzman’s reachability–detectability
condition [12], and Stettner’s positivity condition [15], im-
pose assumptions that need to be satisfied by all policies.
As a result, these conditions fail in even some simple prob-
lems that are known to possess stationary optimal policies.
We discuss various assumptions in detail in Section 3. Here,
we present a brief description to help guide the reader. We
use the following notation: For k ∈ N, let yk = (y1, . . . , yk)

and uk = (u0, . . . , uk−1) ∈ Uk denote elements of Yk and
Uk , respectively. Define

Q(yk, uk) = Q(y1, u0)Q(y2, u1) · · · Q(yk, uk−1). (2)

Similarly, if we let Y k and Uk represent the vector-valued
random variables (Y1, . . . , Yk) and (U0, . . . , Uk−1), respec-
tively, the random variable Q(Yk, Uk) is defined in complete
analogy to (2).

In [4], existence of stationary optimal policies is studied
under the following assumption: For some k�1,

min
(yk,uk)∈Yk×Uk

[
minijQij (y

k, uk)

maxijQij (yk, uk)

]
> 0. (3)

However, the proof supplied in [4] has an error (see [5]).
In an earlier unpublished work, the same author considered
the following condition: There exists k�1, and � > 0 such
that, for all admissible {Ut }

P(Xk = j |X0 = i, Ut−1, Yt , 1� t �k)�� ∀i, j ∈ X.

This condition is equivalent to the requirement that for all
yk ∈ Yk and uk ∈ Uk ,

Qij (y
k, uk)��

∑
�∈X

Qi�(y
k, uk) ∀i, j ∈ X. (4)

Clearly, (3) implies (4). Also (4) implies Platzman’s condi-
tions, which are discussed in Section 3. However, Platzman
in [12] assumes that U is finite, and as far as we know, there
is no satisfactory proof for the existence of solutions to the
ACOE under (4), when U is a compact metric space. In this
work, we establish the existence of solutions to the ACOE
under conditions that are weaker than (4). These conditions
are stated in Section 3 in a policy independent form as As-
sumption 4, and also in an even weaker form as Assumption
2, which needs only be satisfied over the stationary optimal
policies of the discounted problem. As shown through two
examples in Section 5, if some structural properties of the
discounted optimal policies are known, these conditions can
be readily verified.

We also show that existence of solutions to the ACOE is
guaranteed by the following condition, which in some sense
is a dual to (4): There exists k�1, and � > 0 such that, for
all yk ∈ Yk and uk ∈ Uk ,

Qij (y
k, uk)��

∑
�∈X

Q�j (y
k, uk) ∀i, j ∈ X. (5)

Condition (5) is weaker than the positivity assumption in
[15], and we use it in an even weaker form which is stated
in Assumption 5 in Section 3.

In a recent series of papers [6–8] introduced the notion
of “wide sense admissible” controls, and has used cou-
pling arguments to obtain the “vanishing discount” limit.
The method in [7,8] is fairly sophisticated and the results
are applicable to models with non-finite state space. It is
more appropriate to compare the results in this paper with
[6], where the state space is assumed finite. There are two
key differences between [6] and this paper: (a) the main as-
sumption in [6] (Assumption 3.2) holds over all wide sense
admissible controls, whereas the assumptions in this paper
are stated over the class of stationary, discounted optimal
controls, and (b) the vanishing discount limit results in a
continuous limiting value function in [6], whereas this is not
necessarily the case in this paper. Example 15 in Section 5
exhibits a model for which Assumption 6 in Section 3 holds
but Assumption 3.2 of [6] fails.

The paper is organized as follows: In Section 2 we summa-
rize the construction of the equivalent CO model. In Section
3 we state and compare various assumptions in the litera-
ture. Section 4 contains the main results of the paper. Finally,
Section 5 demonstrates the results through three examples.

