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© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Considerable effort has been invested in the study of stochastic adaptive control. Special attention has been paid to
systems with incomplete or noisy state observation, and in particular, to discrete-time, partially observable Markov decision
processes (POMDPs) with the transition probability matrix depending on some unknown parameter vector θ . A common
approach is to decompose the problem into an adaptive estimation problem treated as in [1], and a control synthesis
problem based on the parameter estimates provided by the estimation algorithm. The adaptive estimation algorithm is
usually analyzed via the ordinary differential equation method, and convergence of the sequence of estimates to the true
parameter, in probability, can be asserted under suitable conditions [2]. For an uncontrolled process, the aim of adaptive
estimation algorithm is to successfully track the system state, or in other words to make the state estimates obtained under
parameter uncertainty asymptotic to those obtained under the true parameter. This might fail, if feedback control is also
introduced. What usually holds for the controlled process is convergence of the parameter estimates to the true parameter
in probability. Thus, from the point of view of the control synthesis, the problem that remains is to synthesize a control
policy based on the convergent sequence of parameter estimates, so as to achieve the control objectives. Studies along
these lines, which establish the optimality of a certainty equivalence adaptive policy, under varying hypotheses, can be
found in [3–6]. The key assumptions that are common in these and other studies are that (a) for each value of the unknown
parameter there exists a stationary optimal policy, and (b) the information state under the true parameter and the estimated
one become asymptotic to each other.

For the long-run average cost problem, the positivity of the transition matrices in [4] and a renewability property in [6]
are enough guarantee (a). Existence of a stationary optimal policy, and also uniqueness of the solution to the Hamilton–
Jacobi–Bellman (HJB) equation, has been established in [7] for POMDPs with finite state space and compact action space
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under very mild assumptions. In this paper we employ one of the hypotheses in [7], and show that under parameter
uncertainty, (b) holds for the process governed by a certainty equivalence policy. We then proceed to show that the certainty
equivalence policy is optimal.

This paper is organized as follows. Section 2 reviews the basics of the POMDP model. Section 3 describes the assumptions
imposed on the model and the adaptive policy. Section 4 summarizes some results concerning products of substochastic
matrices, which are employed in Section 5 to derive the main results of the paper.

2. The POMDP model

The most commonly used model for a discrete-time, partially observable Markov decision process consists of the set of
objects (S × Y,U, Q , c), where: S = {1,2, . . . , N} is the core state space, Y is a finite observation space, U is a finite action
space, Q is the transition matrix of the process, and c: S × U → R is the running cost. The system evolves as follows: if the
system state at time t is Xt and a control action Ut is taken, a cost c(Xt, Ut) is incurred, and the system moves to next
state Xt+1, and observation Yt+1 is recorded, according to the transition matrix Q that may be interpreted as

Q (y, u)i j = Prob(Xt+1 = j, Yt+1 = y | Xt = i, Ut = u).

Note that by definition the elements of Q are nonnegative and satisfy∑
y∈Y, j∈S

Q (y, u)i j = 1, ∀i ∈ S, ∀u ∈ U.

Only the process {Yt} is available for control synthesis—the core state {Xt} is unavailable. It is well known that this model
can be transformed into a completely observed one, which is equivalent to the original one as far as optimal control with
a single stage running cost is concerned [8–10]. The state of the equivalent model at time t is chosen as the conditional
distribution Ψt of Xt given the past observations {Y1, Y2, . . . , Yt}. Thus, Ψt is a probability distribution on S . In other words,
Ψt takes values in �, the set of probability vectors of dimension N , defined by

� �
{
ψ = (

ψ(1), . . . ,ψ(N)
) ∈ RN+:

∑
i∈S

ψ(i) = 1

}
.

Here, R+ denotes the nonnegative real line. The evolution of the process Ψt can be written in a recursive form, via the well
known filtering equation

ψt+1 = ψt Q (yt+1, ut)

‖ψt Q (yt+1, ut)‖ . (1)

Eq. (1) is expressed along the paths of the process. Throughout this paper we use upper case letter for random variables, and
lower case letters for the elements of the space they live in. For example {y1, . . . , yk} is an element of Yk and represents a
particular sample path of length k of the process {Yt}. We also fix a norm ‖ · ‖ on RN , defined by

‖z‖ �
N∑

i=1

|zi |, z ∈ RN .

