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Necessary and Sufficient Conditions for State Equivalence
to a Nonlinear Discrete-Time Observer Canonical Form
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Abstract—In this technical note, we obtain necessary and sufficient con-
ditions for a multi-input, multi-output, discrete-time nonlinear system to
be state equivalent to a nonlinear observer form, and for an uncontrolled
multi-output system to be state equivalent to a linear observer form. We
adopt a geometric approach, and the proofs are constructive with respect
to the required coordinate change.

Index Terms—Nonlinear discrete-time control systems, nonlinear ob-
server form, state equivalence.

I. INTRODUCTION

The problem of observer design is prominent in control theory. Un-
like linear systems, observer design for nonlinear systems is rather
difficult. Observers for continuous time nonlinear systems were first
investigated by Krener and Isidori [1] for time-invariant systems and
Bestle and Zeitz [2] for time-varying systems, independently. The re-
sults were extended in [3]–[7]. For discrete-time systems, the problem
has been investigated by several authors, see for example [8]–[22]. Lin
and Byrnes [13] have obtained necessary and sufficient conditions for
autonomous systems, but their approach does not seem to extend to sys-
tems with inputs. Califano et al. [8], Chung and Grizzle [9], and Lee
and Nam [12], [15] have considered the problem under the restriction
that the drift term is locally invertible. The work in [14] opened the
path for direct nonlinear observer design without relying on the struc-
ture of linear observers. This was followed by the work in [10], [11],
[16], [18]–[22].

In this technical note we revisit the problem of equivalence through
a state transformation to a nonlinear observer canonical form [see (2)]
of a discrete time system. We adopt a geometric approach and charac-
terize equivalence through an auxiliary derived system [see (7)] whose
dynamics are linked to those of the original system. Necessary and suf-
ficient conditions for equivalence are given, and the proofs are con-
structive with respect to the required coordinate change. Concerning
the autonomous system in (1b), a similar characterization is obtained
in [13]. The method adopted allows us to characterize state equiva-
lence of the multi-input, multi-output controlled system (1a) to the non-
linear observer form in (2). As far as we know such a characterization
is lacking in the existing literature. Even some of the most recent pa-
pers that allow both state and output transformations (see for example
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[8]), restrict their attention to single-input, single-output, drift invert-
ible systems. The direct method adopted utilizes the system impulse
response (see Section II), and resembles the method used in [23].

Consider a discrete-time, time-invariant, controlled system of the
form

���� �� � � ������ ����� � ���� �� � �

���� �� ������ � ���� � � (1a)

or the autonomous system

���� �� � � ������ � ���� � �

���� �� ������ � ���� � � (1b)

with state � � � � �, input � � � � �, and output � � � � �.
Definition 1: System (1a), or (1b), is said to be state equivalent to

a nonlinear observer form, if there exists a smooth diffeomorphism
� � 	� � �, defined on some neighborhood of the origin 	� � �,
which transforms (1a), in the variable 
 � � ���, to


��� �� ��
��� � � ������ �����

���� �
��� (2)

where � � � � � � �, or � � � � �, is a smooth function and
���� is an observable pair. In the case of (1b), if � � �, then we say
that it is state equivalent to a linear observer form.

Remark 1: If (1a) is state equivalent to a nonlinear observer form,
then choosing � � ��� such that �� 	 �� is Hurwitz, we can
design a state estimator

	
��� �� � ��	 ��	
��� � � ������ ����� � �����

	���� ��
�� �	
����

which results in an asymptotically vanishing estimation error, i.e.,

����� 
���� 	 	����
 � �.

In this technical note, we obtain necessary and sufficient conditions
for system (1b) to be state equivalent to a linear observer form, and for
(1a), (1b) to be state equivalent to a nonlinear observer form. We also
demonstrate the computations involved with several examples.

II. NOTATION AND DEFINITIONS

In this section, we introduce some basic definitions. We refer the
reader to [24]–[26] for basic results in nonlinear systems and differen-
tial geometry.

For a function � � �� � � �, we define the “impulse response”
	�� by

	����� ��
�
��� 	����� ��

�
� ���� ���

	����� ��
�
�� �

������ ��� � � � � �

If � � � � �, then 	�� is the �-fold composition of �, also denoted
by ��.