2. The equivalent CO model

In this section we summarize the equivalent CO model,
following for the most part [1,9]. Let � := P(X) denote
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the set of probability distributions on X. Let 1 denote the
element of Rn with entries equal to 1 and �̄ be the element
of � satisfying �̄(i) = 1/n, for all i ∈ X. Viewing � ∈ �

as a row vector, we define

V (�, y, u) := �Q(y, u)1,

T (�, y, u) :=
{ �Q(y, u)

V (�, y, u)
if V (�, y, u) �= 0,

�̄ otherwise.
(6)

Eq. (6) is known as the filtering equation. Note that when
V (�, y, u) = 0, then T (�, y, u) can be arbitrarily chosen.
Here, we choose to specify its value as �̄ only for conve-
nience, and we use this definition throughout the paper. The
state space of the equivalent CO model is � ×Y, with tran-
sition kernel given by

K(B, y|�, u) = V (�, y, u)IB(T (�, y, u)), B ∈ B(�),

where B(�) denotes the Borel �-field of �, and IB denotes
the indicator function of B. The running cost of the CO
model is chosen as

c̃(�, u) :=
∑
x∈X

c(x, u)�(x), � ∈ �, u ∈ U.

If �0 ∈ P(X × Y) is the initial state distribution of the
POMDP model, then disintegrating this distribution as
�0(x, y)=q0(y)�0(x|y), where q0 is the marginal on Y, we
select the initial distribution of the equivalent CO model as
� ∈ P(� × Y) defined by

�(�, y) = q0(y)I�(�0(·|y)). (7)

In this manner we obtain a CO model (� × Y, U,K, c̃),
with state process {�t , Yt }.

The history spaces Ht , t ∈ N0, of (� × Y, U,K, c̃) are
defined by H0 := � × Y, and

Ht+1 := Ht × U × � × Y, t ∈ N0.

In other words, an element ht ∈ Ht is of the form

ht = (�0, y0, u0, �1, y1, u1, . . . , ut−1, �t , yt ).

An admissible strategy or admissible policy � is a sequence
{�t }∞t=0 of Borel measurable stochastic kernels on U given
Ht . We denote the set of admissible policies by �. An ad-
missible policy is called deterministic if �t is a point mass,
and for such a policy we identify �t with a measurable map
from Ht into U. Note that the model (�, U, K̃, c̃), with
state process {�t } and transition kernel

K̃(B|�, u) =
∑
y∈Y

K(B, y|�, u), B ∈ B(�)

is also a completely observed MDP, and is equivalent to
the POMDP model. A policy � ∈ � is called Markov if
�t (·|ht ) = �t (·|�t ), for all t ∈ N0, and in addition it is
called stationary if t �→ �t is constant. We let �M, �S,

and �SD denote the sets of all Markov, stationary, and sta-
tionary deterministic policies, respectively.

For each initial distribution � ∈ P(� × Y) as in (7) and
� ∈ �, there exists a unique probability measure P�

� induced
on the sample path of the process (�t , Yt+1, Ut , t ∈ N) [3].
We let E�

� denote the associated expectation operator. We
define the long-run average cost

J (�, �) := lim sup
T →∞

1

T

T −1∑
t=0

E�
�[c̃(�t , Ut )]

and the �-discounted cost, � ∈ (0, 1),

J�(�, �) :=
∞∑
t=0

�tE�
�[c̃(�t , Ut )].

Minimizing J (�, �) over all � ∈ � is equivalent to the
optimization problem in (1). Without loss of generality, we
may assume that � ∈ P(�×Y) is a point mass concentrated
at some (�, y) ∈ �×Y. Then, we may use without ambiguity
the notation P�

� instead of P�
�.

We next state the following well known characterization
of �-discounted optimal policies [11, Chapter 2].

Lemma 1. The �-discounted value function, defined by

h�(�) = inf
�∈�

J�(�, �) (8)

satisfies the �-discounted cost optimality equation (DCOE):

h�(�) = min
u∈U

{
c̃(�, u) + �

∫
�

h�(�′)K̃(d�′|�, u)

}
. (9)

Furthermore, h�(�) in (8) is the unique solution to (9), in the
space of bounded lower-semicontinuous functions, which is
denoted by in LCb(�), and the minimizer of (9) denoted
by �� is optimal, i.e., h�(�) = J�(�, ��).

It is well known that h� is concave on � [12]. This prop-
erty plays a crucial role in our analysis.

3. Assumptions

Various necessary conditions for the existence of a solu-
tion to the ACOE have been proposed in the literature. We
present here two new conditions and compare them to the
hypotheses used in [4,12,15].