A restriction on the control Ut is that it has to be non-anticipative, or in other words the control variable Ut has to
be measurable with respect to σ(Y1, . . . , Yt), the ‘sigma field’ generated by the observations up to time t . In accordance
with this requirement, an admissible action at time t may be chosen as a function that maps {y1, . . . , yt} ∈ Yk to U, and
we define an admissible policy π as a sequence π = (π0,π1, . . .) of admissible actions. The set of all admissible policies
is denoted by Π . We refrain from introducing the concept of randomized actions, as it is not explicitly needed in this
paper. Given a policy π ∈ Π and an initial value ψ0, there is a unique probability measure Pπ

ψ0
on the path space of the

process (Ψt , Yt , Ut), which is generated via the transition kernel induced by the filter in (1) [8,9,11]. We let Eπ
ψ0

denote
the corresponding expectation operator. There is a particular class of policies that has special significance. If πt :� → U
is a measurable function, then the sequence {Ut = πt(Ψt), t � 0} constitutes a sequence of admissible actions. Moreover,
under Pπ

ψ0
, {Ψt} is a Markov chain. As a result, the corresponding policy π is called Markov. If each πt is independent of t ,

i.e., πt = f , where f : � → U, the policy is called stationary Markov, and abusing the notation, we identify the policy π with
the function f . The set of stationary Markov policies is denoted by ΠSM. If π ∈ ΠSM, then {Ψt} is a stationary Markov chain
under Pπ

ψ0
.

2.1. Ergodic control

The objective of ergodic control, in its average formulation, is to synthesize a policy π that minimizes the incurred
long-run average cost:

J (ψ0,π) � lim sup
T →∞

1

T
Eπ

ψ0

[
T −1∑
t=0

c̃(Ψt , Ut)

]
.
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Here, c̃ is the transformed running cost under the equivalent completely observed model, and can be calculated from the
original c by

c̃(ψ, u) =
∑
i∈S

c(i, u)ψ(i), ψ ∈ �, u ∈ U.

Under the assumptions of the model considered in this paper, J does not depend on ψ0, so we write this as J (π). We set

	∗ � inf
π∈Π

J (π), (2)

and we say that π∗ ∈ Π is average-cost optimal if J (π∗) = 	∗ , and we refer to 	∗ as the optimal cost.

3. Adaptive control

If the transition matrix Q depends on an unknown parameter θ∗ ∈ Θ , where Θ is a subset of a Euclidean space,
the control problem is more complicated. A common approach is to construct a recursive algorithm that generates es-
timates {Θ̂t , t � 0} of the true parameter θ∗ ∈ Θ , and incorporate these estimates in the control synthesis. Stochastic
approximation-type estimation algorithms have been widely used for this purpose. Naturally, Θ̂t should depend only on the
past history of the observation process, or in other words be σ(Y1, . . . , Yt)-measurable.

In general, estimation and control are interleaved, and the convergence of an estimation scheme may be conditional
upon the control policy chosen. However, there are many cases where an estimation algorithm can be constructed that
converges under any admissible policy, and while the performance of the estimation may depend on the policy utilized,
qualitatively speaking, convergence is guaranteed. This is the scenario we address in this paper. We assume that there exists
a recursive algorithm that generates estimates {Θ̂t} of the parameter, based on the past history of the observation process,
such that Θ̂t → θ∗ in probability, under any admissible control. Then, since the parameter estimation is non-anticipative,
these estimates can be incorporated in the control design. We focus on a certainty equivalence policy, which we describe
later in this section.

3.1. Assumptions on the model

We include the dependence of Q on θ explicitly, by denoting the transition matrix as Q θ . Also 	∗
θ denotes the optimal

cost, defined in (2), when the value of the parameter is θ .
Recall that a row-allowable matrix is a nonnegative matrix with all of its row sums positive. We make the following

structural assumption on the model: Q θ (y, u) is row-allowable for each y ∈ Y , u ∈ U, and θ ∈ Θ . Since Y and U are finite
and Θ is compact, this implies that there exists ε > 0, such that∑

j∈S

[
Q θ (y, u)

]
i j � ε, for all j ∈ S, y ∈ Y, u ∈ U, and θ ∈ Θ .