For a function � � ���� � � � with � ��� �� �� � �, we define
�� � ���� � � ��� � �, � � , by �����

�
� � ��� �� ��, and

������
�
� �

�
� � � � � �����

�
�� ����

�
� �

�
� � � � � ������ �� ��

with�� � ���
�� � � � � �

�
�� �

�. We also adopt the convention �� � �.
If � � �� � � �, the analogous definition applies. Observe that

����
�
� �

�
� � � � � ��� � ������

�
� �

�
� � � � � ��

� ���

The symbol “�” denotes composition of functions. Let �� be the least
nonnegative integer such that ����� � 	�	 ������ is linearly dependent
on the vectors in the collection

����
 � 	��������� ����� � 	�	 �������

�  �  �� �  � � ��� �  � � �� �

The integers ���� � � � � ��� are the observability indices of (1b) [or
(1a)]. Let ��

�
� ��������, and define the subspace � � ���	 , by

�
�
� �

�

 � �  �  ��� �  �  ����


 � �� �� � � �
 �

An element � � � is also viewed as an element of � in the ordered
coordinates ���

�� � � � � �
	
� � � � � � ��

�� � � � � �
	
� �, with �

�
� ���� � ����.

Thus if � � ���, then �� � � is well defined.
Let �� denote the restriction of ��	 on � and define

� � � �� � � � ��� � � �

by

����
� �

�
� � � � � ��	

� ��
�
� � �����

� � � � � ��	�� �� ��
� (3)

If � � �� � � �, then � �� � � � ��� � is similarly defined.

III. MAIN RESULTS

In this section, we obtain necessary and sufficient conditions for sys-
tems (1a), (1b) to be state equivalent to a nonlinear (or linear) observer
form. Without loss of generality we assume throughout that �� �� �,
for � � �� � � � � �.

First, suppose system (1b) satisfies �


��
�
 � �, or equivalently

that

���� ���
 � 	��������  �  �� �  � � �� � ��

Then, by the inverse function theorem, there exists a unique smooth
function � � 	� � �, defined on some neighborhood of the origin
	� � � � � which satisfies, for �  �  �

�
 � 	� ������ �
�
 � �

����� �  � � �


�
 � �
	 ��� � �
 � � � �
 .

(4)

Note that

�
 � �
��� � � ����� �

�
 � �
����� �  � � �


�
 � �
	 ��� � �
 � � � �
 .

(5)

Iterating (5), we obtain

�
 � �
��� ���	��

�
� � � � � ��	� � �

	 ����




��
 � �
	 ���	�	 ������

	 ����
� � � � � ��	�� (6)

We define the derived system of (1b) by

���� �� � � ������ ����� � ���� � � ������ � (7)

The following theorem characterizes state equivalence to a linear ob-
server form for system (1b). Note that the result is local in nature and
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the proposed observer is only guaranteed to work in some open neigh-
borhood of the equilibrium point.

Theorem 1: Let � be the map defined in (3), relative to � in (7).
System (1b) is state equivalent to a linear observer form if and only if,
in ��, a neighborhood of the origin:

i) �

���
�� � �.

ii) ���� � �
� � ���������� � �

����� � � 	 � 
� � � � � ���, for
� � � � 
.

iii) ������
��, � � � � 
, 	 � 	 � �� are well-defined vector

fields.
Furthermore, � � � ��� � 
������ is a linearizing coordinate change.

Proof: (Necessity) Suppose that there exists � � � ��� such that

���� �� � ������ ���� � ������

We can assume without loss of generality that � and � are in observer
canonical form, i.e.,

� �

��� ��� � � � ���

��� ��� � � � ���

...
...

. . .
...

��� ��� � � � ���

(8a)

and � � ������������ � � � � ���, with ��� �
� ��� given by

��� �

	 	 � � � 	 ��
��

� 	 � � � 	 ��
��

	 � � � � 	 ��
��

...
...

. . .
...

...
	 	 � � � � ��

��

(8b)

and

��� �

	 	 � � � 	 ��
��

	 	 � � � 	 ��
��

	 	 � � � 	 ��
��

...
...

...
...

	 	 � � � 	 ��
��

� 	 �� � (8c)

and �� � �	 � � � 	 �� � � . Let ����� � ��, ����� � ��. Then, since
� � ��� � �� � � and � � �� � �

�� � �
� � ��� � �� � � � � �����

��� 	 � 	 � �� (9)

where ���� denotes the �th row of � . Let

	�
�
�

����	�

���� � ���	�
...

