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Abstract The subject of this paper is the policy iteration algorithm for
non-degenerate controlled diffusions. The results parallel the ones in Meyn
[11] for discrete-time controlled Markov chains. The model in [11] uses norm-
like running costs, while we opt for the milder assumption of near-monotone
costs. Also, instead of employing a blanket Lyapunov stability hypothesis, we
provide a characterization of the region of attraction of the optimal control.
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1 Introduction

The policy iteration algorithm (PIA) for controlled Markov chains has been
known since the fundamental work of Howard [2]. For controlled Markov
chains on Borel state spaces most studies of the PIA rely on blanket Lyapunov
conditions [9]. A study of the PIA that treats the model of near-monotone
costs can be found in [11], some ideas of which we follow closely. An analysis
of the PIA for piecewise deterministic Markov processes has appeared in [6].

In this paper we study the PIA for controlled diffusion processes X =
{Xt, t ≥ 0} taking values in the d-dimensional Euclidean space Rd, and
governed by the Itô stochastic differential equation

dXt = b(Xt, Ut) dt+ σ(Xt) dWt . (1)
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2 Ari Arapostathis

All random processes in (1) live in a complete probability space (Ω,F,P).
The process W is a d-dimensional standard Wiener process independent of
the initial condition X0. The control process U takes values in a compact,
metrizable set U, and Ut(ω) is jointly measurable in (t, ω) ∈ [0,∞) × Ω.
Moreover, it is non-anticipative: for s < t, Wt −Ws is independent of

Fs := the completion of σ{X0, Ur,Wr, r ≤ s} relative to (F,P) .

Such a process U is called an admissible control, and we let U denote the set
of all admissible controls.

We impose the following standard assumptions on the drift b and the
diffusion matrix σ to guarantee existence and uniqueness of solutions to (1).

(A1) Local Lipschitz continuity: The functions

b =
[
b1, . . . , bd

]T
: Rd × U 7→ Rd and σ =

[
σ
ij
]

: Rd 7→ Rd×d

are locally Lipschitz in x with a Lipschitz constant KR depending
on R > 0. In other words, if BR denotes the open ball of radius R
centered at the origin in Rd, then for all x, y ∈ BR and u ∈ U,

|b(x, u)− b(y, u)|+ ‖σ(x)− σ(y)‖ ≤ KR|x− y| ,

where ‖σ‖2 := trace
(
σσT

)
.

(A2) Affine growth condition: b and σ satisfy a global growth condition of
the form

|b(x, u)|2 + ‖σ(x)‖2 ≤ K1

(
1 + |x|2

)
, ∀(x, u) ∈ Rd × U .

(A3) Local non-degeneracy: For each R > 0, there exists a positive constant
κR such that

d∑
i,j=1

aij(x)ξiξj ≥ κR|ξ|2 , ∀x ∈ BR ,

for all ξ = (ξ1, . . . , ξd) ∈ Rd, where a := 1
2 σ σT.

We also assume that b is continuous in (x, u).
In integral form, (1) is written as

Xt = X0 +

∫ t

0

b(Xs, Us) ds+

∫ t

0

σ(Xs) dWs . (2)

The second term on the right hand side of (2) is an Itô stochastic integral.
We say that a process X = {Xt(ω)} is a solution of (1), if it is Ft-adapted,
continuous in t, defined for all ω ∈ Ω and t ∈ [0,∞), and satisfies (2) for all
t ∈ [0,∞) at once a.s.
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With u ∈ U treated as a parameter, we define the family of operators
Lu : C2(Rd) 7→ C(Rd) by

Luf(x) =
∑
i,j

aij(x)
∂2f

∂xi∂xj
(x) +

∑
i

bi(x, u)
∂f

∂xi
(x) , u ∈ U . (3)

We refer to Lu as the controlled extended generator of the diffusion.
Of fundamental importance in the study of functionals of X is Itô’s for-

mula. For f ∈ C2(Rd) and with Lu as defined in (3),

f(Xt) = f(X0) +

∫ t

0

LUsf(Xs) ds+Mt , a.s., (4)

where

Mt :=

∫ t

0

〈
∇f(Xs),σ(Xs) dWs

〉
is a local martingale. Krylov’s extension of the Itô formula [10, p. 122] extends
(4) to functions f in the Sobolev space W

2,p
loc(Rd).