Assumption 2 (Interior accessibility). Define

�	 := {� ∈ � : �(i)�	, ∀ i ∈ X}.
There exist constants 	 > 0, k0 ∈ N and �0 < 1 such that if
�∗(�) ∈ arg min�∈� h�(�) then for each � ∈ [�0, 1) we
have

max
1�k �k0

P
��

�∗(�)
(�k ∈ �	)�	. (10)
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Since h� is concave, it attains its minima on the extreme
points of �, which is a finite set. This simplifies the verifi-
cation of (10), as the examples in Section 5 show. Assump-
tion 2 is stated in terms of the �-discounted optimal policy
��. However, it can be replaced by a stronger condition, As-
sumption 4 below, which does not necessitate knowledge of
��. First we need to introduce some notation.

Definition 3. For yk ∈ Yk and uk ∈ Uk , k ∈ N, let
Q(yk, uk) be the expression defined in (2). Recall that �̄
stands for the element in �, with �̄(i) = 1/n, for all i ∈ X.
We use the notation

V (�, yk, uk) = �Q(yk, uk)1,

T (�, yk, uk) =
⎧⎨
⎩

�Q(yk, uk)

V (�, yk, uk)
if V (�, yk, uk) �= 0,

�̄ otherwise.

Assumption 4. There exists k0 ∈ N such that, for each
i ∈ X,

max
1�k �k0

min
uk∈Uk

{
max
yk∈Yk

min
j∈X

Qij (y
k, uk)

}
> 0.

Perhaps a more transparent way of stating Assumption
4 is that for each i ∈ X and for each sequence uk0 =
(u0, . . . , uk0−1), there exists some k�k0 and a sequence
yk = (y1, . . . , yk), such that Qij (y

k, uk) > 0, for all j ∈ X.
It is simple to show that (4) implies Assumption 4. Indeed,

let uk ∈ Uk be arbitrary and note that∑
yk∈Yk

∑
�∈X

Qi�(y
k, uk) = 1

	⇒ max
yk∈Yk

∑
�∈X

Qi�(y
k, uk)� 1

mk
.

Hence (4) implies that

max
yk∈Yk

Qij (y
k, uk)� �

mk
∀i, j ∈ X.

Platzman utilizes a reachability condition, which amounts
to the existence of 
1 > 0 and k0 ∈ N such that

sup
�∈�

max
0�k �k0

E�
�[�k(j)]�
1 ∀j ∈ X, ∀� ∈ �, (11)

together with a detectability condition that can be stated as
follows: First define a metric D on � by

D(�, �′) = max {d(�, �′), d(�′, �)},
where

d(�, �′) = 1 − min

{
�(i)

�′(i)
: �′(i) > 0

}
.

Let ei denote the row vector with the ith component equal
to 1 and all other components equal to 0. If for an n × n

substochastic matrix Q we set

�(Q) := max
i,i′∈X

{
D

(
eiQ

eiQ1
,

ei′Q

ei′Q1

)
: eiQ �= 0, ei′Q�=0

}
,

then Platzman’s detectability condition asserts that there is
constant 
2 < 1 and k ∈ N, such that

E�
�[�(Q(Y k, Uk))]�
2 ∀� ∈ � ∀� ∈ �. (12)

For a substochastic matrix Q �= 0, �(Q) < 1 if and only if
Q is subrectangular, and this fact is utilized in the proofs
of the results in [12]. Hence Assumption 4 does not imply
(12). Also, as mentioned earlier the action space is assumed
finite in [12].

Runggaldier and Stettner in [15], specialize the model
to the case where {Xt } is a controlled Markov chain with
transition kernel P on X given X × U, and the observations
are governed by a kernel G on Y given X. Representing P
as a n × n matrix P(u), u ∈ U, and defining

O(y) = diag(G(y|1), . . . , G(y|n)) ∈ Rn×n,

then the transition kernel Q of the partially observed model
takes the form Q(y, u) = P(u)O(y), u ∈ U, y ∈ Y. The
following positivity condition is imposed in [15]:

min
i,j∈X

inf
u,u′∈U

min
{k∈X:[P(u)]ik>0}

[P(u′)]jk

[P(u)]ik > 0. (13)

Note that (13) does not imply (11). However, (13) is stronger
than (12).

Provided the running cost c is continuous, we can weaken
Assumption 2 as follows.