��� � �� ����	�

� �	�
�
�

����

�����
...

�����
� ��

� 	
�
�

	�
...
	�

and similarly for �	 . By (9),	 � �	�� �	�, and since, by i),	 is nonsin-
gular, � is a local diffeomorphism. Also, ���� � �

� � � �����
� �� ,

and ii) follows since:

�����
� � ����������

����� � 	 � 
� � � � � ���� (10)

By (5) and (9)

�����
�� � � ����� �

�����
���� ���� 	 � 	 � �� 
 �

�����
� � ��� � �� � 	 � �� 
 �

which, written in matrix form, yields �	� � � ��� �� � �	�� ��� �
� �, or

�� �����
�
� � � � �������� � �� ��� (11)

with

�
�
� �	��� � �������� �� 	 � � � 	� � � � � � 	 � 
 � (12)

Since � �	� � 	, using the relation � ��� �� � ��� � �� �� ���� �� and
(11), we obtain

����� ��� � � � � ���� � ����������� � � � ������ ������

Thus

��


��
�

� ���� ��������� 	 � 	 � �� � � � � � 


and condition iii) holds.
(Sufficiency) Suppose that conditions i)–iii) are satisfied. By (6)

���� � �
�����	�

���

��
�

�

�� � � �� � � �� 
 	� �

	� � �� �� � � �� 
 	� �

	� � � �� 
 	� �.
(13)

It is straightforward to show using (13) that 	� 
��	� is nonsingular.
Thus, 
� is a local diffeomorphism.

Next we show that ����� � � � 
���� � ��. By (6), for � �
���� � � � � ���� � �

�� ������
�� � � � � ���� � �� ��

� ������ ��� ��� � � � � ������
�

� � (14)

We claim that �� � �
� ������ ��� ��� � � � � ���� � 	. Then the result

follows from (14) and this claim. To prove the claim note that assump-
tion ii) implies that, for � � � � 
 and 	 � ��

���� � �
� � � ���� ���� � �

����� � � � � 
� � � � � �� �

(15)
For � � �� � � � � 
�, define

��
�
� ���� � �

��� ������
������� � � � � �����

� � � � 
� � � 	 � �� �

If � � 
�, then by (5)

�� � �
��� �����

������� � � � � ����

�
	� ����
����

� ����� ������ ����� � � � � ������
���� ��

� � ���� .

Therefore, since ��� � 	, for � � �� , when � � �, it follows by (15)
that for � � 
�

�� � �������� 	 � 	 � ��� �� �� (16)

Since ��  	, the claim follows by iterating (16).
It remains to show that ����� � 
��� � � � 
���� � ��. Let

� �
� � ��



����
�

� � � � � 
� � � 	 � �� � ��

Then

� �
� � ��



����
�

� 
��



���
� � � � � 
� � � 	 � ��
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which implies that �� �
� �� � � � �� � � � � ��� is a set of linearly

independent vector fields. Since, for � � �� � � �

� �
� � �

�
� � ��

�

�	���
�

�
�

�	���
�

� �

for all � � �� � � � � ���� and 
 � �� � � � � ����, it follows that �� �
� �� �

� � �� � � � � ����� is a set of ��� commuting vector fields. Thus

�
� ��

� �

�

���

�

���

�����
�
�

for some ���� � , � � �� � � �, � � � � �� . Since

� ��� 	� � 	
�� �  	
���� 	 � 	
�� � ��	� ��� � � ��

we obtain

��
�

�	�

� �	
�� � ���
�

�	�

� �	
�����
�
� �

�

����
� (17)

Similarly, for � � � � ��

��
�

����
� �	
�� � ���

�

����
� �	
�����

���
� �

�

������

(18)

and

��
�

��
�

�

��	
�� � ���
�

��
�

�

� �	
�����
� ��

�

��	
����

�

���

�

���

�����
�
�

�

�

���

�

���

����
�

����
� (19)

By (17)–(19), it follows that � ��� 	� � �� � �	. By (5)

��� � �� ��� � � ��� �� � ��� � �� ����� � � � � �� � � � � �� � (20)

Hence, (20) and assumption i) imply that for some local diffeomor-
phism � �  �  whose components are the functions ���� � �� ����,
we have ����� � � � � ��� �� � � � �����. This shows that ����� �
��.

