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Optimal Power Allocation for a Time-Varying
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Abstract—This paper studies the problem of minimizing the
queueing delay for a time-varying channel with a single queue,
subject to constraints on the average and peak power. First, by sep-
arating the time-scales of the arrival process, the channel process
and the queueing dynamics it derives a heavy-traffic limit for the
queue length in the form of a reflected diffusion process. Given
a monotone function of the queue-length process that serves as a
penalty, and constraints on the average and peak available power,
it shows that the optimal power allocation policy is a channel-state
based threshold policy. For each channel state there corresponds
a threshold value of the queue length, and it is optimal to transmit
at peak power if the queue length exceeds this threshold, and
not transmit otherwise. Numerical results compare the optimal
policy for the original Markovian dynamics to the threshold policy
which is optimal for the heavy-traffic approximation, to conclude
that that latter performs very well even outside the heavy-traffic
operating regime.

Index Terms—Controlled diffusion, fading channel, heavy-
traffic, power allocation.

I. INTRODUCTION

WITH THE widespread deployment of wireless and
ad-hoc networks, the energy-efficiency of wireless

transmission in a fading channel has attracted much attention.
It is now well understood that a transmission scheme that
takes advantage of the time-varying character of a channel can
significantly improve the use of scarce energy resources. As an
extreme case, the policy that transmits only when the channel
is in the best state can achieve the best energy efficiency while
resulting in arbitrary long delay. Thus, there is clearly a tradeoff
between energy efficiency and delay constraints.

The problem of energy-efficient scheduling over a fading
wireless channel has been studied under different delay con-
straints in the recent past [1]–[3]. In [1] and [2], the authors
consider scheduling under a hard delay constraint, and max-
imize the throughput given energy and timing constraints. In
[2], a finite horizon stochastic control formulation is used and a
closed form solution to the dynamic programming equation is
derived in some simplified cases. Berry and Gallager consider
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power control with delay constraints in an asymptotic sense
[3]. They consider a single queue served by a fading channel.
For a given data-arrival rate, the minimum power required to
stabilize the queue can be computed directly from the capacity
of the channel. However, with this minimum power, it is well
known from queueing theory that the associated queueing delay
is unbounded. The authors in [3] allocate an excess power
and study the associated mean queuing delay . They show
that the optimal power control policy which takes both the
channel state and the queue length into account results in an
excess-power versus delay tradeoff that behaves asymptotically
as . Further, they show that a single queue-length
based threshold type policy achieves the same decay rate as the
optimal policy (however, they do not show optimality of the
threshold policy).

In recent years, the heavy-traffic approximation has been
successfully applied to performance evaluation and control of
communication networks. By heavy-traffic, we mean that the
average fraction of time that the server is free is small, or equiv-
alently, the traffic intensity of the server approaches 1. Largely
due to this ’small idle time’ assumption, the scaled queueing
process can be well approximated by a reflected diffusion
process. In [4], Buche and Kushner apply the heavy-traffic ap-
proximation to model the multi-user power allocation problem
in time varying channels, and design an optimal control in the
heavy-traffic region. They consider the scenario where a fixed
amount of power is available at each time slot, and this power
needs to be allocated to multiple users according to their queue
length and current channel states. They show that the optimal
policy is a switching curve.

A. Main Contributions

In this paper, we study a single queue with a time-varying
channel having a finite number of channel states indexed by

. We impose both a peak power constraint ,
as well as an average power constraint for power allocation.
We work with the heavy-traffic limit for such a system under a
fast channel variation assumption [4]–[6], whose dynamics are
governed by a reflected Itô stochastic differential equation.

We consider the problem of minimizing the long-term av-
erage value of a function which depends on the heavy-
traffic queue-length process , subject to the peak and average
power constraints. We consider a continuous cost function
(where corresponds to the heavy-traffic queue length), that
satisfies either (i) is strictly increasing and bounded, or (ii)
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grows unbounded (i.e., , as ). For ex-
ample, corresponds to minimizing the average queue
length (or equivalently, from Little’s law, the mean delay). The
main contributions of this paper are as follows.

i) We show that when is monotone, then the optimal
control that minimizes the long-term average cost
subject to the power constraints is a channel state
based threshold policy. Specifically, associated with
each channel state there is a queue-threshold ,
such that at any time , the optimal policy trans-
mits at peak power over channel state , if
the queue length , and does not transmit
otherwise. Further, using Lagrange duality and ex-
ploiting the monotonicity property of , we reduce
the problem of determining the queue-thresholds

to that of solving a set of al-
gebraic equations. Throughout the analysis we strive
not to rely as much on the one-dimensional (one
queue) character of the problem, aiming to present an
approach that can scale up to higher dimensions.

ii) An interpretation of the heavy-traffic limit is the
following: Given a data arrival rate, sufficient “equi-
librium” power is first allocated such that the capacity
of the channel matches the arrival rate. Then, an
amount of excess power is allocated based on the
channel state and queue length. With such an in-
terpretation, a special case of our result when the
equilibrium power is allocated according to channel
state dependent water-filling [7] (and is strictly posi-
tive in each channel state), results in the queue-length
threshold being channel state invariant. In other words,
for any monotone cost function , we have ,
independent of channel state . Thus, by applying the
cost function , in this special case, our results
indicate that the single-threshold policy derived in [3]
is in fact asymptotically optimal.