We need to guarantee the existence of a stationary Markov optimal policy. To this end, we impose a hypothesis that is
among the weakest in the literature. For a comparison of commonly used conditions to guarantee existence solutions to the
HJB equation, we refer the reader to [7]. We state precisely the hypotheses on the model in Assumption 3.1 below. We need
the following definition.

Definition 3.1. For a matrix A, let Ai· denote its ith row. For ε > 0, we let M(ε) denote the set of nonnegative, row-allowable
N × N matrices A satisfying∑

j∈S
Aij � ε,

and M(ε) denote the subset of M(ε) satisfying

Ai1 j � εAi2 j, ∀i1, i2, j ∈ S. (3)

Assumption 3.1. The parameter space Θ is a compact subset of a Euclidean space, and the map θ → Q θ is Lipschitz
continuous. In addition we assume, that for some ε > 0,

(i) Q θ (y, u) ∈ M(ε), for all y ∈ Y , u ∈ U, and θ ∈ Θ .
(ii) There exists a constant κ ∈ N such that for every pair of sequences {y1, y2, . . .} and {u0, u1, . . .},

Q k
θ

(
yk, uk−1) ∈ M(ε), for some k ∈ {1,2, . . . , κ},

where yk � (y1, . . . , yk) ∈ Yk , uk � (u0, . . . , uk) ∈ Uk , and Q k
θ denotes the k-step transition matrix

Q k
θ

(
yk, uk−1) � Q θ (y1, u0) · · · Q θ (yk, uk−1).
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Remark 3.1. An example that satisfies Assumption 3.1 is in the following. Consider a transportation system with S = Y =
{0,1,2} and U = {0,1}. The transition matrix Q θ (y, u) = P (u)O θ (y) where

P (0) =
⎡
⎣ p00 p01 1 − p00 − p01

p10 p11 1 − p10 − p11

p20 p21 1 − p20 − p21

⎤
⎦ , P (1) =

⎡
⎣1 − p3 p3 0

1 − p4 p4 0

1 − p5 p5 0

⎤
⎦ (4)

and

O θ (0) =
[

θ 0 0
0 1 − θ 0
0 0 0

]
, O θ (1) =

[1 − θ 0 0
0 θ 0
0 0 0

]
, O θ (2) =

[0 0 0
0 0 0
0 0 1

]
. (5)

All the entries in P (0) and P (1) are non-zero except those in the third column of P (1). The three states 0, 1, and 2 are
interpreted as normal, busy, and jammed cases of the transportation system, respectively. Action 1 or 0 means to execute
the traffic control or not, respectively. The only unknown parameter is θ . It lies in [0.5,1] and represents the probability of
correct observation. Clearly the structure of the transition matrix satisfies the assumption.

In the theorem that follows, we let e0 � (1,0, . . . ,0) ∈ � (or any other fixed element of �).

Theorem 3.1. Suppose Assumption 3.1 holds. Then, corresponding to each fixed θ ∈ Θ , there exist a constant 	θ , and a concave function
Vθ : � → R, with Vθ (e0) = 0, such that the pair (	θ , Vθ ) is a solution of the HJB equation

	θ + Vθ (ψ) = min
u∈U

{Lθ (ψ, u)
}
, (6)

where

Lθ (ψ, u) � c̃(ψ, u) +
∑
y∈Y

∥∥ψ Q θ (y, u)
∥∥Vθ

(
ψ Q θ (y, u)

‖ψ Q θ (y, u‖
)

.

Moreover,

(i) 	θ is the optimal average cost, i.e., 	θ = 	∗
θ , and π ∈ ΠSM is average-cost optimal if and only if it is a selector from the minimizer

of (6).
(ii) If (	̂, V̂) is any solution of (6), corresponding to θ ∈ Θ , and satisfying V̂(e0) = 0, then 	̂ = 	θ and V̂ = Vθ .

(iii) The maps θ �→ 	θ , and (ψ, θ) �→ Vθ (ψ) are continuous.
(iv) In general, a policy π ∈ Π (not necessarily stationary), is average-cost optimal if and only if it satisfies

lim
t→∞

1

T

T −1∑
t=0

Eπ
ψ0

[
Dθ (Ψt, Ut)

] = 0,

where Dθ : � × U → R is the discrepancy function, and is defined by

Dθ (ψ, u) � Lθ (ψ, u) − 	θ − Vθ (ψ).

