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Optimal Sensor Querying: General Markovian and
LQG Models With Controlled Observations
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Abstract—This paper is motivated by networked control systems
deployed in a large-scale sensor network where data collection
from all sensors is prohibitive. We model it as a class of dis-
crete-time stochastic control systems for which the observations
available to the controller are not fixed, but there are a number
of options to choose from, and each choice has a cost associated
with it. The observation costs are added to the running cost
of the optimization criterion and the resulting optimal control
problem is investigated. Since only part of the observations are
available at each time step, the controller has to balance the
system performance with the penalty of the requested information
(query). We first formulate the problem for a general partially
observed Markov decision process model and then specialize to the
stochastic linear quadratic Gaussian problem. We focus primarily
on the ergodic control problem and analyze this in detail.

Index Terms—Dynamic programming, Kalman filter, linear
quadratic Gaussian (LQG) control, networked control systems
(NCS), partially observable Markov decision processes (POMDP).

I. INTRODUCTION

M UCH attention has been recently paid to networked con-
trol systems (NCS), in which the sensors, the controllers

and the actuators are located in a distributed manner and are in-
terconnected by communication channels. In such systems, the
information collected by sensors and the decisions made by con-
trollers are not instantly available to the controllers and actua-
tors, respectively. Rather they are transmitted through commu-
nication channels, which might suffer delay and/or transmis-
sion errors, and as such this transmission carries a cost. Un-
derstanding the interaction between the control system and the
communication system becomes more and more important and
plays a key role on the overall performance of NCS.

Stability is a basic requirement for a control system, and for
NCS a key issue is how much information does a feedback con-
troller need in order to stabilize the system. Questions of this
kind have motivated much of the study of NCS: stability under
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communication constraints of linear control systems is studied
by Wong and Brockett [1], [2], Tatikonda and Mitter [3], [4],
Elia and Mitter [5], Nair and Evans [6], Liberzon [7] and many
others; stability of nonlinear control systems is further studied
in [8] and [9].

Broadly speaking, the amount of information the controller
receives, affects the performance of estimation and control.
However, information is not free. On the one hand, it consumes
resources such as bandwidth, and power (i.e., in the case of
a wireless channel), while on the other, by generating more
traffic in the network it induces delays. If one incorporates in a
standard optimal control problem an additional running penalty,
associated with receiving the observations at the controller, then
a tradeoff would result that balances the cost of observation
and the performance of the control. In this paper, we consider
a simple network scenario: a network of sensors, provides
observations on the system state that are sent to the controller
through a communication channel. The controller has the option
of requesting different amounts of information from the sensors
(i.e., more detailed or coarser observations), and can do so at
each discrete time step. Based on the information received, an
estimate of the state is computed and a control action is decided
upon. However, what is different here is that there is a running
cost, associated with the information requested, which is added
to the running cost of the original control criterion. As a result
the observation space is not static, rather changes dynamically
as the controller issues different queries to the sensors.

Early work on the control of the observation process can be
traced back to the seminal paper of Meier et al. [10], in which
a separation principle between the optimal plant control and
optimal measurement control was proved for finite-horizon
linear quadratic Gaussian (LQG) control. Later on, work has
focused on the optimal measurement control, or the so-called
sensor scheduling problem [11]–[19], in which there are a
number of sensors with different levels of precision and oper-
ation costs and the controller can access only one sensor at a
time to receive the observation. The objective is to minimize
a weighted average of the estimation error and observation
cost. In [18], the sensor scheduling problem is addressed for
continuous-time linear systems, while in [19], the dynamics
correspond to a hidden Markov chain. Recently in [20], Gupta
et al. propose computationally tractable algorithms to solve
the stochastic sensor scheduling problem for the finite-horizon
LQG problem.

In this work, we use a general model in the context of
partially observed Markov decision processes (POMDP) with
controlled observations and then specialize to the analogous
infinite-horizon LQG problem. The feature that distinguishes
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our work from others’ is that we study the optimal control
problem over the infinite horizon—both the discounted (DC)
and the long-term average (AC) control problems, for fi-
nite-state Markov chains and LQG control with controlled
observations. We prove the existence of stationary optimal poli-
cies for MDPs with controlled observations and hierarchically
structured observation spaces under a mild assumption. Then
we consider the LQG control problem and prove that a partial
separation principle of estimation and control holds over the
infinite horizon: the optimal control can be decoupled into two
subproblems, an optimal control problem with full observations
and an optimal query/estimation problem requiring the knowl-
edge of the controller gain. The estimation problem reduces to
a Kalman filter, with the gain computed by a discrete algebraic
Riccati equation (DARE). On the other hand, the optimal query
is characterized by a dynamic programming equation.

