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UNIFORM RECURRENCE PROPERTIES OF CONTROLLED
DIFFUSIONS AND APPLICATIONS TO OPTIMAL CONTROL∗
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Abstract. In this paper we address an open problem which was stated in [A. Arapostathis
et al., SIAM J. Control Optim., 31 (1993), pp. 282–344] in the context of discrete-time controlled
Markov chains with a compact action space. It asked whether the associated invariant probability
distributions are necessarily tight if all stationary Markov policies are stable, in other words if the
corresponding chains are positive recurrent. We answer this question affirmatively for controlled
nondegenerate diffusions modeled by Itô stochastic differential equations. We apply the results to
the ergodic control problem in its average formulation to obtain fairly general characterizations of
optimality without resorting to blanket Lyapunov stability assumptions.
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1. Introduction. This paper is concerned with controlled diffusion processes
X = {Xt, t ≥ 0} taking values in the d-dimensional Euclidean space Rd and governed
by the Itô stochastic differential equation

(1.1) dXt = b(Xt, Ut) dt+ σ(Xt) dWt .

All random processes in (1.1) live in a complete probability space (Ω,F,P). Here,
W is a d-dimensional standard Wiener process independent of the initial condition
X0. The control process U takes values in a compact, metrizable set U, and Ut(ω) is
jointly measurable in (t, ω) ∈ [0,∞)×Ω. In addition, it is nonanticipative: For s < t,
Wt −Ws is independent of

Fs � the completion of σ{X0, Ur,Wr, r ≤ s} relative to (F,P) .

Such a process U is called an admissible control, and we let U denote the set of
all admissible controls. We adopt the relaxed control framework (see section 3.2),
and we assume that the diffusion is nondegenerate; i.e., σ is nonsingular. Standard
assumptions on the drift b and the diffusion matrix σ to guarantee existence and
uniqueness of solutions to (1.1) are discussed in section 3. Recall that a control is
called stationary Markov if Ut = v(Xt) for a measurable map v : Rd �→ U. Let USM

denote the set of stationary Markov controls. Under v ∈ USM, the process X is strong
Markov, and we denote its transition function by P v(t, x, ·). We let P

v
x denote the

probability measure and E
v
x the expectation operator on the canonical space of the

process under the control v ∈ USM, conditioned on the processX starting from x ∈ R
d

at t = 0.
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The term domain in R
d refers to a nonempty open subset of the Euclidean space

R
d. We denote by τ(A) the first exit time of the process {Xt} from the set A ⊂ R

d,
defined by

τ(A) � inf {t > 0 : Xt 	∈ A} .
Consider (1.1) under a stationary Markov control v ∈ USM. The controlled process is
called recurrent relative to a domain D, or D-recurrent, if Pv

x(τ(D
c) <∞) = 1 for all

x ∈ Dc (Dc denotes the complement of D). Otherwise, it is called transient (relative
to D). A D-recurrent process is called positive if Ev

x[τ(D
c)] < ∞ for all x ∈ Dc;

otherwise it is called null. We refer to τ(Dc) as the recurrence time to D, or the first
hitting time of D.

A controlled process is called (positive) recurrent if it is (positive) D-recurrent for
all bounded domains D ⊂ R

d. It is well known that for a nondegenerate diffusion the
recurrence properties are independent of the particular domain. Thus a nondegenerate
diffusion is either recurrent or transient, and if it is recurrent, then it is either positive
or null, relative to all bounded domains [19]. A control v ∈ USM is called stable if the
associated diffusion is positive recurrent. We let USSM ⊂ USM denote the set of all
stable stationary Markov controls.

The first relatively surprising result is that if all stationary Markov controls are
stable, i.e., USSM = USM, then E

v
x[τ(D

c)] is bounded uniformly in v ∈ USSM, for every
fixed domain D and x ∈ D̄c (Corollary 5.2). We call this property uniform positive
recurrence. It might appear that uniform positive recurrence is due to the compactness
of U and that it can be derived by a simple compactness argument. However, this is
not the case. A sequence {vn} ⊂ USSM may satisfy E

vn
x

[
τ(Dc)

] → ∞, while at the

same time vn → v∗ ∈ USSM, as n → ∞, and therefore at the limit Ev∗
x

[
τ(Dc)

]
< ∞.

Here, convergence of vn is in the topology of Markov controls described in section 3.3.
For example, with d = 1, let σ(x) =

√
2, b(x, u) = u, and

vn(x) =

⎧⎨
⎩
− sign(x) if |x| ≤ n,

−n−1e−n sign(x) if |x| > n .

Then vn(x) → v∗(x) = − sign(x), as n → ∞, and the corresponding diffusions,
including the limiting one with drift b(x) = − sign(x), are all positive recurrent, even
though the mean recurrence times of any bounded interval grow unbounded as n→ ∞.
Note that the corresponding invariant probability distributions μn satisfy

μn ([−n, n]c) ≈ n

1 + n
.

Uniform positive recurrence relies on the fact that Markov controls can be spatially
concatenated. If G is an open set and v′ and v′′ in USM, then the control defined by

(1.2) (v,G, v′)(x) �

⎧⎨
⎩
v(x) if x ∈ G,

v′(x) if x ∈ Gc

is clearly a stationary Markov control. If G and G′ are bounded domains in R
d, we

use the notation G � G′ to indicate that Ḡ ⊂ G′. We say that a subset U ⊂ USM

is closed under concatenations if there exists a collection of bounded domains with
C2 boundaries which is ordered by �, is a cover of Rd, and satisfies (v,G, v′) ∈ U ,
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whenever v, v′ ∈ U . Theorem 5.1 asserts that the diffusion is uniformly positive
recurrent over any U ⊂ USSM which is closed in USSM (in the topology of Markov
controls), and is also closed under concatenations.

It is well known that under a stable Markov control v ∈ USSM the diffusion has
a (unique) invariant probability measure, which we denote by μv. In other words, μv

satisfies ∫
Rd

μv(dx)P
v(t, x, A) = μv(A) ∀t ≥ 0 ,

and all Borel sets A ⊂ R
d. In [11] the concept of uniform stability was intro-

duced: USSM is called uniformly stable if the associated invariant probability mea-
sures I � {μv : v ∈ USSM} are tight. In general, uniform positive recurrence does not
imply tightness of the corresponding invariant probability measures, as the following
example shows. Consider a one-dimensional controlled diffusion with

σ(x) =
√
2 and b(x, u) = (1 + |x|)u , u ∈ [−1, 1] .

Define a sequence of controls by

vn(x) =

⎧⎨
⎩
− sign(x)

1+|x| if |x| ≤ n or |x| ≥ n+
√
n,

x sign(x)
1+|x| if n < |x| < n+

√
n .

Then {vn} ⊂ USSM, and it can be easily verified that supn E
vn
x [τ(Dc)] < ∞ for any

bounded domain D. Also vn converges, as n → ∞, to v∞(x) = − sign(x)
1+|x| , which is a

stable control. Therefore the controlled diffusion is uniformly positive recurrent under
{vn , 1 ≤ n ≤ ∞} ⊂ USSM. However, μvn ([−n, n]c) ≥ 1/2, so the family {μvn} is not
tight.

An open problem stated in the framework of discrete-time, controlled Markov
chains in [1, Remark 5.10, p. 314] is whether USSM = USM implies that I is necessarily
tight. This is settled in the affirmative in Theorem 8.3. The importance of the result
can be appreciated in the context of ergodic control problems. Suppose that g is a
bounded, continuous, nonnegative functional defined on R

d. If v ∈ USSM, Birkhoff’s
ergodic theorem asserts that

(1.3) lim
T→∞

1

T

∫ T

0

E
v
x[g(Xt)] dt =

∫
Rd

g(x)μv(dx) ,

and of course, (1.3) also holds a.s., without the expectation operator, and for any
measurable g which is integrable with respect to μv. Thus when minimizing (1.3) over
v ∈ USSM in the stable case, i.e., under the assumption that USSM = USM, tightness
of I, and therefore also compactness, since I is closed, guarantees the existence of an
optimal stationary Markov control. When treating the problem in the stable case, a
blanket Lyapunov stability assumption is usually imposed to guarantee tightness of
I [9, 12, 14]. Theorem 8.3 dispenses with the need for Lyapunov stability conditions.
Moreover, a converse Lyapunov theorem is asserted. For f ∈ C2(Rd), where C2(Rd)
denotes the space of twice continuously differentiable real-valued functions on R

d,
define the operator L : C2(Rd) �→ C(Rd × U) by

(1.4) Lf(x, u) =
∑
i,j

aij(x)
∂2f

∂xi∂xj
(x) +

∑
i

bi(x, u)
∂f

∂xi
(x) , u ∈ U ,
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where a � 1
2σσT. Then, provided USSM = USM, it follows from Theorem 5.6 that

there exist nonnegative functions V ∈ C2(Rd) and h : Rd → R satisfying

max
u∈U

LV(x, u) ≤ −h(x) ∀x ∈ R
d ,

and

lim
|x|→∞

h(x) → ∞ .

The proof of uniform stability is made possible by some sharp equicontinuity
estimates for the resolvents of the process, which are obtained in Theorem 6.2 and
are important in their own right. Moreover, Corollary 6.3 asserts that as long as
the running cost is integrable with respect to the invariant probability measure of
some stable stationary Markov control, then the α-discounted value functions are
equicontinuous. One approach to the ergodic control problem in the stable case is to
express the running cost functional as the difference of two near-monotone functions
and then utilize the results obtained from the study of the near-monotone case [9, 14].
The results obtained in section 6 facilitate a general treatment of ergodic control in
the stable case, without the need of blanket Lyapunov stability hypotheses. A by-
product of the analysis of the ergodic control problem is the uniform stability property
stated in Theorem 8.3. This leads to a fairly general existence result in Theorem 8.5,
which can be viewed as the analogue of the well-known result for the linear-quadratic-
Gaussian problem, which states that when the system is stabilizable there always
exists a stationary Markov optimal control. Theorem 8.5 asserts, without assuming
that all stationary controls are stable, that provided the α-discounted optimal controls
have a limit point in USSM (as α→ 0) which results in a finite ergodic cost, then there
exists a solution to the ergodic Hamilton–Jacobi–Bellman (HJB) equation, and a
control v ∈ USSM with finite ergodic cost is optimal if and only if it is a measurable
selector from the minimizer in the HJB.

Most of the notation used is summarized in section 2 for quick reference. In
section 3 we review the model of controlled diffusions. Section 4 is devoted to invariant
probability measures and their properties. Uniform positive recurrence is proved in
section 5, and equivalent characterizations of uniform stability are provided. Section 6
is dedicated to continuity estimates of the α-discounted value function. The ergodic
control problem, along with the proof of uniform stability, occupies sections 7 and
8. Concluding remarks are in section 9. A summary of results on elliptic partial
differential equations (PDEs) used in this paper occupies Appendix A. Some proofs
are in Appendix B.

2. Notation. The standard Euclidean norm in R
d is denoted by | · |, and 〈·, ·〉

stands for the inner product. The set of nonnegative real numbers is denoted by R+,
N stands for the set of natural numbers, and I denotes the indicator function. As
introduced in section 1, τ(A) denotes the first exit time from the set A ⊂ R

d. The
closure and the boundary of a set A ⊂ R

d are denoted by Ā and ∂A, respectively. Also
|A| denotes the Lebesgue measure of A. The open ball of radius R in R

d, centered at
the origin, is denoted by BR, and we let τR � τ(BR) and τ̆R � τ(Bc

R).

The Borel σ-field of a topological space E is denoted by B(E). Metric spaces
are in general viewed as equipped with their Borel σ-field, and therefore the notation
P(E) for the set of probability measures on B(E) of a metric space E is unambiguous.
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The space P(E) is always viewed as endowed with the topology of weak convergence
of probability measures (the Prohorov topology).

We introduce the following notation for spaces of real-valued functions on a do-
main D ⊂ R

d. The space Lp(D), p ∈ [1,∞), stands for the Banach space of (equiva-
lence classes) of measurable functions f satisfying

∫
D|f(x)|p dx < ∞, and L∞(D) is

the Banach space of functions that are essentially bounded in D. The space Ck(D)
(C∞(D)) refers to the class of all functions whose partial derivatives up to order k (of
any order) exist and are continuous, Ck

c (D) is the space of functions in Ck(D) with
compact support, and Ck

b (R
d) is the subspace of Ck(Rd) consisting of those functions

whose derivatives up to order k are bounded. Also, the space Ck,r(D) is the class of
all functions whose partial derivatives up to order k are Hölder continuous of order r.
Therefore C0,1(D) is precisely the space of Lipschitz continuous functions on D.

The standard Sobolev space of functions on D, whose generalized derivatives up
to order k are in Lp(D), equipped with its natural norm, is denoted by Wk,p(D),

k ≥ 0, p ≥ 1. The closure of C∞
c (D) in Wk,p(D) is denoted by W

k,p
0 (D). It is well

known that if B is an open ball, then W
k,p
0 (B) consists of all functions in Wk,p(B)

which, when extended by zero outside B, belong to Wk,p(Rd).
In general if X is a space of real-valued functions on D, Xloc consists of all

functions f such that fϕ ∈ X for every ϕ ∈ C∞
c (D). In this manner we obtain

the spaces Lp
loc(D) and W

2,p
loc(D).

Let h ∈ C(Rd) be a positive function. We denote by O(h) the set of functions
f ∈ C(Rd) having the property

(2.1) lim sup
|x|→∞

|f(x)|
h(x)

<∞

and by o(h) the subset of O(h) over which the limit in (2.1) is zero.

We adopt the notation ∂i � ∂
∂xi

and ∂ij � ∂2

∂xi∂xj
. We often use the standard

summation rule that repeated subscripts and superscripts are summed from 1 through
d. For example,

aij∂ijϕ+ bi∂iϕ �
d∑

i,j=1

aij
∂2ϕ

∂xi∂xj
+

d∑
i=1

bi
∂ϕ

∂xi
.

3. Controlled diffusions. In integral form, (1.1) is written as

(3.1) Xt = X0 +

∫ t

0

b(Xs, Us) ds+

∫ t

0

σ(Xs) dWs .

The second term on the right-hand side of (3.1) is an Itô stochastic integral. We say
that a process X = {Xt(ω)} is a solution of (1.1) if it is Ft-adapted, continuous in t,
defined for all ω ∈ Ω and t ∈ [0,∞), and satisfies (3.1) for all t ∈ [0,∞) at once a.s.
We impose the following conditions on the drift and diffusion matrix of (1.1).

Local Lipschitz continuity. The functions

b =
[
b1, . . . , bd

]T
: Rd × U �→ R

d and σ =
[
σij
]
: Rd �→ R

d×d

are locally Lipschitz in x with a Lipschitz constant KR depending on R > 0. In other
words, for all x, y ∈ BR and u ∈ U,

(3.2) |b(x, u)− b(y, u)|+ ‖σ(x)− σ(y)‖ ≤ KR|x− y| ,
where ‖σ‖2 � trace

(
σσT

)
. In addition, b is continuous in (x, u).
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Growth condition. b and σ satisfy a global “linear growth condition” of the form

(3.3) |b(x, u)|2 + ‖σ(x)‖2 ≤ K1

(
1 + |x|2) ∀(x, u) ∈ R

d × U .

The linear growth assumption (3.3) guarantees that trajectories do not suffer an
explosion in finite time. This assumption is quite standard but may be restrictive for
some applications. As far as the results of this paper are concerned it may be replaced
by the weaker condition

(3.4) 2〈x, b(x, u)〉+ ‖σ(x)‖2 ≤ K1

(
1 + |x|2) ∀(x, u) ∈ R

d × U .

Nondegeneracy. For each R > 0, there exists a positive constant κR such that

(3.5)
d∑

i,j=1

aij(x)ξiξj ≥ κR|ξ|2 ∀x ∈ BR ,

for all ξ = (ξ1, . . . , ξd) ∈ R
d.

Remark 3.1. Let (Ω,F,P) be a complete probability space, and let {Ft} be a
filtration on (Ω,F) such that each Ft is complete relative to F. Recall that a d-
dimensional Wiener process (Wt,Ft), or (Ft)-Wiener process, is an Ft-adapted Wiener
process such that Wt −Ws and Fs are independent for all t > s ≥ 0. An equivalent
definition of the model for the controlled diffusion in (1.1) starts with a d-dimensional
Wiener process (Wt,Ft) and requires that the control process U be Ft-adapted. Note
then that U is necessarily nonanticipative.