Proof. The assertions in (i) and (ii) follow by [7, Theorem 11], and (iv) follows from [10, Proposition 5.5.5]. For (iii) we
argue as in [6]. Using the technique in [7], following the vanishing discount approach, one can show that ψ → Vθ (ψ) is
equi-continuous, uniformly over θ ∈ Θ . Therefore, if θn → θ , as n → ∞, then along some subsequence also denoted by {n},
Vθn → V̂ , uniformly on �, as n → ∞, for some V̂ : � → R. Since 	θn is bounded, the subsequence may be selected such
that 	θn converges to some constant 	̂, as n → ∞. Thus, (	̂, V̂) is a solution of (6), and satisfies V̂(e0) = 0. By uniqueness,
V̂ = Vθ , and 	̂ = 	θ , thus establishing (iii). �
3.2. The adaptive policy

Suppose we have at our disposal a sequence of estimates {Θ̂t , t � 0} of the true parameter θ∗ satisfying the following
condition:

Assumption 3.2. The sequence {Θ̂t}∞t=0 satisfies

(i) Θ̂t is σ(Y1, . . . , Yt)-measurable, for each t � 0.
(ii) Θ̂t → θ∗ in Pπ

ψ0
, as t → ∞, for all π ∈ Π .
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Remark 3.2. Consider the example in Remark 3.1. In practical situations, if the traffic flow is in the normal case with
probability lower than some threshold, the traffic control will be executed. Otherwise, it will not. Note that the jammed
traffic case is completely observable. Whenever it is observed, the traffic control will be executed and the next observation
Y follows

P (Y = 0) = (1 − p5)θ + p5(1 − θ) = 1 − P (Y = 1). (7)

Suppose c(2, u) > c(i, u) for all u ∈ U and all i = 0,1. Then Y = 0 or 1 occurs infinitely often and from the nonlinear filter
it is evident that Y = 1 occurs infinitely often. The probability that Y = 1 can be estimated by its occurrence frequency
after each time Y = 2 is observed. As time evolves we obtain a sequence of estimators that converges to the true value
almost surely by the strong law of large numbers. However, in order to make every estimator fall in Θ , a projection scheme
is required. By following the standard stochastic approximation-type recursive algorithm, the sequence of the estimators
converges to the set of limit pints of some ordinary differential equation. For details, please see [6, p. 990] and the reference
therein.

For θ ∈ Θ , let π∗(·, θ) be a measurable selector from the minimizer in (6). Note that this may be selected so that
(ψ, θ) �→ π∗(ψ, θ) is measurable. By Lemma 4.1 below, it follows that Q κ

θ (yκ , uκ−1) ∈ M(ε), for all yκ ∈ Yκ and uκ−1 ∈ Uκ ,
where κ ∈ N is the constant in Assumption 3.1. We freeze the estimate of the parameter over consecutive blocks of time of
length κ . In other words, if 	r
 denotes the integer part of a real number r, we let

Θ̌t � Θ̂	t/κ
κ .

It is evident that Θ̌t is σ(Y1, . . . , Yt)-measurable, and since it is a subsequence of {Θ̂t}, it also converges to θ∗ . We use the
sequence {Θ̌t} to define an adaptive policy π̂ = {π̂t , t � 0}, along each sample path, recursively for t = 0,1, . . . , by

π̂t � π∗(ψ̂t, θ̌t),

ψ̂t+1 �
ψ̂t Q

θ̌t
(yt+1,π

∗(ψ̂t, θ̌t))

‖ψ̂t Q
θ̌t
(yt+1,π∗(ψ̂t, θ̌t))‖

, (8)

with ψ̂0 ≡ ψ0. It is clear that π̂ is admissible, i.e., π̂ ∈ Π . In this manner we also obtain a process {Ψ̂t , t � 0}. The process
{Ψt , t � 0} still depends, of course, on the true parameter θ∗ , so it is governed by the filter

ψt+1 = ψt Q θ∗(yt+1,π
∗(ψ̂t, θ̌t))

‖ψt Q θ∗(yt+1,π∗(ψ̂t, θ̌t))‖
.