iii) For a system not in heavy-traffic, we numerically com-
pute the optimal policy using dynamic programming,
and compare this with the threshold policy that is op-
timal in the heavy-traffic limit. These numerical re-
sults indicate that the threshold policy performs close
to the optimal policy even when the system is not in
heavy-traffic.

iv) From a technical standpoint, this problem falls under
the domain of ergodic control of diffusions with con-
straints, and we adopt the convex analytic approach
of [8], [9]. The approach in [9] requires both the cost
function as well as the constraint function (due to
power constraints) to satisfy a near-monotone con-
dition (see (17)). However, the constraint function is
not near-monotone in our problem. Hence, since the
results in [9] cannot be quoted, we first establish the
existence of an optimal control within the class of
stationary feedback controls. Next, using classical La-
grange multiplier theory, we show that the constrained
problem is equivalent to an unconstrained one, namely
minimizing the ergodic cost of the associated La-
grangian. We accomplish this by establishing that

Fig. 1. Transmitter sends packets to a receiver through a time-varying wireless
channel.

the near-monotone condition is satisfied for the La-
grangian (this result uses only the near-monotonicity
of the cost function), and proceed to characterize the
optimal policy for the unconstrained problem via the
associated Hamilton Jacobi Bellman (HJB) equation.
The solution to the original problem is then obtained
by a straightforward application of Lagrange duality.
We exhibit the structure of the optimal policy, and also
establish that optimality holds over all nonanticipative
policies, and not only over the stationary ones.

B. Paper Organization

This paper is organized as follows. Section II presents
the Markovian model and the heavy-traffic model for the
time-varying channel. In Section III, we describe the optimal
control problem and prove the existence of an optimal policy
among stationary ones. In Section IV, we introduce the equiv-
alent unconstrained problem using Lagrange multiplier theory
and characterize the ergodic control problem relative to the
Lagrangian via the HJB equation. We also show that the op-
timal policy has a multithreshold structure. In Section V, we
present an analytical solution of the HJB equation. In order
to demonstrate the approach, we specialize to the problem of
minimizing the mean delay, i.e., , and derive closed
form expressions for one and two-state channels. In Section VI,
we evaluate the performance of the optimal policy for the
heavy-traffic model by applying it to a system which does
not operate in the heavy-traffic region. Conclusions and some
discussion on future directions are presented in Section VII.

II. THE SYSTEM MODEL AND THE HEAVY-TRAFFIC LIMIT

We consider a queuing system that consists of a transmitter
operating over a fading channel (see Fig. 1). Time is assumed
to be divided into discrete slots, and the channel state process is
an irreducible, aperiodic, finite state Markov chain with
states having a stationary distribution . The
channel gain is denoted by when the channel state ,
and the power allocated at time determines the service rate

of the queue. For example, given the power , band-
width and channel gain , is
the Shannon capacity, the upper bound of the channel transmis-
sion rate. The service rate can take different forms for
practical systems depending on the details of modulation and
coding.

As is common in heavy-traffic analysis, we construct a se-
quence of queueing systems indexed by , such that as ,
the transmitter idle time goes to zero in an appropriate manner
[see (1)]. In the heavy-traffic approximation, there are two time
scales: one is the time scale the real system works on; the other
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Fig. 2. Three time scales of the heavy-traffic model under the fast channel
variation assumption.

is the diffusion time scale, which is a slower scale. A small time
period in the diffusion time scale contains a large number of
arrivals and departures, which is of order . For a wire-
less channel with time-varying characteristics, there is yet an-
other time scale, i.e., the time scale of channel variation. We con-
sider the fast channel variation model [5], [6], which assumes
that the channel variation has a time scale faster than the diffu-
sion time scale, but slower than the arrival process time scale,
as shown in Fig. 2. Thus, for the -scaled queueing system, the
channel process is , where . As a result, over
an interval of time , the number of channel transitions is

, and the number of arrivals within each channel
state (i.e, between any pair of channel transitions) is .
Thus, the total number of arrivals over the time interval is

.
Practically, this scaling fits into the scenario that the channel

changes slowly compared to the packet arrival rate, i.e., a slowly
fading channel such as an indoor wireless environment, or a
low-mobile-velocity outdoor wireless environment [10]. For in-
stance, with 1xEV-DO (the 3G wireless data service), a sched-
uling time-slot is 1.667 ms, which corresponds to the arrival
time-scale. For a mobile user with velocity 6 mph, the channel
coherence time, which corresponds to the time-scale of channel
changes, is about 50 ms. Thus, the scaling we use in this paper
seems applicable in these practical regimes.

We consider a sequence of queueing systems indexed by ,
with the queue length , arrival process and depar-
ture process , which can be controlled by transmission
power. For the queueing system indexed by , we denote the th
interarrival time by , and assume it satisfies the following as-
sumption [11].

Assumption 2.1: The interarrival intervals sat-
isfy the following.

1) is uniformly integrable.
2) For each , are independent. Moreover,

there exist constants , , , such that

3) The interarrivals are independent of the channel
process.