We summarize here some standard results from [15, 21].
Theorem 3.2. Let W , U ∈ U, and X0 be given on a complete probability space

(Ω,F,P), and let X be a solution of (1.1). Under (3.4),

E

[
sup

0≤t≤T
|Xt|2

]
≤ (1 + E |X0|2

)
e4K1T .

With τn � inf{t > 0 : |Xt| > n}, applying Chebyshev’s inequality we obtain

P(τn ≤ t) = P

(
sup
s≤t

|Xs| ≥ n

)
(3.6)

≤
(
1 + E |X0|2

)
e4K1t

n2
−−−−→
n→∞ 0 ,

from which it follows that τn ↑ ∞, as n → ∞, P-a.s. If in addition (3.2) and (3.5)
hold, then there exists a pathwise unique solution to (1.1) in (Ω,F,P).

Of fundamental importance in the study of functionals of X is Itô’s formula. For
f ∈ C2(Rd) and with L as defined in (1.4),

(3.7) f(Xt) = f(X0) +

∫ t

0

Lf(Xs, Us) ds+Mt a.s.,

where

Mt �
∫ t

0

〈∇f(Xs),σ(Xs) dWs

〉
is a local martingale. Krylov’s extension of the Itô formula [20, p. 122] extends (3.7)
to functions f in the Sobolev space W

2,p
loc(R

d).
With u ∈ U treated as a parameter, (1.4) also gives rise to a family of operators

Lu : C2(Rd) �→ C(Rd), defined by Luf(x) = Lf(x, u). We refer to Lu as the controlled
extended generator of the diffusion.
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3.1. Markov controls. An admissible control U is called Markov if it takes the
form Ut = vt(Xt) for a measurable map v : Rd × [0,∞) �→ U. It is evident that U
cannot be specified a priori. Instead, one has to make sense of (1.1) with Ut replaced
by vt(Xt). In Theorem 3.2, X0, W , and U are prescribed on a probability space
and a solution X is constructed on the same space. This is the strong formulation.
Correspondingly, the equation

(3.8) Xt = x0 +

∫ t

0

b
(
Xs, vs(Xs)

)
ds+

∫ t

0

σ(Xs) dWs

is said to have a strong solution if, given a Wiener process (Wt,Ft) on a complete
probability space (Ω,F,P), there exists a process X on (Ω,F,P), with X0 = x0 ∈ R

d,
which is continuous, Ft-adapted, and satisfies (3.8) for all t at once a.s. A strong
solution is called unique if any two such solutions X and X ′ agree P-a.s. when viewed
as elements of C([0,∞),Rd

)
.

Let
{
FW
t

}
be the filtration generated byW . It is evident that ifXt is F

W
t -adapted,

then such a solution X is a strong solution. We say that (3.8) has a weak solution
if we can find processes X and W on some probability space (Ω′,F′,P′) such that
X0 = x0, W is a standard Wiener process, and (3.8) holds with Wt−Ws independent
of
{
Xs′ ,Ws′ , s

′ ≤ s
}
for all s ≤ t. The weak solution is unique if any two weak

solutions X and X ′, possibly defined on different probability spaces, agree in law
when viewed as C([0,∞),Rd

)
-valued random variables.

It is well known that under (3.2), (3.4), and (3.5), for any Markov control vt,
(3.8) has a unique weak solution [16]. Weak solutions are also guaranteed for feedback
controls, which are defined as admissible controls that are progressively measurable
with respect to the natural filtration

{
FX
t

}
of X . We do not elaborate further on

feedback controls, as we do not need these results in this paper. The analysis in this
paper is based on weak solutions. Nevertheless, we mention parenthetically that the
results in [25, 26], based on the method in [28], assert that under the assumptions
(3.2), (3.3), and (3.5), for any Markov control vt, (3.8) has a pathwise strong solution
which is a Feller (and therefore strong Markov) process.

It follows from the work of [6, 24] that under v ∈ USM, the transition probabilities
of X have densities which are locally Hölder continuous. Thus Lv is the generator of
a strongly continuous semigroup on Cb(Rd), which is strong Feller.

As in the case of stationary Markov controls, we let P
U
x denote the probability

measure on the canonical space of the process X starting at X0 = x, under the control
U ∈ U. The associated expectation operator is denoted by E

U
x .

3.2. Relaxed controls. We describe the relaxed control framework, originally
introduced for deterministic control in [27]. This entails the following: The space
U is replaced by P(U), where P(U) denotes the space of probability measures on U

endowed with the Prohorov topology, and bi, 1 ≤ i ≤ d, is replaced by

b̄i(x, v) �
∫
U

bi(x, u)v(du) , x ∈ R
d , v ∈ P(U), 1 ≤ i ≤ d .

Note that b̄ inherits the same continuity, linear growth and Lipschitz (in its first
argument) properties from b. The space P(U), in addition to being compact, is
convex when viewed as a subset of the space of finite signed measures on U. One
may view U as the “original” control space and view the passage from U to P(U) as
a “relaxation” of the problem that allows P(U)-valued controls that are analogous
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to randomized controls in the discrete-time setup. Note that a U-valued control
trajectory Ũ can be identified with the P(U)-valued trajectory Ut = δŨt

, where δq
denotes the Dirac measure at q. Henceforth, “control” means relaxed control, with
Dirac measure-valued controls (which correspond to original U-valued controls) being
referred to as precise controls. The class of stationary Markov controls is still denoted
by USM, and USD ⊂ USM is the subset corresponding to precise controls.

Definition 3.3. To facilitate the passage to relaxed controls we introduce the
following notation. In general, for a measurable function h : Rd ×U → R

k, k ∈ N, we
denote by h̄ : Rd ×P(U) → R

k its extension to relaxed controls defined by

(3.9) h̄(x, ν) �
∫
U

h(x, u)ν(du) , ν ∈ P(U) .

Since a relaxed stationary Markov control v ∈ USM is a Borel measurable kernel on
P(U)× R

d, we adopt the notation v(x) = v(du | x). For any fixed v ∈ USM and h as
above, x �→ h̄

(
x, v(x)

)
is a Borel measurable function, and in the interest of notational

economy, treating v as a parameter, we define hv : R
d → R

k by

(3.10) hv(x) � h̄
(
x, v(x)

)
=

∫
U

h(x, u) v(du | x) .

Also for v ∈ USM,

Lv � aij∂ij + biv∂i

denotes the extended generator of the diffusion governed by v.

3.3. The topology of Markov controls. We endow USM with the topology
that renders it a compact metric space. We refer to it as “the” topology since, as is well
known, the topology of a compact Hausdorff space has a certain rigidity and cannot
be weakened or strengthened without losing the Hausdorff property or compactness,
respectively [22, p. 60]. This can be accomplished by viewing USM as a subset of the
unit ball of L∞(

R
d,Ms(U)

)
under its weak∗-topology, whereMs(U) denotes the set of

signed Borel measures on U under the weak∗-topology. The space L∞(
R

d,Ms(U)
)
is

the dual of L1
(
R

d, C(U)), and by the Banach–Alaoglu theorem the unit ball is weak∗-
compact. Since the space of probability measures is closed in Ms(U), it follows that
USM is weak∗-closed in L∞(

R
d,Ms(U)

)
, and since it is a subset of the unit ball of the

latter, it is weak∗-compact. Moreover, L1
(
R

d, C(U)) is separable, which implies that

the weak∗-topology of L∞(
R

d,Ms(U)
)
is metrizable. We have the following criterion

for convergence in USM [10].
Lemma 3.4. For vn → v in USM it is necessary and sufficient that∫

Rd

g(x)
(
hvn(x) − hv(x)

)
dx −−−−→

n→∞ 0

for all g ∈ L1(Rd) and h ∈ Cb(Rd × U), where hv is as defined in (3.10).
Throughout this paper, convergence and, in general, any topological properties

of USM, are with respect to the compact metrizable topology introduced above. We
make frequent use of the following convergence result.

Lemma 3.5. Let {vn} ⊂ USM be a sequence that converges to v ∈ USM in the
topology of Markov controls, and let {ϕn} ⊂ W2,p(D), p > d, be a sequence of solutions
of Lvnϕn = hn, n ∈ N, on a bounded C2 domain D ⊂ R

d. Suppose that for some



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

UNIFORM RECURRENCE OF CONTROLLED DIFFUSIONS 4189

constant M ,
∥∥ϕn

∥∥
W2,p(D)

≤M for all n ∈ N, and that hn converges weakly in Lp(D),

for p > 1, to some function h. Then any weak limit ϕ of {ϕn} in W2,p(D), as n→ ∞,
satisfies Lvϕ = h in D.

Proof. We have

(3.11) Lvϕ− h = aij∂ij(ϕ− ϕn) + bivn∂i(ϕ− ϕn) + (biv − bivn)∂iϕ− (h− hn) .

Since p > d, by the compactness of the embedding W2,p(D) ↪→ C1,r(D̄), r < 1 − d
p

(see Theorem A.11), we can select a subsequence such that ϕnk
→ ϕ in C1,r(D̄). Thus

bivn∂i(ϕ − ϕn) converges to 0 in L∞(D). By Lemma 3.4, and since D is bounded,
(biv− bivn)∂iϕ converges weakly to 0 in Lp(D) for any p > 1. The remaining two terms
in (3.11) converge weakly to 0 in Lp(D) by hypothesis. Since the left-hand side of
(3.11) is independent of n ∈ N, it solves Lvϕ− h = 0.

4. Invariant probability measures. We start the presentation with some use-
ful bounds of mean recurrence times. For uncontrolled diffusions, these are well
known. The next lemma extends them to the controlled case. This is made possible
by Harnack’s inequality for Lv-harmonic functions [17, Corollary 9.25, p. 250], or by
its extension to a class of Lv-superharmonic functions (Theorem A.9). The proof is
fairly standard and can be found in Appendix B.

Lemma 4.1. Let D1 and D2 be two open balls in R
d, satisfying D1 � D2. Then

0 < inf
x∈D̄1
v∈USM

E
v
x

[
τ(D2)

] ≤ sup
x∈D̄1
v∈USM

E
v
x

[
τ(D2)

]
<∞ ,(4.1a)

inf
x∈∂D2
v∈USSM

E
v
x

[
τ(Dc

1)
]
> 0 ,(4.1b)

sup
x∈∂D2

E
v
x

[
τ(Dc

1)
]
<∞ ∀v ∈ USSM ,(4.1c)

inf
v∈USM

inf
x∈Γ

P
v
x

(
τ(D2) > τ(Dc

1)
)
> 0(4.1d)

for all compact sets Γ ⊂ D2 \ D̄1.
The following construction due to Has’minskĭı which characterizes the invariant

probability measure of the diffusion via an embedded Markov chain is standard [19,
Theorem 4.1, p. 119]. What we have added here is the continuous dependence of the
invariant probability distribution of the embedded Markov chain on v ∈ USSM. The
proof is in Appendix B.

Theorem 4.2. Let D1 and D2 be as in Lemma 4.1. Let τ̂0 = 0, and for k =
0, 1, . . . define inductively an increasing sequence of stopping times by

τ̂2k+1 = inf {t > τ̂2k : Xt ∈ Dc
2} ,

τ̂2k+2 = inf {t > τ̂2k+1 : Xt ∈ D1} .

(i) The process X̃n � Xτ̂2n
, n ≥ 1, is a ∂D1-valued ergodic Markov chain,

under any v ∈ USSM. Moreover there exists a constant δ ∈ (0, 1), which does not
depend on v, such that if P̃v and μ̃v denote the transition kernel and the stationary
distribution of X̃ under v ∈ USSM, respectively, then for all x ∈ ∂D1,

(4.2)

∥∥P̃ (n)
v (x, ·)− μ̃v(·)

∥∥
TV

≤ δn ∀n ∈ N ,

δP̃v(x, ·) ≤ μ̃v(·) .
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(ii) The map v �→ μ̃v from USSM to P(∂D1) is continuous in the topology of
Markov controls.

(iii) Define μv ∈ P(Rd) by

∫
Rd

f dμv =

∫
∂D1

E
v
x

[∫ τ̂2

0 f(Xt) dt
]
μ̃v(dx)∫

∂D1
E
v
x [τ̂2] μ̃v(dx)

, f ∈ Cb(Rd) .

Then μv is the unique invariant probability measure of X, under v ∈ USSM.
Let v ∈ USSM. A Borel probability measure ν on R

d is called infinitesimally
invariant if

(4.3)

∫
Rd

Lvf(x) ν(dx) = 0 ∀f ∈ C2
c (R

d) .

The invariant probability measure of the Markov semigroup generated by Lv is in-
finitesimally invariant, and for the model considered the converse is also true. We
state this without proof as a theorem. For recent work on these issues see [6, 7, 8].

Theorem 4.3. A Borel probability measure ν on R
d is an invariant measure

for the process associated with Lv, v ∈ USSM, if and only if (4.3) holds. Moreover,
if ν satisfies (4.3), then it has a density ϕ ∈ W

1,p
loc(R

d) with respect to the Lebesgue
measure which is a generalized solution to the adjoint equation given by

(4.4)
(
Lv
)∗
ϕ(x) =

d∑
i=1

∂

∂xi

(
d∑

j=1

aij(x)
∂ϕ

∂xj
(x) + b̂iv(x)ϕ(x)

)
= 0 ,

where

b̂iv =
d∑

j=1

∂aij

∂xj
− biv .

4.1. Ergodic occupation measures. Let c : Rd × U �→ R+ be a continuous
function, serving as the running cost.

The ergodic control problem in its average formulation seeks to minimize over all
admissible U ∈ U the functional

F (U) � lim sup
t→∞

1

t

∫ t

0

E
U
[
c̄(Xs, Us)

]
ds .

We say that U∗ ∈ U is average-cost optimal if F (U∗) = infU∈U F (U), and that it is
average-cost optimal in U , for some collection U ⊂ U, if F (U∗) attains the value of its
infimum over U .

By Birkhoff’s ergodic theorem, if v ∈ USSM, then provided cv is integrable with
respect to μv,

(4.5) lim
T→∞

1

T

∫ T

0

cv(Xt) dt =

∫
Rd

∫
U

c(x, u)v(du | x)μv(dx) a.s.

This motivates the following definition. We define the ergodic occupation measure
πv ∈ P(Rd × U), corresponding to v ∈ USSM, by

πv(dx, du) � μv(dx)v(du | x) .
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We denote the set of all ergodic occupation measures by M. By (4.5), the ergodic
control problem over USSM is equivalent to a linear optimization problem over M. It
is well known that the set of ergodic occupation measures M is closed and convex,
and its extreme points belong to the class of stable precise controls denoted as USSD

[9].
Let ϕ[μ] denote the density of μ ∈ I, and for K ⊂ I, let

Φ(K) � {ϕ[μ] : μ ∈ K} .

If K is tight, then Harnack’s inequality for (4.4) [17, Theorem 8.20, p. 199] implies
that there exist R0 > 0 and a constant CH = CH(R) such that for every R > R0,
with |BR| denoting the volume of BR ⊂ R

d,

(4.6)
1

2CH |BR| ≤ inf
BR

ϕ ≤ sup
BR

ϕ ≤ CH

|BR| ∀ϕ ∈ Φ(K) .

Moreover, the Hölder estimates for solutions of (4.4) [17, Theorem 8.24, p. 202] imply
that there exists a constant C1 = C1(R,K) > 0, and a1 > 0, such that

(4.7) |ϕ(x) − ϕ(y)| ≤ C1|x− y|a1 ∀x, y ∈ BR , ∀ϕ ∈ Φ(K) .

Invariant probability measures enjoy the following continuity properties with re-
spect to v ∈ USSM.

Lemma 4.4. For a subset U ⊂ USSM let IU and MU denote the set of associated
invariant measures and ergodic occupation measures, respectively. Suppose IU is tight.
Then

(i) the map v �→ μv from Ū to IŪ is continuous under the total variation norm
topology of I.

(ii) the map v �→ πv from Ū to MŪ is continuous in P(Rd × U).
Proof. The proof is in Appendix B.

5. Stability of controlled diffusions. Stability for controlled diffusions can be
characterized with the aid of Lyapunov equations involving the operator Lu. We first
review two sets of stochastic Lyapunov conditions. Recall that f ∈ C(X ), where X is
a topological space, is called inf-compact if the set {x ∈ X : f(x) ≤ λ} is compact (or
empty) for every λ ∈ R.