The main contributions in this paper are highlighted as
follows:

• existence of a stationary optimal policy for the ergodic con-
trol of finite-state POMDPs with controlled observations
exhibiting hierarchical structure;

• the separation principle of estimation and control for the
infinite-horizon LQG control problems with controlled ob-
servations;

• the characterization of optimal control for LQG control
with controlled observations, including existence of a so-
lution to the Hamilton-Jacobi-Bellman (HJB) equation for
the ergodic control problem.

The rest of this paper is organized as follows. In Section II, we
describe a model of POMDPs with controlled observations, and
formulate an optimal control problem which includes a running
penalty for the observation. Section III is devoted to the LQG
problem. We present some examples in Section IV, and con-
clude the paper in Section V.

II. POMDPS WITH CONTROLLED OBSERVATIONS

A. System Model and Problem Formulation

We consider the control of a dynamical system, which is gov-
erned by a Markov chain , where is the state
space (assumed to be a Borel space), is the initial distribu-
tion of the state variable and is the set of actions, which
is assumed to be a compact metric space. We use capital letters
to denote random processes and variables and lower case letters
to denote the elements of the space they live in. We denote by

the set of probability measures on . The dynamics of
the process are governed by a transition kernel on given

, which may be interpreted as

for , with an element of the set of the Borel -field
of , the latter denoted by .

The model includes distinct observation processes, but only
one of these can be accessed at a time. Consider for example,
a network of sensors providing observations for the control of
a dynamical system. Suppose that there are levels of sensor
information, and at each time , represents the set of data

provided at the -th level, which lives in a space . In as much
as the complete set of data is a partial measurement of the state

of the system, we are provided with stochastic kernels on
given , which may be interpreted as the conditional

distribution of given , i.e.,

The mechanism of sensor querying is facilitated by the query
variable which chooses the subset of sensors to be queried
at time , i.e., takes values in . The evolution
of the system is as follows: at each time an action and query

are chosen and the system moves
to the next state according to the probability transition
function , and the data set , corresponding to the
queried sensors, is obtained.

One special case of this model is when the levels of sensor in-
formation constitute a hierarchy, i.e., the data set becomes richer
as we move up in the levels, meaning that the -fields are or-
dered by the inclusion . Another sce-
nario, in the sensor scheduling problem, involves independent
sensors with observations , and at each time , only one can
be accessed (e.g., due to interference).

Following the standard POMDP model formulation (e.g.,
[21]), we define , and the history spaces

by and

Markov controls and stationary controls are defined in the stan-
dard manner. We let denote all admissible controls, and ,

all the Markov, stationary (Markov) controls respectively.
Under a Markov control the probability measure renders

a Markov process.
Following the theory of partially observed stochastic systems,

we obtain an equivalent completely observed model through the
introduction of the conditional distribution of the state given
the observations [21]–[23]. The process lives in .
An important difference from the otherwise routine construction
is that the observation process does not live in a fixed space but
varies dynamically based on the query process. The query vari-
able selects the observation space, and the nonlinear Bayesian
filter that updates the state estimate is chosen accordingly. Let

Decomposing the measure as

we obtain the filtering equation

(1)

The model includes a running penalty ,
which is assumed to be continuous and non-negative, as well
as a penalty function that represents the cost of
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information. Let . We are interested primarily in the
long-term average, or ergodic criterion. In other words, we seek
to minimize, over all admissible policies

(2)

When the optimal value of is independent of the initial
condition , then (2) is referred to as the ergodic criterion. We
also consider the -discounted criterion

(3)

We define

If we let , the control criteria in
(2)–(3) can be expressed in the equivalent CO model.

Stationary optimal policies for the -discounted cost objec-
tive can be characterized via the HJB equation, shown at the
bottom of the page, where is the optimal value function. For
the long-term average or ergodic objective, the HJB equation
takes the form of (4), shown at the bottom of the page. In (4),

is the optimal average cost, and is called the bias function.