Assumption 5 (Relative interior accessibility). The running
cost c is continuous, and there exist 	 > 0, k0 ∈ N, and
�0 < 1 such that for each � in [�0, 1) we have

max
1�k �k0

P
��

�∗
(T (�∗, Y k, Uk)�	T (�∗, Y k, Uk),

V (�∗, Y k, Uk)�	V (�∗, Y k, Uk))�	, (14)

where �∗=�∗(�) and �∗=�∗(�) are any pair of points in �

at which h� attains its minimum and maximum, respectively.

Since �∗ is not known, nor does it admit a finite set of
values like �∗, we also state a condition that is independent
of �∗.

Assumption 6. There exist constants 	 > 0, k0 ∈ N and
�0 < 1 such that for each � in [�0, 1) and all � ∈ X

max
1�k �k0

P
��

e�

⎛
⎝1

	

∑
j ′∈X

Q(Yk, Uk−1)ij ′ �Q(Yk, Uk−1)�j

� 	Q(Yk, Uk−1)ij , ∀i, j ∈ X

⎞
⎠ �	. (15)
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Clearly, Assumption 6 implies Assumption 5. Note how-
ever that even if we require Assumption 6 to hold over all
� ∈ �SD, this does not imply detectability, i.e., condition
(12), since (15) can hold even if the matrices involved are
not subrectangular. Observe also that (15) follows from (5).

4. Main results

The results are stated in two theorems and two lemmas.
Theorem 7 shows that existence of a bounded solution to
the ACOE is equivalent to the uniform boundedness of the
differential discounted value functions, which are defined by

h̄�(�) := h�(�) − inf
�′∈�

h�(�′).

Lemmas 9 and 10 establish that under Assumptions 2 and
5, respectively, the family {h̄� : � ∈ (0, 1)} is uniformly
bounded. Finally, Theorem 11 asserts the existence of sta-
tionary optimal policies.

Theorem 7. There exists a solution (�, h), with � ∈ R and
h : � → R+, a bounded function, to the ACOE

� + h(�) = min
u∈U

{
c̃(�, u) +

∫
�

h(�′)K̃(d�′|�, u)

}
(16)

if and only if {h̄� : � ∈ (0, 1)} is uniformly bounded.

Proof. We use the notation

‖c‖∞ := max
x∈X,u∈U

c(x, u),

span(h�) := sup
�′∈�

h�(�′) − inf
�′∈�

h�(�′).

Necessity is standard and well known, since, as shown
in [10], if h is a bounded solution to the ACOE then
span(h�)�2span(h) for all � ∈ (0, 1). To show sufficiency,
suppose that for some constant M0 ∈ R, span(h�)�M0 for
all � ∈ (0, 1). Write (9) as

(1 − �)h�(�∗) + h̄�(�)

= inf
u∈U

{
c̃(�, u) + �

∫
�

h̄�(�′)K̃(d�′|�, u)

}
. (17)

Let (h�)∗ := inf�′∈� h�(�′). Since 0�h�(�)�1/(1 −
�)‖c‖∞, for all � ∈ �, it follows that the set {(1 −
�)(h�)∗, � ∈ (0, 1)} is uniformly bounded. By the
Bolzano–Weierstrass Theorem, along some sequence
{�n}∞n=0, tending to 1,

(1 − �n)(h�)∗ −→ � as n → ∞
for some � ∈ R. Since the family {h̄�} is concave and
bounded, it is equi-Lipschitzian on each compact subset of
the relative interior of each facet of � (see [13, p. 88, Theo-
rem. 10.6]). Since � has finitely many facets, using Ascoli’s

theorem, we conclude that {h̄�} converges pointwise along
some subsequence {�′

n} of {�n} to some function h. Define

F�(�, u) := c̃(�, u) + �
∫
�

h̄�(�′)K̃(d�′|�, u), � < 1,

F1(�, u) := c̃(�, u) +
∫
�

h(�′)K̃(d�′|�, u).