Note that if either are identically distributed with finite
variance, or are deterministic but periodic, Assumption 2.1
is satisfied. The mean arrival rate for the -th system is defined
as and the limiting arrival rate is defined as

.
For the queue indexed by , the service rate is controlled by

the transmission power . Under the heavy-traffic approxima-
tion, we suppose that mean arrival rate converges to the service
rate under the scaling

constant (1)

for some . Assuming (1) holds, we decompose the
power allocation for buffer size , and channel state
into

The “equilibrium” power is allocated in such a manner
that

(2)

Remark 2.1: Note that the optimal allocation of the equi-
librium power gives rise to a static optimization problem,
namely, minimize the average power given the service
rate , where is taken over the channel distri-
bution. For a fading channel with additive white Gaussian noise
(AWGN), water-filling is the optimal way for allocating power
subject to (2) in an information theoretic sense [7]. In general,
the equilibrium allocation can be computed numerically.

In this paper, we assume that the equilibrium power has been
allocated, either by water-filling or by numerically determining
the optimal allocation, and we address the problem of optimally
allocating the residual power. Optimality here is in an asymp-
totic sense, i.e., pertains to the limiting system under heavy-
traffic conditions. By expanding the service rate around

, using Taylor’s series, we obtain

Let

Then

(3)

Thus, , and the incremental service rate
gained from the residual amount of power is ,
where

Remark 2.2: We observe that if the equilibrium power
is allocated according to channel-state dependent
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water-filling [7], and if such an allocation results in
for all channel states , then for all , .

Next, defining and using the
techniques in [4], we show in Appendix I that converges
weakly to a limiting queueing system as . The dynamics
of the limiting queueing system are governed by the equation

(4)

where is the queue-length process, is the standard
Wiener process, is a positive constant, is a nonincreasing
process and grows only at those points for which , and

, for all . The process , which ensures that
the queue-length remains nonnegative, is uniquely defined.
For further details see [12, p. 128, Th. 6.1] and [13, p. 178]. The
corresponding Itô stochastic differential equation describing the
heavy-traffic dynamics takes the form

(5)

III. THE OPTIMAL CONTROL PROBLEM FOR THE

HEAVY-TRAFFIC MODEL

The optimization problem of interest for the nonscaled
queueing system is to minimize (pathwise, a.s.) the long-term
average queueing length (and thus, from Little’s law, the mean
delay)

or more generally, to minimize the long-term average value of
some penalty function , i.e.,

subject to a constraint on the average available power of the form

It is well known from queueing theory, that if only the basic
power is allocated, which matches the service rate to the ar-
rival rate, then the resulting traffic intensity is equal to 1, and the
queueing delay diverges. However, choosing the control term
appropriately can result in a bounded average queue length. In
the heavy-traffic model described in Section II, once the channel
model is provided, is fixed, and only the excess power can
be used to control the queue. Thus the original optimization
problem transforms to an analogous problem in the limiting
system, namely,

minimize (6a)

subject to (6b)

where

The control variable takes values in , with
denoting the (excess) peak power, and denoting the (ex-

cess) average power. Naturally, for the constraint in (6b) to be
feasible .

The standard probabilistic framework for (5) is as follows. Let
be a complete probability space and be a right-

continuous filtration of -algebras such that is complete with
respect to the measure . The Wiener process is -adapted, and
for any , the random variable and

-algebra are independent. Also, the initial condition
is an -measurable random variable and has a finite second
moment.

Definition 3.1: The minimization in (6) is over all control
processes which are progressively measurable with respect
to the -algebras . Such a process is called an admissible
control and the class of admissible controls is denoted by . An
admissible control which takes the form , for
some measurable function is called a stationary
(Markov) control, and we denote this class by .

Given a measurable function , the stochastic
differential equation in (5) under the control
has a unique strong solution, which is a Feller-Markov process.
Let denote the expectation operator on the path space of the
process, with initial condition , and denote the
Markov semigroup acting on the space of bounded continuous
functions , defined by ,

. It is known that has infinitesimal generator
(see [14, pp. 366–367] and [15]), where

The boundary at 0, imposes restrictions on the domain of
(see [14, pp. 366–367]).

The generator can be readily used to compute functionals
of the process. As asserted in [15, p. 80], if is a bounded
measurable function on then is a
generalized solution of the problem

(7)

Also, Itô’s formula can be applied as follows [16, p. 500, Lemma
4], [17]: If is a bounded function (here stands
for the Sobolev space) satisfying , then for

,

(8)

Definition 3.2: A control is called stable if the re-
sulting is positive recurrent. We denote the class of stable
controls by . A control is called bang-bang, or ex-
treme, if , for almost all . We refer
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to the class of extreme controls in as stable extreme controls
and denote it by .