B. POMDPs With Hierarchical Observations

In this section, we focus on models with the hierarchical
structure . A simple example of such a
structure is a temperature monitoring system in a large building
that consists of a two-level hierarchy: a cluster of sensors at
each room (fine observation space), and a cluster of sensors at
each floor of the building (coarse observation space).

We consider a POMDP model with finite state space
and observation spaces , .

The action space is assumed to be a compact metric space.
The dynamics of the process are governed by a transition kernel
on

For fixed , and , can be viewed as an sub-
stochastic matrix and is assumed continuous with respect to .

Representing as a row vector of dimension , (1) takes the
form

if

otherwise

where can be chosen arbitrarily.
Under the hierarchical structure assumed, the observation

space , admits a partition , satisfying
the property

(5)

Note that (5) implies that for any , can be
expressed as a convex combination of

C. Existence of Stationary Optimal Policies for the Average
Cost

In this section we employ results from [24] to show existence
of a solution to (4) for a POMDP with hierarchical observations,
by imposing a condition on the (finest) observation space .

We adopt the following notation. For , let

Then, provided and are compatible, i.e., , we
define

Also, denote by the string of length .
Assumption 2.1: There exists such that, for each

(6)

Remark 2.1: Perhaps a more transparent way of stating As-
sumption 2.1 is that for each , and for each sequence

(4)
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, there exists some and a se-
quence , such that , for all .

Remark 2.2: According to the results in [24], under Assump-
tion 2.1, there exists a solution to (4), provided the observation
space is restricted to .

We have the following existence theorem.
Theorem 2.1: Let Assumption 2.1 hold. Then, there exists a

solution to (4), with and , a concave
function. Moreover, the minimizer in (4) defines a stationary
optimal policy relative to the ergodic criterion, and is the
optimal cost.

Proof: By (5), for each , there exists a partition
of , satisfying

Then for any , , and , we have

(7)

Assuming (6) holds, fix , and
, and let , be such that

(8)

Since is a partition of , we can choose
such that , for all . By (7)–(8)

Therefore, Assumption 4 in [24] is satisfied, which yields the
result.

III. LINEAR SYSTEMS WITH CONTROLLED OBSERVATIONS

In this section, we consider a stochastic linear system in dis-
crete-time, with quadratic running penalty. In Section III-A we
introduce the LQG control model, and in Section III-C we study
stability issues. The dynamic programming equation is further
simplified and decoupled into two separate problems: (a) op-
timal estimation problem and (b) control, the latter being a stan-
dard LQG optimal control problem.

A. Linear Quadratic Gaussian Control: The Model

Consider a linear system governed by

(9)

where is the system state, is the control,
and the noise process is i.i.d., and normally distributed.
We assume that is Gaussian with mean and covariance

matrix , and denote this by . We also as-
sume that and are independent. The observa-
tion process is being observed by

(10)

with , and . Moreover, we assume
the system noise and observation noise are independent, i.e.,

. This independence assumption results in a simplifi-
cation of the algebra; otherwise, it is not essential.

The running cost is quadratic in the state and control, and
takes the form

where and belong to , the set of symmetric, positive
definite matrices.

B. Optimal Control Over a Finite Horizon

For an initial condition and an admissible policy
, let denote the unique probability mea-

sure on the path space of the process, and the corresponding
expectation operator. Whenever needed we indicate the depen-
dence on explicitly (or more precisely the dependence on
the law of ), by using the notation and . The optimal
control problem over a finite horizon , amounts to minimizing
over all admissible controls the functional

(11)

where , the set of symmetric, positive semi-defi-
nite matrices in . In (11), is of course a function
of the law of , and hence can be parameterized as

. The solution of the problem over a finite horizon
is well known [10]. Nevertheless, we summarize the key results
in the theorem below. A proof is included because some of the
derivations are needed later.

