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Abstract

This paper presents a fairly complete treatment of stability and controllability of piecewise-linear systems defined on a conic partition of R2.
This includes necessary and sufficient conditions for stability and controllability, as well as establishing that controllability implies stabilizability
by piecewise-linear state feedback. A key tool in the approach is the study of the Poincaré map.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This paper studies stability and controllability of piecewise-
linear systems defined on a conic partition of R2, which we
call conewise linear systems (CLS). We derive necessary and
sufficient conditions for stability and for controllability, as
well as establish that controllability implies stabilizability via
piecewise-linear state feedback. The analysis relies on the
study of the Poincaré map. As long as the standard assump-
tions are posed concerning the lack of trajectories following
unstable eigenvectors or unstable sliding modes, the properties
of the Poincaré map are the determining factor in stability. The
Poincaré map is again used to study controllability, thus provid-
ing a unifying theme. Assuming there are no one-dimensional
controlled invariant subspaces or half-lines (those on sliding
surfaces), a Poincaré-type map of the boundary of the funnel
of the controlled trajectories provides necessary and sufficient
conditions for controllability.

Pachter and Jacobson [14] also obtain a necessary and suf-
ficient condition for stability of switched linear systems in
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plane with conic switching by calculating the gain of a Poincaré
map. In this paper we go one step further by obtaining explicit
algebraic expressions for what we refer to as the characteristic
values of the CLS. Roughly speaking, for a CLS there are
two mechanisms that lead to stability or instability. One is the
effect of the time-average of the eigenvalues of the individual
linear components on each partition weighted by the fraction of
the time that trajectories spend on each partition. The other is
induced by the non-commutativity of the individual linear maps.
The expressions obtained in this paper distinguish between the
two components and thus shed some new light on the issue of
stability.

Xu and Antsaklis [15] obtain necessary and sufficient con-
ditions for asymptotic stabilizability of second-order switched
linear systems, and they construct a stabilizing control law.
Their results are obtained via a detailed analysis of the Poincaré
map and the phase portraits of individual vector fields; they
obtain a conic switching law essentially by selecting the linear
system along each ray that points most directly to the origin.
While the underlying geometric approach based on the study of
the Poincaré map is the same, the primary difference between
the present work and theirs lies in the problem formulation:
they start with a collection of autonomous linear vector fields
and address the problem of selecting the switching boundaries
so as to obtain an asymptotically stable system; in the present
work, we consider a controlled piecewise-linear system on a
given partition and address the problem of existence of a sta-
bilizing control law.
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Several results on necessary and sufficient conditions for sta-
bility pertain to switched systems with arbitrary time switching.
Boscain [4] obtained necessary and sufficient conditions for the
stability of a time-switched linear system with two subsystems
and arbitrary switching between them. Holcman and Margaliot
[9] obtained a necessary and sufficient condition for stability
of two homogeneous subsystems with arbitrary switching by
constructing an appropriate common Lyapunov function. Mar-
galiot [12] studied the problem of stability of switched systems
with arbitrary switching using a variational approach in order
to analyze the most unstable trajectory of the switched sys-
tem. See the references therein for related work on worst-case
switching laws and Lie-algebraic methods. The identification
of worst-case trajectories arises in the present work in our anal-
ysis of stabilizability.

The paper is organized as follows. In Section 2, we present a
preliminary result on trajectories escaping convex cones in Rd .
In Section 3, we give our main result on stability by computing
characteristic values. In Section 4, we present necessary and
sufficient conditions for controllability, and in Section 5 results
are given on stabilizability.

2. Preliminaries

In this section, we present some preliminary definitions and
results. In particular, we show that if a closed, convex cone
contains no subspaces and no eigenvectors of the system matrix,
then all trajectories escape the cone.

Definition 1. Let ẋ = Ax be the dynamics on a convex cone
K of Rd . We define an eigenvector of A to be visible if it lies
in K̄, the closure of K.

The following result appeared in [13] and relies on Lef-
schetz’s fixed point theorem.

Lemma 2 (Pachter [13]). Let K be a non-empty closed convex
cone in Rd but not a linear subspace. If K is invariant under
the semigroup {eAt }, i.e., eAtK ⊂ K for all t�0, then K
contains an eigenvector of A.

Lemma 2 clearly implies the following result. Its relevance is
in enabling us to argue that the characteristic values computed
in Section 3 are well-defined.

Theorem 3. Let K be a closed convex cone in Rd , and suppose
K does not contain a subspace of Rd . Suppose no eigenvectors
of A ∈ Rd×d lie in K. Then for any initial condition x0 ∈ K,
x0 �= 0, there exists t0 ∈ R such that eAt0x0 /∈K.

Proof. Suppose that for some non-zero initial condition x0 ∈
K, eAtx0 ∈ K, for all t�0. Let K̂ denote the maximal in-
variant set under the semigroup {eAt } contained in K; that is,
K̂ is formed by the union of trajectories that lie in K for all
t�0. Clearly K̂ �= ∅, and since the dynamics are linear, it is
evident that K̂ is also a closed convex cone. Moreover, K̂ is
not a subspace since K does not contain a subspace of Rd .