Let denote the set of probability measures on the
Borel -field of . Recall that a probability measure

is said to be invariant for process under the con-
trol , if , for all , and

. It is the case that if , then the controlled process
has a unique invariant probability measure which is ab-

solutely continuous with respect to the Lebesgue measure. Let
denote the class of smooth functions in with

compact support. We make frequent use of the following charac-
terization. A necessary and sufficient condition for a probability
measure to be an invariant probability measure of
the controlled process under is

(9)

Necessity of (9) is a straightforward application of (8) and
the definition of an invariant measure. Borkar establishes
sufficiency for diffusions without reflection, by employing the
uniqueness of the Cauchy problem for the forward Kolmogorov
equation [18, p. 144, Lemma 1.2]. The boundary complicates
matters for this approach, so we employ the following result,
which we state in the -dimensional setting. Let be
a domain and a second-order uniformly elliptic operator
with bounded measurable coefficients in , and with the
second order coefficients Lipschitz continuous. If is a finite
Borel measure on satisfying , for all

, then is absolutely continuous with respect to
the Lebesgue measure, i.e., has density [19, Th. 2.1]. Thus, if

satisfies (9), then , and hence using the
adjoint operator we have

which is equivalent to . Following the proof of
[20, p. 87, Prop. 8.2] and utilizing (7), we deduce that is in-
deed the density of an invariant probability distribution. It fol-
lows from the preceding discussion that is the density of an
invariant probability measure if and only if it is a solution of
the Fokker–Planck equation

(10)

Moreover, solving (10), we deduce that is stable if and
only if

in which case the solution of (10) takes the form

(11)

We work under the assumption that has the following mono-
tone property.

Assumption 3.1: The function is continuous and either it is
asymptotically unbounded, i.e., , or if

TABLE I
TABLE OF SYMBOLS

is bounded then it is strictly increasing. In the latter case, we
define

The analysis and solution of the optimization problem pro-
ceeds as follows: We first show that optimality is achieved for
(6) relative to the class of stationary controls. Next, in Section IV
using the theory of Lagrange multipliers we formulate an equiv-
alent unconstrained optimization problem. We show that an op-
timal control for the unconstrained problem can be character-
ized via the HJB equation. This accomplishes two tasks. First, it
enables us to study the structure of the optimal policies. Second,
we show that this control is optimal among all controls in . An
analytical solution of the HJB equation is presented in Section V.
A list of symbols is included in Table I for quick reference.

A. Existence of Optimal Stationary Controls

In this subsection, we show that if the optimization problem in
(6) is restricted to stationary controls, then there exists
which is optimal.

Due to the presence of the constraint in (6b), the study of the
optimization problem in (6) is more amenable by convex ana-
lytic arguments. We follow the approach in [8] and [9]. However,
we take advantage of the fact that the set of power levels is
convex and avoid transforming the problem to the relaxed control
framework. Instead, we view as the space of product proba-
bility measures on . This is simply stating that for
each , may be represented as a convex combination of the
“0” power-level and the peak power . In other words, is
viewed as a space of relaxed controls relative to the discrete con-
trol input space . This has the following advantage:
By showing that optimality is attained in the set of precise con-
trols, we assert the existence of a control in which is optimal.

Let denote the set of all invariant probability
measures of the process under the controls .
Let . The generic element of takes the form

, with , . There
is a natural isomorphism between and the space of product
probability measures on which we denote by . This is
viewed as follows. Let denote the Dirac probability measure
concentrated at . For , we associate the probability
measure defined by
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for . Similarly, given we define
and and by

where is the invariant probability measure of the
process under the control . The set of ergodic occu-
pation measures is defined as . It follows
by (9) that if and only if

(12)

Due to the linearity of , we have the following
identity (which we choose to express as an integral rather than
a sum, despite the fact that is a finite space):

As a point of clarification, “ ” inside this integral is interpreted
as the restriction of on . The analogous identity holds for

.
In this manner, we have defined a model whose input space

is discrete, and for which the original input space provides an
appropriate convexification. Note, however, that is
not the input space corresponding to the relaxed controls based
on . The latter is , which is isomorphic to a -sim-
plex in , whereas is isomorphic to a cube in .
We select as the input space mainly because it is iso-
morphic to . Since there is a one to one correspondence be-
tween the extreme points of and , had we chosen
to use the latter, the analysis and results would have remained
unchanged. Even though we are not using the standard relaxed
control setting, since is closed under convex combina-
tions and limits, the theory goes through without any essential
modifications.

For , let

(13)

Then is a closed, convex subset of . It is easy to see that
it is also nonempty, provided . Indeed, let and
consider the policy defined by

,

Under this policy, the diffusion process in (5) is positive re-
current and its invariant probability measure has a density
which is a solution of (10). Let

(14)

The solution of (10) takes the form

where . Then

and it follows that , provided

Thus, the optimization problem in (6) when restricted to sta-
tionary, stable controls is equivalent to

(15)

We also define

(16)

We proceed as follows. It is well known that and are
convex and that their extreme points and correspond to
controls in . It is shown in [8] and [9] that, under a near-
monotone assumption on both the running cost and the in-
fimum in (16) is attained in . This near-monotone condi-
tion amounts to

(17a)

(17b)

Clearly, (17b) does not hold and, hence, the results in [8] and
[9] cannot be quoted to assert existence. So we show directly
in Theorem 3.3 that (15) attains a minimum in , and more
specifically that this minimum is attained in .

Concerning the extreme points of , the following lemma is
a variation of [8, Lemma 3.5].