Recall that a control is called stationary Markov if Ut = v(Xt) for a
measurable map v : Rd 7→ U. Correspondingly, the equation

Xt = x0 +

∫ t

0

b
(
Xs, v(Xs)

)
ds+

∫ t

0

σ(Xs) dWs (5)

is said to have a strong solution if given a Wiener process (Wt,Ft) on a
complete probability space (Ω,F,P), there exists a process X on (Ω,F,P),
with X0 = x0 ∈ Rd, which is continuous, Ft-adapted, and satisfies (5) for all
t at once, a.s. A strong solution is called unique, if any two such solutions
X and X ′ agree P-a.s., when viewed as elements of C

(
[0,∞),Rd

)
. It is well

known that under Assumptions A1–A3, for any stationary Markov control v,
(5) has a unique strong solution [8].

Let USM denote the set of stationary Markov controls. Under v ∈ USM,
the process X is strong Markov, and we denote its transition function by
P v(t, x, ·). It also follows from the work of [5, 12] that under v ∈ USM, the
transition probabilities of X have densities which are locally Hölder contin-
uous. Thus Lv defined by

Lvf(x) =
∑
i,j

aij(x)
∂2f

∂xi∂xj
(x) +

∑
i

bi(x, v(x))
∂f

∂xi
(x) , v ∈ USM ,

for f ∈ C2(Rd), is the generator of a strongly-continuous semigroup on Cb(Rd),
which is strong Feller. We let Pvx denote the probability measure and Evx the
expectation operator on the canonical space of the process under the control
v ∈ USM, conditioned on the process X starting from x ∈ Rd at t = 0.
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In Section 2 we define our notation. Section 3 reviews the ergodic con-
trol problem for near-monotone costs and the basic properties of the PIA.
Section 4 is dedicated to the convergence of the algorithm.

2 Notation

The standard Euclidean norm in Rd is denoted by | · |, and 〈·, ·〉 stands for
the inner product. The set of non-negative real numbers is denoted by R+, N
stands for the set of natural numbers, and I denotes the indicator function.
We denote by τ(A) the first exit time of the process {Xt} from the set A ⊂ Rd,
defined by

τ(A) := inf {t > 0 : Xt 6∈ A} .

The open ball of radius R in Rd, centered at the origin, is denoted by BR,
and we let τR := τ(BR), and τ̆R := τ(BcR).

The term domain in Rd refers to a nonempty, connected open subset of
the Euclidean space Rd. We introduce the following notation for spaces of
real-valued functions on a domain D ⊂ Rd. The space Lp(D), p ∈ [1,∞),
stands for the Banach space of (equivalence classes) of measurable functions
f satisfying

∫
D
|f(x)|p dx <∞, and L∞(D) is the Banach space of functions

that are essentially bounded in D. The space Ck(D) (C∞(D)) refers to the
class of all functions whose partial derivatives up to order k (of any order)
exist and are continuous, and Ckc (D) is the space of functions in Ck(D) with
compact support. The standard Sobolev space of functions on D whose gen-
eralized derivatives up to order k are in Lp(D), equipped with its natural
norm, is denoted by Wk,p(D), k ≥ 0, p ≥ 1.

In general if X is a space of real-valued functions on D, Xloc consists of
all functions f such that fϕ ∈ X for every ϕ ∈ C∞c (D). In this manner we
obtain the spaces Lploc(D) and W

2,p
loc(D).

Let h ∈ C(Rd) be a positive function. We denote by O(h) the set of func-
tions f ∈ C(Rd) having the property

lim sup
|x|→∞

|f(x)|
h(x)

<∞ , (6)

and by o(h) the subset of O(h) over which the limit in (6) is zero.