Taking limits as �′
n → 1 in (17) we obtain

� + h(�) = lim
n→∞ inf

u∈U
F�′

n
(�, u)

� inf
u∈U

lim
n→∞ F�′

n
(�, u) = inf

u∈U
F1(�, u). (18)

Since h, being concave, is lower-semicontinuous, the ‘inf’ in
the last line of (18) can be replaced by a ‘min’. Fix �̂ ∈ �,
and let ûn ∈ arg minu{F�′

n
(�̂, u)}, n = 1, 2, . . ., be an ar-

bitrary sequence. Extract a convergent subsequence {u∗
n} ⊂

{ûn} and let u∗∞ denote its limit point. Also, let {�′′
n} denote

the corresponding subsequence of {�′
n}, i.e.,

u∗
n ∈ arg min

u
{F�′′

n
(�̂, u)}.

Since T (�̂, y, u) and V (�̂, y, u) are continuous in u, then
given 
 > 0, we can select n
 ∈ N, such that, on the set
{y ∈ Y : V (�̂, y, u∗∞) �= 0},
T (�̂, y, u∗

n)�(1 − 
)T (�̂, y, u∗∞), (19a)

V (�̂, y, u∗
n)�(1 − 
)V (�̂, y, u∗∞) (19b)

for all n�n
, and simultaneously, by the lower semi-
continuity of u �→ c̃(�̂, u),

c̃(�̂, u∗
n)�(1 − 
)c̃(�̂, u∗∞) ∀n�n
. (20)

By (19a)

1



[T (�̂, y, u∗

n) − (1 − 
)T (�̂, y, u∗∞)] ∈ �.

Hence using the concavity of h̄� we obtain

h̄�(T (�̂, y, u∗
n))� h̄�(T (�̂, y, u∗∞)) − 
 span(h̄�)

� h̄�(T (�̂, y, u∗∞)) − 
M0 (21)

for all � ∈ (�0, 1). Multiplying both sides of (21) by
V (�̂, y, u∗

n), using (19b) to strengthen the inequality, sum-
ming over y ∈ Y, and evaluating along the subsequence
{�′′

n}, we obtain,∫
�

h̄�′′
n
(�′)K̃(d�′|�̂, u∗

n)

�(1 − 
)

∫
�

h̄�′′
n
(�′)K̃(d�′|�̂, u∗∞) − 
M0. (22)

Adding (20) and (22) yields

F�′′
n
(�̂, u∗

n)�(1 − 
)F�′′
n
(�̂, u∗∞) − 
M0.
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Therefore,

lim
n→∞ inf

u∈U
F�′′

n
(�̂, u) = lim

n→∞ F�′′
n
(�̂, u∗

n)

�(1 − 
) lim
n→∞ F�′′

n
(�̂, u∗∞) − 
M0

= (1 − 
) F1(�̂, u∗∞) − 
M0

�(1 − 
) inf
u∈U

F1(�̂, u) − 
M0. (23)

Since (23), holds for arbitrary �̂ ∈ � and 
 > 0, then to-
gether with (18) we deduce

� + h(�) = min
u∈U

F1(�, u),

thus obtaining (16). �

Remark 8. Since the discounted value functions are con-
cave, Theorem 7 asserts that if the ACOE admits a bounded
solution, then it admits a concave one as well.

Lemma 9. Under Assumption 2, {h̄�, � ∈ [�0, 1)} is uni-
formly bounded on �.

Proof. Dropping the dependence on �, in order to simplify
the notation, let �∗ be a point in � at which h� attains its
minimum. By (9), for each positive integer k ∈ N, we have

h�(�∗) = E
��

�∗

[
k−1∑
t=0

�t c̃(�t , Ut ) + �kh�(�k)

]

��kE
��

�∗
[h�(�k)]. (24)

By (24),

span(h�)� sup
�∈�

h�(�) − �kE
��

�∗
[h�(�k)]

= (1 − �k) sup
�∈�

h�(�) + �kE
��

�∗

×
[

sup
�∈�

h�(�) − h�(�k)

]
. (25)

Note that if �′ ∈ �	 then

�̃ := 1
1−	 (�′ − 	�) ∈ � ∀� ∈ �.

Hence, since h� is concave,

h�(�) − h�(�′)�(1 − 	)[h�(�) − h�(�̃)]
�(1 − 	) span(h�) (26)

for all � ∈ � and �′ ∈ �	. Fix � ∈ [�0, 1). By Assump-
tion 2, there exists k′ �k0 such that P

��

�∗(�)
(�k′ ∈ �	)�	.