Thus, by Lemma 2, K̂ contains an eigenvector of A, leading
to a contradiction. �

3. Stability

In this section we define the characteristic values of a pla-
nar CLS and express them as explicit functions of the system
parameters. The method amounts to computing the growth of
trajectories over one cycle around the origin and using this
parameter to obtain the asymptotic behavior of the CLS. Let
A = {Aj ∈ R2×2, j = 1, . . . , k0} be a collection of matrices
and let {v1, . . . , v�+1} be a set of unit vectors in R2 directed
counterclockwise such that v�+1 = v1. We define �(·, ·) to be
the angle in radians between two vectors in R2 in the counter-
clockwise sense, and assume, without loss of generality, that
�(vi, vi+1) < �. Let {K1, . . . ,K�} be a set of open convex
cones that form a partition of R2 such that Ki is generated by
{vi, vi+1}. On eachKi we have the dynamics ẋ=Aix with Ai ∈
A. We denote the resulting CLS by �={(�i ,Ki ), i=1, . . . , �}
where �i denotes the dynamics on Ki . Let J =

(
0
1

−1
0

)
and

define the index set I = {1, . . . , �}. For i ∈ I, we define
Vi = {�vi : � ∈ (0, ∞)}. Let ni denote the unit vector orthog-
onal to Vi satisfying nT

i vi+1 > 0 (i.e., {n1, . . . , n�} is a collec-
tion of unit normal vectors to {V1, . . . ,V�}-ordered counter-
clockwise).

The asymptotic behavior of the system � is determined by the
visible eigenvectors, sliding modes, and the trajectories which
encircle the origin. First we place conditions on the visible
eigenvectors and sliding modes to insure stability. Let

�+
i �nT

i Aivi, �−
i �nT

i+1Aivi+1, i ∈ I. (3.1)

If �+
i �−

i−1�0 and |�+
i | + |�−

i−1| �= 0, let ri ∈ [0, 1] denote the
(unique) number satisfying ri�

+
i + (1 − ri)�

−
i−1 = 0. Let

�i�vT
i (riAi + (1 − ri)Ai−1)vi .

Clearly, all trajectories that lie on Vi are asymptotically sta-
ble if and only if �i < 0. In the case �+

i = �−
i−1 = 0, vi is an

eigenvector of both Ai and Ai−1, and as a result all trajectories
that lie on Vi are asymptotically stable if and only if the cor-
responding eigenvalues are both negative. We summarize this
in the following lemma.

Lemma 4. In order for � to be asymptotically stable it is
necessary that

(i) All visible eigenvectors are associated with stable
eigenspaces.

(ii) If �+
i �−

i−1�0 and |�+
i | + |�−

i−1| �= 0, then �i < 0, i.e., all
sliding modes are stable.

Next we compute the time needed for a trajectory to traverse
a cone, as well as its growth in the cone. These calculations are
used later to determine the asymptotic behavior of the trajec-
tories that encircle the origin. Fix i ∈ I. Suppose that Ai has
no visible eigenvectors relative to Ki . Without loss of gener-
ality we may assume that �+

i > 0. Then necessarily �−
i > 0, for
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otherwise K̄i is invariant under the semigroup {eAit }, and by
Lemma 2 must contain an eigenvector of Ai , contradicting the
hypothesis. Thus, the trajectory of �i starting at vi exits the
cone crossing the set Vi+1 in finite time by Theorem 3. We
consider three cases depending on the Jordan form of Ai .

Case 1: Ai ∈ R2×2 has a pair of complex eigenvalues �i ±
j�i . Let Pi ∈ R2×2 denote the transformation such that Ai =
Pi(�iI + �iJ )P −1

i . The time �i that it takes the system ż =
(�iI + �iJ )z to traverse the cone {P −1

i vi , P
−1
i vi+1} is �i =

�(P −1
i vi , P

−1vi+1)/�i . This is the same as the time that it
takes the original system ẋ = Aix, with x(0) = vi , to traverse
Ki . We define

v′
i = P −1

i vi , v′′
i = P −1

i vi+1, (3.2)

and

�i = �i , 	i = log

( ‖v′
i‖

‖v′′
i ‖
)

. (3.3)

A simple computation yields

x(�i ) = e
i�i vi+1, 
i = �i + 	i

�i

, (3.4)

where �i = �(v′
i , v

′
i+1)/�i .

Case 2: Ai ∈ R2×2 has two distinct real eigenvalues
�′
i > �′′

i . Let Pi ∈ R2×2 denote the transformation such that

A = Pi

(
�′

i
0

0
�′′

i

)
P −1

i and define v′
i , v′′

i by (3.2). Then (3.4)

holds with

�i = 1

�′
i − �′′

i

log

(
v′
i2v

′′
i1

v′
i1v

′′
i2

)
,

�i = �′
i + �′′

i

2
,

	i = 1

2
log

(
v′
i1v

′
i2

v′′
i1v

′′
i2

)
. (3.5)

Note that since Ki contains no eigenvectors of Ai it has to be
the case that v′

i and v′′
i have the same sign (component wise).

Also v′
i1v

′′
i2 �= 0, otherwise Ki contains an eigenvector of Ai .

Therefore, formulas (3.5) are well-defined.
Case 3: Ai ∈ R2×2 has a real eigenvalue �i of multiplicity

2 in its minimal polynomial. Let Pi ∈ R2×2 denote the trans-

formation such that Ai = Pi

(
�i

0
1
�i

)
P −1

i and define v′
i , v′′

i by

(3.2). Then (3.4) holds with

�i = v′′
i1

v′′
i2

− v′
i1

v′
i2

= 1

v′
i2v

′′
i2

det

(
v′′
i1 v′

i1

v′′
i2 v′

i2

)
,

�i = �i ,

	i = log

(
v′
i2

v′′
i2

)
. (3.6)

Note that v′
i2v

′′
i2 �= 0, otherwise Ki contains an eigenvector

of Ai .
The following may be proved by direct computation so we

omit the proof.

Lemma 5. The expressions for �i and 	i are independent of
the choice of the Pi’s.

We now present the main result of this section. Let

� =
∑
i∈I

�i .