Next, we consider the observer problem for system (1a). Assuming
that �

���
�� � �, we define the derived system of (1a) by

���� �� �  ������ ����� 	���� � ���� � � ������ �

The function  �  	 
 	 � �  is defined as

�� � � ���� ��	� �
�� � �� ���� ��� � � � � ��
�� � ��� ��� �� � 	� � � � �� .

(21)

Existence of  is guaranteed by the inverse function theorem. It holds
that

�� � �� ��� � ��� �� 	�� ���
�� � �� ���� ��� �� ����
�� � ��� ��� �� � 	� � ���� .

(22)
Theorem 2: Let � � � � �, with  the function defined in (21).

System (1a) is state equivalent to a nonlinear observer form if and only
if, in ��, a neighborhood of the origin:

i) �

���
�� � �.

ii) ����� � ��� � ����������� � �� ����� � � � � �� � � 
 � ���,
for � � � � �.

iii) ������	
�
��, � � � � �, � � � � �� , are well-defined vector

fields.
Furthermore, � � � ��� � 	
����� is a linearizing coordinate change.

Proof: (Necessity); Suppose that there exists � � � ��� such that
(2) holds. Thus

����� �� � � ������� � � ��� � �� �� ��

����� �� � ������ �  ��

We assume, without loss of generality, that�� and take the form (8),
with ���� � �. We have

� � �� ���� �� � �� �
���
�

�� ���� �� � � � �� (23)

Expand ���
�

as

���
�

��� �� ���
�� � �

���
� �� �� ��

� ����
� �  

���
�

��� ��� � �   

���
�� �

�

���

����
� �  

���
���

��� ��� � � (24)

Then, using (24),

���

���� �
����

...

���� �
���
���

�

��� �� �

! �    �

 " !    �
...

...
. . .

...
 #���

� "  #���
� "    !

	

 

 ��
...

 ����
�

(25)

where "
�
� $����� ��, and #�

�
� �� � " . Necessity of i) then

follows from (25). By (23) and (24)

�� � ��� ��� �� �  �	��
�

� � ���

�

�

���

 �	��
� ��

� �  
���
���

�� ���� �� � � � (26)

Condition ii) then follows from (10) and (26).
By (22) and (23)

��� �
���
�

�� �  ��� ��	�� ��

�
��� �

���
���

�� ���� �� � � � � � �� � �

��� �
���
�

�� ���� �� � 	� � � � �� � �.
(27)

Using (24) we can verify that

� �  ��� �� 	� � ��� ��� � � � � ���� �� ��	 (28)

is a solution to (27), with � as in (12). The uniqueness of the solution
to (27), as mentioned earlier, implies that (28) is the only solution. Thus
� ��� �� 	� � ��� � �� �� �� � �	, and

	
���� � � � � ���� �������������� �   �����

��	��    � 	�� � �� ���� � 	�
� � � � � � 	

�
� � � ������	

��

�   ����	
� ��	� �
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Thus

��

�

���
�

� ���

� ��������� � � � � �� � � 	 
 ��

and condition iii) holds.
(Sufficiency); Suppose that conditions i)–iii) are satisfied. That �� is

a local diffeomorphism and ���� � ������� � �, follow using the
method in the proof of Theorem 1. It remains to show that ���� �� �
�� 	 ���� ��. Let

� �
� � ��

�

�����
�

� � � � � �� � � 	 � �� �

Then

� �
� � ��

�

�����
�

� ���

�

���
� � � � � �� � � 	 � �� �

Since �� �� �� �� � ���� � � ������ �� �� � ���� � ���� � ��, for
� � � and  � 
, it follows that:

���

�

��
� ����� � ���

�

���

� ��������
�

� �
�

���
� (29)

Similarly, for � � 	 
 ��

���

�

���
� ����� � ���

�

���
� ��������

���
� �

�

�����

� (30)

By (29) and (30), �� �� �� �� � �	���� ��	��, for some smooth
�. By (22)

��� �
���
���

�� �� �� ��� � �
��� �

���
�

�� ��� �� 	
��
��� �

���
�

�� ��	��� 	���

and arguing as in the proof of Theorem 1, we obtain �� �� �� �� �
���� �� � �� 	 ���� ��.