Lemma 3.1: Let be a bounded Borel set of positive
Lebesgue measure. Suppose that , differ a.e. on
and agree on , and that for some and measurable

, which satisfies , for almost all
, we have

(18)

Then, there exist , which differ a.e. on and agree
on , such that

In particular, is not an extreme point of .
Since, every can be decomposed as in (18)

satisfying the hypotheses of Lemma 3.1, we obtain the following
corollary.

Corollary 3.2: If then .
The main result of this section is contained in the following

theorem whose proof can be found in Appendix II.
Theorem 3.3: Under Assumption 3.1, for any ,

there exists such that attains the minimum in (15).

IV. LAGRANGE MULTIPLIERS AND THE HJB EQUATION

In order to study the stationary optimal policies for (15), we
introduce a parameterized family of unconstrained optimization
problems that is equivalent to the problem in (6) in the sense that
stationary optimal policies for the former are also optimal for the
latter and vice versa. We show that optimal policies for the uncon-
strained problem can be derived from the associated HJB equa-
tion. Hence, by studying the HJB equation we characterize the
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stationary optimal policies (15). We show that these are of a mul-
tithreshold type and this enables us to reduce the optimal control
problem to that of solving a system of algebraic equations.
Furthermore, we show that optimality is achieved over the class
of all admissible policies , and not only over .

With playing the role of a Lagrange multiplier, we
define

(19)

The choice of the optimization problem in (19) is motivated
by the fact that , defined in (16) is a convex, decreasing
function of . This is rather simple to establish. Let ,

and denote by , the corresponding ergodic occu-
pation measures that achieve the minimum in (15). Then, if

, satisfies ,
and since is suboptimal for the optimization problem in (15)
with power constraint , we have

A separating hyperplane which is tangent to the the graph of
the function at a point , with
takes the form

for some (see Fig. 3).
Standard Lagrange multiplier theory yields the following (see

[21, p. 217, Th. 1]).
Theorem 4.1: Let . There exists ,

such that the minimization problem in (15), over as well
as the problem

minimize (20)

over , both attain the same minimum value
, at some . In particular

Characterizing the optimal policy via the HJB equation asso-
ciated with the unconstrained problem in (20), is made possible
by first showing that under Assumption 3.1 the cost
is near-monotone [see (22)], and then employing the results in
[18]. It is not difficult to show that under Assumption 3.1

(21)

Indeed, for , suppose such that
. Letting , and using (11) we obtain

Fig. 3. Convexity of �p 7! J (�p) and the separating hyperplane through
(�p ; J (�p )).

Therefore

Hence

and (21) follows. We need the following lemma, whose proof is
contained in Appendix II.

Lemma 4.2: Let Assumption 3.1 hold and suppose is
bounded. Then, for any , we have

We are now ready to establish the near-monotone property of
. First, we introduce some new notation. For , let

Remark 4.1: It follows from the definition of that

for all . Also, it is rather straightforward to show that
for some .

Lemma 4.3: Let Assumption 3.1 hold. Then, for all
and

(22)
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Proof: If is asymptotically unbounded, (22) always
follows. Otherwise, fix and . Let

be such that . By convexity

Thus, using Lemma 4.2, we obtain

(23)

Hence, by (21) and (23)

and the proof is complete.

A. The Structure of the Optimal Policy

Using the theory in [18, Ch. IV.3], we can characterize opti-
mality via the HJB equation. This is summarized as follows.

Theorem 4.4: Let Assumption 3.1 hold. Fix
and . Then there exists a unique solution pair ,
with and , to the HJB

(24a)

subject to the boundary condition

(24b)

and also satisfying

a) ;
b) ;
c) .

Moreover, if is a measurable selector of the minimizer in
(24a), then , and is an optimal policy for
(20), or equivalently, for (15). Also,
(the second equality follows by Theorem 4.1).

Following [18, Ch. IV.1] we can show that the stationary
policy in Theorem 4.4 is optimal among all admissible con-
trols , and hence is a minimizer for (6). This is done as follows:
For a control define the process of empir-
ical measures as a -valued process satisfying, for all

Suppose that is such that, for

(25)

Following the approach in [18, Ch. IV.1], utilizing the near-
monotone property asserted in Lemma 4.3 and the characteri-
zation of in (12), we first deduce that any subsequence ,

, contains a further subsequence along which
converges weakly, as , to some . Thus

(26)

Then, (25) and (26) imply that under the policy

(27)

Optimality of then follows by (25) and (27), and we
have the following theorem.

Theorem 4.5: Under Assumption 3.1, for any ,
there exists which attains the minimum in (6) over all
controls in .

If and were known, then one could solve (24) and
derive the optimal policy. Since this is not the case, we embark
on a different approach. We write (24) as

(28)

By Theorem 4.4, is the smallest value of for which there
exists a solution pair to (24), satisfying b). This yields the
following corollary.

Corollary 4.6: Let Assumption 3.1 hold. For , con-
sider the HJB equation

(29a)

subject to the boundary condition

(29b)

and define

solves (29) and (30a)

(30b)

Then

(31)

Furthermore, if is a point in such that ,
then , and if is a measurable selector of the
minimizer in (29a) with , then is a stationary optimal
policy for (20).