Consider the following Lyapunov conditions, each holding for some nonnegative,
inf-compact function V ∈ C2(Rd):

1. For some bounded domain D

(5.1) LuV(x) ≤ −1 ∀x ∈ Dc, ∀u ∈ U .

2. There exist a nonnegative, inf-compact h ∈ C(Rd) and a constant k0 ≥ 0
satisfying

(5.2) LuV(x) ≤ k0 − h(x) , ∀x ∈ R
d ∀u ∈ U .

The Lyapunov condition (5.1) is equivalent to the finiteness of the mean recurrence
times to D, uniformly over all admissible controls. The main result in this section is
that if all stationary controls are stable, then (5.1) holds (see Corollary 5.2 below).
The stronger condition (5.2) is equivalent to the tightness of the invariant probability
measures (Theorem 5.6). A central result in this paper is that (5.1) and (5.2) are in
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fact equivalent. This is shown in Theorem 8.3, and its proof is interleaved with the
analysis of the ergodic control problem.

We next present a key result that establishes a uniform bound of a certain class
of functionals of the controlled process over subsets U ⊂ USSM that are closed under
concatenations, as defined in section 1.

Theorem 5.1. Let U be a closed subset of USSM which is also closed under
concatenations. Suppose that for some nonnegative function h ∈ C(Rd × U), some
bounded domain D, and some x ∈ D̄c, we have (using the notation in (3.9))

E
v
x

[∫ τ(Dc)

0

h̄(Xt, Ut) dt

]
<∞ ∀v ∈ U .

Then for any bounded domain G ⊂ R
d and any compact Γ ⊂ Ḡc,

(5.3) sup
v∈U

sup
x∈Γ

E
v
x

[∫ τ(Gc)

0

h̄(Xt, Ut) dt

]
<∞ .

Proof. We argue by contradiction. Define

βv
x[τ] � E

v
x

[∫ τ

0

h̄(Xt, Ut) dt

]
.

If (5.3) does not hold, then there exist a sequence {vn} ⊂ U , a bounded domain
G ⊂ R

d, and a compact Γ ⊂ Ḡc such that supx∈Γ βvn
x [τ(Gc)] → ∞, as n → ∞.

Then, by Harnack’s inequality, for all compact Γ ⊂ Ḡc,

(5.4) inf
x∈Γ

βvn
x [τ(Gc)] → ∞ .

One can show that (5.4) holds for any bounded domain G ⊂ R
d and compact Γ ⊂ Ḡc

by following standard arguments as in [19, Lemma 3.1, p. 116]. This also follows
directly from Lemma 5.3 below.

Fix a ball G0 and let Γ ⊂ Ḡc
0. Select v0 ∈ U such that infx∈Γ βv0

x [τ(Gc
0)] > 2.

Since U is closed under concatenations, there exists a cover G of Rd consisting of
bounded domains ordered by �, with the property that for any v′, v′′ ∈ U , their
concatenation as defined in (1.2) is in U . Let G1 ∈ G such that Γ ∪ G0 � G1,
satisfying

βv0
x [τ(Gc

0)] ≤ 2βv0
x [τ(Gc

0) ∧ τ(G1)] ∀x ∈ Γ .

This is always possible since, with τR = τ(BR), as defined earlier, we have

βv0
x [τ(Gc

0) ∧ τR)] ↑ βv0
x [τ(Gc

0)] as R → ∞ ,

uniformly on Γ . Select any G̃1 ∈ G satisfying G̃1 � G1, and let

(5.5) p1 � inf
v∈U

inf
x∈Γ

P
v
x

(
τ(G̃1) < τ(Gc

0)
)
.

By (4.1d), p1 > 0. By (5.4), we select v1 ∈ U such that

(5.6) inf
x∈∂G̃1

βv1
x [τ(Gc

1)] > 8p−1
1 ,
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and let

v̌1 = (v0, G1, v1) .

It follows by (5.5) and (5.6) that

(5.7) inf
x∈Γ

βv̌1
x [τ(Gc

0)] ≥
(
inf
x∈Γ

P
v̌1
x

(
τ(G̃1) < τ(Gc

0)
)) (

inf
x∈∂G̃1

βv1
x [τ(Gc

1)]

)
≥ 8 .

Therefore, there exists G2 � G1 in G satisfying

βv̌1
x [τ(Gc

0) ∧ τ(G2)] > 4 .

We proceed inductively as follows. Suppose v̌k−1 ∈ U and Gk ∈ G are such that

βv̌k−1
x [τ(Gc

0) ∧ τ(Gk)] > 2k .

First pick any G̃k ∈ G such that G̃k � Gk, and then select vk ∈ U satisfying

inf
x∈∂G̃k

βvk
x

[
τ(Gc

k)
]
> 2k+2

(
inf
v∈U

inf
x∈Γ

P
v
x

(
τ(G̃k) < τ(Gc

0)
))−1

.

This is always possible by (5.4). Proceed by defining the concatenated control

v̌k = (v̌k−1, Gk, vk) .

It follows as in (5.7) that

inf
x∈Γ

βv̌k
x [τ(Gc

0)] > 2k+2 .

Subsequently choose Gk+1 � G̃k, such that

inf
x∈Γ

βv̌k
x [τ(Gc

0) ∧ τ(Gk+1)] >
1

2
inf
x∈Γ

βv̌k
x [τ(Gc

0)] ,

thus yielding

(5.8) βv̌k
x [τ(Gc

0) ∧ τ(Gk+1)] > 2k+1 .

By construction, each v̌k agrees with v̌k−1 on Gk. It is also evident that the sequence
{v̌k} converges to some control v∗ ∈ U , which agrees with v̌k on Gk, for each k ≥ 1.
Hence, by (5.8),

inf
x∈Γ

βv∗
x [τ(Gc

0) ∧ τ(Gk)] > 2k ∀k ∈ N .

Thus βv∗
x [τ(Gc

0)] = ∞, contradicting the original hypothesis.
When USSM = USM, a direct application of Theorem 5.1 yields uniform positive

recurrence. This is summarized as follows.
Corollary 5.2. Suppose that all stationary Markov controls are stable, i.e.,

USSM = USM. Then if D is a bounded domain with C2,1 boundary, there exists a
function V ∈ C2(Rd) which solves maxu L

uV = −1 on D̄c, with V = 0 on ∂D.
Moreover, for any x ∈ D̄c,

(5.9) V(x) = sup
v∈USSM

E
v
x[τ(D

c)] = sup
U∈U

E
U
x [τ(D

c)] .
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Proof. Applying Theorem 5.1, with h ≡ 1, yields supv∈USSM
E
v
x[τ(D

c)] < ∞. It
is then straightforward to show, using Theorem A.15, that the Dirichlet problem

max
u∈U

LuV = −1 in D̄c, V = 0 on ∂D

has a unique solution V ∈ C2(D̄c), and that V(x) = supv∈USSM
E
v
x[τ(D

c)] for all
x ∈ D̄c. The second equality in (5.9) follows via a straightforward application of Itô’s
formula.

In the next lemma we extend a well-known result of Has’minskĭı [18] to controlled
diffusions. The proof is in Appendix B.

Lemma 5.3. Let D ⊂ R
d be a bounded domain and G ⊂ R

d a compact set. Define

ξvD,G(x) � E
v
x

[∫ τ(Dc)

0

IG(Xt) dt

]
.

Then
(i) supv∈USM

supx∈D̄c ξvD,G(x) <∞;
(ii) if X is recurrent under v ∈ USM, then ξvD,G is the unique bounded solution

in W
2,p
loc(D

c) ∩ C(D̄), p > 1, of the Dirichlet problem Lvξ = −IG in Dc and ξ = 0 on
∂D;

(iii) if U ⊂ USM is a closed set of controls under which X is recurrent, the map
(v, x) �→ ξvD,G(x) is continuous on U × D̄c.

Now let D1 � D2 be two fixed open balls in R
d, and let τ̂2 be as defined in

Theorem 4.2. Let h ∈ Cb(Rd × U) be a nonnegative function and define

(5.10) Φv
R(x) � E

v
x

[∫ τ(Dc
1)

0

IBc
R
(Xt)h̄(Xt, Ut) dt

]
, x ∈ ∂D2 , v ∈ USSM .

Let R0 > 0 such that BR0 � D2. Then, provided R > R0, Φ
v
R(x) satisfies L

vΦv
R = 0

in BR0 ∩ D̄c
1, and by Harnack’s inequality, there exists a constant CH , independent

of v ∈ USSM, such that Φv
R(x) ≤ CHΦ

v
R(y), for all x, y ∈ ∂D2 and v ∈ USM. Har-

nack’s inequality also holds for the function x �→ E
v
x[τ̂2] on ∂D1 (for this we apply

Theorem A.9). Also, by Lemma 4.1, for some constant C0 > 0,

inf
v∈USSM

inf
x∈∂D2

E
v
x[τ(D

c
1)] ≥ C0 sup

v∈USSM

sup
x∈∂D1

E
v
x[τ(D2)] .

Consequently, using these estimates and applying Theorem 4.2(iii) with f = hv, we
obtain positive constants k1 and k2, which depend only on D1, D2, and R0, such that
for all R > R0 and x ∈ ∂D2,

(5.11) k1

∫
Bc

R×U

h dπv ≤ Φv
R(x)

inf
x∈∂D2

E
v
x[τ(D

c
1)]

≤ k2

∫
Bc

R×U

h dπv ∀v ∈ USSM .

Similarly, applying Theorem 4.2(iii) with f = ID1 , there exists a positive constant k3,
which depends only on D1 and D2, such that

(5.12) μv(D1) sup
x∈∂D2

E
v
x[τ(D

c
1)] ≤ k3 sup

x∈∂D1

E
v
x[τ(D2)] ∀v ∈ USSM .

Recall the definition ofMU in Lemma 4.4. We obtain the following useful variation
of Theorem 5.1.
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Corollary 5.4. Let U ⊂ USSM be closed in USSM and be also closed under
concatenations. Suppose that a nonnegative h ∈ C(Rd × U) is integrable with respect
to all π ∈ MU . Then supπ∈MU

∫
h dπ <∞.

Proof. By Corollary 5.2, supv∈U E
v
x[τ(D

c
1)] < ∞. Then, since by hypothesis∫

hdπv <∞ for all v ∈ U , (5.11) implies that Φv
R(x) <∞, for all v ∈ U and x ∈ ∂D2.

Therefore, applying Theorem 5.1, we obtain supv∈U Φv
R(x) < ∞, and the result

follows by (4.1b) and the left-hand side inequality of (5.11).
Recall that a collection of stationary Markov controls U ∈ USSM is called uni-

formly stable if the set IU = {μv , v ∈ U} is tight. Corollary 5.4 implies that if
U ⊂ USSM is closed in USSM and also closed under concatenations, and if some non-
negative, inf-compact function h is integrable with respect to every π ∈ MU , then U
is uniformly stable.

The next theorem provides some important equivalences of uniform stability. This
is an augmented version of the results in [11]. We need the following definition.

Definition 5.5. Let C denote the class of nonnegative functions h ∈ C(Rd × U)
that are locally Lipschitz in their first argument, uniformly in u ∈ U. More specifically,
for some Ch : R+ → R+, h satisfies∣∣h(x, u)− h(y, u)

∣∣ ≤ Ch(R)|x− y| ∀x, y ∈ BR ,

for all u ∈ U and R > 0.
Theorem 5.6. Let U be an arbitrary subset of USSM. The following statements

are equivalent (with h ∈ C an inf-compact function which is common to (i)–(iv)):
(i) For some open ball D ⊂ R

d and some x ∈ D̄c,

sup
v∈U

E
v
x

[∫ τ(Dc)

0

h̄(Xt, Ut) dt

]
<∞ ∀v ∈ U .

(ii) For all open balls D ⊂ R
d and compact sets Γ ⊂ R

d,

sup
v∈U

sup
x∈Γ

E
v
x

[∫ τ(Dc)

0

h̄(Xt, Ut) dt

]
<∞ .

(iii) A uniform bound holds:

(5.13) sup
v∈U

∫
Rd×U

h(x, u)πv(dx, du) <∞ .

(iv) Provided U = USM, there exist a nonnegative, inf-compact function V ∈
C2(Rd) and a constant k0 satisfying

LuV(x) ≤ k0 − h(x, u) ∀u ∈ U , ∀x ∈ R
d .

(v) Provided U = USM, for any compact K ⊂ R
d and t0 > 0, the mean empirical

measures {
ν̄Ux,t : x ∈ K , t ≥ t0 , U ∈ U

}
defined by

(5.14)

∫
Rd×U

f dν̄Ux,t =
1

t

∫ t

0

E
U
x

[
f̄(Xs, Us)

]
ds , t > 0 ,

for all f ∈ Cb(Rd × U), are tight.
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(vi) IU is tight.
(vii) MU is tight.
(viii) MŪ is compact.
(ix) For some open ball D ⊂ R

d and x ∈ D̄c, the family
{(

τ(Dc),Pv
x

)
, v ∈ U}

is uniformly integrable, i.e.,

sup
v∈U

E
v
x

[
τ(Dc) I[t,∞)(τ(D

c))
] ↓ 0 as t ↑ ∞ .

(x) The family
{(

τ(Dc),Pv
x

)
, v ∈ U , x ∈ Γ

}
is uniformly integrable for all open

balls D ⊂ R
d and compact sets Γ ⊂ R

d.

Proof. It is clear that (ii) ⇒ (i) and (x) ⇒ (ix). Since U is compact, (vi) ⇔
(vii). By Prohorov’s theorem, (viii) ⇒ (vii). With D1 � D2 any two open balls in
R

d, we apply (5.11) and (5.12). Letting D = D1, (i) ⇒ (iii) follows by (5.11). It
is evident that (iii) ⇒ (vii). Therefore, since under (iii) IU is tight, (4.6) implies
infv∈U μv(D1) > 0. In turn, by (4.1a) and (5.12),

(5.15) sup
v∈U

sup
x∈∂D2

E
v
x[τ(D

c
1)] <∞ .

Hence applying (5.11) and Lemma 5.3(i), we obtain (iii) ⇒ (ii). We continue by
proving (vi) ⇒ (iii) ⇒ (iv) ⇒ (i), (ix) ⇒ (vii), and (iv) ⇒ (v) ⇒ (viii) ⇒ (x).

(vi) ⇒ (iii): Let

ĥv(x) �
(
μv

(
Bc

|x|
))−1/2

, v ∈ U , x ∈ R
d ,

and define h � infv∈U ĥv. A simple calculation yields
∫
Rd ĥv dμv = 2. Next, we

show that h is locally Lipschitz continuous. Let R > 0 and x, x′ ∈ BR. Then, with
g(x) � μv

(
Bc

|x|
)
,

(5.16) |ĥv(x)− ĥv(x
′)| = |g(x)− g(x′)|√

g(x)g(x′)
(√

g(x) +
√
g(x′)

) .
By (4.6), the denominator of (5.16) is uniformly bounded away from zero on BR,
while the numerator has the upper bound

(
supBR

ϕv

) ∣∣|B|x|| − |B|x′||
∣∣, where ϕv is

the density of μv. Therefore, by Lemma 4.4 and (5.16), (x, v) �→ ĥv(x) is continuous in
R

d×Ū and locally Lipschitz in the first argument. Since Ū is compact, local Lipschitz
continuity of h follows. Thus (5.13) holds. Since IU is tight, supv∈U μv

(
Bc

|x|
) → 0,

as |x| → ∞, and thus lim|x|→∞ h(x) = ∞.

(iii) ⇒ (iv): By Theorem A.15, the Dirichlet problem

max
u∈U

[
Lufr(x) + h(x, u)

]
= 0 , x ∈ Br \ D̄1,

fr
⏐⏐
∂D1∩∂Br

= 0
(5.17)

has a solution fr ∈ C2,s(B̄r \D1), s ∈ (0, 1). Let vr ∈ USD be a measurable selector
from the maximizer in (5.17). Then using (5.10) and (5.11), with r > R > R0, and
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since, as shown earlier, under the hypothesis of (iii) equation (5.15) holds, we obtain

fr(x) = E
vr
x

[∫ τ(Dc
1)∧τr

0

h̄(Xt, Ut) dt

]

≤
(
sup

BR×U

h
)
ξvrD1,BR

(x) + Φvr
R (x)

≤
(
sup

BR×U

h
)
ξvrD1,BR

(x) + k′2

∫
Rd

h dπvr , x ∈ ∂D2 ,

for some constant k′2 > 0 that depends only on D1, D2, and R0. Therefore, by (iii)
and Lemma 5.3(i), fr is bounded above, and since it is monotone in r, it converges
by Lemma A.16, as r → ∞, to some V ∈ C2(Dc

1) satisfying

LuV(x) ≤ −h(x, u) ∀u ∈ U , ∀x ∈ D̄c
1 .