Therefore, by (26),

E
��

�∗

[
sup
�∈�

h�(�) − h�(�k′)

]

�P
��

�∗(�)
(�k′ ∈ �	)(1 − 	)span(h�)

+ (1 − P
��

�∗(�)
(�k′ ∈ �	))(1 − 	) span(h�)

�(1 − 	2)span(h�). (27)

Thus, by (25) and (27),

span(h�)�(1 − �k′
) sup

�∈�

h�(�)

+ (1 − 	2)span(h�). (28)

Since

(1 − �k′
) sup

�∈�

h�(�)�(1 + � + · · · + �k′−1)‖c‖∞

�k0‖c‖∞,

inequality (28) yields

span(h�)� k0

	2 ‖c‖∞ ∀� ∈ [�0, 1),

and the proof is complete. �

Note that every pair (�, �) ∈ �SD×� induces in a natural
manner a non-stationary policy (�, �) = {�t : t ∈ N0},
where each �t is a measurable map from Ht into U, as
follows: For t = 0, set �0 = � and �0 = �(�0), and define
inductively

�t = T (�t−1, yt , �(�t−1)),

�t = �(�t ).

Thus, with (�, �) viewed as a parameter, �t =�t (y1, . . . , yt )

is a measurable map from Yt into U.

Lemma 10. Under Assumption 5, {h̄�, � ∈ [�0, 1)} is uni-
formly bounded on �.

Proof. Fix k ∈ N at the value that attains the maximum in
(14). Let yk �→ uk∗(yk) be the map from the sequence of
observations yk ∈ Yk to the sequence of actions of the policy
(��, �∗), which was defined in the paragraph preceding
Lemma 10. In order to simplify the notation define

V∗(yk) := V (�∗, yk, uk∗(yk)),

V ∗(yk) := V (�∗, yk, uk∗(yk)),

and analogously, T∗(yk) and T ∗(yk). Since (��, �∗) is
suboptimal relative to the initial distribution �∗ and optimal
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relative to �∗, we obtain from (9)

h�(�∗)�k0‖c‖∞ + �k
∑

yk∈Yk

V ∗(yk)h�(T ∗(yk)), (29a)

h�(�∗)��k
∑

yk∈Yk

V∗(yk)h�(T∗(yk)). (29b)

Let

Y := {yk ∈ Yk : T∗(yk)�	T ∗(yk), V ∗(yk)�	V∗(yk)}.

Observe that by the definition of V∗

P
��

�∗
(Y k = yk) = V∗(yk).

Hence, by Assumption 5,

∑
yk∈Y

V∗(yk)�	. (30)

Also, if yk ∈ Y then

�̃(yk) := T∗(yk) − 	T ∗(yk)

1 − 	
∈ �.

Decomposing the summation in (29b) over the sets Y and
Yc=Yk\Y, then replacing T∗(yk) by 	T ∗(yk)+(1−	)�̃(yk)

in those terms that yk ∈ Y, and using convexity, we obtain

h�(�∗)��k
∑

yk∈Yc

V∗(yk)h�(T∗(yk))

+ �k
∑
yk∈Y

V∗(yk)[	h�(T ∗(yk))

+ (1 − 	)h�(�̃(yk))]. (31)

Subtracting (31) from (29a), we get

span(h�)

�k0‖c‖∞ + �k
∑

yk∈Yc

V ∗(yk)h�(T ∗(yk))

− �k
∑

yk∈Yc

V∗(yk)h�(T∗(yk))

+ �k
∑
yk∈Y

[V ∗(yk) − 	V∗(yk)]h�(T ∗(yk))

− �k
∑
yk∈Y

(1 − 	)V∗(yk)h�(�̃(yk)). (32)

Using the identity

∑
yk∈Yk

V∗(yk) =
∑

yk∈Yk

V ∗(yk),

to add and subtract terms as needed, (32) is equivalent to

span(h�)

�k0‖c‖∞ + �k
∑

yk∈Yc

V ∗(yk)[h�(T ∗(yk)) − h�(�∗)]

− �k
∑

yk∈Yc

V∗(yk)[h�(T∗(yk)) − h�(�∗)]

+ �k
∑
yk∈Y

[V ∗(yk) − 	V∗(yk)][h�(T ∗(yk))

− h�(�∗)] − �k
∑
yk∈Y

(1 − 	)V∗(yk)