Theorem 3.1: Consider the control system in (9)–(10), under
the assumptions stated in Section III-A, and let and , be
the mean and covariance matrix of , respectively. Let

Let , where is
defined by

(12)

with

(13a)

(13b)

and is a selector of the minimizer in the dynamic program-
ming equation

(14)



1396 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 6, JULY 2008

, with , the Riccati map as defined
in (17), and

Then is optimal with respect to the cost functional and

where

Proof: Let , and . Invoking
the results of the general POMDP model in Section II, we can
obtain an equivalent completely observed model using the con-
ditional distribution of given as the new state. It is well
known that with respect to the conditional distribution of
given is Gaussian [25]. Let . Since there is
no observation in our model, we set as the trivial -field.
Hence, . Then, a standard derivation, yields

(15)

where

(16a)

(16b)

(16c)

In (16), is the conditional covariance of under
given , and . By (16b), the conditional error covari-
ance matrix satisfies , where

(17)

If an admissible sequence is specified, then stan-
dard LQG theory shows that the policy ,
given by (12)–(13), is optimal relative to the functional . In
other words, if we denote with
fixed, then defined in (12) satisfies

where the infimum is over all admissible policies .
Combining the feedback policy in (12) with (15), we obtain

(18)

A straightforward computation using (13)–(18), yields

(19)

where

Similarly, for , we have

(20)

Thus, by (19)–(20), for

(21)

Since

we have

(22)

Define

Simple induction using (21) and (22) yields, for

Therefore, , where does not depend
on , and

(23)

If we define as the cost-to-go function for (23), then the
optimal policy can be determined by (14) via the dynamic
programming principle.

As in the standard theory of LQG control with partial observa-
tions, the optimal control of (9)–(10) is a certainty equivalence
control, namely, the optimization problem can be separated into
two stages: first, the optimal control is the linear feedback
control in (12) whose gain does not depend on the choice of the
query policy ; second, the conditional distribution of the
system state is obtained recursively via the filtering (15) which
is coupled with the dynamic programming (14) to determine the
optimal query policy. The difference from the standard LQG
problem is that the dynamic programming equation depends on
the controller gain which evolves according to (13). Thus, (14)



WU AND ARAPOSTATHIS: OPTIMAL SENSOR QUERYING 1397

can be viewed as the solution of an optimal estimation problem,
in which the cost function is the sum of the cost of the query and
a weighted estimation error (23).

C. Stabilization

Stability considerations are important in the analysis of op-
timal control over the infinite horizon. The study of reachability
and stabilization of switched linear systems has attracted con-
siderable interest recently [26]–[31]. Necessary and sufficient
conditions for stabilizability for the continuous-time counter-
part of (24) are obtained in [27], [32]. Switched discrete-time
linear systems are studied in [28], [31], [33] under different sce-
narios. We start with the following definition.

Definition 3.1: The stochastic system (9)–(10) is stabilizable
in the mean with bounded second moment (SMBSM), if there
exist an admissible policy , such that

and

for any initial condition . A policy having
this property is called stable.

We begin by discussing the deterministic system

(24)

whose state, observation and controls live in the same Euclidean
spaces as (9)–(10), and the pair is chosen as a func-
tion of . Let

Then, a necessary condition for the existence of a control
such that the closed loop system is asymptotically

stable to the origin is that the pair be stabilizable and
the pair be detectable. This condition is also sufficient,
as shown in the following theorem, whose proof is contained in
Appendix A.

Theorem 3.2: Suppose is stabilizable and is
detectable and is such that the matrix
is stable, i.e., has its eigenvalues in the open unit disc of the
complex plane. Then, there exist a collection of matrices

, and a sequence such that the
controlled system (24), under the dynamic feedback control

, with

is uniformly geometrically stable to the origin.
Theorem 3.2 can be applied to characterize the stabilizability

of (9)–(10).
Corollary 3.3: The stochastic linear system (9)–(10) is

SMBSM if and only if is stabilizable and is
detectable.

Proof: Consider dynamic output feedback of the form:

(25)

with , and let . Then, by (9)–(10) and (25),
we obtain

By Theorem 3.2, provided is observable and
is stabilizable, there exist gain matrices , and

, and a periodic sequence , such that under this policy
(i.e., with ), which is denoted by , we
have , while is bounded. Further-

more, since by the proof of Theorem 3.2, the product
decays geometrically in norm, there exist constants

and , such that

(26)

This completes the proof.
Remark 3.1: Note that under the policy in the proof of

Corollary 3.3, remains bounded, and redefining
as the largest of the two bounds, in addition to (26), we can assert
that

(27)

Remark 3.2: The control used in (25) is -adapted,
whereas the admissible controls for (9)–(10) were defined as

-adapted. However, there is no discrepancy: on the one hand,
sufficiency is not affected, while on the other observable
and stabilizable is necessary for (9)–(10) to be SMBMS.