Theorem 6. The planar CLS � = {(�i ,Ki ), i = 1, . . . , �} is
asymptotically stable if and only if

(a) Conditions (i) and (ii) of Lemma 4 hold.
(b) If there are no visible eigenvectors or sliding modes, then

with �i , �i , and 	i as defined in (3.3), (3.5), (3.6),


 :=
∑
i=I

(�i�i + 	i )

�
< 0. (3.7)

Proof. First show that if there are no visible eigenvectors or
sliding modes, then (3.7) is necessary and sufficient. Without
loss of generality suppose that �+

1 > 0. Then, as mentioned in
the paragraph following Lemma 4 we must have �−

1 > 0, and
hence also �+

2 > 0. By induction �+
i > 0, �−

i > 0 for all i ∈ I.
Thus, the trajectory x of � satisfying x(0) = v1, encircles the
origin and crosses V1 at time �. Using the results in cases 1–3
above, we have

‖x(�)‖ = ‖P�eB���P −1
� · · · P1eB1�1P −1

1 v1‖
= e
1�1‖P�eB���P −1

� · · · P2eB2�2P −1
2 v2‖

...

= e
�‖v�+1‖ = e
�, (3.8)

where Bi�P −1
i AiPi , i ∈ I. Therefore, ‖x(k�)‖ = ek
�, for

all k ∈ N, implying that (3.7) is necessary. It is also sufficient
since if x̂ ∈ R2\{0}, then �x̂ ∈ {x(t) : 0� t < �}, for some
� > 0. Thus, the trajectory starting from x̂ converges asymptot-
ically to 0, provided (3.7) holds. Necessity of (a) is asserted in
Lemma 4. It remains to show that if � has visible eigenvec-
tors or sliding modes, then (a) is sufficient. It is evident that
in this case, a trajectory cannot revisit a cone it exits. There-
fore, it has to get trapped in some cone Ki after some time t0.
Then necessarily either Ai has a visible eigenvector relative to
Ki , or there is a stable sliding mode in K̄i . In both cases it
is fairly straightforward to show that the trajectory converges
asymptotically to the origin. It is also evident that trajectories
are bounded uniformly over any bounded set of initial condi-
tions. This completes the proof. �

Remark 7.

(1) When there are no visible eigenvectors or sliding modes
the stability of � is determined by the complex numbers

 ± j�, where

� = 2�

�
. (3.9)

Thus, we call them the characteristic values of the CLS.
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(2) Let 	=∑i∈I	i and �=∑i∈I�i�i . If 	= 0, then stability
results if � < 0; that is, the time-average of the eigenvalues
is negative. Likewise, if �i = 0 for all i ∈ I, then stability
depends only on 	, which is independent of the eigenvalues
of the individual matrices Ai .

The previous remarks warrant a further examination of the
constituent terms of 
. First, if the matrices {A1, . . . , Ak0} com-
mute pairwise, i.e., they form an Abelian Lie algebra, and they
are of simple structure, i.e., they correspond to Cases 1 or 2,
then they can be simultaneously diagonalized and we obtain
	=0 [8, p. 224]. Next, let us say that a Lie Algebra L of R2×2

which contains the identity matrix has the stable property if any
time-switched linear system whose dynamics are defined over
any finite collection of Hurwitz elements of L is asymptoti-
cally stable. It is shown in [11] that solvable Lie subalgebras
of R2×2 have the stable property (see also [1] for further ex-
tensions of these results). We make some connections between
these Lie algebraic criteria for the stability of time-switched
systems and our results on CLSs. Let 	(�) be the parameter 	
associated with a CLS �.

Theorem 8. Let � be a CLS whose dynamics are governed by
{Ai, i = 1, . . . , k0} and suppose that each Ai is either of the
form

Ai = Pi(�iI + �iJ )P −1
i , �i �= 0, (3.10)

or

Ai = Pi(�iI + N)P −1
i , N =

(
0 1

0 0

)
,

and satisfies (0, 1)Ai

(
1
0

)
> 0, (i.e., trajectories flow counter-

clockwise). If the Lie algebra L generated by {I, Ai, i =
1, . . . , k0} has the stable property, then 	 = 0.

Proof. First, suppose 	 > 0. We construct a set of Hurwitz
matrices {A′

1, . . . , A
′
k0

| A′
i ∈ L} defining a new CLS which

retains the same value of 	. Let

A′
i = −(�i + ε)I + Ai = Pi(−εI + �iJ )P −1

i ,

or

A′
i = −(�i + ε)I + Ai = Pi(−εI + N)P −1

i ,

where ε > 0. First we note that A′
i ∈ L because I and any

multiple of it belong to L. Let �′ be the CLS obtained from �
by substituting Ai with A′

i , i = 1, . . . , k0. Note that, by using
(3.3) and (3.6), 	(�′) = 	(�). Now we can choose ε such that
each A′

i is Hurwitz but 
=−ε+	/� > 0, since 	 > 0. According
to Theorem 6, the CLS is unstable, contradicting the hypothesis
that L has the stable property.

Instead, suppose 	 < 0. Replace each Ai by Ai�(�i − ε)I −
Ai to form a CLS �. The trajectories of � encircle the origin
in the clockwise direction, and it can be easily verified that

	(�)= −	(�). Repeating the argument above we arrive at the
same contradiction. �

We have seen that if the Lie algebra generated by the sub-
system matrices of a CLS is solvable, implying it has the sta-
ble property, then under the conditions of Theorem 8, 	 = 0.
However, the converse statement is not true as the following
example illustrates.

Example 9. Consider the CLS with two subsystems

A1 =
[−1 −2

0.5 −1

]
, A2 =

[−1 −0.5

2 −1

]
.

The switching boundaries are v1=[1 0]T, v2=[0 1]T, v3=−v1,
and v4 = −v2. Let A1 be associated with K1 = cone{v1, v2}
and K2 = cone{v2, v3}, and A2 be associated with K3 =
cone{v3, v4} and K4 = cone{v4, v1}. The eigenvalues of A1
and A2 are both −1 ± j and

P1 =
[

2 −2

1 1

]
, P2 =

[
1 −1

2 2

]
.