The main goal of this paper is to show that π̂ is optimal, i.e., J (π̂ ) = 	∗
θ∗ . In other words, π̂ attains the optimal cost 	∗

θ∗ ,
corresponding to the true parameter θ∗ .

Remark 3.3. Note that since θ̌ is constant over time blocks of the form {t: κ( − 1) � t < κ}, for  � 1, then, by Assump-
tion 3.1,

Q
θ̌κ(−1)

(yκ(−1)+1, π̂κ(−1)) · · · Q
θ̌κ−1

(yκ, π̂κ−1) ∈ M(ε), ∀ � 1.

4. Products of nonnegative matrices

In this section, we summarize some properties of products of matrices belonging to the classes M(ε) and M(ε). These
relate to results on weak ergodicity of products of nonnegative matrices [12]. The key result is in Lemma 4.2 below, which
is a variation of [13, Lemma 6.2].

Recall that the oscillation of a function f : S → R, is defined by

osc
s∈S

f (s) � max
s∈S

f (s) − min
s∈S

f (s).

This is used in the next lemma.

Lemma 4.1. If A ∈ M(ε) and B ∈ M(ε′), with ε, ε′ > 0, then AB ∈ M(ε), and

‖Ai1 j B j·‖
‖(AB)i1·‖ � ε2 ‖Ai2 j B j·‖

‖(AB)i2·‖ , for all i1, i2, j ∈ S. (9)

Moreover,

osc
s∈S

(AB)sj

‖(AB)s·‖ �
(
1 − ε2) osc

s∈S
Bsj

‖Bs·‖ , ∀ j ∈ S. (10)



Author's personal copy

6 S.-P. Hsu, A. Arapostathis / J. Math. Anal. Appl. 380 (2011) 1–9

Proof. A direct computation yields, by employing (3),

(AB)i1 j =
N∑

k=1

Ai1k Bkj �
N∑

k=1

εAi2k Bkj = ε(AB)i2 j.

Hence AB ∈ M(ε). Therefore, ‖(AB)i2·‖ � ε‖(AB)i1·‖, and (9) follows by comparing numerators and denominators.
To prove (10), define

Ãi j � Aij B j·
‖(AB)i·‖ .

Then, by (9), and | · |+ denoting the positive part of a real number,∑
s∈S

| Ãi1s − Ãi2s|+ �
∑
s∈S

(
1 − ε2) Ãi1s �

(
1 − ε2). (11)

Also, since
∑

j Ãi j = 1,

∑
s∈S

| Ãi1s − Ãi2s|+ =
∑
s∈S

| Ãi2s − Ãi1s|+ = 1

2

∑
s∈S

| Ãi1s − Ãi2s|. (12)

By (11) and (12),

(AB)i1 j

‖(AB)i1·‖ − (AB)i2 j

‖(AB)i2·‖ =
∑
s∈S

Bsj

‖Bs·‖
( ‖Ai1s Bs·‖

‖(AB)i1·‖ − ‖Ai2s Bs·‖
‖(AB)i2·‖

)

=
∑
s∈S

Bsj

‖Bs·‖
(| Ãi1s − Ãi2s|+ − | Ãi2s − Ãi1s|+

)

�
(

osc
s∈S

Bsj

‖Bs·‖
)∑

s∈S
| Ãi1s − Ãi2s|+

�
(
1 − ε2) osc

s∈S
Bsj

‖Bs·‖ ,

thus establishing (10). �
Lemma 4.2. Let {A1, . . . , An} ⊂ M(ε), and M � A1 A2 · · · An. Then∥∥∥∥ pM

‖pM‖ − p′M
‖p′M‖

∥∥∥∥ � N

ε

(
1 − ε2)n−1∥∥p − p′∥∥, ∀p, p′ ∈ �. (13)