It remains to extend V to a smooth function. This can be accomplished, for instance,
by selecting D4 � D3 � D1, and with ψ any smooth function that equals zero on D3

and ψ = 1 on Dc
4, to define Ṽ = ψV on Dc

1 and Ṽ = 0 on D1. Then LuṼ ≤ −h on
Dc

4, for all u ∈ U, and since |LuṼ| is bounded in D̄4, uniformly in u ∈ U, (iv) follows.
(iv) ⇒ (i): Let D be an open ball such that h(x, u) ≥ 2k0 for all x ∈ Dc and

u ∈ U. By Itô’s formula, for any R > 0 and v ∈ USM,

(5.18) E
v
x

[∫ τ(Dc)∧τR

0

(
h̄(Xt, Ut)− k0

)
dt

]
≤ V(x) ∀x ∈ D̄c.

Since h ≤ 2(h− k0) on D
c, the result follows by taking limits as R → ∞ in (5.18).

(ix) ⇒ (vii): By (5.10) and (5.11) with h ≡ 1, we obtain, for any t0 ≥ 0 and
R > R0,

πv(B
c
R × U) ≤ k′1 E

v
x

[∫ τ(Dc
1)

0

IBc
R
(Xt) dt

]
≤ k′1t0 P

v
x(τR ≤ t0) + k′1 E

v
x

[
τ(Dc

1)I(τ(D
c
1) ≥ t0)

]
, x ∈ ∂D2 ,

for some constant k′1 > 0 that depends only on D1, D2, and R0. By (ix), we can
select t0 large enough so that the second term on the right-hand side is as small as
desired, uniformly in v ∈ U and x ∈ ∂D2. By (3.6), for any fixed t0 > 0,

sup
v∈USM

sup
x∈∂D2

P
v
x(τR ≤ t0) −−−−→

R→∞
0 ,

and (vii) follows.
(iv) ⇒ (v): Applying Itô’s formula, we have

(5.19) E
U
x [V(Xt∧τn)]− V(x) = k0 E

U
x [t ∧ τn]− E

U
x

[∫ t∧τn

0

h̄(Xs, Us) ds

]
.

Letting n → ∞ in (5.19), using monotone convergence and rearranging terms, we
obtain that for any ball BR ⊂ R

d,(
min
Bc

R×U

h

) ∫ t

0

E
U
x

[
IBc

R
(Xs)

]
ds ≤

∫ t

0

E
U
x

[
h̄(Xs, Us)

]
ds(5.20)

≤ k0t+ V(x) .
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By (5.20), for all x ∈ R
d,

1

t

∫ t

0

E
U
x

[
IBc

R
(Xs)

]
ds ≤ k0t+ V(x)

t
(
minBc

R×U h
) ∀U ∈ U , ∀t > 0 ,

and tightness of the mean empirical measures follows.
(v) ⇒ (viii): Since the mean empirical measures are tight, their closure is compact

by Prohorov’s theorem. Tightness also implies that every accumulation point of a
sequence of mean empirical measures is an ergodic occupation measure [9, 23]. Also,
if v ∈ USSM, then ν̄vx,t converges as t → ∞ to πv [19, Lemma 2.1, p. 72]. Therefore,
tightness implies that the set of accumulation points of sequences of mean empirical
measures is precisely the set of ergodic occupation measures M, and hence, being
closed, M is compact.

(viii) ⇒ (x): Let D = D1, and without loss of generality, Γ = ∂D2. Then (5.11)
implies

(5.21) sup
v∈U

sup
x∈∂D2

E
v
x

[∫ τ(Dc
1)

0

IBc
R
(Xt) dt

]
−−−−→
R→∞

0 .

Given any sequence {(vn, xn)} ⊂ U × ∂D2 converging to some (v, x) ∈ Ū × ∂D2,
Lemma 5.3(iii) asserts that, for all R such that D2 � BR,

(5.22) E
vn
xn

[∫ τ(Dc
1)

0

IBR(Xt) dt

]
−−−−→
n→∞ E

v
x

[∫ τ(Dc
1)

0

IBR(Xt) dt

]
.

Combining (5.21) and (5.22), we obtain E
vn
xn
[τ(Dc

1)] → E
v
x[τ(D

c
1)] as n → ∞, and (x)

follows.

6. Equicontinuity of the α-discounted value functions. In the analysis of
the ergodic problem, we follow the vanishing discount approach. Let α > 0 be a
constant which we refer to as the discount factor. For any admissible control U ∈ U,
we define the α-discounted cost by

JU
α (x) � E

U
x

[∫ ∞

0

e−αtc(Xt, Ut) dt

]
,

and we let

(6.1) Vα(x) � inf
U∈U

JU
α (x) .

The following theorem is standard [4, 9].
Theorem 6.1. Let c ∈ C (see Definition 5.5). Then Vα defined in (6.1) is the

minimal nonnegative solution in C2(Rd) ∩ Cb(Rd) of

(6.2) min
u∈U

[
LuVα(x) + c(x, u)

]
= αVα(x) .

Moreover, v ∈ USM is α-discounted optimal if and only if v a.e. realizes the pointwise
minimum in (6.2), i.e., if and only if

d∑
i=1

biv(x)
∂Vα
∂xi

(x) + cv(x) = min
u∈U

[
d∑

i=1

bi(x, u)
∂Vα
∂xi

(x) + c(x, u)

]
a.e. x ∈ R

d ,
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where biv and cv are as in Definition 3.3.
We next show that for a stable control v ∈ USSM, the resolvents Jv

α are bounded
in W2,p(BR), uniformly in α ∈ (0, 1), for any R > 0. For v ∈ USSM, and πv ∈ M the
corresponding ergodic occupation measure, we define

�v �
∫
Rd×U

c(x, u)πv(dx, du) .

Theorem 6.2. There exists a positive constant C0 = C0(R) depending only on
the radius R > 0 such that, for all v ∈ USSM and α ∈ (0, 1),

∥∥Jv
α − Jv

α(0)
∥∥
W2,p(BR)

≤ C0(R)

μv(B2R)

(
�v

μv(B2R)
+ sup

B4R×U

c

)
,(6.3a)

sup
BR

αJv
α ≤ C0(R)

(
�v

μv(BR)
+ sup

B2R×U

c

)
.(6.3b)

Proof. Let τ̂ = inf {t > τ2R : Xt ∈ BR}. For x ∈ ∂BR, we have

Jv
α(x) = E

v
x

[∫ τ̂

0

e−αtcv(Xt) dt+ e−ατ̂Jv
α(Xτ̂)

]
(6.4)

= E
v
x

[∫ τ̂

0

e−αtcv(Xt) dt+ Jv
α(Xτ̂)− (1 − e−ατ̂)Jv

α(Xτ̂)

]
.

Let P̃x(A) = P
v
x(Xτ̂ ∈ A). By Theorem 4.2, there exists δ ∈ (0, 1) depending only on

R such that ∥∥P̃x − P̃y

∥∥
TV

≤ 2δ ∀x, y ∈ ∂BR .

Therefore,

(6.5)
∣∣Ev

x [J
v
α(Xτ̂)]− E

v
y [J

v
α(Xτ̂)]

∣∣ ≤ δ osc
∂BR

Jv
α ∀x, y ∈ ∂BR .

Thus (6.4) and (6.5) yield

(6.6) osc
∂BR

Jv
α ≤ 1

1− δ
sup

x∈∂BR

E
v
x

[∫ τ̂

0

e−αtcv(Xt) dt

]

+
1

1− δ
sup

x∈∂BR

E
v
x

[
(1− e−ατ̂)Jv

α(Xτ̂)
]
.

Next, we bound the terms on the right-hand side of (6.6). First,

E
v
x

[
(1 − e−ατ̂)Jv

α(Xτ̂)
]
≤ E

v
x

[
α−1(1 − e−ατ̂)

]
sup

x∈∂BR

αJv
α(x)(6.7)

≤
(
sup
∂BR

αJv
α

)
E
v
x[τ̂] ∀x ∈ ∂BR .

Define

M(R) � sup
BR×U

c , R > 0 .
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The function

ϕα =
M(2R)

α
+ Jv

α

belongs to W
2,p
loc(R

d) for all p > 1 and satisfies

(6.8) Lvϕα(x)− αϕα(x) = −cv(x)−M(2R) ∀x ∈ B2R ,

and thus

(6.9) M(2R) ≤ ∣∣(Lv − α)ϕα(x)
∣∣ ≤ 2M(2R) ∀x ∈ B2R .

By (6.9),

(6.10)
∥∥(Lv − α)ϕα

∥∥
L∞(B2R)

≤ 2|B2R|−1
∥∥(Lv − α)ϕα

∥∥
L1(B2R)

.

Hence ϕα ∈ K(2, B2R) (see Definition A.7), and by Theorem A.9, there exists a
constant C̃H > 0 depending only on R such that

(6.11) ϕα(x) ≤ C̃Hϕα(y) ∀x , y ∈ BR and α ∈ (0, 1) .

Integrating with respect to μv, and using Fubini’s theorem, we have

(6.12)

∫
Rd

αJv
α(x)μv(dx) = �v ∀v ∈ USSM .

By (6.12), infBR αJv
α ≤ �v

μv(BR) . Thus (6.11) yields

(6.13) sup
BR

αJv
α ≤ C̃H

(
M(2R) +

�v
μv(BR)

)
,

which establishes (6.3b). On the other hand, the function

ψα(x) = E
v
x

[∫ τ̂

0

e−αt
(
M(2R) + cv(Xt)

)
dt

]

also satisfies (6.8)–(6.10) in B2R, and therefore (6.11) holds for ψα. Thus

sup
x∈∂BR

E
v
x

[∫ τ̂

0

e−αtcv(Xt) dt

]
≤ C̃H inf

x∈∂BR

E
v
x

[∫ τ̂

0

(
M(2R) + cv(Xt)

)
dt

]
(6.14)

≤ C̃H

(
M(2R) + �v

)
sup

x∈∂BR

E
v
x[τ̂] .

By (6.6), (6.7), (6.13), and (6.14),

(6.15) osc
∂BR

Jv
α ≤ 1 + C̃H

1− δ

(
M(2R) +

�v
μv(BR)

)
sup

x∈∂BR

E
v
x[τ̂] .

Applying Theorem A.9 to the Lv-superharmonic function x �→ E
v
x[τ̂], we have

(6.16) sup
x∈∂BR

E
v
x[τ̂] ≤ C̃′

H inf
x∈∂BR

E
v
x[τ̂]
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for some constant C̃′
H = C̃′

H(R) > 0. By (4.1a), (6.16), and the estimate

inf
x∈∂BR

E
v
x[τ̂] ≤

1

μv(BR)
sup

x∈∂BR

E
v
x[τ2R] ,

which is obtained from Theorem 4.2(iii), we have

(6.17) sup
x∈∂BR

E
v
x[τ̂] ≤

C̃1

μv(BR)
,

for some positive constant C̃1 = C̃1(R). By Theorem A.3, there exists a constant
C̃′

1 > 0, depending only on R, such that Ev
x[τR] ≤ C̃′

1 for all x ∈ BR, and thus

(6.18) sup
x∈BR

E
v
x

[∫ τR

0

e−αtcv(Xt) dt

]
≤ C̃′

1 sup
BR×U

c .

By (6.15), (6.17), and (6.18),

osc
BR

Jv
α ≤ osc

∂BR

Jv
α + sup

x∈BR

E
v
x

[∫ τR

0

e−αtcv(Xt) dt

]
(6.19)

≤ C̃2

μv(BR)

(
M(2R) +

�v
μv(BR)

)

for some positive constant C̃2 = C̃2(R). Let ϕ̄α � Jv
α − Jv

α(0). Then

Lvϕ̄α − αϕ̄α = −cv + αJv
α(0) in B2R .

Applying Lemma A.5 to ϕ̄α, relative to the operator Lv − α, with D = B2R and
D′ = BR, we obtain, for some positive constant C̃3 = C̃3(R),

∥∥ϕ̄α

∥∥
W2,p(BR)

≤ C̃3

(∥∥ϕ̄α

∥∥
Lp(B2R)

+
∥∥Lvϕ̄α − αϕ̄α

∥∥
Lp(B2R)

)
≤ C̃3

∣∣B2R

∣∣1/p(osc
B2R

Jv
α +M(2R) + sup

B2R

αJv
α

)
,

and the required bound follows from (6.13) and (6.19).
The bounds in (6.3) along with Theorem 5.1 imply that if USSM = USM, then as

long as �v < ∞ for all v ∈ USM, the functions Jv
α − Jv

α(0) are bounded in W2,p(BR)
on any ball BR, uniformly in α ∈ (0, 1) and v ∈ USSM. The estimates in the corollary
that follows imply that, provided �v <∞, for some v ∈ USSM, the α-discounted value
functions {Vα} defined in (6.1) are bounded in W2,p(BR) on any ball BR, uniformly
in α ∈ (0, 1).

Corollary 6.3. There exists a constant C̃0(R) > 0 depending only on the radius
R > 0 such that, for all α ∈ (0, 1) and all v ∈ USSM,

∥∥Vα − Vα(0)
∥∥
W2,p(BR)

≤ C̃0(R)

μv(B2R)

(
�v

μv(B2R)
+ sup

B4R×U

c

)
,(6.20a)

sup
BR

αVα ≤ C̃0(R)

(
�v

μv(BR)
+ sup

B2R×U

c

)
.(6.20b)
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Proof. With τ̂ as in the proof of Theorem 6.2, and vα ∈ USM an α-discounted
optimal control, define the admissible control U ∈ U by

Ut =

{
v if t ≤ τ̂,

vα otherwise.

Since U is in general suboptimal for the α-discounted criterion, we have

(6.21) Vα(x) ≤ E
v
x

[∫ τ̂

0

e−αtcv(Xt) dt+ e−ατ̂Vα(Xτ̂)

]
.

Invoking Theorem 4.2 as in the proof of Theorem 6.2, we obtain

(6.22)
∣∣Ev

x [Vα(Xτ̂)]− E
v
y [Vα(Xτ̂)]

∣∣ ≤ δ osc
∂BR

Vα ∀x, y ∈ ∂BR ,

and thus by (6.21) and (6.22)

(6.23) osc
∂BR

Vα ≤ 1

1− δ
sup

x∈∂BR

E
v
x

[∫ τ̂

0

e−αtcv(Xt) dt

]

+
1

1− δ
sup

x∈∂BR

E
v
x

[
(1− e−ατ̂)Vα(Xτ̂)

]
.

Since Vα ≤ Jv
α, (6.20b) follows from (6.13). Moreover, since the right-hand sides of

(6.6) and (6.23) are equal, we can use (6.15) and (6.17) to obtain

(6.24) osc
∂BR

Vα ≤ (1 + C̃H)C̃1

(1− δ)μv(BR)

(
M(2R) +

�v
μv(BR)

)
∀v ∈ USSM .

Using (6.24) and the bound

osc
BR

Vα ≤ osc
∂BR

Vα + sup
x∈BR

E
vα
x

[∫ τR

0

e−αtcvα(Xt) dt

]
,

we proceed as in the proof of Theorem 6.2 to derive (6.20a).

7. Analysis of the ergodic control problem. Throughout the rest of this
paper we assume that c ∈ C. We start the analysis with a useful lemma concerning
control Lyapunov functions. We use the notation τ̆r � τ(Bc

r) for r > 0. Also we
extend the definition of o to functions on C(Rd × U) as follows: For h ∈ C(Rd × U),
with h > 0,

g ∈ o(h) ⇐⇒ lim sup
|x|→∞

sup
u∈U

|g(x, u)|
h(x, u)

= 0 .

Lemma 7.1. Suppose

(7.1) sup
v∈USSM

∫
Bc

R×U

(1 + c(x, u))πv(dx, du) −−−−→
R→∞

0 .

Then there exist a constant k0 ∈ R and a pair of nonnegative, inf-compact functions
(V , h) ∈ C2(Rd)× C with 1 + c ∈ o(h) such that

(7.2) LuV(x) ≤ k0 − h(x, u) ∀u ∈ U , ∀x ∈ R
d .

Moreover,
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(i) for any r > 0,

(7.3) x �→ E
v
x

[∫ τ̆r

0

(
1 + cv(Xt)

)
dt

]
∈ o(V) ∀v ∈ USSM .