The minimizer in (29a) satisfies

Thus, the optimal control takes the following simple form:
For and

if
if .

(32)

Thus, provided is monotone, the optimal control is
of multithreshold type, i.e., for each channel state there is a
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queue-threshold , such that at any time , the optimal policy
transmits at peak power over channel state , if the queue
length , and does not transmit otherwise.

Further, from Remark 2.2, it follows that if the equilibrium
power is allocated according to channel-state depen-
dent water-filling with strictly positive equilibrium power al-
locations for each channel state, the multithreshold policy col-
lapses to a single-threshold policy (since , for all ).
In other words, there is a state-independent queue-threshold ,
such that at any time , the optimal policy transmits at peak
power , if the queue length , and does not transmit
otherwise.

The following lemma asserts the monotonicity of ,
under the additional assumption that is nondecreasing.

Lemma 4.7: Suppose satisfies Assumption 3.1, and is non-
decreasing on . Then, every satisfies

a) is nondecreasing;
b) If is unbounded, then is unbounded.

Proof: Equation (29a) takes the form

(33)

where the initial condition is given by (29b). Since is non-
decreasing, then by (31), . Suppose that for some

, . Let
. Since by Theorem 4.4, is

continuous, it must hold . Suppose . Since
on and is nonincreasing, (33)

implies that . Thus, we
are led to a contradiction, and it follows that

, for all , implying that is not bounded
below. It is clear from (33) that since , then

, as , provided is not bounded.
The proof of Lemma 4.7 shows that if solves (29), then
is bounded below, if and only if , for all

. Thus, defined in (30a), has an alternate characteri-
zation given in the following corollary.

Corollary 4.8: Suppose satisfies Assumption 3.1, and is
nondecreasing on . Then, for all

solves (29) and on

Comparing (29) and (28), a classical application of Lagrange
duality (see [21, p. 224, Th. 1]) yields the following.

Lemma 4.9: If satisfies Assumption 3.1, and is nonde-
creasing on , then, for any and ,
we have

(34)

Moreover, if attains the maximum in then
, which implies that .

Remark 4.2: Lemma 4.9 furnishes a method for solving (15).
This can be done as follows: With viewed as a parameter,
we first solve for which is defined in (30b). Then, given ,
we obtain the corresponding value of the Lagrange multiplier
via the maximization in (34). The optimal control can then be
evaluated using (32), with . Section V-B contains an
example demonstrating this method.

V. SOLUTION OF THE HJB EQUATION

In this section, we present an analytical solution of the HJB
(29). We deal only with the case where the cost function is non-
decreasing and asymptotically unbounded. However, the only
reason for doing so is in the interest of simplicity and clarity. If

is bounded the optimal policy may have less than threshold
points, but other than the need to introduce some extra notation,
the solution we outline below for unbounded , holds virtually
unchanged for the bounded case. Also, without loss of gener-
ality, we assume that .

We parameterize the policies in (32) by a collection of points
in . In other words, if is the solution (33),

then is the least positive number such that
. Thus, if we define

then for each , there corresponds a multithreshold
policy of the form

if
otherwise.

(35)

To facilitate expressing the solution of (33), we need to intro-
duce some new notation. For , define

Note that from (14), we obtain the identity

For , , with , we define the functions

and for

Using the convention , we write the solution of
(33) as

(36a)

and for ,

(36b)

In addition, the following boundary conditions are satisfied:

(37a)

and for

(37b)

Also, for , we have
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Since is monotone, the map

(38)

is nondecreasing. Moreover, using the fact that is either
asymptotically unbounded (or strictly monotone increasing,
when bounded), an easy calculation yields

(39)

Suppose , are the threshold points of a solution
of (33). It follows from (39) that is
a necessary and sufficient condition for , for
all . This condition translates to

(40)

The arguments in the proof of Lemma 4.7 actually show that
(40) is sufficient for to be nonnegative on . We
sharpen this result by showing in Lemma 5.1 below that (40)
implies that is strictly positive on .

Lemma 5.1: Suppose satisfies (37). If (40) holds,
then and , for all ,

.
Proof: We argue by contradiction. If ,

then , hence it is enough to assume
that , for some and

. Then, since (38) is nondecreasing

(41)

Therefore, since

(42)

combining (37b) and (41)–(42), we obtain

which simplifies to

(43)

Since

Equation (43) yields

(44)

Using the monotonicity of together with
(44), we get , for all , and
iterating this argument, we conclude that ,
for all , thus contradicting (40).

Combining Corollary 4.8 with Lemma 5.1, yields the fol-
lowing.

Corollary 5.2: Suppose satisfies (36)–(37), for some
and . Then, , if and only if (40)

holds.
For , define

For each , (37) define a map , which we denote
by .

Lemma 5.3: Let and suppose . With
as defined in (30b), and denoting the left-hand side of (40) by

, the following hold.

a) If , then and .
b) If , then .
c) , and is the only point in which

satisfies .

Proof: Part a) follows easily from (33). Denoting by
and the solutions of (33) corresponding to and , respec-
tively, a standard argument shows that

implying

(45)

Hence, since by the definition of , is bounded below, the
same holds for , in turn implying that . By
(45), , and since is nonin-
creasing and , we obtain .