Proof. Define p̃ = (p̃1, . . . , p̃N ) by

p̃i � pi‖Mi·‖
‖pM‖ , i ∈ S,

and similarly for p̃′ . Expanding, and using Lemma 4.1,∥∥∥∥ pM

‖pM‖ − p′M
‖p′M‖

∥∥∥∥ =
∑
j∈S

∣∣∣∣∣
∑
i∈S

(
pi Mij

‖pM‖ − p′
i Mij

‖p′M‖
)∣∣∣∣∣

=
∑
j∈S

∣∣∣∣ ∑
i∈S

Mij

‖Mi·‖
(

pi‖Mi·‖
‖pM‖ − p′

i‖Mi·‖
‖p′M‖

)∣∣∣∣
=

∑
j∈S

∣∣∣∣ ∑
i∈S

Mij

‖Mi·‖
(

p̃i − p̃′
i

)∣∣∣∣
� 1

2

∥∥p̃ − p̃′∥∥∑
j∈S

(
osc
i∈S

Mij

‖Mi·‖
)

� N

2

(
1 − ε2)n−1∥∥p̃ − p̃′∥∥. (14)

A straightforward calculation yields
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∑
s∈S

∣∣∣∣ p′
s‖Ms·‖
‖p′M‖ − p′

s‖Ms·‖
‖pM‖

∣∣∣∣ �
∑
s∈S

∣∣∣∣‖(p − p′)M‖p′
s‖Ms·‖

‖pM‖‖p′M‖
∣∣∣∣

=
∣∣∣∣‖(p − p′)M‖

‖pM‖
∣∣∣∣

�
∑
s∈S

∣∣∣∣ ps‖Ms·‖
‖pM‖ − p′

s‖Ms·‖
‖pM‖

∣∣∣∣. (15)

Forming a triangle inequality and applying (15), we obtain

∥∥p̃ − p̃′∥∥ � 2
∑
s∈S

|ps − p′
s|‖Ms·‖

‖pM‖ � 2 max
j∈S

‖M j·‖
‖pM‖

∑
s∈S

∣∣ps − p′
s

∣∣. (16)

Since {A1, . . . , An} ⊂ M(ε), then by (9), M ∈ M(ε), and it follows from (16) that∥∥p̃ − p̃′∥∥ � 2

ε

∥∥p − p′∥∥. (17)

Therefore, (13) follows by (14) and (17). �
5. Main results

In this section we show that the adaptive policy π̂ defined in Section 3.2 is average-cost optimal.

Theorem 5.1. Suppose Assumptions 3.1 and 3.2 hold. Then

Eπ̂
ψ0

[‖Ψt − Ψ̂t‖
] −→

t→∞ 0, ∀ψ0 ∈ �. (18)

Proof. In the interest of notational economy we define

�t � � 	t/κ
.
We evaluate along sample paths, and for this reason, in order to simplify the calculations we define

B̂t
 �

{
Q

θ̌κ(−1)
(yκ(−1)+1, π̂κ(−1)) · · · Q

θ̌κ−1
(yκ, π̂κ−1) if  < �t �,

Q
θ̌κ(−1)

(yκ(−1)+1, π̂κ(−1)) · · · Q
θ̌t−1

(yt, π̂t−1) for  = �t �.

Matrices {Bt
k} are analogously defined, with θ̌ replaced by the true parameter θ∗ . By Assumption 3.1 and Remark 3.3,

B̂t
k, Bt

k ∈ M(ε), for all k < �t �. Also, for k = �t �, since B̂t
k can be written as B̂t

k = B̂κk
k D , with D ∈ M(ε), then by Lemma 4.1,

B̂t
k ∈ M(ε). Similarly Bt

k ∈ M(ε), for k = �t �. Let p̂ � ψ̂κ . Note that

p̂ = p̂−1 B̂t


‖p̂−1 B̂t
‖

,  < �t �.

For  < �t �, we define

p̄ �
p̂−1 Bt



‖p̂−1 Bt
‖

,

and

D̂t
 � B̂t

 B̂t
+1 · · · B̂t

�t�, Dt
 � Bt

Bt
+1 · · · Bt

�t�.