With this data we find 	 = 0. Let H1 =
(

1
0

0
−1

)
, H2 =

(
0
0

1
0

)
,

and H3 =
(

0
1

0
0

)
. They form a basis for sl(2), the Lie algebra

of the special linear group SL(2) of 2 × 2 matrices, which is
not solvable. Then we observe that A1 = −I + 1

2H3 − 2H2,
A2 = −I + 2H3 + 1

2H2, and [A1, A2] = −3.75H1. Therefore,
the Lie algebra generated by {A1, A2} is not solvable.

Next we show that if 	 = 0 over all switching boundaries,
then for a particular class of matrices, the generated Lie algebra
is Abelian. Let A be a collection of matrices and S denote the
class of all CLS � = {(�j ,Kj ), j = 1, . . . , �}, ��3, where
{Ki} is some conic partition of R2 and the dynamics �j on
Kj are governed by ẋ = Ajx with Aj ∈ A.

Theorem 10. Suppose A={Ãi , i =1, . . . , k0} is a collection

of matrices of the form (3.10) and suppose (0, 1)Ãi

(
1
0

)
> 0,

for all i = 1, . . . , k0 (i.e., trajectories flow counterclockwise).
If 	(�)�0 for all � ∈ S, then the matrices in A commute.
Hence, 	(�) = 0 for all � ∈ S.

Proof. First note that Ãi and Ãj commute if and only if
P −1

i Pj = �T , where T is an orthonormal matrix and � > 0,
or equivalently iff (P −1

i Pj )
TP −1

i Pj is a multiple of the
identity. We argue by contradiction. Suppose that for some
i, j ∈ {1, . . . , k0}, (P −1

i Pj )
TP −1

i Pj is not a multiple of the
identity. Since it is symmetric and positive definite, it has dis-
tinct positive eigenvalues 
1 < 
2. Let ṽ1 be a unit eigenvector
associated with 
1. Then for any vector v

‖P −1
i Pj v‖2 = vT(P −1

i Pj )
TP −1

i Pj v

�
1‖v‖2, (3.11)



154 A. Arapostathis, M.E. Broucke / Systems & Control Letters 56 (2007) 150–158

and the inequality is strict unless v ∈ span{ṽ1}. Then noting
that P −1

j JP j ṽ1 /∈ span{ṽ1} and using (3.11) we have

‖P −1
i JP j ṽ1‖ = ‖P −1

i Pj (P
−1
j JP j ṽ1)‖

>
√


1‖P −1
j JP j ṽ1‖. (3.12)

Let v1�Pj ṽ1 and vk�J k−1v1, for k = 2, 3, 4. Con-
sider the partition generated by {vi} and associate Ãj to
K1 = cone{v1, J v1} and K3 = cone{−v1, −Jv1} and Ãi to
K2 and K4. Then, by (3.12)

‖P −1
j v1‖

‖P −1
j v2‖

‖P −1
i v2‖

‖P −1
i v3‖

‖P −1
j v3‖

‖P −1
j v4‖

‖P −1
i v4‖

‖P −1
i v1‖

=
(‖P −1

j v1‖
‖P −1

j v2‖
‖P −1

i v2‖
‖P −1

i v1‖

)2

=
(

‖ṽ1‖
‖P −1

j JP j ṽ1‖
‖P −1

i JP j ṽ1‖
‖P −1

i Pj ṽ1‖

)2

> 1,

contradicting the hypothesis that 	(�)�0, for all � ∈ S. �

4. Controllability

Consider a controlled CLS � whose dynamics are specified
by ẋ(t) = Aix(t) + biu(t) on Ki , where Ai ∈ R2×2, bi ∈ R2

and u(t) ∈ R. As before, �i denotes the restriction of � on
Ki . For i ∈ I, define Bi = span{bi}. We present a rather
complete characterization of controllability of this system on
R2∗�R2\{0}, the punctured plane which does not include the
origin. The punctured plane is also used in the analysis of
controllability of bilinear systems [3]. We can also develop
a controllability theory for the full plane but this requires a
more complicated analysis of trajectories that can cross through
0, and studying the well-posedness of trajectories that pass
through a vertex of a partition.

Let U be a set of controls. If x′, x′′ are two points in R2∗,
we say that x′ can be steered to x′′ over U, and denote this
by x′�x′′, if there exists a u ∈ U and T > 0, such that the
controlled system admits a unique solution in R2∗ satisfying
x(0) = x′ and x(T ) = x′′. Solutions are meant in the sense of
Filippov. If D ⊂ R2∗, then x′�D means that x′�x′′ for all
x′′ ∈ D. We say that � is completely controllable on R2∗ if
x′�R2∗ for all x′ ∈ R2∗. Also, we say that �i is completely
controllable if any two points in Ki can be joined through a
trajectory in Ki .

Difficulties with existence and uniqueness of solutions for
discontinuous systems are well-known [10,2,5], and several so-
lution concepts have been proposed to overcome them [6,7].
Here we highlight by way of an example the difference between
open-loop and closed-loop controls with respect to uniqueness
of solutions of discontinuous systems. The example illustrates
that even if uniqueness of solutions is obtained via feedback,
the corresponding solution in the sense of Caratheodory may

not be unique. With this example as motivation, we present
controllability results for open-loop and closed-loop controls
independently, in each case requiring uniqueness of solutions.

Consider the one-dimensional system

ẋ =
{

u if x < 0,

−u if x > 0.
(4.1)

Suppose x(0) = −1. Clearly there is no continuous feedback
control u which can steer the system to 1. On the other hand,
under the feedback u = 1, if x < 0 and u = −1, if x > 0, the
closed-loop system has a unique trajectory x(t) = t − 1, and
hence −1 is steered to 1 on [0, 2]. Along this trajectory the
control u takes the values u(t)=1, for t ∈ [0, 1], and u(t)=−1,
for t ∈ [1, 2]. However, using this u as an open-loop control in
(4.1) we observe that there is loss of uniqueness of the solution,
and as a result −1 cannot be steered to 1 by this open-loop
control.

