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Abstract. We study the relative value iteration for the ergodic control problem under a near-
monotone running cost structure for a nondegenerate diffusion controlled through its drift. This
algorithm takes the form of a quasi-linear parabolic Cauchy initial value problem in Rd. We show
that this Cauchy problem stabilizes or, in other words, that the solution of the quasi-linear parabolic
equation converges for every bounded initial condition in C2(Rd) to the solution of the Hamilton–
Jacobi–Bellman equation associated with the ergodic control problem.
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1. Introduction. This paper is concerned with the time-asymptotic behavior
of an optimal control problem for a nondegenerate diffusion controlled through its
drift and described by an Itô stochastic differential equation (SDE) in R

d having the
following form:

(1.1) dXt = b(Xt, Ut) dt+ σ(Xt) dWt.

Here Ut is the control variable that takes values in some compact metric space. We
impose standard assumptions on the data to guarantee the existence and uniqueness
of solutions to (1.1). These are described in section 3.1. Let r : Rd × U → R be a
continuous function bounded from below, which without loss of generality we assume
is nonnegative and is referred to as the running cost. As is well known, the ergodic
control problem, in its almost sure (or pathwise) formulation, seeks to a.s. minimize
over all admissible controls U the functional

(1.2) lim sup
t→∞

1

t

∫ t

0

r(Xs, Us) ds.

A weaker, average formulation seeks to minimize

(1.3) lim sup
t→∞

1

t

∫ t

0

E
U
[
r(Xs, Us)

]
ds.
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Here EU denotes the expectation operator associated with the probability measure on
the canonical space of the process under the control U . We let � be defined as

(1.4) � � inf
U

lim sup
t→∞

1

t

∫ t

0

E
U
[
r(Xs, Us)

]
ds,

i.e., the infimum of (1.3) over all admissible controls. (For the definition of admissible
controls see section 3.1.) Under suitable hypotheses, solutions to the ergodic control
problem can be constructed via the Hamilton–Jacobi–Bellman (HJB) equation

(1.5) aij(x) ∂ijV +H(x,∇V ) = �,

where a = [aij ] is the symmetric matrix 1
2σσ

T and

H(x, p) � min
u

{b(x, u) · p+ r(x, u)} .

The desired characterization is that a stationary Markov control v∗ is optimal for the
ergodic control problem if and only if it satisfies

(1.6) H
(
x,∇V (x)

)
= b

(
x, v∗(x)

)
· ∇V (x) + r

(
x, v∗(x)

)
a.e. in R

d. Obtaining solutions to (1.5) is further complicated by the fact that � is
unknown. For controlled Markov chains the relative value iteration (RVI) originating
in the work of White [23] provides an algorithm for solving the ergodic dynamic pro-
gramming equation for the finite state, finite action case. Moreover, its ramifications
have given rise to popular learning algorithms (Q-learning) [1].

In [3] we introduced a continuous time, continuous state space analogue of White’s
RVI given by the quasi-linear parabolic evolution equation

(1.7) ∂tϕ(t, x) = aij(x) ∂ijϕ(t, x) +H(x,∇ϕ)− ϕ(t, 0), ϕ(0, x) = ϕ0(x).

Under a uniform (geometric) ergodicity condition that ensures the well-posedness of
the associated HJB equation we showed in [3] that the solution of (1.7) converges as
t → ∞ to a solution of (1.5), the limit being independent of the initial condition ϕ0.
In a related work we extended these results to zero-sum stochastic differential games
and controlled diffusions under the risk sensitive criterion [5].

Even though the work in [3] was probably the first such study of convergence of a
relative iteration scheme for continuous time and space Markov processes, the blanket
stability hypothesis imposed weakens these results. Models of controlled diffusions
enjoying a uniform geometric ergodicity do not arise often in applications. Rather,
what we frequently encounter is a running cost which has a structure that penalizes
unstable behavior and thus renders all stationary optimal controls stable. Such is
the case for quadratic costs typically used in linear control models. A fairly general
class of running costs of this type, which includes “norm-like” costs, consists of costs
satisfying the near-monotone condition:

(1.8) lim inf
|x|→∞

min
u∈U

r(x, u) > �.

In this paper we relax the blanket geometric ergodicity assumption and study the
RVI in (1.7) under the near-monotone hypothesis (1.8). It is well known that for near-
monotone costs the HJB equation (1.5) possesses a unique up to a constant solution
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V which is bounded below in R
d [4]. However, this uniqueness result is restricted. In

general, for β > � the equation

(1.9) aij(x) ∂ijV +H(x,∇V ) = β

can have a multitude of solutions which are bounded below [4, section 3.8.1]. As
a result, the policy iteration algorithm (PIA) may fail to converge to an optimal
value [2, 19]. In order to guarantee convergence of the PIA to an optimal control, in
addition to the near-monotone assumption, a blanket Lyapunov condition is imposed
in [19, Theorem 5.2] which renders all stationary Markov controls stable. In contrast,
the RVI algorithm always converges to the optimal value function when initialized
with some bounded initial value ϕ0. The reason behind the difference in performance
of the two algorithms can be explained as follows: First, recall that the PIA algorithm
consists of the following steps:

1. Initialization. Set k = 0 and select some stationary Markov control v0 which
yields a finite average cost.

2. Value determination. Determine the average cost �vk under the control vk
and obtain a solution Vk to the Poisson equation

aij(x) ∂ijVk + bi
(
x, vk(x)

)
∂iVk(x) + r

(
x, vk(x)

)
= �vk , x ∈ R

d.