We adopt the notation ∂i := ∂
∂xi

and ∂ij := ∂2

∂xi∂xj
. We often use the stan-

dard summation rule that repeated subscripts and superscripts are summed
from 1 through d. For example,

aij∂ijϕ+ bi∂iϕ :=

d∑
i,j=1

aij
∂2ϕ

∂xi∂xj
+

d∑
i=1

bi
∂ϕ

∂xi
.
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3 Ergodic Control and the PIA

Let c : Rd × U → R be a continuous function bounded from below. As well
known, the ergodic control problem, in its almost sure (or pathwise) formu-
lation, seeks to a.s. minimize over all admissible U ∈ U

lim sup
t→∞

1

t

∫ t

0

c(Xs, Us) ds . (7)

A weaker, average formulation seeks to minimize

lim sup
t→∞

1

t

∫ t

0

EU
[
c(Xs, Us)

]
ds . (8)

We let %∗ denote the infimum of (8) over all admissible controls. We assume
that %∗ <∞.

We assume that the cost function c : Rd × U → R+ is continuous and
locally Lipschitz in its first argument uniformly in u ∈ U. More specifically,
for some function Kc : R+ → R+,∣∣c(x, u)− c(y, u)

∣∣ ≤ Kc(R)|x− y| ∀x, y ∈ BR , ∀u ∈ U ,

and all R > 0.
An important class of running cost functions arising in practice for which

the ergodic control problem is well behaved are the near-monotone cost func-
tions. Let M∗ ∈ R+ ∪ {∞} be defined by

M∗ := lim inf
|x|→∞

min
u∈U

c(x, u) .

The running cost function c is called near-monotone if %∗ < M∗. Note that
inf-compact functions c are always near-monotone.

We adopt the following abbreviated notation. For a function g : Rd×U→
R and v ∈ USSM we let

gv(x) := g
(
x, v(x)

)
, x ∈ Rd .

The ergodic control problem for near-monotone cost functions is charac-
terized as follows:

Theorem 1. There exists a unique function V ∈ C2(Rd) which is bounded
below in Rd and satisfies V (0) = 0 and the Hamilton–Jacobi–Bellman (HJB)
equation

min
u∈U

[
LuV (x) + c(x, u)

]
= %∗ , x ∈ Rd .

The control v∗ ∈ USM is optimal with respect to the criteria (7) and (8) if
and only if it satisfies
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min
u∈U

[
d∑
i=1

bi(x, u)
∂V

∂xi
(x) + c(x, u)

]
=

d∑
i=1

biv∗(x)
∂V

∂xi
(x) + cv∗(x)

a.e. in Rd. Moreover, with τ̆r = τ(Bcr), r > 0, we have

V (x) = lim sup
r↓0

inf
v∈USSM

Evx

[∫ τ̆r

0

(
cv(Xt)− %∗

)
dt

]
, x ∈ Rd .

A control v ∈ USM is called stable, if the associated diffusion is positive
recurrent. We denote the set of such controls by USSM. Also we let µv denote
the unique invariant probability measure on Rd for the diffusion under the
control v ∈ USSM. Recall that v ∈ USSM if and only if there exists an inf-
compact function V ∈ C2(Rd) a bounded domain D ⊂ Rd and a constant
ε > 0 satisfying

LvV(x) ≤ −ε ∀x ∈ Dc . (9)

It follows that the optimal control v in Theorem 1 is stable. For v ∈ USSM

we define

%v := lim sup
t→∞

1

t

∫ t

0

Ev
[
cv(Xs)

]
ds .

A difficulty in synthesizing an optimal control v ∈ USM via the HJB equa-
tion lies in the fact that the optimal cost %∗ is not known. The PIA provides
an iterative procedure for obtaining the HJB equation at the limit. In or-
der to describe the algorithm we first need to review some properties of the
Poisson equation

LvV (x) + cv(x) = % , x ∈ Rd . (10)

We need the following definition.

Definition 1. For v ∈ USSM, and provided %v <∞, define

Ψv(x) := lim
r↓0

Evx

[∫ τ̆r

0

(
cv(Xt)− %v

)
dt

]
, x 6= 0 .

For v ∈ USM and α > 0, let Jvα denote the α-discounted cost

Jvα(x) := Evx
[∫ ∞

0

e−αtcv(Xt) dt

]
, x ∈ Rd .