Apropos the above discussion, we consider two classes of
control inputs: (a) the set of all bounded measurable feedback
controls u : R2∗ → R, which is denoted by Um, and (b) the set
of all piecewise-continuous open-loop controls u : [0, ∞) →
R, denoted by U.

In Section 4.1, we study controllability over U of the sub-
systems �i , i ∈ I. We also establish that the reachable sets of
�i over U are also reachable over the class of constant gain
linear feedback controls. In Section 4.2, we study the reacha-
bility from cone to cone, over Um. In Section 4.3, we combine
these results to obtain necessary and sufficient conditions for
controllability of � over Um. A slight strengthening of these
conditions renders them necessary and sufficient for controlla-
bility of � over U, as shown in Section 4.4.

In what follows we work with a refinement of the original
partition which enables a simplification of the results on reach-
ability within cones. If Bi ∩ Ki �= ∅, we divide Ki into two
cones along Bi . Similarly, if A−1

i Bi is one-dimensional and
A−1

i Bi ∩Ki �= ∅, we divide Ki into two cones along A−1
i Bi .

We retain the same notation for the CLS on the refinement of
this partition.

4.1. Reachability within cones

Controllability of � depends heavily on the reachable sets of
�i . Thus, in this section, the reachable sets of �i are analyzed.

Let �i (t, x0; u) denote the trajectory x(t), t�0, of ẋ=Aix+
biu, satisfying x(0) = x0. If bi �= 0, let b∗

i denote the unit
vector which is orthogonal to bi and satisfies xTb∗

i > 0 for all
x ∈ Ki . If bi = 0, set b∗

i = 0. Also, let Ki∗�K̄i\{0}. For
x ∈ Ki∗ define

Reach�i
(x)�{�i (t, x; u) : t�0, u ∈ U, �i (s, x; u) ∈ Ki∗,

∀s ∈ [0, t]}.
To assist in the taxonomy of Reach�i

, define, for bi �= 0,

W+(x, bi)�{z ∈ R2 : (b∗
i )

Tz > (b∗
i )

Tx} ∪ {x},
W−(x, bi)�{z ∈ R2 : (b∗

i )
Tz < (b∗

i )
Tx} ∪ {x}.
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Lemma 11. Assume that if Ki∗ ∩Bi �= ∅ then Aibi /∈Bi . For
x ∈ Ki∗ the following hold:

(A) If bi = 0, then Reach�i
(x) = {eAitx : t�0, and eAit

′
x ∈

Ki∗, ∀t ′ ∈ [0, t]}.
(B) If bi �= 0 and range(Ai) ⊂ Bi , then Reach�i

(x) = (x +
Bi ) ∩ Ki∗.

(C) If bi �= 0, and range(Ai) /⊂ Bi , then

Reach�i
(x)

=
{

W+(x, bi) ∩ Ki∗ if (vi+1 + vi)
TAT

i b∗
i > 0,

W−(x, bi) ∩ Ki∗ if (vi+1 + vi)
TAT

i b∗
i < 0.

Proof. Cases (A) and (B) are obvious. For case (C) first note
that since Aix /∈Bi for all x ∈ Ki , we have xTAT

i b∗
i �= 0.

Suppose, without loss of generality, that xTAT
i b∗

i > 0, for all
x ∈ Ki . It follows that if �i (s, x; u) ∈ Reach�i

(x), where
x ∈ Ki∗, s ∈ [0, t], and t > 0, then (b∗

i )
T�̇i (s, x; u)�0, for

almost all s ∈ [0, t]. Suppose �i (t, x; u) �= x. We claim that
(b∗

i )
T�i (t, x; u) > (b∗

i )
Tx. If not, then (b∗

i )
T�̇i (s, x; u) = 0

for almost all s ∈ (0, t), from which it follows that
(b∗

i )
TAi�i (s, x; u) = 0, for all s ∈ [0, t], or equivalently that

Ai�i (s, x; u) ∈ Bi . This implies �i (s, x; u) /∈Ki , so either
�i (s, x; u) ∈ Vi or �i (s, x; u) ∈ Vi+1, for all s ∈ [0, t].
Suppose, without loss of generality, the latter is the case.
Then, z��i (t, x; u) − x ∈ Vi+1 is a non-zero vector in Ki∗
which satisfies z ∈ Bi (since by assumption (b∗

i )
Tz = 0)

and Aiz ∈ Bi . This contradicts the hypothesis of the lemma.
Hence, Reach�i

(x) ⊂ W+(x, bi) ∩ Ki∗.
To show the converse, let x′′ ∈ W+(x′, bi) ∩ Ki∗, x′′ �= x′,

and set z = x′′ − x′. Suppose, without loss of generality that
b∗
i = Jbi . If Aix

′ /∈Bi and Aix
′′ /∈Bi then if we let u(t) =

(bT
i J z)−1zTJAix(t), we obtain

ẋ(t) = Aix(t) + biu(t) = bT
i JAix(t)

bT
i J z

z. (4.2)

Since bT
i JAix/bT

i J z > 0 for all x=�z+x′, � ∈ [0, 1], it follows
by (4.2) that the solution x(t) with x(0)=x′ satisfies x(t ′′)=x′′
for some finite t ′′ > 0. Suppose that Aix

′′ ∈ Bi and Aix
′ /∈Bi .