Remark 2: For a single-output system, hypotheses ii) of Theorem 1
and Theorem 2 are not needed, since in this case ii) is always satisfied.

Remark 3: Hypotheses iii) of Theorems 1 and 2 can be replaced by
iii�) and iii��), respectively, [23], [27]:

iii�) ������
� � ����� � ����� � � � � �� � � 	 � �� .

iii��) ������
� � ����� � ����� � � � � �� � � 	 
 �� .

The following corollary applies to system (1b).
Corollary 1: The autonomous system (1b) is state equivalent to a

nonlinear observer form if and only if, in ��, a neighborhood of the
origin:

i) �

���
�� � �.

ii) ���� � �
� � � ��������� � �

����� � � 	 � �� � � � � ���, for
� � � � �.

iii) �������
�
��, � � � � �, � � 	 
 �� , are well-defined vector

fields.
Furthermore,  � � ��� � ������� is a linearizing coordinate
transformation.

IV. EXAMPLES

In this section, we employ four examples to demonstrate the com-
putations involved. Since the systems used here are not drift invertible,
the conditions in [8], [9], [12], [15] cannot be applied.

Example 1: Consider a system as in (1a) with

���� �� �

�� � ��� 	 ���
�� 	 ���	 ��

�

� ���� � ���

A straightforward calculation yields

� � ���� �� ��� � ��� 	 ����

� � ������ �� ��� 	 ���	 �� � ��� 	 ���
�
�

� � ������ �� ��	 �� 	 ���	 �� � ��� 	 ���
� �

�

Thus, condition i) of Theorem 2 is satisfied. Condition ii) of Theorem 2
is trivially satisfied for a single-output system. With � � �������� ,
(4) yields

� � � ���

��� � ��� 	 ���

� � �� ���� � � �

� 	 � �

�

��� 	 ���	 �� � ��� 	 ���
�

� � �� ���� 	 �� � � �

� 	 � �

�

�

��	 �� 	 ���	 �� � ��� 	 ���
� �

	�� (31)

Solving (31), we obtain

� ��� ���� �

�� � ��� 	 ���
�� 	 ���	 ��	 ���

�	 �

�

Thus

������ ��� ��� �

��

�� 	 �����

��

����� ��� ��� ��� �� �

�� 	 �����

�� 	 ���	 ��	 ����

�	 ��

and

��������� ��
�

���
� ��� �

���
	

�

���
��

�

���
	

�

��
�

It follows that ������� ����� � ����, � � 	 � �, which implies
that condition iii) of Theorem 2 holds. Hence, using the transformation

������� �

��
�� � ���

��

, we obtain a nonlinear observer in canonical

form as in Theorem 2, with ���� �� �

�

��

��
.

Next are two examples of systems which are not state equivalent to
an observer form.

Example 2:

���� �� �
��� 	 �� �� 	 ���� 	 ���

� �

�� 	 ���� 	 ����
� ���� � ���

We obtain

� � � ��� 	 ���� 	 ���
�

� � ��� ���� 	 �	 �� 	 ���� 	 ���
� �

�
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Solving for � and � , we obtain

� ��� �� ��

�
��� � �� �����������

� �

��

������
�
�����

����� ��� ��� ��

�
�������� ��������� �������� ��

�

���

���������������������
�

Thus,

����� �	
�� �����
�

���
�

�������� ���

� � ��
�

���
�

�

���
�

�� � �� �� � �����

� �� � ����� � �� � ����� ��

�
�

���
�

�

��

and ������� ������ �� �����, which implies that condition iii) of
Theorem 2 does not hold.

Example 3: Consider the system

	��� �� �

�� � ��

���
�

� � �

��

� 
��� �
��

�� � ��
� (32)

Thus


� ���� 
� � 	 � �� � ��� 
� � �	� � ���
�

� � �


� ��� � ��� 
� � 	 � �� � �� � ��

and we obtain �� � �, �� � �. Condition ii) of Theorem 2 fails, since
�
� � 	 �� 	
����
�� �
�	. Hence, (32) is not state equivalent to a
nonlinear observer form.