(ii) if ϕ ∈ o(V), then for all x ∈ R
d, and all v ∈ USSM,

lim
t→∞

1

t
E
v
x

[
ϕ(Xt)

]
= 0 ,(7.4)

and for any t ≥ 0,

lim
R→∞

E
v
x [ϕ(Xt∧τR)] = E

v
x [ϕ(Xt)] .(7.5)

Conversely, if (7.2) holds for a pair (V , h) ∈ C2(Rd)× C of nonnegative, inf-compact
functions, satisfying 1 + c ∈ o(h), then (7.1) and (i)–(ii) hold.

Proof. Let

čv(x) � 1 +

∫
U

c(x, u)v(du | x) , v ∈ USSM .

Recall that if
∑

n an is a convergent series of positive terms, and if rn �
∑

k≥n ak are

its remainders, then
∑

n r
−λ
n an converges for all λ ∈ (0, 1). Thus, if we define

ǧ(r) �
(

sup
v∈USSM

∫
Bc

r

čv(x)μv(dx)

)−1/2

, r > 0 ,

it follows from (7.1) that

(7.6)

∫
Rd

čv(x)ǧ
β(|x|)μv(dx) <∞ ∀v ∈ USSM, ∀β ∈ [0, 2) .

Let

h(x, u) �
(
1 + c(x, u)

)
ǧ(|x|) .

By (7.1), ǧ is inf-compact, and it is straightforward to verify, using an estimate anal-
ogous to (5.16), that it is also locally Lipschitz. Adopting the notation in (3.10), we
write hv(x) = čv(x)ǧ(|x|). By Theorem 5.1 and (7.6),

sup
v∈USSM

∫
Rd

hv(x)ǧ
β(|x|)μv(dx) <∞ ∀β ∈ [0, 1) .

It then follows from Theorem 5.6 that there exists a nonnegative, inf-compact function
V ∈ C2(Rd) which satisfies

(7.7) LuV(x) ≤ k0 − h(x, u) ∀x ∈ R
d , ∀u ∈ U .

Next we prove (7.3). With R > 0 large enough so that x ∈ BR, applying Itô’s formula
to (7.7) we obtain

(7.8) E
v
x

[V(Xτ̆r∧τR
)
]− V(x) ≤ E

v
x

[∫ τ̆r∧τR

0

[
k0 − hv(Xt)

]
dt

]
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for all v ∈ USSM. Therefore

(7.9) E
v
x

[∫ τ̆r∧τR

0

hv(Xt) dt

]
≤ V(x) + k0 E

v
x[τ̆r ∧ τR] .

Taking limits as R→ ∞ in (7.9), and since E
v
x[τ̆r] ∈ O(V), we obtain

(7.10) E
v
x

[∫ τ̆r

0

hv(Xt) dt

]
∈ O(V) .

For each x ∈ Bc
r , select the maximal radius ρ(x) satisfying

(7.11) E
v
x

[∫ τ̆r

0

IBρ(x)
(Xt)čv(Xt) dt

]
≤ 1

2
E
v
x

[∫ τ̆r

0

čv(Xt) dt

]
.

By (7.10) and (7.11),

E
v
x

[∫ τ̆r

0

čv(Xt) dt

]
≤ 2Ev

x

[∫ τ̆r

0

IBc
ρ(x)

(Xt)čv(Xt) dt

]
(7.12)

≤ 2

ǧ(ρ(x))
E
v
x

[∫ τ̆r

0

IBc
ρ(x)

(Xt)čv(Xt)ǧ(|Xt|) dt
]

≤ 2

ǧ(ρ(x))
E
v
x

[∫ τ̆r

0

hv(Xt) dt

]

∈ O
( V
ǧ ◦ ρ

)
.

Since for any fixed ball Bρ the function

x �→ E
v
x

[∫ τ̆r

0

IBρ(Xt)čv(Xt) dt

]

is bounded on Bc
r by Lemma 5.3(i), whereas the function on the right-hand side

of (7.11) grows unbounded as |x| → ∞, it follows that lim inf |x|→∞ ρ(x) → ∞.
Therefore, (7.3) follows from (7.12).

We now turn to (7.4). Applying Itô’s formula and Fatou’s lemma, (7.7) yields

(7.13) E
v
x

[V(Xt)
] ≤ k0t+ V(x) ∀v ∈ USSM .

If ϕ is o(V), then there exists f̌ : R+ → R+ satisfying f̌(R) → ∞, as R → ∞, and
V(x) ≥ |ϕ(x)|f̌ (|x|). Define

R(t) � inf
{|x| : |ϕ(x)| ≥ √

t
} ∧ t , t ≥ 0 .

Then, by (7.13),

E
v
x

∣∣ϕ(Xt)
∣∣ ≤ E

v
x

[∣∣ϕ(Xt)
∣∣IBR(t)

(Xt)
]
+

E
v
x

[V(Xt)IBc
R(t)

(Xt)
]

f̌(R(t))
(7.14)

≤ √
t+

k0t+ V(x)
f̌(R(t))

,
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and dividing (7.14) by t, and taking limits as t→ ∞, (7.4) follows.
To prove (7.5), first write

(7.15) E
v
x [ϕ(Xt∧τR)] = E

v
x [ϕ(Xt)I{t < τR}] + E

v
x [ϕ(XτR)I{t ≥ τR}] .

By (7.13),

E
v
x [ϕ(XτR)I{t ≥ τR}] ≤ [k0t+ V(x)] sup

x∈∂BR

ϕ(x)

V(x) ,

and since ϕ ∈ o(V), this shows that the second term on the right-hand side of (7.15)
vanishes as R → ∞. Since

∣∣ϕ(Xt)
∣∣ ≤ MV(Xt), for some constant M > 0, applying

Fatou’s lemma yields

E
v
x [ϕ(Xt)] ≤ lim inf

R→∞
E
v
x [ϕ(Xt)I{t < τR}]

≤ lim sup
R→∞

E
v
x [ϕ(Xt)I{t < τR}] ≤ E

v
x [ϕ(Xt)] ,

thus obtaining (7.5).
The converse statement follows from Theorem 5.6.
Remark 7.2. We observe that the estimates used in the proof of Lemma 7.1 are

uniform in v ∈ USSM. Therefore, the conclusions in (i) and (ii) can be strengthened
to

x �→ sup
v∈USSM

E
v
x

[∫ τ̆r

0

(
1 + cv(Xt)

)
dt

]
∈ o(V) ∀r > 0

and

sup
v∈USSM

E
v
x

[
ϕ(Xt)

]
t

−−−→
t→∞ 0 ∀x ∈ R

d , ∀ϕ ∈ o(V) ,

respectively.
Definition 7.3. For r > 0 and x ∈ B̄c

r, define

Ψv(x; �) � lim inf
r↓0

E
v
x

[∫ τ̆r

0

(
cv(Xt)− �

)
dt

]
, v ∈ USSM,

Ψ∗(x; �) � lim inf
r↓0

inf
v∈USSM

E
v
x

[∫ τ̆r

0

(
cv(Xt)− �

)
dt

]
.

Recall that �v �
∫
Rd cv(x)μv(dx), and define

�∗ � inf
v∈USSM

�v .

We always assume that �∗ < ∞ or, in other words, that for some v̂ ∈ USSM,
�v̂ <∞. In the next lemma we relax (7.1), and thus we cannot assume the existence
of a control which is average-cost optimal in USSM. Therefore, we have to argue via
ε-optimality which is defined as follows. For ε ≥ 0, π∗

ε ∈ M is called ε-optimal if it
satisfies

�∗ ≤
∫
Rd×U

c dπ∗
ε ≤ �∗ + ε .

Lemma 7.4. Assume �∗ <∞. The following hold:
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(i) For each sequence αn ↓ 0 there exist a further subsequence also denoted as
{αn}, V ∈ C2(Rd), and � ∈ R such that, as n → ∞, V̄αn � Vαn − Vαn(0) → V
uniformly on compact subsets of Rd, and αnVαn(0) → �. The pair (V, �) satisfies

(7.16) min
u∈U

[
LuV (x) + c(x, u)

]
= � , x ∈ R

d.

Moreover,

V (x) ≤ Ψ∗(x; �) and � ≤ �∗ .

(ii) If v̂ ∈ USSM and �v̂ < ∞, then there exist �̂ ∈ R
d and V̂ ∈ W

2,p
loc(R

d), for

any p > 1, satisfying Lv̂V̂ − cv̂ = �̂ in R
d, and such that, as α ↓ 0, αJ v̂

α(0) → �̂ and
J v̂
α − J v̂

α(0) → V̂ uniformly on compact subsets of Rd. Moreover,

V̂ (x) = Ψ v̂(x; �̂) and �̂ ≤ �v̂ .

Proof. By Theorem 6.2, αVα(0) is bounded, and V̄α = Vα − Vα(0) is bounded
in W2,p(BR), p > 1, uniformly in α in a neighborhood of 0. Therefore, we start
with (6.2), and applying Lemma A.16 we deduce that V̄αn converges uniformly on
any bounded domain along some subsequence αn ↓ 0 to V ∈ C2(Rd) satisfying (7.16),
with � being the corresponding limit of αnVαn(0).

We first show � ≤ �∗. Let vε ∈ USSM be an ε-optimal control and select R ≥ 0
large enough such that μvε

(
BR

) ≥ 1− ε. Since Vα ≤ Jvε
α , by integrating with respect

to μvε and using Fubini’s theorem, we obtain

(
inf
BR

Vα

)
μvε

(
BR

) ≤ ∫
Rd

Vα(x)μvε (dx) ≤
∫
Rd

Jvε
α (x)μvε (dx) ≤

�∗ + ε

α
.

Therefore,

inf
BR

Vα ≤ (�∗ + ε)

α(1 − ε)
,

and since Vα(0)− infBR Vα is bounded uniformly in α ∈ (0, 1), we obtain

� ≤ lim sup
α↓0

αVα(0) ≤ (�∗ + ε)

(1− ε)
.

Since ε was arbitrary, � ≤ �∗.
Let vα ∈ USM be an α-discounted optimal control. For v ∈ USSM and r < R,

define the admissible control U ∈ U by

Ut =

{
v if t ≤ τ̆r ∧ τR,

vα otherwise.

Since U is in general suboptimal for the α-discounted criterion, using the strong
Markov property relative to the stopping time τ̆r ∧ τR, we have for x ∈ BR \ B̄r,

Vα(x) ≤ E
U
x

[∫ ∞

0

e−αtc̄(Xt, Ut) dt

]
(7.17)

= E
v
x

[∫ τ̆r∧τR

0

e−αtcv(Xt) dt+ e−α(τ̆r∧τR)Vα(Xτ̆r∧τR
)

]
.
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Since v ∈ USSM, applying Fubini’s theorem,
∫
Rd αJ

v
α(x)μv(dx) = �v <∞. Hence, Jv

α

is a.e. finite, and since Vα ≤ Jv
α, by Theorem A.12 and Remark A.13, we have

(7.18) E
v
x

[
I{τ̆r ≥ τR}e−ατRVα(XτR)

]
≤ E

v
x

[
e−ατRJv

α(XτR)
] −−−−→

R→∞
0

for all v ∈ USSM. Decomposing the term e−α(τ̆r∧τR)Vα(Xτ̆r∧τR
) in (7.17), then taking

limits as R → ∞, applying (7.18) and monotone convergence, and subtracting Vα(0)
from both sides of the inequality, we obtain

V̄α(x) ≤ E
v
x

[∫ τ̆r

0

e−αtcv(Xt) dt+ e−ατ̆rVα(Xτ̆r
)− Vα(0)

]
(7.19)

= E
v
x

[∫ τ̆r

0

e−αt
(
cv(Xt)− �

)
dt

]
+ E

v
x

[
Vα(Xτ̆r

)− Vα(0)
]

+ E
v
x

[
α−1

(
1− e−ατ̆r

)[
�− αVα(Xτ̆r

)
]]
.

Since E
v
x

[
α−1

(
1− e−ατ̆r

)] ≤ E
v
x[τ̆r] and, by Corollary 6.3, supBr

|� − αnVαn | → 0,
letting α→ 0 along the subsequence {αn}, (7.19) yields

(7.20) V (x) ≤ E
v
x

[∫ τ̆r

0

(
cv(Xt)− �

)
dt+ V (Xτ̆r

)

]
∀v ∈ USSM .

Since V (0) = 0,

lim
r↓0

sup
v∈USSM

E
v
x

[
V (Xτ̆r

)
] = 0 .

Therefore,

V (x) ≤ lim inf
r↓0

inf
v∈USSM

E
v
x

[∫ τ̆r

0

(
cv(Xt)− �

)
dt

]
.

This shows V (x) ≤ Ψ∗(x; �), and the proof of (i) is complete.
If �v̂ < ∞, then using the bounds in Theorem 6.2 along with Lemma A.16 and

Remark A.17, it follows that J v̂
αn

−J v̂
αn

(0) and αnJ
v̂
αn

(0) converge along some sequence

αn → 0 to V̂ and �̂, respectively, satisfying Lv̂V̂ +cv̂ = �̂. Since (7.19) and (7.20) hold
with equality if we replace Vα with J v̂

α, � with �̂, and v with v̂, first letting αn → 0
and then r → 0, we obtain V̂ = Ψ v̂(x; �̂). The bound(

inf
BR

αJ v̂
α

)
μv̂(BR) ≤

∫
Rd

αJ v̂
α(x)μv̂(dx) = �v̂ ∀R > 0

yields

(7.21) αJ v̂
α(0)μv̂(BR) ≤ �v̂ + α

(
J v̂
α(0)− inf

BR

J v̂
α

)
μv̂(BR) .

Taking limits as α→ 0 in (7.21) and using (6.3a), we obtain

�̂ μv̂(BR) ≤ �v̂ ∀R > 0 ,

from which it follows that �̂ ≤ �v̂. This completes the proof of (ii).
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We need the following definition.
Definition 7.5. Let V be the class of nonnegative functions V ∈ C2(Rd) satisfy-

ing (7.2) for some nonnegative, inf-compact h ∈ C, with 1 + c ∈ o(h). We denote by
o(V) the class of functions V satisfying V ∈ o(V) for some V ∈ V.

The next theorem assumes (7.1). In other words, we assume that 1+c is uniformly
integrable with respect to {πv , v ∈ USSM}. Note that if c ∈ Cb(Rd ×U), Theorem 5.6
asserts that (7.1) is equivalent to uniform stability of USSM, and thus (7.1) is au-
tomatically satisfied when USSM = USM, and when the running cost is bounded by
Theorem 8.3, which is stated later in section 8. The main reason for assuming (7.1)
in Theorem 7.6 below is to assert that there exists a solution of the HJB equation in
o(V). Then Theorem 7.7 which follows asserts that this solution is unique in o(V).

Theorem 7.6. Assume (7.1) holds. Then the HJB equation

(7.22) min
u∈U

[
LuV (x) + c(x, u)

]
= � , x ∈ R

d ,

admits a solution with � ∈ R and V ∈ C2(Rd)∩ o(V), satisfying V (0) = 0. Moreover,
� = �∗, and if v∗ ∈ USM is a measurable selector from the minimizer in (7.22), i.e.,
if it satisfies

(7.23) min
u∈U

[
d∑

i=1

bi(x, u)
∂V

∂xi
(x) + c(x, u)

]
=

d∑
i=1

biv∗(x)
∂V

∂xi
(x) + cv∗(x) a.e.,

then

(7.24) �v∗ = �∗ = inf
U∈U

lim sup
T→∞

1

T
E
U
x

[∫ T

0

c (Xt, Ut) dt

]
.

Proof. The existence of a solution to (7.22) with V ∈ C2(Rd) and � ≤ �∗ is
asserted by Lemma 7.4. By (7.3) and (7.20), V ∈ o(V). Suppose v∗ ∈ USM satisfies
(7.23). By Itô’s formula,

E
v∗
x

[
V (Xt∧τR)

] − V (x) = E
v∗
x

[∫ t∧τR

0

Lv∗
V (Xs) ds

]
(7.25)

= E
v∗
x

[∫ t∧τR

0

[
�− cv∗(Xs)

]
ds

]
.

Taking limits as R → ∞ in (7.25), by applying (7.5) to the left-hand side, and
decomposing the right-hand side as

�Ev∗
x [t ∧ τR]− E

v∗
x

[∫ t∧τR

0

cv∗(Xs) ds

]
,

and employing monotone convergence, we obtain

(7.26) E
v∗
x

[
V (Xt)

] − V (x) = E
v∗
x

[∫ t

0

[
�− cv∗(Xs)

]
ds

]
.