Concerning b), we write (37) in the form , with
. The map is continuously differentiable

and as a result of Lemma 5.1 its Jacobian with respect to
has full rank at . By the Implicit Function Theorem,
there exists an open neighborhood and a continuous map

, such that , for all
. Using the continuity of , we may restrict

further so that , for all . Hence,
, implying that .

Part c) follows directly from a) and b).
Combining Corollary 4.6 and Lemma 5.1, we obtain the fol-

lowing characterization of the solution to the HJB (29).
Theorem 5.4: Let be nondecreasing and asymptotically

unbounded. Then, the threshold points
of the stationary optimal policy in (35) and the optimal value

, are the (unique) solution of the set of algebraic
equations which is comprised of the equations in (37) and

.

A. Example: Minimizing the Mean Delay

We specialize the optimization problem to the case ,
which corresponds to minimizing the mean delay.
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First, consider the case , letting and .
Solving (29), we obtain

with

(46)

Also, for

Therefore, for

(47)

It follows from (47) that

(48)

By (46) and (48)

(49)

Let be given. Applying Lemma 4.9, we obtain
from (49)

Moreover, the threshold point of the optimal policy is given by

(50)

Now, consider the case . We obtain

(51a)

(51b)

and for

(51c)

Since , we obtain by (51a)

(52)

Fig. 4. Optimal threshold points as a function of �p.

By (51c), , for all , if and only if

Also, since , we obtain from (51b)

We apply Theorem 5.4 to compute the optimal policy. Define
by (52) and

Then, is the solution of

In Fig. 4, we plot the optimal threshold points for a two state
channel ( ) as a function of . The parameters are selected
as , , , and .

VI. NUMERICAL RESULTS

We have considered the optimal power allocation problem in
a time-varying channel under the heavy-traffic approximation.
In the heavy-traffic region, the queueing process is modeled as
a controlled diffusion process. The policy which minimizes the
delay subject to a long-term average power constraint is multi-
threshold and can be computed by the procedure outlined in
Theorem 5.4. In this section, we compare the performance of
the optimal policy under the heavy-traffic approximation with
the optimal policy for the original nonscaled system. The latter
is computed numerically in [3].
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Fig. 5. Power-delay tradeoff curve comparison.

In [3], under the Poisson assumption on the arrival process,
the power allocation problem is formulated as a discrete-time
Markov decision process (MDP) with the state variable ,
where is the buffer state, is the channel state, and the ac-
tion is the transmitting power. With denoting the
arrival process, the queueing process is described by

where is the buffer size, and the departure process is
controlled by the power allocation .

In our simulations, we consider the power allocation in a two-
state Markov channel with stationary distribution
and corresponding channel gains . The arrival
process is a Poisson process with expectation , and the
service rate depends on the power allocation according to

.
Importantly, we comment here that the threshold based policy

does not necessarily need a Poisson assumption for the proof
of asymptotic optimality. For any sequence of arrival processes
which converges to a Wiener process in the heavy-traffic limit,
the threshold-based policy is asymptotically optimal. However,
we do not know what the optimal policy is in the nonasymp-
totic regime with general arrivals. Thus, in our simulations, we
compare the threshold-based policy with the optimal policy (ob-
tained in [3]) with Poisson arrivals.

The numerical computation of the optimal policy of MDP
in [3] is facilitated by standard methods, such as policy itera-
tion and value iteration [22]. The optimal policies under dif-
ferent power constraints, are simulated to yield different av-
erage queue length drawn as the solid line in Fig. 5. Note that
the optimal policy under the heavy-traffic approximation is a
single-threshold one. The optimal threshold as a function of the
average power constraint can be obtained by (50). By using the

threshold policies corresponding to different power constraints,
a simulated power–queue length curve is plotted in Fig. 5 with
cross marks. The dotted line at the bottom in Fig. 5 is the min-
imum power ( ) required for the arrival rate to match
the service rate [see (2)]. By the affine relation between mean
delay and mean queue length through Little’s law with the con-
stant of proportionality being the arrival rate, Fig. 5 can be inter-
preted as a delay-power tradeoff curve. As can be seen in Fig. 5,
the two power-delay tradeoff curves are very close, and they
get even closer as the average queue length approaches ,
or equivalently, as the average power approaches , i.e., the
heavy-traffic regime.

In terms of computational effort, in order to obtain the op-
timal policy of the discrete-time Markov decision process in [3]
by value iteration or policy iteration, the complexity grows in
proportion to the buffer size , the number of channel states, the
number of power levels, and the iteration steps needed, whereas
the algorithm in Theorem 5.4 has complexity proportional to
the number of channel states. With limited performance degra-
dation, the multi-threshold policy has much simpler structure
and lower computational complexity than the optimal control,
and this makes it very promising for practical deployment.