× [h�(�̃(yk)) − h�(�∗)]. (33)

Strengthening the inequality in (33) by discarding the third
and the fifth terms on the right-hand side which are negative,
and then evaluating at � = 1, we obtain

span(h�)�k0‖c‖∞ +
∑

yk∈Yc

V ∗(yk)span(h�)

+
∑
yk∈Y

[V ∗(yk) − 	V∗(yk)]span(h�)

= k0‖c‖∞ +
∑

yk∈Yk

V ∗(yk)span(h�)

− 	
∑
yk∈Y

V∗(yk)span(h�)

�k0‖c‖∞ + (1 − 	2)span(h�),

where the last inequality is due to (30). Therefore,

span(h�)� k0

	2 ‖c‖∞ ∀� ∈ (�0, 1),

and the proof is complete. �

Theorem 11. Under either Assumptions 2 or 5, there exist
a constant � and a concave function h : � → R+ such that
(�, h) is a solution of (16). Furthermore, �=inf�∈� J (�, �).
If �∗ : � → U is a measurable selector of the minimizer in
(16), then �∗ ∈ �SD is optimal, i.e., J (�, �∗) = �, for all
initial distributions �.

Proof. Using Lemmas 9 and 10 and Theorem 7, we con-
clude that there exists a solution (�, h) to (16), with h a con-
cave function. Then, since the function inside the minimum
in (16) is lower-semicontinuous, there exists a measurable
map �∗ : � → U, which is a selector from the set-valued
minimizer. Hence �∗ ∈ �SD. Optimality of �∗ follows as in
[11, Chapter 3]. �

5. Examples

We examine the well known machine replacement
problem to some detail. This example fails to fulfill the
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positivity assumption in [15] and the detectability condition
in [12]. However, as we show it satisfies Assumption 2. The
description of this problem is the following.

Example 12. Consider a system with state space X ={0, 1}
where 0 is the ‘good’ state and 1 is the ‘down’ state. The
action space is U = {0, 1} where 0 means to operate the
system and 1 to repair the system. If the system is in state 0
and is operated then it fails with some positive probability.
If the system is in state 1, it stays in that state, unless it is
repaired, in which case the system moves to state 0 with a
high probability (but not with certainty). Therefore, the state
transition probability P(u) of the system is specified by

P(0) =
[

1 − � �
0 1

]
, P (1) =

[
1 0
� 1 − �

]
,

where � ∈ (0, 1) is the one-step probability of failure and � ∈
(0.5, 1] is the probability of success of the repair operation.
Suppose the correct observation rate is q ∈ (0.5, 1), i.e.,
Y={0, 1}, and the observations evolve according to a kernel
G(y|x), with G(y|x) = q, if x = y, and G(y|x) = 1 − q, if
x �= y. If we define

O(0) :=
[
q 0
0 1 − q

]
, O(1) :=

[
1 − q 0

0 q

]
,

then the transition kernel Q of the partially observed system
is given by

Q(y, u) = P(u)O(y), u, y ∈ {0, 1}.

The cost function c(x, u) is given by c(0, 0)=0, c(1, 0)=C,
and c(j, 1) = R, j ∈ X, satisfying 0 < C < R.

If � is represented by [1 − pp] where p ∈ [0, 1] is the
probability that the system is down, then the �-discounted
value function h� satisfies:

h�(�)

= min

⎧⎨
⎩Cp + �

∑
y∈Y

V (�, y, 0)h�(T (�, y, 0)),

R + �
∑
y∈Y

V (�, y, 1)h�(T (�, y, 1))

⎫⎬
⎭ .

We next show that this example satisfies Assumption 2.

Theorem 13. In Example 12, the �-discounted optimal pol-
icy satisfies

(i) ��(�∗) = 0.
(ii) �∗ = [1 0].

Proof. To show (i) we argue by contradiction. Suppose that
��(�∗) = 1. Then

h�(�∗) = R + �
1∑

y=0

V (�∗, y, 1)h�(T (�∗, y, 1))

�R + �h�(�∗).