Dividing (7.26) by t, and applying (7.4) as we let t → ∞, we obtain �v∗ = �, which
implies �∗ ≤ �. Since � ≤ �∗, we have equality. One more application of Itô’s formula
to (7.22), relative to U ∈ U, yields (7.24).
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Concerning uniqueness of solutions to the HJB equation, the following applies.
Theorem 7.7. Let V ∗ denote the solution of (7.22) obtained via the vanishing

discount limit in Theorem 7.6, and let v∗ be a measurable selector from the minimizer
minu∈U

[
LuV ∗(x) + c(x, u)

]
. The following hold:

(i) V ∗(x) = Ψ∗(x; �∗).
(ii) v̂ ∈ USSM is average-cost optimal in USSM, i.e., �v̂ = �∗, if and only if it

satisfies

biv̂(x)∂iV
∗(x) + cv̂(x) = min

u∈U

[
bi(x, u)∂iV

∗(x) + c(x, u)
]

a.e.

(iii) If a pair (Ṽ , �̃) ∈ (C2(Rd) ∩ o(V)
) × R satisfies (7.22) and Ṽ (0) = 0, then

(Ṽ , �̃) = (V ∗, �∗).
Proof. By Lemma 7.4(i), since V ∗ is obtained as a limit of V̄αn as αn → 0, we

have V ∗ ≤ Ψ∗(x; �), and by Theorem 7.6, � = �∗. Suppose v̂ ∈ USSM is optimal. By
Lemma 7.4(ii), there exists V̂ ∈ W

2,p
loc(R

d), p > 1, satisfying Lv̂V̂ −cv̂ = �̂ in R
d. Also,

V̂ = Ψ v̂(x; �̂) and �̂ ≤ �v̂. Thus by the optimality of v̂, �̂ ≤ �∗, and we obtain

(7.27) Lv̂(V ∗ − V̂ ) ≥ �∗ − �̂ ≥ 0

and

V ∗(x) − V̂ (x) ≤ Ψ∗(x; �∗)− Ψ v̂(x; �̂)

≤ Ψ∗(x; �∗)− Ψ v̂(x; �∗) ≤ 0 .

Since V ∗(0) = V̂ (0), the strong maximum principle (Theorem A.4) yields V ∗ = V̂ ,
and in turn by (7.27), �̂ = �∗. This completes the proof of (i)–(ii).

Now suppose (Ṽ , �̃) ∈ (C2(Rd)∩o(V)
)×R is any solution of (7.22), and ṽ ∈ USSM

is an associated measurable selector from the minimizer. We apply Itô’s formula and
(7.5), since Ṽ ∈ o(V), to obtain (7.26) with Ṽ , ṽ, and �̃ replacing V , v∗, and �,
respectively. Dividing by t, and applying (7.4) while taking limits as t → ∞, we
obtain �ṽ = �̃. Therefore �∗ ≤ �̃. One more application of Itô’s formula to (7.22)
relative to the control v∗ yields

(7.28) E
v∗
x

[
Ṽ (Xt)

] − Ṽ (x) ≥ E
v∗
x

[∫ t

0

[
�̃− cv∗(Xs)

]
ds

]
.

Once more, dividing (7.28) by t, letting t→ ∞, and applying (7.4), we obtain �̃ ≤ �∗.
Thus, �̃ = �∗. Next we show that Ṽ ≥ Ψ∗(x; �∗). For x ∈ R

d, choose R > r > 0 such
that r < |x| < R. Using (7.22) and Itô’s formula,

(7.29) Ṽ (x) = E
ṽ
x

[∫ τ̆r∧τR

0

(
cṽ(Xt)− �∗

)
dt+ I{τ̆r < τR}Ṽ (Xτ̆r

)

+ I{τ̆r ≥ τR}Ṽ (XτR)

]
.

By (7.8),

(7.30) E
v
x [V (XτR) I{τR ≤ τ̆r}] ≤ k0 E

v
x [τ̆r] + V(x) ∀v ∈ USSM .

Since Ṽ ∈ o(V), (7.30) implies that

sup
v∈USSM

E
v
x

[
Ṽ (XτR) I{τR ≤ τ̆r}

]
−−−−→
R→∞

0 .
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Hence, letting R→ ∞ in (7.29), and using Fatou’s lemma, we obtain

Ṽ (x) ≥ E
ṽ
x

[∫ τ̆r

0

(
cṽ(Xt)− �∗

)
dt+ Ṽ (Xτ̆r

)

]

≥ inf
v∈USSM

E
v
x

[∫ τ̆r

0

(
cv(Xt)− �∗

)
dt

]
+ inf

Br

Ṽ .

Next, letting r → 0 and using the fact that Ṽ (0) = 0 yields Ṽ ≥ Ψ∗(x; �∗). It follows
that V ∗ − Ṽ ≤ 0 and Lṽ(V ∗ − Ṽ ) ≥ 0. Therefore, by the strong maximum principle,
Ṽ = V ∗. This completes the proof of (iii).

8. Optimality under weakened hypotheses. In this section we relax the
assumption in (7.1). Under the assumption USM = USSM, the existence of an average-
cost optimal control in USSM is guaranteed by Theorem 8.1 and Remark 8.2 below.
This is used subsequently to establish that USSM is uniformly stable. Therefore,
USSM = USM implies that the mean empirical measures defined in Theorem 5.6 are
tight, and this shows in retrospect that the optimality asserted in Theorem 8.1 is in
fact over all admissible controls U.

Theorem 8.1. Suppose that USSM = USM and �v < ∞ for all v ∈ USSM. Then
the HJB equation in (7.22) admits a solution V ∗ ∈ C2(Rd) and � ∈ R satisfying
V (0) = 0. Moreover, � = �∗, and any v ∈ USSM is average-cost optimal in USSM if
and only if it satisfies (7.23).

Proof. By Lemma 7.4(i), we obtain a solution (V ∗, �) to (7.22), via the vanishing
discount limit, satisfying � ≤ �∗.

Let v∗ ∈ USSM be a measurable selector from the minimizer in (7.22). We con-
struct a stochastic Lyapunov function relative to v∗. Employing the technique in the
proof of Lemma 7.1, we define

(8.1) hv∗(x) �
(
1 + cv∗(x)

)(∫
Bc

|x|

(
1 + cv∗(y)

)
μv∗(dy)

)−1/2

and construct a nonnegative, inf-compact V∗ ∈ W
2,p
loc(R

d), which satisfies, for some
k0 ∈ R,

(8.2) Lv∗V∗(x) ≤ k0 − hv∗(x) ∀x ∈ R
d .

It follows as in the proof of Lemma 7.1 that for any r > 0,

(8.3) E
v∗
x

[∫ τ̆r

0

(
1 + cv∗(Xt)

)
dt

]
∈ o(V∗) ,

and for any ϕ ∈ o(V∗),

(8.4) lim
t→∞

1

t
E
v∗
x

[
ϕ(Xt)

]
= 0

and

(8.5) lim
R→∞

E
v∗
x [ϕ(Xt∧τR)] = E

v∗
x [ϕ(Xt)] .

To show that V ∗ ∈ o(V∗), let r < R, and define the admissible control U ∈ U by

Ut =

{
v∗ if t ≤ τ̆r ∧ τR,

vα otherwise.
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Since U is in general suboptimal for the α-discounted criterion, using the strong
Markov property as in (7.17), and taking limits as R → ∞, we obtain

Vα(x) − Vα(0) ≤ E
v∗
x

[∫ τ̆r

0

e−αt
(
cv∗(Xt)− �

)
dt

]
+ E

v∗
x

[
Vα(Xτ̆r

)− Vα(0)
]

(8.6)

+E
v∗
x

[
α−1

(
1− e−ατ̆r

)[
�− αVα(Xτ̆r

)
]]
.

By (8.3), the first term on the right-hand side of (8.6) is o(V∗), and the remaining
two terms are bounded by Theorem 6.2. Hence V̄α ∈ o(V∗) uniformly in α in some
neighborhood of 0, and it follows that V ∗ ∈ o(V∗). Using Itô’s formula as in (7.25)
and applying (8.5), we obtain (7.26). Next, using (8.4) to take limits as t → ∞, we
obtain �v∗ = �, and therefore, � = �∗.

To prove the second assertion, suppose that some v̂ ∈ USSM is average-cost optimal
in USSM. By Lemma 7.4(ii), v̂ satisfies Lv̂V̂ + cv̂ = �̂ for some V̂ ∈ W

2,p
loc(R

d) and
�̂ ≤ �∗. Thus

(8.7) Lv̂(V ∗ − V̂ ) ≥ �∗ − �̂ ≥ 0 .

Also, by Lemma 7.4, V ∗(x) ≤ Ψ∗(x; �∗) and V̂ = Ψ v̂(x; �̂). Hence V ∗ − V̂ ≤ 0, and
since V ∗(0) = V̂ (0), the strong maximum principle yields V ∗ = V̂ , and in turn by
(8.7), �̂ = �∗. Thus Lv̂V ∗ + cv̂ = �∗.

Remark 8.2. If we only assume that USSM = USM, without requiring that �v <∞
for all v ∈ USSM, then it follows from the proof of Theorem 8.1 that any measurable
selector v̂ from the minimizer in (7.22) satisfying �v̂ < ∞ is average-cost optimal in
USSM. Moreover, one can show that any limit point v∗ along some sequence αn ↓ 0
of the family of α-discounted controls {vα} ⊂ USSM satisfies (7.23) and is average-
cost optimal in USSM. In order to prove this, we define the truncated running cost
cM � min {c,M}, whereM > 0 is a constant. Let Jvα

α,M denote the α-discounted cost

relative to cM under the control vα. Applying Theorem 6.2 and Lemma 3.5 to take
limits in

Lvα
(
Jvα
α,M − Jvα

α,M (0)
)
= αJvα

α,M − cMvα ,

along the sequence {αn}, it follows that v∗ satisfies Lv∗
VM + cMv∗ = �M , for some

VM ∈ W
2,p
loc(R

d), p > 1, and �M ∈ R. We construct a stochastic Lyapunov function
V∗
M relative to cMv∗ as in (8.1)–(8.2) and follow the steps in the proof of Theorem 8.1

to show that VM ∈ o(V∗
M ) and �M =

∫
cMv∗ dμv∗ . Therefore,∫

cMv∗ dμv∗ = �M = lim
n→∞ αnJ

vαn

αn,M
(0)

≤ lim
n→∞ αnVαn(0) = � ,

and using monotone convergence to take the limit asM → ∞, it follows that �v∗ ≤ �.
Since � ≤ �∗, we have �v∗ = �∗, and hence v∗ is optimal.

It is evident that if c is bounded, the assumption that �v < ∞ for all v ∈ USSM

can be dropped from the statement of Theorem 8.1 as it is automatically satisfied.
Let Ī be the closure of I in P(R̄d). Theorem 8.1 shows that if USSM = USM, then
infμ∈Ī

∫
R̄d g dμ is attained in I for all g ∈ Cb(R̄d). We next prove that this implies

that I is tight, thus solving the open problem discussed in section 1.
Theorem 8.3. If USSM = USM, then I is tight.
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Proof. Consider the sequence cn(x) =
(
1 + ‖x‖2

n

)−1
. If I is not tight, then there

exists ε > 0 such that

(8.8) �∗n � inf
μ∈I

∫
Rd

cn dμ < 1− ε ∀n ∈ N .

Let V
(n)
α be the α-discounted value function relative to cn, and let v

(n)
α ∈ USM denote

a corresponding α-discounted optimal control. Since αV
(n)
α (0) → �∗n, as α ↓ 0, we can

select αn ∈ (0, 1) such that

(8.9)
∣∣αnV

(n)
αn

(0)− �∗n
∣∣ ≤ 1

n
, n ∈ N .

It is evident that αn → 0 as n → ∞. Extract any subsequence of n ∈ N over

which v
(n)
αn converges to a limit v ∈ USSM. By Corollary 6.3, V̄

(n)
αn is bounded in

W2,p(D) uniformly in n ∈ N for any bounded domain D. Hence, by Lemma 3.5,
dropping perhaps to a further subsequence, which is also denoted by {n}, there exists
V ∈ W

2,p
loc(R

d), p > 1, such that as n → ∞, αV
(n)
α (0) converges to a constant,

V̄
(n)
αn → V , uniformly on compact subsets of Rd, and

LvV = −1 + lim
n→∞ αnV

(n)
αn

(0) .

By (8.8) and (8.9), we obtain at the limit

(8.10) LvV ≤ −ε on R
d .

Since v ∈ USSM, applying (8.1)–(8.2) (with c ≡ 1), we construct nonnegative, inf-
compact functions V ∈ W

2,p
loc(R

d) and h : Rd → R+, satisfying L
vV(x) ≤ k0 − h(x),

for some constant k0 ∈ R, and such that V ∈ o(V). As in (8.4),

(8.11) lim
t→∞

1

t
E
v
x

[
V (Xt)

]
= 0 .

By Itô’s formula, which can be applied as in the derivation of (7.26) since V is o(V),
(8.10) yields

(8.12) E
v
x

[
V (Xt)

]− V (x) ≤ −εt .
Dividing (8.12) by t and letting t→ ∞, while applying (8.11), yields a contradiction.
Therefore, I must be tight.

Using Theorem 8.3 we can improve the results in Theorem 8.1.
Corollary 8.4. Under the assumptions of Theorem 8.1, any measurable selector

from the minimizer in the HJB equation (7.22) obtained via the vanishing discount
limit is average-cost optimal.

Proof. Since the hypothesis USSM = USM implies that USSM is uniformly stable,
by Theorem 5.6 the mean empirical measures

{
ν̄Ux,t
}
defined in (5.14) are tight. Con-

sequently, since as noted in the proof of Theorem 5.6 the set of accumulation points
of ν̄Ux,t, as t→ ∞, equals M, we have

lim inf
t→∞

1

t

∫ t

0

E
U
x

[
c̄(Xs, Us)

]
ds = lim inf

t→∞

∫
Rd×U

c(z, u)ν̄Ux,t(dz, du)

≥ min
v∈USSM

∫
Rd×U

c dπv ∀U ∈ U ,
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and it follows that if v ∈ USM is average-cost optimal in USSM, it is also average-cost
optimal over all admissible controls.

It follows from the proof of Corollary 8.4 that when USM = USSM we obtain a
stronger form of optimality, namely

�∗ ≤ inf
U∈U

(
lim inf
T→∞

1

T

∫ T

0

E
U
x

[
c̄(Xt, Ut)

]
dt

)
.

Relaxing the assumption USM = USSM, we obtain the following result.
Theorem 8.5. Suppose that the family of α-discounted optimal controls {vα} has

an accumulation point v̆ ∈ USSM, as α→ 0, and suppose that �v̆ <∞. Then
(i) the HJB equation in (7.22) admits a solution �̆ ∈ R and V̆ ∈ C2(Rd) satis-

fying V (0) = 0. Moreover, �̆ = �∗, and v̆ is a measurable selector from the minimizer
in

(8.13) min
u∈U

[
LuV̆ (x) + c(x, u)

]
;

(ii) any measurable selector v∗ ∈ USSM from the minimizer in (8.13), satisfying
�v∗ <∞, is average-cost optimal;

(iii) v̂ ∈ USSM is average-cost optimal in USSM only if it satisfies

biv̂(x)∂iV̆ (x) + cv̂(x) = min
u∈U

[
bi(x, u)∂iV̆ (x) + c(x, u)

]
a.e.

Proof. Let v̆ ∈ USSM be the limit of α-discounted optimal controls {vα} over
some sequence as α → 0, and let V̆ be the limit of V̄α and �̆ be the limit of αVα(0)
over a common subsequence {αn}. By Lemma 7.4(i), (V̆ , �̆) is a solution of the HJB
equation (7.22) and satisfies �̆ ≤ �∗ and V̆ (x) ≤ Ψ∗(x; �̆). Taking limits as n→ ∞ in

Lvαn V̄αn = αnV̄αn + αnVαn(0)− cvαn
,

and applying Lemma 3.5, it follows that v̆ satisfies Lv̆V̆ + cv̆ = �̆, and therefore v̆ is
a measurable selector from the minimizer in the HJB. Since �v̆ < ∞, we can employ
a stochastic Lyapunov function Ṽ , defined relative to v̆ as in (8.1)–(8.2), and follow
the steps in the proof of Theorem 8.1 to obtain �v̆ = �̆, and thus �v̆ = �∗, which also
shows that v̆ is average-cost optimal in USSM. This completes the proof of (i).