We borrow the following result from [1, Lemma 7.4]. If v ∈ USSM and %v <∞,
then there exist a function V ∈ W

2,p
loc(Rd), for any p > 1, and a constant

% ∈ R which satisfy (10) a.e. in Rd and such that, as α ↓ 0, αJvα(0)→ % and
Jvα − Jvα(0)→ V uniformly on compact subsets of Rd. Moreover,

% = %v and V (x) = Ψv(x) .
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We refer to the function V (x) = Ψv(x) ∈W
2,p
loc(Rd) as the canonical solution

of the Poisson equation LvV + cv = %v in Rd.
It can be shown that the canonical solution V to the Poisson equation is the

unique solution in W
2,p
loc(Rd) which is bounded below and satisfies V (0) = 0.

Note also that (9) implies that any control v satisfying %v < M∗ is stable.
The PIA takes the following familiar form:

Algorithm (PIA).

1. Initialization. Set k = 0 and select any v0 ∈ USM such that %v0 < M∗.
2. Value determination. Obtain the canonical solution Vk = Ψvk ∈W

2,p
loc(Rd),

p > 1, to the Poisson equation

LvkVk + cvk = %vk

in Rd.
3. If vk(x) ∈ Arg minu∈U

[
bi(x, u)∂iVk(x) + c(x, u)

]
x-a.e., return vk.

4. Policy improvement. Select an arbitrary vk+1 ∈ USM which satisfies

vk+1(x) ∈ Arg min
u∈U

[
d∑
i=1

bi(x, u)
∂Vk
∂xi

(x) + c(x, u)

]
, x ∈ Rd .

Since %v0 < M∗ it follows that v0 ∈ USSM. The algorithm is well defined,
provided vk ∈ USSM for all k ∈ N. This follows from the next lemma which
shows that %vk+1

≤ %vk , and in particular that %vk < M∗, for all k ∈ N.

Lemma 1. Suppose v ∈ USSM satisfies %v < M∗. Let V ∈ W
2,p
loc(Rd), p > 1,

be the canonical solution to the Poisson equation

LvV + cv = %v , in Rd .

Then any measurable selector v̂ from the minimizer

Arg min
u∈U

[
bi(x, u)∂iV (x) + c(x, u)

]
satisfies %v̂ ≤ %v. Moreover, the inequality is strict unless v satisfies

LvV (x) + cv(x) = min
u∈U

[LuV (x) + c(x, u)] = %v , for almost all x . (11)

Proof. Let V be a Lyapunov function satisfying LvV(x) ≤ k0−g(x), for some
inf compact g such that cv ∈ o(g) (see [1, Lemma 7.1]). For n ∈ N, define

v̂n(x) =

v̂(x) if x ∈ Bn

v(x) if x ∈ Bcn .
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Clearly v̂n → v̂ as n → ∞ in the topology of Markov controls (see [1, Sec-
tion 3.3]). It is evident that V is a stochastic Lyapunov function relative to
v̂n, i.e., there exist constants kn such that Lv̂nV(x) ≤ kn−g(x), for all n ∈ N.
Since V ∈ o(V) it follows that (see [1, Lemma 7.1])

1

t
Ev̂nx [V (Xt)] −−−→

t→∞
0 (12)

Let
h(x) := %v −min

u∈U
[LuV (x) + c(x, u)] , x ∈ Rd .

Also, by definition of v̂n, for all m ≤ n, we have

Lv̂nV (x) + cv̂n(x) ≤ %v − h(x) IBm(x) . (13)

By Itô’s formula we obtain from (13) that

1

t

(
Ev̂nx [V (Xt)]− V (x)

)
+

1

t
Ev̂nx

[∫ t

0

cv̂n(Xs) ds

]
≤ %v −

1

t
Ev̂nx

[∫ t

0

h(Xs) IBm
(Xs) ds

]
, (14)

for all m ≤ n. Taking limits in (14) as t→∞ and using (12), we obtain

%v̂n ≤ %v −
∫
Rd

h(x) IBm(x)µv̂n(dx) . (15)

Note that v 7→ %v is lower semicontinuous. Therefore, taking limits in (15) as
n→∞, we have

%v̂ ≤ %v − lim sup
n→∞

∫
Rd

h(x) IBm
(x)µv̂n(dx) . (16)

Since c is near monotone and %v̂n ≤ %v < M∗, there exists R̂ > 0 and δ > 0,
such that µv̂n(BR̂) ≥ δ for all n ∈ N. Then with ψv̂n denoting the density of
µv̂n Harnack’s inequality [7, Theorem 8.20, p. 199] implies that there exists
a constant CH = CH(R) such that for every R > R̂, with |BR| denoting the
volume of BR ⊂ Rd, it holds that

inf
BR

ψv̂n ≥
δ

CH |BR|
, ∀n ∈ N .