Recall that ψ̂0 ≡ ψ0. We use the decomposition

‖ψt − ψ̂t‖ =
�t�−1∑
=1

∥∥∥∥ p̄Dt
+1

‖p̄Dt
+1‖

− p̂Dt
+1

‖p̂Dt
+1‖

∥∥∥∥ +
∥∥∥∥ p̂�t�−1 Dt

�t�

‖p̂�t�−1 Dt
�t�

‖ −
p̂�t�−1 D̂t

�t�

‖p̂�t�−1 D̂t
�t�

‖
∥∥∥∥. (19)

By Lemma 4.2, for 1 �  < �t �,∥∥∥∥ p̄Dt
+1

‖p̄Dt
+1‖

− p̂Dt
+1

‖p̂Dt
+1‖

∥∥∥∥ � N

ε

(
1 − ε2)�t�−‖p̄ − p̂‖. (20)
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By the Lipschitz continuity of θ �→ Q θ (y, u), and since Y and U are finite, there exists a positive constant CLip, such that

‖p̄ − p̂‖ � CLip
∥∥θ̌κ−1 − θ∗∥∥

Θ
,  < �t �,∥∥∥∥ p̂�t�−1 Dt

�t�

‖p̂�t�−1 Dt
�t�

‖ −
p̂�t�−1 D̂t

�t�

‖p̂�t�−1 D̂t
�t�

‖
∥∥∥∥ � CLip

∑
i=0,1

∥∥θ̌κ�t�−i − θ∗∥∥
Θ

, (21)

where ‖ · ‖Θ is the Euclidean norm in the parameter space. Replacing the terms on the right-hand side of (19) by their
bounds in (20)–(21), we obtain

‖ψt − ψ̂t‖ � NCLip

ε

�t�−1∑
=1

(
1 − ε2)�t�−∥∥θ̌κ−1 − θ∗∥∥

Θ
+ CLip

∑
i=0,1

∥∥θ̌κ�t�−i − θ∗∥∥
Θ

� C0

�t�+1∑
=1

(
1 − ε2)�t�−∥∥θ̌κ−1 − θ∗∥∥

Θ
, (22)

where

C0 � NCLip

ε
.

Since (22) holds for every sample path, then

‖Ψt − Ψ̂t‖ � C0

�t�+1∑
=1

(
1 − ε2)�t�−∥∥Θ̌κ−1 − θ∗∥∥

Θ
. (23)

Since Θ̌t → θ∗ in probability, under any π ∈ Π , as t → ∞, and Θ is compact,

Eπ̂
ψ0

[∥∥Θ̌κ−1 − θ∗∥∥
Θ

] −→
→∞ 0, (24)

and therefore (18) follows by (23) and (24). �
Theorem 5.2. Let Assumptions 3.1 and 3.2 hold. For a given unknown true parameter vector θ∗ ∈ Θ , the adaptive policy π̂ described
in (8) is average-cost optimal.

Proof. By Theorem 3.1(iii), the map (ψ, θ) �→ Dθ (ψ, ·) is continuous. Moreover, as mentioned earlier, ψ �→ Dθ (ψ, u) is
Lipschitz continuous in ψ . Therefore, by Theorem 5.1, for each u ∈ U,

D
Θ̌t

(Ψ̂t , u) − Dθ∗(Ψt , u)
Pπ̂

ψ0−→
t→∞ 0,

and since D is bounded, it converges also in Eπ̂
ψ0

. Since U is finite, it follows that

Eπ̂
ψ0

[∣∣D
Θ̌t

(
Ψ̂t,π

∗(Ψ̂t, Θ̌t)
) − Dθ∗

(
Ψt,π

∗(Ψ̂t, Θ̌t)
)∣∣] −→

t→∞] 0. (25)

On the other hand, by definition, π∗ satisfies Dθ (ψ,π∗(ψ, θ)) = 0, for all ψ ∈ � and θ ∈ Θ . Therefore,

D
Θ̌t

(
Ψ̂t ,π

∗(Ψ̂t , Θ̌t)
) = 0, Pπ̂

ψ0
-a.s.

In turn, by (25),

Eπ̂
ψ0

[∣∣Dθ∗
(
Ψ̂t,π

∗(Ψ̂t, Θ̌t)
)∣∣] −→

t→∞ 0,

and the result follows from Theorem 3.1(iv). �
6. Conclusion

A positive attribute of this paper is that there is essentially only one structural assumption (Assumption 3.1) imposed
on the system model, and this takes a simple and verifiable form. Nevertheless, the reader will notice that existence of a
solution to the HJB equation is guaranteed even under weaker hypotheses in [7]. It would be interesting to pursue the results
in this paper under Assumption 4 in [7]. Also, extending the results to models with compact action spaces is desirable.
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