Concerning (ii), if v∗ ∈ USSM is a measurable selector from the minimizer in
(8.13), and �v∗ <∞, the proof of Theorem 8.1 shows that v∗ is average-cost optimal
in USSM. A standard application of a Tauberian theorem, which asserts that for all
U ∈ U

�∗ = lim sup
n→∞

αnVαn(x) ≤ lim sup
n→∞

αn

∫ ∞

0

e−αnt E
U
x [c̄(Xt, Ut)] dt

≤ lim sup
T→∞

1

T

∫ T

0

E
U
x [c̄(Xt, Ut)] dt ,

shows that v∗ ∈ USSM is in fact average-cost optimal in U.
Turning to (iii), suppose that some v̂ ∈ USSM satisfies �v̂ = �∗. As in the last

paragraph of the proof of Theorem 8.1, it follows that J v̂
α − J v̂

α(0) → V̆ , as α ↓ 0, and
that v̂ is a measurable selector from the minimizer in (8.13).
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Remark 8.6. It follows from the proof of part (iii) of Theorem 8.5 that there is a
unique V̆ ∈ C2(Rd) which is obtained as a limit of V̄α over any subsequence αn ↓ 0,
and satisfying limn→∞ vαn = v̆ ∈ USSM, with �v̆ <∞.

We conclude this section by noting that the class of models with near-monotone
running cost can be handled directly by Theorem 8.5. Recall that the running cost
function c is called near-monotone if

lim inf
|x|→∞

inf
u∈U

c(x, u) > �∗ .

It is well known that if the running cost has the near-monotone property, then V is
bounded below [9]. Thus the HJB takes the form of a stochastic Lyapunov equation,
and this implies that any measurable selector v∗ from the minimizer in the HJB is
stable, and �v∗ <∞. Therefore, by Theorem 8.5, it is average-cost optimal.

9. Conclusion. In the context of elliptic PDEs the main result of this paper
can be summarized as follows. The statement that v is a stable, stationary Markov
control is equivalent to the existence of an inf-compact V ∈ W

2,p
loc(R

d), p > 1, such
that −LvV is inf-compact. On the other hand, uniform stability is equivalent to the
existence of an inf-compact V ∈ C2(Rd) such that −maxu∈U LuV is inf-compact.

We would like to point out that in the case of one-dimensional diffusions, there is
a straightforward analytical proof for Theorem 8.3, which goes as follows. Let

(9.1) b̌(x) � max
u∈U

[b(x, u) sign(x)] .

Then assuming that all stationary Markov controls are stable, by solving a Dirich-
let problem on (−1, 1)c, we can construct ψ ∈ C2 ([−1, 1]c) ∩ C ((−1, 1)c) such that
−(a ∂2xψ+ b̌ ∂xψ) is nonnegative and inf-compact on (−1, 1)c. It is straightforward to
show that ψ(x) is monotone, nondecreasing in [1,∞) (and nonincreasing in (−∞, 1]).
Hence, b(x, u) ∂xψ(x) ≤ b̌(x) ∂xψ(x) a.e. on [−1, 1]c, which implies that−maxu∈U Luψ
is inf-compact on (−1, 1)c, and this is sufficient for uniform stability.

In closing we remark that there is a stronger property that holds for d = 1. Let
v̄ ∈ USSM be a measurable selector from the maximizer in (9.1). An application of
the comparison principle (for ordinary differential equations) to the Fokker–Planck
equation (4.4) for the density ϕv of μv ∈ I yields

(9.2)
ϕv(x)

ϕv(0)
≤ ϕv̄(x)

ϕv̄(0)
∀x ∈ R , ∀v ∈ USSM .

The inequality in (9.2) can also be derived from the explicit solution for the density
ϕv which takes a simple form when d = 1 [23]. On the other hand, since I is tight,
applying (4.6) for some fixed R > 0, we obtain ϕv(0) ≤ 2C2

Hϕv̄(0) for all v ∈ USSM,
which combined with (9.2) shows that ϕ̄ � supv∈USSM

ϕv satisfies ϕ̄ ≤ 2C2
Hϕv̄, and

hence belongs to L1(R). Whether this is true or not for higher dimensions is an open
problem.

Appendix A. Results from elliptic PDEs. The model in (1.1) gives rise to
a class of elliptic operators, with v ∈ USM appearing as a parameter. To facilitate de-
scribing properties that are uniform over the class of operators we adopt the following
parameterization.

Definition A.1. Let γ : (0,∞) �→ (0,∞) be a positive function that plays the role
of a parameter. Using the standard summation rule for repeated indices, we denote
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by L(γ) the class of operators

L = aij∂ij + bi∂i − λ ,

with aij = aji, λ ≥ 0, and whose coefficients {aij , bi, λ} are measurable and satisfy,
on each ball BR ⊂ R

d,

d∑
i,j=1

aij(x)ξiξj ≥ γ−1(R)|ξ|2 ∀x ∈ BR ,(A.1a)

for all ξ = (ξ1, . . . , ξd) ∈ R
d, and

max
i,j

|aij(x)− aij(y)| ≤ γ(R)|x− y| ∀x, y ∈ BR ,

d∑
i,j=1

∥∥aij∥∥L∞(BR)
+

d∑
i,j=1

∥∥bi∥∥L∞(BR)
+
∥∥λ∥∥L∞(BR)

≤ γ(R) .
(A.1b)

Also, we let L0(γ) denote the class of operators in L(γ) satisfying λ = 0.
Remark A.2. Note that the linear growth condition is not imposed on the class

L. Either of the assumptions in (3.3) or (3.4) guarantees that τn ↑ ∞ a.s., as n→ ∞,
a property which we impose separately when needed.

Of fundamental importance to the study of elliptic equations is the following
estimate due to Alexandroff, Bakelman, and Pucci (see Gilberg and Trudinger [17,
Theorem 9.1, p. 220]).

Theorem A.3. Let D ⊂ R
d be a bounded domain. There exists a constant Ca

depending only on d, D, and γ such that if ψ ∈ W
2,d
loc(D) ∩ C(D̄) satisfies Lψ ≥ f ,

with L ∈ L(γ), then

sup
D

ψ ≤ sup
∂D

ψ+ + Ca

∥∥f∥∥Ld(D)
.

When f ≡ 0, Theorem A.3 yields generalizations of the classical weak and strong
maximum principles [17, Theorems 9.5 and 9.6, p. 225]. We state the latter as follows.

Theorem A.4. If ϕ ∈ W
2,d
loc(D) and L ∈ L(γ) satisfy Lϕ ≥ 0 in a bounded

domain D, with λ = 0 (λ > 0), then ϕ cannot attain a maximum (nonnegative
maximum) in D unless it is a constant.

We quote the well-known a priori estimate [13, Lemma 5.3, p. 48] as follows.
Lemma A.5. If ϕ ∈ W

2,p
loc(D) ∩ Lp(D), with p ∈ (1,∞), then for any bounded

subdomain D′ � D, we have∥∥ϕ∥∥
W2,p(D′) ≤ C0

(∥∥ϕ∥∥Lp(D)
+
∥∥Lϕ∥∥Lp(D)

)
∀L ∈ L(γ) ,

with the constant C0 depending only on d, D, D′, p, and γ.
We use the following result concerning solutions of the Dirichlet problem [17,

Theorem 9.15 and Lemma 9.17, pp. 241–242].
Theorem A.6. Let D be a bounded C2 domain in R

d, and let L ∈ L(γ), λ ≥ 0,
and p ∈ (1,∞). For each f ∈ Lp(D) and g ∈ W2,p(D) there exists a unique ϕ ∈
W2,p(D) satisfying ϕ − g ∈ W

1,p
0 (D) and Lϕ = −f in D. Moreover, we have the

estimate ∥∥ϕ∥∥
W2,p(D)

≤ C′
0

(∥∥f∥∥Lp(D)
+
∥∥Lg∥∥Lp(D)

+
∥∥g∥∥

W2,p(D)

)
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for some constant C′
0 = C′

0(d, p,D, γ).

A function ϕ ∈ W
2,d
loc(D) satisfying Lϕ = 0 (Lϕ ≤ 0) in a domain D is called L-

harmonic (L-superharmonic). In this paper we employ some specialized results which
pertain to a class of L-superharmonic functions. These are summarized as follows.

Definition A.7. For δ > 0 and D a bounded domain, let K(δ,D) ⊂ L∞(D)
denote the positive convex cone

K(δ,D) �
{
f ∈ L∞(D) : f ≥ 0 ,

∥∥f∥∥L∞(D)
≤ δ|D|−1

∥∥f∥∥L1(D)

}
.

We use the following theorem from [2].
Theorem A.8. There exists a constant C̃a = C̃a(d, γ,R, δ) such that for every

ϕ ∈ W
2,p
loc(BR) ∩ W

1,p
0 (BR) satisfying Lϕ = −f in BR and ϕ = 0 on ∂BR, with

f ∈ K(δ, BR) and L ∈ L(γ),

inf
BR/2

ϕ ≥ C̃a

∥∥f∥∥L1(BR)
.

Harnack’s inequality plays a central role in the study of L-harmonic functions.
For strong solutions we refer to [17, Corollary 9.25, p. 250] for this result. Harnack’s
inequality has been extended in [2, Corollary 2.2] to the class of superharmonic func-
tions satisfying −Lϕ ∈ K(δ,D). This result is often used in this paper and is quoted
as follows.

Theorem A.9. Let D be a domain and K ⊂ D a compact set. There exists a
constant C̃H = C̃H(d,D,K, γ, δ), such that if ϕ ∈ W

2,d
loc(D) satisfies Lϕ = −f and

ϕ ≥ 0 in D, with f ∈ K(δ,D) and L ∈ L(γ), then

ϕ(x) ≤ C̃Hϕ(y) ∀x, y ∈ K .

A.1. Embeddings. We summarize some useful embedding results used in this
paper [13, Proposition 1.6, p. 211], [17, Theorem 7.22, p. 167]. We start with a
definition.

Definition A.10. Let X and Y be Banach spaces, and let X ⊂ Y . If, for some
constant C, we have ‖x‖Y ≤ C‖x‖X for all x ∈ X, then we say that X is continuously
embedded in Y and refer to C as the embedding constant. In such a case we write
X ↪→ Y . We say that the embedding is compact if bounded sets in X are precompact
in Y .

Theorem A.11. Let D ⊂ R
d be a bounded C0,1 domain and k ∈ N. Then

(i) for p > d, W1,p
0 (D) ↪→ C(D̄) is compact;

(ii) if kp < d, then Wk,p(D) ↪→ Lq(D) is compact for p ≤ q < pd
d−kp and

continuous for p ≤ q ≤ pd
d−kp ;

(iii) if �p > d and � ≤ k, then Wk,p(D) ↪→ Ck−�,r(D̄) is compact for r < � − d
p

and continuous for r ≤ �− d
p (r ≤ 1).

In particular, W2,d(D) ↪→ C0,r(D̄) is compact for r < 1, and W2,p(D) ↪→ C1,r(D̄) is
compact for p > d and r < 1− d

p .

A.2. The resolvent. We define the α-resolvent Rα for α ∈ (0,∞) by

Rα[f ](x) � Ex

[∫ ∞

0

e−αtf(Xt) dt

]
, f ∈ L∞(Rd) .

Note that Rα[f ] is also well defined if f is nonnegative and belongs to L∞
loc(R

d).
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Let f ∈ L∞
loc(R

d), f ≥ 0, and α ∈ (0,∞). If Rα[f ] ∈ C(Rd), then it satisfies
Poisson’s equation in R

d that

(A.2) Lψ − αψ = −f .
If f ∈ L∞(Rd) and α ∈ (0,∞), then Rα[f ] is the unique solution of Poisson’s equation
in R

d in the class W
2,p
loc(R

d) ∩ L∞(Rd), p ∈ (1,∞). More generally, we have the
following.

Theorem A.12. Suppose f ∈ L∞
loc(R

d), f ≥ 0, and Rα[f ](x0) < ∞ at some

x0 ∈ R
d, α ∈ (0,∞). Then Rα[f ] ∈ W

2,p
loc(R

d) for all p ∈ (1,∞) and satisfies (A.2)
in R

d.
Remark A.13. It follows from Theorem A.12 and the decomposition

Rα[f ](x) = Ex

[∫ τR

0

e−αtf(Xt) dt

]
+ Ex

[
e−ατRRα[f ](XτR)

]
that if f ≥ 0, f ∈ L∞

loc(R
d), and Rα[f ] is finite at some point in R

d, then

Ex

[
e−ατRRα[f ](XτR)

] −−−−→
R→∞

0 .

We refer the reader to [3] for these and other results on resolvents.

A.3. Quasi-linear elliptic operators. HJB equations that are of interest to
us involve quasi-linear operators of the form

Sψ(x) � aij(x)∂ijψ(x) + inf
u∈U

b̂(x, u, ψ) ,

b̂(x, u, ψ) � bi(x, u)∂iψ(x)− αψ(x) + c(x, u) .
(A.3)

We suitably parameterize families of quasi-linear operators of this form as follows.
Definition A.14. For a nondecreasing function γ : (0,∞) → (0,∞) we denote

by Q(γ) the class of operators of the form (A.3), whose coefficients bi and c belong to
C(Rd × U), and satisfy (A.1a)–(A.1b) and

max
u∈U

{
max

i

∣∣bi(x, u)− bi(y, u)
∣∣+ ∣∣c(x, u)− c(y, u)

∣∣} ≤ γ(R)|x− y|
d∑

i,j=1

|aij(x)| +
d∑

i=1

max
u∈U

|bi(x, u)|+max
u∈U

|c(x, u)| ≤ γ(R)

for all x, y ∈ BR.
The Dirichlet problem for quasi-linear equations is more involved than the linear

case. Here we investigate existence of solutions to the problem

(A.4) Sψ(x) = 0 in D , ψ = 0 on ∂D

for a sufficiently smooth bounded domain D. We can follow the approach in [17,
section 11.2], which utilizes the Leray–Schauder fixed point theorem, to obtain the
following result.

Theorem A.15. Let D be a bounded C2,1 domain in R
d. Then the Dirichlet

problem in (A.4) has a solution in C2,r(D̄), r ∈ (0, 1), for any S ∈ Q(γ).
We conclude with a useful convergence result.
Lemma A.16. Let D be a bounded C2 domain. Suppose {ψn} ⊂ W2,p(D) and

{hn} ⊂ Lp(D), p > 1, are a pair of sequences of functions satisfying the following:
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(i) Sψn = hn in D for all n ∈ N for some S ∈ Q(γ).
(ii) For some constant M ,

∥∥ψn

∥∥
W2,p(D)

≤M for all n ∈ N.

(iii) hn converges in Lp(D) to some function h.
Then there exist ψ ∈ W2,p(D) and a sequence {nk} ⊂ N such that ψnk

→ ψ in
W1,p(D), as k → ∞, and

(A.5) Sψ = h in D .

If in addition p > d, then ψnk
→ ψ in C1,r(D) for any r < 1− d

p . Also, if h ∈ C0,ρ(D),

then ψ ∈ C2,ρ(D).
Proof. By the weak compactness of

{
ϕ :
∥∥ϕ∥∥

W2,p(D)
≤M

}
and the compactness

of the imbedding W2,p(D) ↪→ W1,p(D), we can select ψ ∈ W2,p(D) and {nk} such
that ψnk

→ ψ, weakly in W2,p(D) and strongly in W1,p(D), as k → ∞. The inequality

(A.6)
∣∣∣ inf
u∈U

b̂(x, u, ψ)− inf
u∈U

b̂(x, u, ψ′)
∣∣∣ ≤ sup

u∈U

∣∣∣b̂(x, u, ψ)− b̂(x, u, ψ′)
∣∣∣

shows that infu∈U b̂( ·, u, ψnk
) converges in Lp(D). Since, by weak convergence,∫

D

g(x)∂ijψnk
(x) dx −−−−→

k→∞

∫
D

g(x)∂ijψ(x) dx

for all g ∈ L p
p−1 (D), and hn → h in Lp(D), we obtain∫

D

g(x)
(
Sψ(x)− h(x)

)
dx = lim

k→∞

∫
D

g(x)
(
Sψnk

(x) − hnk
(x)
)
dx = 0

for all g ∈ L p
p−1 (D). Thus the pair (ψ, h) satisfies (A.5).