This in turn implies by (16) that %v̂ < %v unless h = 0 a.e. ut
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4 Convergence of the PIA

We start with the following lemma.

Lemma 2. The sequence {Vk} of the PIA has the following properties:

(i) For some constant C0 = C0(%v0) we have infRd Vk > C0 for all k ≥ 0.
(ii) Each Vk attains it’s minimum on the compact set

K(%v0) :=
{
x ∈ Rd : min

u∈U
c(x, u) ≤ %v0

}
.

(iii) For any p > 1, there exists a constant C̃0 = C̃0(R, %v0 , p) such that∥∥Vk∥∥W2,p(BR)
≤ C̃0 ∀R > 0 .

(iv) There exist positive numbers αk and βk, k ≥ 0, such that αk ↓ 1 and βk ↓ 0
as k →∞ and

αk+1Vk+1(x) + βk+1 ≤ αkVk + βk ∀k ≥ 0 .

Proof. Parts (i) and (ii) follow directly from [3, Lemmas 3.6.1 and 3.6.4].
For part (iii) note first that the near monotone assumption implies that

µvk

(
K
(
M∗+%vk

2

))
≥ M∗ − %vk
M∗ + %vk

∀k ≥ 0 .

Consequently

µvk

(
K
(
M∗+%v0

2

))
≥ M∗ − %v0
M∗ + %v0

∀k ≥ 0 .

uniformly on compact subsets of Rd. Hence since Jvkα − Jvkα (0)→ Vk weakly
in W2,p(BR) for any R > 0, (iii) follows from [3, Theorem 3.7.4].

Part (iv) follows as in [11, Theorem 4.4]. 1 ut

As the corollary below shows, the PIA always converges.

Corollary 1. There exists a constant %̂ and a function V̂ ∈ C2(Rd) with
V̂ (0) = 0, such that, as k → ∞, %vk ↓ %̂ and Vk → V̂ weakly in W2,p(BR),

p > 1, for any R > 0. Moreover, (V̂ , %̂) satisfy the HJB equation

min
u∈U

[
LuV̂ (x) + c(x, u)

]
= %̂ , x ∈ Rd . (17)

1 Theorem 4.4 in [11] applies to Markov chains on Borel state spaces. Also the model in
[11] involves only inf-compact running costs. Nevertheless, the essential arguments can be
followed to adapt the proof to controlled diffusions. We skip the details.
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Proof. By Lemma 1, %vk is decreasing monotonically in k, and hence con-
verges to some %̂ ≥ %∗. By Lemma 2 (iii) the sequence Vk is weakly compact
in W2,p(BR), p > 1, for any R > 0, while by Lemma 2 (iv) any weakly con-
vergent subsequence has the same limit V̂ . Also repeating the argument in
the proof of Lemma 1, with

hk(x) := %vk−1
−min

u∈U
[LuVk−1(x) + c(x, u)] , x ∈ Rd ,

we deduce that for any R > 0 there exists some constant K(R) such that∫
BR

hk(x) dx ≤ K(R)
(
%vk−1

− %vk
)

∀k ∈ N .