Example 4: Consider the system

	��� �� �

��
�� � ���

�

� ��� � �� ��� �

�� � ���

�


��� �
��

�� � ��
� (33)

We have


� ���� 
� � 	 � ���


� ��� � ��� 
� � 	 � �� � �� � ���


� � �	� ��� � � � ��� ��

and �� � �, �� � �. Thus, conditions i) and ii) of Theorem 2 are
satisfied. If we let � � �������� , then by (4)

�� ��� � ���

�� � �� ��� � �� � ���

�� � �� � � �

� ��� � � � ��� �� �� (34)

and solving (34) we obtain

� ��� ���� �

�� � ��

��� � � � ��� �� �� � �� � �� � ��� � ��

�

�� � ��� � ��

�

Thus

� ��� ��� ��� �

�

��

� � ��

� � ��

�

� � ��

�

�

�� ��

� � ��

� � ��

� � ��

� � ��

�

�

��

� � ��

� � ��

�

and

����� � 	
��
�

���

�

� � � ���

��
�

���

�

�
�

���

�

�

�
�

���

�

�
�

���

�

�
�

���

�

�
�

���

�

�� � � ��

�

� �

���

�

�
�

��
�

Therefore

�

���
�

� ����� � ������ � 
  
 �� � 
 � � ��

which implies that condition iii) of Theorem 2 is satisfied. Hence,
system (33) is state equivalent to a nonlinear observer form. We have

������ ��� �

��

�

��

� � ��

� � ��

� � ��

�

�

��

� � ��

�

�

������� �

��
�� � �� � ���

�� � ��

and transforming to the �-coordinates, we obtain a nonlinear observer
in canonical form with

���� �� �

�� � ��
��� � �� � ��� � ���

� � �� � �����

��

�
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Stability of the Extended Kalman Filter
When the States are Constrained

Esin Koksal Babacan, Levent Ozbek, and Murat Efe, Member, IEEE

Abstract—In this note, stability of the projection-based constrained dis-
crete time extended Kalman filter (EKF) when applied to deterministic
nonlinear systems has been studied. It is proved that, like the unconstrained
case, under certain assumptions, the EKF with state equality constraints is
an exponential observer, i.e., it keeps the dynamics of its estimation error
exponentially stable. Also, it has been shown that a simple modification
to the general definition of the EKF with exponential weighting increases
the filter’s degree of stability and convergence speed with or without state
constraints.

Index Terms—Asymptotic stability, Kalman filtering, nonlinear systems,
state equality constraints.

I. INTRODUCTION

Since its invention, Kalman filter and its derivations have been ex-
tensively used to address both linear and nonlinear state estimation
problems [1]. It is known to be an optimal estimator for linear dynamic
systems subject to white process and measurement noise. Kalman filter
has also been utilized to address the estimation problem for both non-
linear stochastic [2] and nonlinear deterministic systems [3]. The most
common way of estimating the states in nonlinear deterministic systems
is firstly to design a dynamic state observer that comprises the model
of the system and secondly feed the outputs in an appropriate manner
[3], [4]. In [5] the extended Kalman filter (EKF) was proposed as an
observer for nonlinear deterministic systems and it was proved, through
the use of second method of Lyapunov [6], that the EKF was an expo-
nential observer. Furthermore, in the same study a slightly more general
definition of the standard extended Kalman filter, that is the EKF with
exponential data weighting [7], [8], was applied to nonlinear systems
and it was proved that the resulting observer had a predetermined degree
of stability, described as the time constant for the error decline, which
also affected the convergence of the extended Kalman filter.

In the past, researchers used to be reluctant to utilize constrained
Kalman filtering, partly because constraints can be difficult to model
and partly because of the increased computational burden (e.g., due to
the additional information the error covariance matrix can get tighter).
As a result, equality constraints used to be often neglected in stan-
dard Kalman Filtering applications. However, the benefits of incor-
porating constraints can outweigh the computational cost associated
with constraining the estimate. Also, with cheap computational power
and practical formulations to incorporate constraints in the filter equa-
tions readily available, there is increased interest in using constrained
Kalman filtering. Thus any study on statistical properties of the re-
sulting filter will be of utmost importance for researchers using this
filter in their applications.

In this note, therefore, we deal with state estimation in determin-
istic nonlinear systems where constraints are imposed on the states
and investigate the stability and convergence of the constrained EKF.
The particular constrained Kalman filter studied in this study is the
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