Since, by construction of the partition, A−1
i Bi ∩Ki =∅, it must

be the case that x′′ ∈ Vi ∪ Vi+1. Without loss of generality
suppose x′′ ∈ Vi . If follows from the hypothesis that Vi /⊂ Bi

and thus the line x′ +�bi , � ∈ R intersects Vi , i.e., x′ +�0bi ∈
Vi , for some �0 ∈ R. Since Aix

′ /∈Bi , implying x′ /∈Vi , it
follows that �0 �= 0. We know that x′ + �0bi �= x′′, since x′′ ∈
W+(x′, bi). Let x̃′′ ∈ Vi ∩ W+(x′, bi) be any point such that
x′′ lies in the open line segment joining x̃′′ and x′ + �0bi . Let

 ∈ [0, ∞), z̃ = x̃′′ − x′, and consider the feedback control

u(t) = z̃TJAix(t)

bT
i J z̃

− 
�0b
T
i J x(t). (4.3)

The closed-loop system resulting from (4.3) is

ẋ(t) = bT
i JAix(t)

bT
i J z̃

z̃ − 
bT
i J x(t)�0bi . (4.4)

It follows from the foregoing that if 
 = 0 then the trajectory
x(t) of (4.4) starting at x(0) = x′ converges asymptotically to
x̃′′ along the straight line joining these two points. Also, since
bT
i J x = −(b∗

i )
Tx < 0, for all x ∈ Ki , and bT

i J x′ �= 0, the
vector field bT

i J x(t)�0bi results in a trajectory that joins x′ and
x′ + �0bi along a straight line in finite time. For y ∈ Ki let

�1(y) = Vi ∩ {y + �z̃ | � ∈ R},
�2(y) = Vi ∩ {y + �bi | � ∈ R}
and define �y = conv{y, �1(y), �2(y)}, where ‘conv’ denotes
the convex hull. Let �y(t, 
), with t�0, denote the trajectory
of (4.4), starting from y, i.e., �y(0, 
) = y, and set

�(y, 
)� inf{t�0 : �y(t, 
) ∈ V1}.
It is evident from the direction of the vector field of (4.4) that
provided 
 > 0, then �(y, 
) < ∞ and

{�y(t, 
) : t ∈ (0, �(y, 
))} ⊂ �o
y (4.5)

with �o
y denoting the interior of �y . In particular, for 
 > 0,

�x′(�(x′, 
), 
) lies in the relative interior of conv{x̃′′, x′+�0bi}.
Since the vector field of (4.4) is transversal to Vi , �(x′, 
)
is continuous in 
 ∈ (0, ∞), and in turn, the same holds for
�x′(�(x′, 
), 
). Continuity of the solution of (4.4) with respect
to 
, combined with (4.5), shows that

�x′(�(x′, 
), 
) →
{

x̃′′ as 
 → 0,

x′ + �0bi as 
 → ∞.

Therefore, �x′(�(x′, 
′′), 
′′) = x′′, for some 
′′ ∈ (0, ∞).
If Aix

′′ /∈Bi and Aix
′ ∈ Bi , the conclusion follows along

the same lines, by using time reversal. If Aix
′′ ∈ Bi and Aix

′ ∈
Bi , using an intermediate point x̂ ∈ Ki satisfying Aix̂ ∈ Bi

and bT
i J x′ < bT

i J x̂ < bT
i J x′′, the previous arguments show that

x̂ ∈ Reach�i
(x′) and x′′ ∈ Reach�i

(x̂). �

The proof of Lemma 11 shows that linear feedback con-
trol can be used to steer in Reach�i

as stated in the following
corollary.

Corollary 12. Assume that if Ki∗ ∩ Bi �= ∅ then Aibi /∈Bi .
Also, suppose bi �= 0 and range(Ai) /⊂ Bi . Let x′ ∈ Ki∗
and x′′ ∈ Reach�i

(x′) such that span{Aix
′, Aix

′′} /⊂ Bi . Then
there is a feedback control u = kT

i x, for some ki ∈ R2, such
that the trajectory x(t), with x(0)=x′, satisfies x(t ′′)=x′′, for
some t ′′ > 0 and x(t) ∈ Ki for all t ∈ (0, t ′′).

4.2. Reachability between cones

In this section we analyze the existence of controlled tra-
jectories (over Um) starting in Ki and reaching Ki+1, and
vice versa. The main idea is to analyze the possible direc-
tions of flow of �i and �i+1 along Vi+1. We use the notation
Ki�Ki+1 to indicate that there exists a controlled trajec-
tory x(·) in Ki ∪ Ki+1, defined for t ∈ [−ε, ε], with ε > 0
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and satisfying x(−ε) ∈ Ki , x(ε) ∈ Ki+1. Analogously for
Ki+1�Ki . In order to indicate the direction (counterclock-
wise, or clockwise) that the boundary Vi can be crossed by
controlled trajectories, we define the set Gi ⊆ {1, −1} with
the property that 1 ∈ Gi if Ki�Ki+1, and −1 ∈ Gi if
Ki+1�Ki . Let

	+
i �nT

i bi , 	−
i �nT

i+1bi .

Then using (3.1) and the signum function, and allowing for
discontinuous controls, we have

Gi = {sgn(�−
i + u	−

i ) : (�−
i + u	−

i )(�+
i+1 + u′	+

i+1) > 0,

∃u, u′ ∈ R}. (4.6)

A more explicit characterization of Gi is provided by the fol-
lowing lemma.

Lemma 13. For each i ∈ I,

(i) If 	+
i+1	

−
i �= 0, then Gi = {1, −1}.

(ii) If 	+
i+1	

−
i = 0, then

Gi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{sgn(�−
i )} if 	+

i+1 = 	−
i = 0, and �+

i+1�
−
i > 0,

{sgn(�−
i )} if 	+

i+1 �= 0,

{sgn(�+
i+1)} if 	−

i �= 0,

{∅} otherwise.