D. Optimal Control Over the Infinite Horizon

In this section we study the optimal control problem over the
infinite horizon. We are particularly interested in the ergodic
control problem, and we approach this via the -discounted one.

Let be the discount factor. For a policy ,
define

and let .
Provided is stabilizable, and is detectable,

is finite. Indeed, since , with the policy in
(26), an easy calculation shows that there exists a constant
such that

(28)

The existence and characterization of stationary optimal poli-
cies for the -discounted control problem is the topic of the fol-
lowing theorem.
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Theorem 3.4: For the control system (9)–(10), assume that
is stabilizable, and is detectable. Then there ex-

ists a unique positive definite solution to the algebraic Ric-
cati equation

(29)

Define the functional map , , by

(30)

where . Let

with

Let

(31)

There exists a lower semicontinuous satisfying

(32)

such that if is a selector of the minimizer in
(30), with , then is optimal for the
discounted control problem, and for each , the optimal
discounted cost is given by

(33)

Proof: It is well known that, provided is stabiliz-
able, the matrix recursive iteration (13) for converges to a
positive definite matrix satisfying (29). Moreover,(29) has
a unique solution in . Consider the finite-horizon problem
with initial condition

(34)

It follows by Section III-B that the optimal cost is given by

where satisfies

(35)

with . Since , where is the policy in The-
orem 3.2, it follows that is bounded pointwise in .
Since, in addition, , it converges to a lower semicontin-
uous function , and taking monotone limits, (35) yields(32).
Since is locally bounded, it follows by (20) and (34) that

as . Thus, the estimate in (28) yields

, as . Using the dynamic program-
ming (32), we have

and taking limits as , we obtain

One more application of (32) shows that for all , such that

and thus, is optimal. The proof is complete.
Before proceeding to the analysis of the ergodic control

problem, we establish some useful properties of the Riccati
map defined in (17). For , let

and “ ” denote composition of functions. To prove the exis-
tence of a stationary optimal policy for the ergodic control
problem, we employ Lemmas 3.5–3.6 below, whose proofs are
in Appendices B and C.

Lemma 3.5: There exists and , such that

for every sequence , if and only if the pair
is controllable, in which case .

Lemma 3.6: The functions and
are concave.

To characterize the ergodic control problem, we adopt the
vanishing discount method, i.e., an asymptotic analysis as the
discount factor . By (31)–(33), for any , in and

, in

(36)

Also using
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we obtain, that for some constant , and the constant
in (26)–(27)

(37)

Let be a bounded ball in containing the
set , and such that

Since depends only on , and since converges to a limit
in , as , it follows from (36) and (37) that there exists
a continuous function , having affine growth,
such that

(38)

for all . Define

Equicontinuity of the differential discounted value function
, is established in the following lemma, whose proof is con-

tained in Appendix D.
Lemma 3.7: Under the assumptions of Theorem 3.4
i) , for any .

ii) Suppose is a controllable pair. Then, is locally
bounded, uniformly in .

iii) Provided is a controllable pair,
is equicontinuous on compact subsets of .

We now turn to the ergodic control problem. For a policy
, define

and let . The main result of this section is the
following.

Theorem 3.8 (Ergodic Control): Assume that is stabi-
lizable, is detectable, and is controllable. Define
the functional map , by

(39)

where , and solves

(40)

There exists a nonnegative constant and a continuous
satisfying

(41)

Let be a selector of the minimizer in (39). Set

(42)

where

with as in (16a), and

(43)

Then, is optimal for the ergodic control
problem, and

Furthermore, is stable.
Proof: It is well known that, provided is stabiliz-

able, converges as to , which is the unique
positive definite solution to the algebraic Riccati (40). Thus it
suffices to turn our attention to the query policy. By Lemma
3.7, is locally equicontinuous and bounded, and thus along
some sequence , converges to some continuous
function , while at the same time converges
to some constant . Taking limits in (32), we obtain (41).