Thus h�(�∗)�R/(1 − �). Consider the policy �̂ = {�t }∞t=0,
with �t = 0 for all t. Under this policy, the machine is never
repaired so the incurred value function h�̂

�(�∗) does not ex-

ceed
∑∞

t=0(�
tC)=C/(1−�). This contradicts the optimal-

ity of ��, and hence ��(�∗) = 0.
Next we show (ii). Since h� is convex, the only candidates

for the minimizer �∗ are [0 1] and [1 0]. Suppose �∗ =[0 1].
By (i) ��(�∗)= 0, and therefore, if the initial distribution is
�∗ the machine stays in the down state and the incurred cost
is h�(�∗) = C/(1 − �). However, if the initial distribution
is [1 0], then under the policy �̂ defined earlier, the incurred
cost is at most �C/(1 − �), which is less than h�(�∗). This
leads to contradiction and proves that �∗ = [1 0]. �

Using Theorem 13, if

	 = min{(1 − q)�, (1 − q)(1 − �)},

then

P
��

�∗
(�1(j)�	, ∀j ∈ X) = 1 ∀� ∈ (0, 1).

Consequently, Assumption 2 is satisfied. However, due to
the zeros in the transition kernels, this example does not
satisfy the positivity assumption proposed in [15]. Similarly
Platzman’s detectability condition is not satisfied, since this
condition needs to be met by all admissible policies, and
the policy �̂ used in the proof of Theorem 13 provides a
counterexample.

Now we study a modified version of Example 12 to com-
pare some of the assumptions discussed in Section 3.

Example 14. The state space is X={0, 1, 2}, and the states 0,
1 and 2 are interpreted as good, in need of maintenance, and
down, respectively. The action space is the set {0, 1} where
0 means operate and 1 repair. Assume that the running cost
satisfies

0�c(0, 0) < c(1, 0) < c(2, 0) < c(j, 1) < ∞ ∀j ∈ X.

Operating the machine causes it to deteriorate statistically
over time, and when the repair action is chosen, the ma-
chine’s state may be improved. This is reflected in the state
transition probabilities, which are selected as follows

P(0) =
[�1 �2 1 − �1 − �2

0 �3 1 − �3
0 0 1

]
, P (1) =

[ 1 0 0
�4 1 − �4 0
�5 1 − �5 0

]
.
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We assume that the parameters �i are non-zero. The obser-
vation kernel takes the general form

O(y) =
[

q1y 0 0
0 q2y 0
0 0 q3y

]
,

with
∑

y∈Y qiy = 1 for each i ∈ X.

Using arguments similar to those in Example 12 we can
show that ��(�∗) = 0 where �∗ = argmin�∈� h�(�) and
�∗ = [1 0 0] or [0 1 0] (this depends on the transition param-
eters and the cost function). When �∗ = [1 0 0], we distin-
guish the following two cases:

(C1) There exists an observation y ∈ Y such that q1y , q2y ,
and q3y are all positive.

(C2) The observation y=2 identifies the state with certainty,
i.e.,

O(2) =
[0 0 0

0 0 0
0 0 1

]
,

while the other two observation kernels are given by

O(0) =
[

q 0 0
0 1 − q 0
0 0 0

]
, O(1) =

[1 − q 0 0
0 q 0
0 0 0

]
,

where we assume q ∈ (.5, 1).

In (C1) Assumption 2 is satisfied but the renewability con-
dition in [12] fails. In (C2) the information state [0 0 1] is
recurrent, and thus the renewability condition in [12] is sat-
isfied. However, under any policy, the information state �t

lies on the boundary of � for all t �1, and hence Assump-
tion 2 fails. Finally, we note that in both cases, neither the
positivity assumption in [15] nor the detectability condition
in [12] is satisfied due to the appearance of zeros in the tran-
sition kernels, but Assumption 5 is met as can be established
by arguments similar to those used for Example 12.

Example 15. Consider Example 12 with �=0 and �=1. It is
fairly simple to verify that the policy �∗(�)=0, if �=[1 0],
and �∗(�) = 1, otherwise, is average cost optimal (and also
�-discounted optimal for � sufficiently large). Note then that
Assumption 6 holds. Furthermore, the pair (�, h) with �= 0
and h(�) = 0, if � = [1 0], and h(�) = R, otherwise, is a
solution of (16). Since h is discontinuous Assumption 3.2 of
[6] fails. This can also be directly verified by considering a

pair of chains with initial laws [1 0] and [0 1], respec-
tively, governed by the policy �̂, defined in the proof of
Theorem 13.
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