4.3. Main result

In this section we gather the previous results on reachability
within and between cones to obtain our main result on control-
lability. The essential idea is to analyze trajectories which encir-
cle the origin either in a counterclockwise or clockwise sense.
We compute the maximum and minimum growth around such
a cycle. Necessary and sufficient conditions for controllability
are obtained in terms of these growth factors—both shrinkage
and expansion must be possible.

The existence of trajectories that encircle the origin is a
necessary condition for controllability of �; for if not, either
some Vi is invariant under any controlled trajectory or there
is a subcollection of cones whose union is invariant under
any controlled trajectory. Let G�

⋂
i∈IGi . We require the

following.

Condition 1. G �= ∅.

Note that under Condition 1 the hypothesis of Lemma 11 is
satisfied for all i ∈ I. For if not, then either �+

i = 	+
i = 0, or

�−
i = 	−

i = 0, resulting in Gi = ∅.
It is necessary to determine the growth around a cycle, as

in Theorem 6. We define the inverse of the maximum possible
growth in Kj as �

j
(�) and the minimum possible growth in

Kj as �j (�). These growth factors can be computed explicitly
using Lemma 11.

Definition 14. Assume Condition 1. Define for j ∈ I and � ∈
G

�
j
(�) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if (vj+1 + vj )
TAT

j b∗
j > 0,(

vT
j b∗

j

vT
j+1b

∗
j

)−�

if (vj+1 + vj )
TAT

j b∗
j �0, bj �= 0,

e−�
j �j if bj = 0,

�j (�) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
vT
j b∗

j

vT
j+1b

∗
j

)�

if (vj+1 + vj )
TAT

j b∗
j �0, bj �= 0,

0 if (vj+1 + vj )
TAT

j b∗
j < 0,

e�
j �j if bj = 0.

Here 
j and �j are the trajectory growth rate and time to trans-
verse Kj computed in Section 3.

Theorem 15. For � to be completely controllable on R2∗, over
Um, it is necessary and sufficient that

(a) Condition 1 holds.
(b) For some � ∈ G the following inequalities hold:

�(�)�
�∏

j=1

�
j
(�) < 1, �(�)�

�∏
j=1

�j (�) < 1. (4.7)

Proof. Necessity of (a) has been discussed earlier. Note that if

(vj+1 + vj )
TAT

j b∗
j = 0, (4.8)

and bj �= 0, then necessarily range(Aj ) ⊂ Bj . Thus, if (4.8)
holds for all j ∈ I, the reachable set from every point x is
one-dimensional. It follows that if � is completely controllable,
then �(�)�(�) = 0. To show that (b) is necessary, first observe

that if G = {1, −1}, then �(�) = �−1(−�), provided �(�) �= 0,

otherwise �(�)=�(−�)=0. Similarly for �(�). It follows from
these arguments that if (b) does not hold, then we may suppose
without loss of generality that G = {1}, and

∏�
j=1�j

(�)�1.
Consider the collection of points zi ∈ Vi defined by z1 = v1
and

zj+1 =

⎧⎪⎨
⎪⎩

e
j �j zj if bj = 0,

vT
j+1b

∗
j

vT
j b∗

j

zj otherwise.

Let � : [0, �] → R2∗ , be the curve defined by

�(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e
j (s−j+1)�j zj if bj = 0, s ∈ [j−1, j ],
zj+1 + (s − j)

×
(

zj+1 − vT
j+1b

∗
j

vT
j b∗

j

zj

)
if bj �= 0, s ∈ [j−1, j ].

According to the hypothesis ‖z�+1‖�‖v1‖. Consider the Jor-
dan curve consisting of {�(s), s ∈ [0, �]} and the straight seg-
ment [z�+1, z1] ⊂ V1 and let D denote its interior. It follows
by Lemma 11 that Reach�(v1) ⊂ D̄, thus arriving at a contra-
diction.
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Sufficiency: Assume (a)–(b). Without loss of generality sup-
pose 1 ∈ G, and �(1) < 1, �(1) < 1. By Lemma 11, if bj �= 0
and range(Aj ) /⊂ Bj , then Reach�j

(vj ) ∩ Vj+1 contains all
points of the form �j vj+1, where

�j ∈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
vT
j b∗

j

vT
j+1b

∗
j

, ∞
)

if (vj+1 + vj )
TAT

j b∗
j > 0,

(
0,

vT
j b∗

j

vT
j+1b

∗
j

)
if (vj+1 + vj )

TAT
j b∗

j < 0.

Otherwise, Reach�j
(vj ) ∩ Vj+1 = {�j vj+1}, where

�j =

⎧⎪⎨
⎪⎩

vT
j b∗

j

vT
j+1b

∗
j

if bj �= 0, and range(Aj ) ⊂ Bj ,

e
j �j if bj = 0.

Then, by considering the trajectories that follow a complete
cycle, we have

Reach�(v1) ∩ V1

⊃
{ {�v1 : � ∈ (�(1), ∞)} if �(1) = 0,

{�v1 : � ∈ (0, �−1(1))} otherwise.
(4.9)

Iterating (4.9) we obtain Reach�(v1) ∩ V1 ⊃ V1, and the
result now easily follows. �

Remark 16. If �(�)�(�)=0 then (4.7) implies �(�)+�(�) < 1.

On the other hand, if �(�)�(�) �= 0 then �(�) = �
−1

(�) and
(4.7) does not hold. It follows that (4.7) in Theorem 15 may be
replaced by �(�) + �(�) < 1.

Example 17. In this example none of the individual pairs
(Ai, bi) are controllable, yet the CLS is completely control-
lable. Let Ki , i = 1, 2, 3, 4, correspond to the four quadrants
of the plane in counterclockwise order. We define

A1 =
(

3 0

0 3

)
, b1 =

(
1

−1

)
,

A2 = 0, b2 =
(

2

1

)
,

A3 = A4 =
(

0 1

−1 0

)
, b3 = b4 = 0.