VII. CONCLUSION

We studied the optimal power allocation of a single queue
with a time-varying channel concerning both queueing delay
and power efficiency. Under a fast channel variation assump-
tion, i.e., if the channel state changes much faster than the
queueing dynamics, we consider the heavy-traffic limit and as-
sociate a monotone cost function with the limiting queue-length
process. We first show the existence of the optimal stationary
Markov policy, and then show that this is a channel-state based



592 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 4, APRIL 2006

threshold policy. In other words, for each channel state ,
there is a queue-length threshold. The optimal policy transmits
at peak power over channel state only if the queue length
exceeds the threshold, and does not transmit otherwise.

Implementing the optimal policy requires knowing the arrival
rate and channel statistics. A possible extension of this work is to
study adaptive schemes, which can adjust the parameter settings
based on the service rate and current channel state.

The tools developed here could also be applied to study other
resource allocation and control problems in wireless networks.
For example, one could investigate the optimal scheduler for a
multiclass queue and multiple servers with time-varying chan-
nels.

Extending the results to multiple queues is hardly straightfor-
ward. The main difficulty is that the reflection direction is not
fixed but depends on the control policy. This complicates the op-
timization problem. Concerning existence of an invariant mea-
sure and explicit solutions for the density for the multi-dimen-
sional problem see [23], [24]. These problems are under current
investigation.

APPENDIX I
THE HEAVY-TRAFFIC LIMIT

We apply the methodology in [4, Sec. III], with a slightly
different scaling, and obtain the heavy-traffic limit. We consider
a sequence of single-queue systems with time-varying channel
process and define the scaled queue size by

Let

number of arrival bits by time

numberofbitstransmittedbytime

Then the queue dynamics can be described by

where the service process is coupled with the power al-
location and the channel process. Using (3), we obtain

(53)

Let

(54)

By (2), we have

By Donsker’s theorem [25], converges weakly
to a Wiener process with a finite variance , as

. At the same time, the centered process of ar-
rivals also converges weakly
to a Wiener process with variance . Furthermore, by
Assumption 2.1, and are independent. Let

(55)

Then

by functional law of large numbers (FLLN) [12]. The scaled idle
time for the queue with channel state is

(56)

Thus, we define

(57)

which can be viewed as the scaled number of bits in the queue
that could have been transmitted with the power allocation

. By (53)–(57)

Thus

(58)

Note that is also the reflection term of the process
(e.g., see [11]), satisfying

(59)
By the weak convergence of , to their con-
tinuous limits on the right side of (59), thus converges
weakly to , where

Thus, (58) converges weakly to (4) by the preceding discussion,
where .
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APPENDIX II
PROOFS OF THEOREM 3.3 AND LEMMA 4.2

We start with some preliminary discussion. Let
denote the one point compactification of and let de-

note the closure of in . Since is com-
pact, so is and, hence, any sequence of probability measures

in contains a subsequence which converges
weakly in . Furthermore, using the criterion in (9) one can
show (see [18]) that any can be decomposed as follows:
There exists and probability measures and

such that for any Borel set

(60)

We also make use of the following lemma.
Lemma 2.1: Let denote the space of finite

signed measures on , and let be half spaces
of the form

where are continuous, and ,
. Suppose , for , and let

. Then, .
The proof of Lemma 2.1 is contained in [9] and [26], and

relies on the following: It is shown in [26] that the convex set
, when viewed as a subset of , does not have any

finite dimensional faces other than its extreme points. Since
is the intersection of a finite collection of closed half-spaces in

, it has finite co-dimension in . Hence,
there are no extreme points in , other than the ones in .

An application of Choquet’s Theorem (see [18]), together
with Corollary 3.2 and Lemma 2.1 yield the following.

Lemma 2.2: Let . Then there exists
such that and

We now prove Theorem 3.3 and Lemma 4.2.
Proof of Theorem 3.3: First suppose is unbounded. Fix

and let be a sequence in such that

(61)

Since was assumed asymptotically unbounded, it follows that
the sequence is tight in and, hence, converges
weakly to some in . Clearly, in view of (60),

. On the other hand, since is continuous and bounded,
and , weakly, we obtain

Hence, . Since the map is lower-semi-
continuous on , we have

and thus attains the infimum in (15).

Now, suppose is bounded. As before, let be a sequence
in satisfying (61) and let be a limit point of in .
Dropping to a subsequence if necessary, we suppose without
changing the notation that in , and we decompose
as in (60), i.e.,

with , , and . Then, on the
one hand

(62)

while on the other, since has a continuous extension on
(this is a simple consequence of the fact that ex-
ists, and the definition of the topology of the one-point compact-
ification [27])

(63)

Note that since by Assumption 3.1 is not a constant,
, and hence, by (63), . Let be the control

associated with and be the corresponding density of the
invariant probability measure. Let have the value

and defined by

if
otherwise.

The corresponding density is

if
otherwise.

By (62)

By construction , for all . Hence

(64)

By (63) and (64)

Therefore, is optimal for (15). By Lemma 2.2, may
be selected in .

Proof of Lemma 4.2: For , let
be an optimal ergodic measure, i.e.,
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Denote by the associated optimal control, and let
stand for the density of the invariant probability measure.

Set , and define by

if
otherwise.

We compute the density of the invariant probability measure as

if

otherwise.

Then

Observe that , for all . Hence,
since , for all , we obtain

which yields the desired result.
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