If p > d, the compactness of the embedding W2,p(D) ↪→ C1,r(D̄), r < 1 − d
p ,

allows us to select the subsequence such that ψnk
→ ψ in C1,r(D̄). The inequality

(A.6) shows that infu∈U b̂( ·, u, ψnk
) converges uniformly on D, while the inequality

(A.7)
∣∣∣ inf
u∈U

b̂(x, u, ψ)− inf
u∈U

b̂(y, u, ψ)
∣∣∣ ≤ sup

u∈U

∣∣∣b̂(x, u, ψ)− b̂(y, u, ψ)
∣∣∣

implies that the limit belongs to C0,r(D).
If h ∈ C0,ρ(D), then ψ ∈ W2,p(D) for all p > 1. Using the continuity of

the embedding W2,p(D) ↪→ C1,r(D̄) for r ≤ 1 − d
p , and (A.7), we conclude that

infu∈U b̂( ·, u, ψ) ∈ C0,r for all r < 1. Thus ψ satisfies aij∂ijψ ∈ C0,ρ(D), and it follows
from elliptic regularity [17, Theorem 9.19, p. 243] that ψ ∈ C2,ρ(D).

Remark A.17. If we replace S ∈ Q(γ) with L ∈ L(γ) in Lemma A.16, all the
assertions of the lemma other than the last sentence follow. The proof is identical.

Appendix B. Proofs.

Proof of Lemma 4.1. Let h be the unique solution in W2,p(D2) ∩ W
1,p
0 (D2),

p ≥ 2, of Lvh = −1 in D2 and h = 0 on ∂D2. By Itô’s formula,

h(x) = E
v
x

[
τ(D2)

] ∀x ∈ D2 .

The positive lower bound in (4.1a) follows from Theorem A.8, while the finite upper
bound results from the weak maximum principle of Alexandroff, Theorem A.3. In



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

UNIFORM RECURRENCE OF CONTROLLED DIFFUSIONS 4219

order to prove (4.1b), we select an open ball D3 � D2 and let ϕ be the solution to
the Dirichlet problem Lvϕ = −1 in the annulus D3 \ D̄1 and ϕ = 0 on ∂D1 ∪ ∂D3.
By Theorem A.8,

inf
v∈USM

(
inf

x∈∂D2

ϕ(x)

)
> 0 ,

and the result follows since E
v
x

[
τ(Dc

1)
]
> ϕ(x).

Let n ∈ N be large enough so that D2 � Bn, and let gn be the solution of the
Dirichlet problem Lvgn = −1 in the annulus Bn \D̄1, satisfying gn = 0 on ∂Bn∪∂D1.
If x0 ∈ ∂D2 and v ∈ USSM, then E

v
x0
[τ(Dc

1)] <∞. Since

gn(x0) = E
v
x0

[τ(Dc
1) ∧ τ(Bn)] ≤ E

v
x0

[τ(Dc
1)] ,

by Harnack’s inequality [17, Corollary 9.25, p. 250], the increasing sequence of Lv-
harmonic functions fn = gn − g1 is bounded locally in Dc

1, and hence approaches a
limit as n→ ∞, which is an Lv-harmonic function on Dc

1. Therefore, g = limn→∞ gn
is a bounded function on ∂D2, and by monotone convergence, g(x) = E

v
x [τ(D

c
1)].

Property (4.1c) follows.
Turning to (4.1d), let ϕv(x) � P

v
x

(
τ(D2) > τ(Dc

1)
)
. It follows from Theorems

A.6 and A.11(i) that {ϕv , v ∈ USM} is equicontinuous on D̄2 \ D1. We argue by
contradiction. If ϕvn(xn) → 0, as n → ∞, for a pair of sequences {vn} ⊂ USM

and {xn} ⊂ Γ , then Harnack’s inequality implies that ϕvn → 0 uniformly over any
compact subset of D2 \ D̄1. Since ϕvn = 1 on ∂D2, this contradicts the equicontinuity
of {ϕvn} and proves the claim.

Proof of Theorem 4.2. The strong Markov property implies that
{
X̃n

}
n∈N

is

a Markov chain. Let R be large enough such that D2 � BR. With h ∈ C(∂D1), h ≥ 0,
let ψ be the unique solution in

W
2,p
loc

(
BR ∩ D̄c

1

) ∩ C(B̄R ∩Dc
1

)
, p > 1 ,

of the Dirichlet problem Lvψ = 0 in the annulus BR ∩ D̄c
1, with ψ = h on ∂D1

and ψ = 0 on ∂BR. Then, for each x ∈ ∂D2, the map h �→ ψ(x), which by Itô’s
formula satisfies ψ(x) = E

v
x

[
h(Xτ(Dc

1)∧τR
)
]
, defines a continuous linear functional

on C(∂D1). By the Riesz representation theorem there exists a probability measure
qv1,R(x, ·) ∈ P(∂D1) such that

ψ(x) =

∫
∂D1

qv1,R(x, dy)h(y) .

It is evident that for any A ∈ B(∂D1), q
v
1,R(x,A) ↑ qv1(x,A), as R → ∞, and that

qv1(x,A) = P
v
x(Xτ(Dc

1)
∈ A). Similarly, the analogous Dirichlet problem on D2 yields

qv2(x, ·) ∈ P(∂D2), satisfying q
v
2 (x,A) = P

v
x(Xτ̂1

∈ A), and by Harnack’s inequality,
there exists a positive constant CH such that, for all x , x′ ∈ ∂D1, and A ∈ B(∂D2),

(B.1) qv2 (x,A) ≤ CHq
v
2(x

′, A) .

Hence, the transition kernel

P̃v(x, ·) =
∫
∂D2

qv2 (x, dy)q
v
1 (y, ·)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4220 ARI ARAPOSTATHIS AND VIVEK S. BORKAR

of X̃ inherits Harnack’s inequality in (B.1). Therefore for any fixed x0 ∈ ∂D1 we have
P̃v(x, ·) ≥ C−1

H P̃v(x0, ·) for all x ∈ ∂D1, which implies that P̃v is a contraction under
the total variation norm and satisfies∥∥∥∥

∫
∂D1

(
ν(dx) − ν′(dx)

)
P̃v(x, ·)

∥∥∥∥
TV

≤ (1− C−1
H

) ∥∥ν − ν′
∥∥
TV

for all ν and ν′ in P(∂D1). Thus (4.2) holds with δ =
(
1 − C−1

H

)
. Since the fixed

point of the contraction P̃v is unique, the chain is ergodic. This completes the proof
of (i).

For part (ii) we first show that the maps v �→ qvk, k = 1, 2, are continuous
uniformly on ∂D2 and ∂D1, respectively. Indeed, as described above,

ϕv(x) =

∫
∂D1

qv1(x, dy)h(y) , v ∈ USSM , h ∈ C(∂D1) ,

is the unique bounded solution of the Dirichlet problem Lvϕv = 0 in D̄c
1, and ϕv = h

on ∂D1. Suppose vn → v in USSM as n → ∞. If G is a bounded C2 domain such
that ∂D2 ⊂ G � D̄c

1, then by Lemma A.5, every subsequence of {ϕvn} contains a
further subsequence also denoted as {ϕn}, which converges weakly in W2,p(G), p > 1,
to some Lv-harmonic function. Since G is arbitrary, we apply Lemma 3.5 to obtain
a function ϕ̃ ∈ W

2,p
loc(D̄

c) that satisfies Lvϕ̃ = 0 on D̄c
1 and ϕ̃ = h on ∂D1. By

uniqueness ϕ̃ = ϕv. Since the convergence is uniform on compact sets, we have

sup
∂D2

|ϕvn − ϕv| → 0 .

In other words, v �→ qv1 is continuous uniformly on ∂D2. Similarly, v �→ qv2 is continu-
ous uniformly on ∂D1. Thus their composition v �→ P̃v(x, ·) is continuous uniformly
on x ∈ ∂D1. Let {vn} ⊂ USSM be any sequence converging to v ∈ USSM as n → ∞.
Since P(∂D1) is compact, there exists a further subsequence also denoted as {vn}
along which μ̃vn → μ̃ ∈ P(∂D1). Hence, by the uniform convergence of∫

∂D1

P̃vn(x, dy)f(y) −−−−→
n→∞

∫
∂D1

P̃v(x, dy)f(y)

for any f ∈ C(∂D1), we obtain

μ̃(·) = lim
n→∞ μ̃vn(·) = lim

n→∞

∫
∂D1

μ̃vn(dx)P̃vn (x, ·) =
∫
∂D1

μ̃(dx)P̃v(x, ·) ,

and by uniqueness μ̃ = μ̃v. Thus v �→ μ̃v from USSM to P(∂D1) is continuous.
Part (iii) is standard [19].

Proof of Lemma 4.4. Let {vn} be a sequence in U which converges (under the
topology of Markov controls) to v∗ ∈ Ū . Then by Lemma 3.4, for all h ∈ Cb(Rd × U)
and g ∈ L1(Rd),

(B.2)

∫
Rd×U

g(x)
(
hvn(x) − hv∗(x)

)
dx −−−−→

n→∞ 0 .

By the tightness assumption and Prohorov’s theorem, IU is relatively compact in
P(Rd), and thus {μvn} has a limit point μ∗ ∈ P(Rd). Passing to a subsequence
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converging to this limit, which we also denote by {μvn}, and since by (4.6) and (4.7)
the associated densities {ϕn} are equibounded and Hölder equicontinuous on bounded
subdomains of R

d, it follows that {ϕn} contains a subsequence (also denoted by
{ϕn}) which converges to ϕ∗ ∈ C(Rd). Moreover, since IU is tight, {ϕn} is uniformly
integrable. It follows that {ϕn} converges in L1(Rd) as well. Therefore

∫
ϕ∗ = 1,

ϕ∗ ≥ 0, and for f ∈ Cb(Rd),∫
Rd

f(x)ϕn(x) dx −−−−→
n→∞

∫
Rd

f(x)ϕ∗(x) dx .

This implies μvn → μ∗ in P(Rd) and, by Scheffé’s theorem [5, p. 214], also in total
variation. For h ∈ Cb(Rd × U), using the notation in (3.10), we form the triangle
inequality

(B.3)

∣∣∣∣
∫
Rd

hvn dμvn −
∫
Rd

hv∗ dμ∗
∣∣∣∣ ≤

∣∣∣∣
∫
Rd

hv∗(x)
(
ϕn(x)− ϕ∗(x)

)
dx

∣∣∣∣
+

∣∣∣∣
∫
Rd

(
hvn(x)− hv∗(x)

)
ϕ∗(x) dx

∣∣∣∣ .
Since ϕn → ϕ∗ in L1(Rd), the first term on the right-hand side of (B.3) converges
to zero, as n → ∞, and so does the second term by (B.2). Hence, by (B.3) and
Lemma 3.4,

0 =

∫
Rd

Lvnf(x)μvn(dx) −−−−→n→∞

∫
Rd

Lv∗
f(x)μ∗(dx) ∀f ∈ C2

c (R
d) ,

implying, by Theorem 4.3, that μ∗ = μv∗ ∈ IŪ . This establishes (i). Since∫
Rd

hv(x)μv(dx) =

∫
Rd×U

h(x, u)πv(dx, du) ,

(B.3) also implies (ii).

Proof of Lemma 5.3. Let τ̂ � τ(Dc) and

Zt �
∫ t

0

IG(Xs) ds , t ≥ 0 .

Select R′ > R > 0 such that D ∪ G ⊂ BR. Using the strong Markov property, and
since IG = 0 on Bc

R,

E
v
x

[
Zτ̂] ≤ sup

x′∈∂BR

E
v
x′
[
Zτ̂] ∀x ∈ Bc

R,

E
v
x

[
Zτ̂] ≤ E

v
x

[
Zτ̂∧τR

] + sup
x′∈∂BR

E
v
x′
[
Zτ̂] ∀x ∈ BR ∩Dc .

(B.4)

By (4.1a),

(B.5) sup
v∈USM

sup
x∈BR∩Dc

E
v
x

[
Zτ̂∧τR

] ≤ sup
v∈USM

sup
x∈BR∩Dc

E
v
x

[
τ̂ ∧ τR

]
<∞.

By (B.4) and (B.5), it suffices to exhibit a uniform bound for E
v
x

[
Zτ̂] on ∂BR. By

(4.1d), for some constant β < 1,

sup
v∈USM

sup
x∈∂BR

P
v
x(τ̂ ≥ τR′) < β .
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Set τ̂(t) = τ̂ ∧ t. By conditioning first at τR′ , and using the fact that IG = 0 on Bc
R,

we obtain, for x ∈ ∂BR,

E
v
x

[
Zτ̂(t)

]
= E

v
x

[
Zτ̂(t)I(τ̂(t) < τR′)

]
+ E

v
x

[
Zτ̂(t)I(τ̂(t) ≥ τR′)

]
(B.6)

≤ E
v
x

[
Zτ̂∧τR′

]
+

(
sup

x∈∂BR

P
v
x(τ̂(t) ≥ τR′)

)(
sup

x∈∂BR′
E
v
x

[
Zτ̂(t)

])

≤ E
v
x

[
Zτ̂∧τR′

]
+ β sup

x∈∂BR

E
v
x

[
Zτ̂(t)

]
.

By (B.5) and (B.6), for all v ∈ USM,

(B.7) sup
x∈∂BR

E
v
x

[
Zτ̂(t)

] ≤ (1− β)−1 sup
v∈USM

sup
x∈∂BR

E
v
x

[
Zτ̂∧τR′

]
<∞ .

Taking limits as t→ ∞ in (B.7), using monotone convergence, (i) follows.
Next we prove (ii). With R > 0 such that BR � D, let ϕR be the unique solution

in W
2,p
loc(BR ∩ D̄c) ∩ C(B̄R ∩ Dc), p > 1, of the Dirichlet problem LvϕR = −IG in

the annulus BR ∩ D̄c, satisfying ϕR = 0 on the boundary. By Itô’s formula, ϕR is
dominated by ξvD,G, and since it is nondecreasing in R, it converges uniformly over

compact subsets of Rd as R ↑ ∞ to some ϕ ∈ W
2,p
loc(D̄

c) ∩ Cb(Dc), which solves

(B.8) Lvϕ = −IG in D̄c , ϕ = 0 on ∂D .

Since by hypothesis Pv(τ(Dc) <∞) = 1, applying Itô’s formula, we obtain ϕ = ξvD,G.
Hence ξvD,G is a bounded solution of (B.8). Suppose ϕ′ is another bounded solution

of (B.8). Then ϕ − ϕ′ is Lv-harmonic in D̄c and equals zero on ∂D. However, it is
well known that the process X governed by v ∈ USM is D-recurrent if and only if the
Dirichlet problem Lvψ = 0 in D̄c, ψ = f on ∂D has a unique bounded solution ψf

for all f ∈ C(∂D) [19, Theorem 7.2, p. 100]. Hence ϕ−ϕ′ must be identically zero on
Dc. Uniqueness follows.

To show (iii), let vn → v in U . By Lemmas A.5 and 3.5, every subsequence of
{ξvnD,G} contains a further subsequence converging weakly in W2,p(D′), p > 1, over any

bounded domain D′ � D̄c to some ψ satisfying Lvψ = −IG in Dc. By uniqueness of
the solution to the Dirichlet problem this limit must be ξvD,G, and since convergence

is uniform over compact sets of D̄c, continuity of (v, x) �→ ξvD,G(x) follows.
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[19] R. Z. Has’minskĭi, Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, Alphen
aan den Rijn, Germantown, MD, 1980.

[20] N. V. Krylov, Controlled Diffusion Processes, Appl. Math. 14, Springer-Verlag, New York,
1980.

[21] N. V. Krylov, Introduction to the Theory of Diffusion Processes, Transl. Math. Monogr. 142,
AMS, Providence, RI, 1995.

[22] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
[23] A. V. Skorohod, Asymptotic Methods in the Theory of Stochastic Differential Equations,

Transl. Math. Monogr. 78, AMS, Providence, RI, 1989.
[24] W. Stannat, (Nonsymmetric) Dirichlet operators on L1: Existence, uniqueness and associated

Markov processes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999), pp. 99–140 (in
Russian).

[25] A. J. Veretennikov, Strong solutions and explicit formulas for solutions of stochastic integral
equations, Mat. Sb. (N.S.), 111(153) (1980), pp. 434–452, 480 (in Russian).

[26] A. Yu. Veretennikov, On strong solutions of Itô stochastic equations with jumps, Theory
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