An easy calculation yieldsG={−1}, �(−1)=0, and �(−1)=0.5.

Example 18. In this example all of the individual pairs (Ai, bi)

are controllable and conditions (a)–(b) of Theorem 15 are satis-
fied, yet the CLS is not completely controllable. As in Example
17, let Ki , i = 1, 2, 3, 4, correspond to the four quadrants of
the plane in counterclockwise order. We define

A1 = A3 =
(

2 3

−1 −1

)
, A2 = A4 =

(−1 1

−3 2

)
,

b1 =
(

1

1 − 1

)
, b2 =

(
1

1

)
, b3 =

(−1

1

)
, b4 =

(−1
−1

)
.

Here, G = {1, −1}, �(1) = �(−1) = 0, and �(1) = �(−1) = 1.

4.4. Controllability over U

To study controllability of � over U (4.6) should be replaced
by

Ĝi = {sgn(�−
i + u	−

i ) : (�−
i + u	−

i )(�+
i+1 + u	+

i+1) > 0,

∃u ∈ R}. (4.10)

Thus, Lemma 13 should be replaced by

Lemma 19. For each i ∈ I,

(i) If 	+
i+1	

−
i > 0, then Ĝi = {1, −1}.

(ii) If 	+
i+1	

−
i = 0, then

Ĝi =

⎧⎪⎨
⎪⎩

{sgn(�−
i )} if 	+

i+1 = 	−
i = 0, and �+

i+1�
−
i >0,

{sgn(�−
i )} if 	+

i+1 �= 0,

{sgn(�+
i+1)} if 	−

i �= 0.

(iii) If 	+
i+1	

−
i < 0, and det

[
�+

i+1

	+
i+1

�−
i

	−
i

]
�= 0, then

Ĝi =
{

sgn

(
�−
j − 	−

j �+
j+1

	+
j+1

)}
.

(iv) In all other cases Ĝi = ∅.

Let Ĝ�
⋂

i∈IĜi . Then Theorem 15 still holds if in its state-
ment Um and G are replaced by U and Ĝ, respectively.

The following example demonstrates this difference.

Example 20. In this example all of the individual pairs (Ai, bi)

are controllable and conditions (a)–(b) of Theorem 15 are satis-
fied, yet the CLS is only controllable if we allow discontinuous
feedback controls. As in Example 17, let Ki , i=1, 2, 3, 4, cor-
respond to the four quadrants of the plane in counterclockwise
order. We define

A1 = A3 =
(

2 3

−1 −2

)
, A2 =

(−1 1

−3 5

)
,

A4 =
(−1 1

−3 2

)
,

b1 =
(

1

−1

)
, b2 =

(
1

2

)
, b3 =

(−1

1

)
, b4 =

(
1

1

)
.

An easy calculation yields �+
1 = �+

4 = −1, �−
4 = �−

3 = −3,
	+

1 = 	−
3 = −1, and 	−

4 = 	+
4 = 1. Therefore, Ĝ = {−1} and

�(−1) = 2, �(−1) = 0. On the other hand, since G = {−1, 1}
and �(1) = 0.5, �(1) = 0, the system is controllable over Um.



158 A. Arapostathis, M.E. Broucke / Systems & Control Letters 56 (2007) 150–158

5. Stabilization

Theorem 21. Suppose � is completely controllable over Um.
Then it is stabilizable by piecewise-linear feedback of the form
u = kT

i x, for x ∈ Ki , where ki ∈ R2, i ∈ I.

Proof. Without loss of generality suppose 1 ∈ G, and �(1) < 1.
Let i ∈ I be arbitrary. By Lemma 11, if bi �= 0 and
range(Ai) /⊂ Bi , then Reach�i

(vi) ∩ Vi+1 contains all points
of the form �ivi+1, where

�i ∈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
vT
i b∗

i

vT
i+1b

∗
i

, ∞
)

if (vi+1 + vi)
TAT

i b∗
i > 0,

(
0,

vT
i b∗

i

vT
i+1b

∗
i

]
if (vi+1 + vi)

TAT
i b∗

i < 0.

Moreover, by Corollary 12, for any such �i , there exists a con-
stant gain ki = ki(�i ), such that under the control u = kT

i x, the
closed-loop trajectory in Ki∗ steers vi to �ivi+1. On the other
hand, if bi �= 0 and range(Ai) ⊂ Bi , then Reach�i

(vi)= (vi +
Bi ) ∩Ki∗. In this case, it easily follows that for some 
i ∈ R,
the closed-loop trajectory starting at vi and under the feedback
control u = 
ib

∗
i is a straight line segment in Ki∗ that joins

vi to (vT
i b∗

i /v
T
i+1b

∗
i )vi+1. Hence, we set �i = vT

i b∗
i /v

T
i+1b

∗
i .

Lastly, if bi = 0, in view of Lemma 11, set �i = e
i�i . Since∏
i∈I�i < 1, it follows that the collection {�i , i ∈ I}may be

selected such that
∏

i∈I�i < 1. Let �̃ denote the segment of the
closed-loop trajectory under a complete cycle. Clearly �̃ steers
v1 to (

∏
i∈I�i )v1, and it easily follows that the closed-loop tra-

jectory converges asymptotically to the origin. Since, by linear
scaling every x ∈ R2∗ satisfies �x ∈ �̃ for some � > 0, it follows
that the closed-loop system is asymptotically stable. �

Remark 22. As seen in Example 18, even if every pair (Ai, bi)

is controllable, the system might not be stabilizable by state
feedback. This connects directly to the stability analysis. De-
spite the fact that the eigenvalues of the closed-loop system

Ai + bik
T
i can be selected to have any negative values desired,

thus making the coefficients �i as negative as desired, this pro-
cess also affects the gains 	i in a manner that might always
result in an unstable system.
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