Therefore hk → 0 weakly in L1(D) as k → ∞ for any bounded domain D.
Taking limits in the equation

min
u∈U

[LuVk−1(x) + c(x, u)] = %vk−1
− hk(x)

and using [3, Lemma 3.5.4] yields (17). ut

It is evident that v ∈ USM is an equilibrium of the PIA if it satisfies
%v < M∗ and

min
u∈U

[
LuΨv(x) + c(x, u)

]
= %v , x ∈ Rd . (18)

For one-dimensional diffusions one can show that (18) has a unique solution,
and hence this is the optimal solution with %v = %∗. For higher dimensions, to
the best of our knowledge there is no such result. There is also the possibility
that the PIA converges to v̂ ∈ USSM which is not an equilibrium. This happens
if (17) satisfies

Lv̂V̂ (x) + cv̂(x) = min
u∈U

[
LuV̂ (x) + c(x, u)

]
= %̂ > %v̂ , x ∈ Rd . (19)

This is in fact the case with the example in [4]. In this example the controlled
diffusion takes the form dXt = Ut dt + dWt, with U = [−1, 1] and running
cost c(x) = 1− e−|x|. If we define

ξ% := log
3

2
+ log(1− %) , % ∈ [1/3, 1)

and

V%(x) := 2

∫ x

−∞
e2|y−ξ%|dy

∫ y

−∞
e−2|z−ξ%|

(
%− c(z)

)
dz , x ∈ R ,

then direct computation shows that
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1
2V
′′
% (x)− |V ′%(x)|+ c(x) = % ∀% ∈ [1/3, 1) ,

and so the pair (V%, %) satisfies the HJB. The stationary Markov control cor-
responding the this solution of the HJB is w%(x) = − sign(x− ξ%). The con-
trolled process under w% has invariant probability density ϕ%(x) = e−2|x−ξ%|.
A simple computation shows that∫ ∞

−∞
c(x)ϕ%(x) dx = %− 9

8 (1− %)(3%− 1) < % , ∀% ∈ (1/3, 1) .

Thus if % > 1/3, then V% is not a canonical solution of the Poisson equation
corresponding to the stable control w%. Therefore, this example satisfies (19)
and shows that in general we cannot preclude the possibility that the limiting
value of the PIA is not an equilibrium of the algorithm.

In [11, Theorem 5.2] a blanket Lyapunov condition is imposed to guarantee
convergence of the PIA to an optimal control. Instead, we use Lyapunov
analysis to characterize the domain of attraction of the optimal value.

We need the following definition.

Definition 2. Let v∗ be an optimal control as characterized in Theorem 1.
Let V denote the class of all non-negative functions V ∈ C2(Rd) satisfying
Lv

∗V ≤ k0 − h(x) for some non-negative, inf-compact h ∈ C(Rd) and a
constant k0. We denote by o(V) the class of inf-compact functions g satisfying
g ∈ o(V) for some V ∈ V.

The theorem below asserts that if the PIA is initialized at a v0 ∈ USSM

whose associated canonical solution to the Poisson equation lies in o(V) then
it converges to an optimal v∗ ∈ USSM.

Theorem 2. If v0 ∈ USSM satisfies Ψv0 ∈ o(V) then %vk → %∗ as k →∞.

Proof. The proof is straightforward. By Lemma 2 (iv), V̂ ∈ o(V). Also by
(17), we have

Lv
∗
V̂ (x) + cv∗(x) ≥ %̂ , x ∈ Rd ,

and applying Dynkin’s formula we obtain

1

t

(
Ev

∗

x

[
V̂ (Xt)

]
− V (x)

)
+

1

t
Ev

∗

x

[∫ t

0

cv∗(Xs) ds

]
≥ %̂ , (20)

Since V̂ ∈ o(V), by [1, Lemma 7.1] we have

1

t
Ev

∗

x

[
V̂ (Xt)

]
−−−→
t→∞

0

and thus taking limits as t → ∞ in (20) we obtain %∗ ≥ %̂. Therefore, we
must have %̂ = %∗. ut
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5 Concluding Remarks

We have concentrated on the model of controlled diffusions with near mono-
tone running costs. The case of stable controls with a blanket Lyapunov con-
dition is much simpler. If for example we impose the assumption that there
exist a constant k0 > 0, and a pair of nonnegative, inf-compact functions
(V, h) ∈ C2(Rd)× C(Rd) satisfying 1 + c ∈ o(h) and such that

LuV(x) ≤ k0 − h(x, u) ∀(x, u) ∈ Rd × U ,

then the PIA always converges to the optimal solution.
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