By (41), there exists such that implies

This shows that , for all . Let

Since

it follows that is a stable matrix. Thus, from

we obtain

By (41), for any admissible

(44)
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with equality when . Since the function in (38) has
affine growth, it follows that , for some affine
function . Therefore, since is stable, , as

, which in turn implies by (44) that

Also for any policy such that the limit supremum of
the expectation of the right hand side of (44) is finite, we have

, along some subsequence .
Thus

(45)

By (44)–(45),

Hence is optimal. This completes the proof.
Remark 3.3: The assumption controllable cannot be

relaxed in general. Lack of this assumption may result in the
long-run optimal cost to depend on the initial condition . A
possible weakening is to require that is stabilizable, but
we do not pursue this analysis here.

Remark 3.4: In summary, the steps to compute the optimal
controller are as follows: First we solve the Riccati (40) for

. The optimal control is the linear feedback controller in
(42) with a constant gain. Next, we solve the HJB (41) to obtain
a stationary optimal policy for the query. The optimal query
is a function of , and the state estimates are updated according
to (43).

IV. EXAMPLE: OPTIMAL SWITCHING ESTIMATION

Since the switching control for the observation is the key
feature of the problem, the examples presented in this section
concentrate on the optimal estimation problem. In other words,
the objective is to estimate the system state while mini-
mizing the infinite-horizon criteria with respect to the running
cost . We present examples of 1–D and
2–D systems with a binary query variable, i.e., .

A. 1-D Case

Consider a 1-D system as in (9)–(10), with ,
. If we let , i.e., the normalized noise, takes

the form

and the HJB equations for the discounted and ergodic criteria
take the form

(46a)

(46b)

Fig. 1. Optimal policy threshold versus the discount factor �.

Suppose and that the cost of observation satisfies
. In other words, Sensor 1 has a lower sensing ca-

pability and lower cost, while Sensor 2 has a higher sensing ca-
pability and cost.

Let , denote the unique fixed points of , , respec-
tively. Since , we have . The iterates of the
map , converge to , hence we restrict our attention to the
set of initial conditions , which is invariant under ,

. For , .
Using the method of successive iterates of the dynamic pro-

gramming operator, we can derive sharp conditions for the op-
timal query policy to be switching between the two sensors, and
not to be a constant. This is summarized in the following propo-
sition, whose proof is omitted.

Proposition 4.1: Let denote the minimizer in (46a), for
, and the minimizer in (46b), when . Then,

given , there exists such that
i) , for , if and only if

ii) , for , if and only if

The optimal query policy for the 1-D example can be easily
obtained numerically by standard algorithms, like value itera-
tion or policy iteration. After running numerous simulations, it
appears that the optimal query policy for both the discounted
and average costs is a threshold policy, namely, the optimal
takes the form

.

The threshold point , as a function of the discount factor ,
is displayed in Fig. 1. As approaches 1, the optimal threshold
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Fig. 2. Cost difference versus the optimal threshold.

for the discounted cost converges to that of the average cost.
Furthermore, the optimal threshold is a decreasing function of .
This agrees with Proposition 4.1, and also agrees with intuition
that as the future is weighted more in the criterion, the frequency
with which the optimal policy chooses the more accurate and
costly observation increases.

Fig. 2, shows the variation of the optimal threshold as a func-
tion of the cost differential. The threshold point is an increasing
function of the cost differential and once the latter increases in
value beyond 0.45 the optimal policy is a constant, and the con-
troller chooses to use the least costly observation all the time.

B. 2-D Case

We present an example of a 2-D system with system state
, a scalar observation, and the following

parameters:

The running cost is . Since the pairs
are not detectable, this example can be viewed as a problem of
optimal switching estimation.

Fig. 3 shows the optimal switching curve that minimizes the
trace of estimation error variance, and can be interpreted as fol-
lows: when , the estimation variance of is larger than
the estimation variance of , we query Sensor 1, and vice
versa. The switching curve is a straight line due to symmetry.

Next suppose that Sensor 2 has lower observation noise and
higher price, i.e.,

while the rest of the parameters are kept the same as before.
This has the following impact on the optimal switching curve,
as shown in Fig. 4: Near the origin, where the penalty on the
estimation errors is small, Sensor 2 is used, due to its lower
operation cost; far away from the origin, where the estimation

Fig. 3. Optimal switching curve for the first 2-D example.

Fig. 4. Optimal switching curve for the second 2-D example.

error dominates the cost of querying, the symmetry of Fig. 3 is
broken, and Sensor 1 is favored.

In the third 2-D example, both sensors can fully detect the
unstable eigenmode of the system state, i.e.

and

Fig. 5 portrays the optimal switching curve for this example.
When the estimation error lies in the interior of the switching
curve, Sensor 1 is queried due to its low cost. Outside the
switching curve, the estimation error is large enough to neces-
sitate querying Sensor 2, which has higher precision.
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Fig. 5. Optimal switching curve for the third 2-D example.

V. CONCLUSION

In this paper, we described a general model for partially
observable Markov processes with controlled observations
and infinite-horizon cost. The existence of ergodic control
in the special case of switched hierarchical observations was
proven under an assumption on the finest observation space.
Specializing to the LQG problem with controlled observations,
we obtained existence results for the discounted and ergodic
optimal control problem, under sharp conditions. The structure
of optimal sensor query for 1-D LQG problem was investigated
both analytically and numerically. Some simple numerical
examples were presented for 2-D linear systems.

APPENDIX A
PROOF OF THEOREM 3.2

It is enough to show that the system

is uniformly geometrically stable to the origin. Consider first the
case , that lends itself to simpler notation. Without loss of
generality assume is observable. Then, there exist row
vectors of dimension such that with , we have

(47)

and . With respect to the ordered basis in (47),
and , take the form

with , , , and the pair
is observable, for .

Let be such that

(48)

where denotes the spectrum of the matrix, and let be
defined by

(49)

Select gains , such that

(50)

Then, if we let

and , we obtain

Expressing in block form , with ,
, we define the block norm

By (48) and (50), there exists such that for all ,

(51)

and . For and , we have

(52)

where

Using (49) and (51), we calculate the following estimates

(53)

and

(54)
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(55)

It follows by (52)–(55), that if we select

then

Therefore, the periodic switching

for , yields an asymptotically stable system. The
general case , follows in exact analogy: one shows that the
map is a contraction with respect to the block norm

, for some . Thus, there exists a periodic switching
sequence which is stabilizing.

APPENDIX B
PROOF OF LEMMA 3.5

The Riccati map defined in (17) satisfies the identity

(56)

Since both terms on the right hand side of (56) are positive def-
inite, and is nonsingular then implies
that and . Moreover, since

, we deduce from (56) that

(57)

Therefore, if is an arbitrary sequence and
, we obtain by (57) that

(58)

When , (58) implies that is nonsingular if and only
if is controllable. The existence of as asserted in
the lemma stems from the fact that that collection of maps
is finite.

APPENDIX C
PROOF OF LEMMA 3.6

Note that if the filtering at time is based upon instead
of , the corresponding Riccati map is different from and its
convexity has been shown in [34].

To prove the concavity of , we show that for any scalar
and symmetric square matrix , . To
simplify the notation, we define

After some algebra, we obtain

Since and is symmetric, we have ,
which shows that is concave. The concavity of follows
from the fact that the map is concavity-conserving, namely,

is concave if is concave.

APPENDIX D
PROOF OF LEMMA 3.7

i) As mentioned in the proof of Lemma 3.5, implies
. Hence, it follows by induction from (35)

that if , then . Thus
.

ii) Let be the constant in Lemma 3.5. For a ,
let be such that

If is an optimal -discounted policy, then

Thus
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where the last inequality follows from the concavity of
, and the fact that . Therefore

Since, by (28) is bounded, uniformly in
, the same holds for . The result

then follows by (38).
iii) Equicontinuity of on bounded subsets of , for

any , follows from the uniform boundedness and
concavity of [35]. Since, by (1), , for
any , then by Lemma 3.5

for all . Fix the initial condition ,
and let be a corresponding -discounted op-
timal sequence of queries, i.e., selectors from the mini-
mizer in (30). Define .
Using (32), for any

(59)

Thus, equicontinuity on every compact subset of fol-
lows from (59), by exploiting the continuity of ,
the property , and the fact that and

is equicontinuous on bounded subsets of .
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