3. Termination. If

H(x,∇Vk) =
[
b
(
x, vk(x)

)
· ∇Vk(x) + r

(
x, vk(x)

)]
a.e.,

then return vk.
4. Policy improvement. Select a stationary Markov control vk+1 which satisfies

vk+1(x) ∈ Argmin
u∈U

[
b(x, u) · ∇Vk(x) + r(x, u)

]
, x ∈ R

d.

It is straightforward to show that if V̂ is a solution to (1.9), which is bounded below
in R

d, and whose growth rate does not exceed the growth rate of an optimal value
function V from (1.5), or in other words the weighted norm ‖V̂ ‖V is finite (see Def-

inition 3.6), then β = � and V̂ is an optimal value function. It turns out that if the
value function V0 determined at the first step k = 0 does not grow faster than an
optimal value function V , then the algorithm will converge to an optimal value func-
tion. Otherwise, it might converge to a solution of (1.9) that is not optimal. However,
if the growth rate of an optimal value function is not known, there is no simple way of
selecting the initial control v0 that will result in the right growth rate for V0. To do so
one must solve an HJB-type equation, which is precisely what the PIA algorithm tries
to avoid. In contrast, as we show in this paper, the solution of the RVI algorithm has
the property that x �→ ϕ(t, x) has the same growth rate as the optimal value function
V , asymptotically in t. This is an essential ingredient of the mechanism responsible
for convergence.

The proof of convergence of (1.7) is facilitated by the study of the value iteration
(VI) equation

(1.10) ∂tϕ(t, x) = aij(x) ∂ijϕ(t, x) +H(x,∇ϕ)− �, ϕ(0, x) = ϕ0(x).

The initial condition is the same as in (1.7). Also � is as in (1.4), so it is assumed
known. Note that if ϕ is a solution of (1.7), then

(1.11) ϕ(t, x) = ϕ(t, x)− � t+

∫ t

0

ϕ(s, 0) ds, (t, x) ∈ R+ × R
d,
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solves (1.10). We have in particular that

(1.12) ϕ(t, x)− ϕ(t, 0) = ϕ(t, x) − ϕ(t, 0), (t, x) ∈ R+ × R
d.

It follows that the function f � ϕ− ϕ does not depend on x ∈ R
d and satisfies

(1.13)
df

dt
+ f = �− ϕ(t, 0).

Conversely, if ϕ is a solution of (1.10), then solving (1.13) one obtains a corresponding
solution of (1.7) that takes the form [3, Lemma 4.4]

(1.14) ϕ(t, x) = ϕ(t, x)−
∫ t

0

es−t ϕ(s, 0) ds+ � (1− e−t), (t, x) ∈ R+ × R
d.

It also follows from (1.14) that if t �→ ϕ(t, x) is bounded for each x ∈ R
d, then so is

the map t �→ ϕ(t, x), and if the former converges as t → ∞, pointwise in x, then so
does the latter.

We note here that we study solutions of the VI equation that have the stochastic
representation

(1.15) ϕ(t, x) = inf
U

E
U
x

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]
− � t,

where the infimum is over all admissible controls. These are called canonical solutions
(see Definition 3.10). The first term in (1.15) is the total cost over the finite horizon
[0, t] with terminal penalty ϕ0. Under the uniform geometric ergodicity hypothesis
used in [3] it is straightforward to show that t �→ ϕ(t, x) is locally bounded in x ∈ R

d.
In contrast, under the near-monotone hypothesis alone, t �→ ϕ(t, x) may diverge for
each x ∈ R

d. To show convergence, we first identify a suitable region of attraction of
the solutions of the HJB under the dynamics of (1.10) and then show that all ω-limit
points of the semiflow of (1.7) lie in this region.

While we prefer to think of (1.7) as a continuous time and space RVI, it can also
be viewed as a “stabilization of a quasi-linear parabolic PDE problem” analogous to
the celebrated result of Hasminskĭı (see [11]). Thus, the results in this paper are also
likely to be of independent interest to the PDE community.

We summarize below the main result of the paper. We make one mild assump-
tion: let v∗ be some optimal stationary Markov control, i.e., a measurable function
that satisfies (1.6). It is well known that under the near-monotone hypothesis the dif-
fusion under the control v∗ is positive recurrent. Let μv∗ denote the unique invariant
probability measure of the diffusion under the control v∗. We assume that the value
function V in the HJB is integrable under μv∗ .

Theorem 1.1. Suppose that the running cost is near-monotone and that the value
function V of the HJB equation (1.5) for the ergodic control problem is integrable with
respect to some optimal invariant probability distribution. Then for any bounded initial
condition ϕ0 ∈ C2(Rd) it holds that

lim
t→∞ ϕ(t, x) = V (x) − V (0) + �,

uniformly on compact sets of Rd.
We also obtain a new stochastic representation for the value function of the HJB

under near-monotone costs which we state as a corollary. This result is known to hold
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under uniform geometric ergodicity, but under the near-monotone cost hypothesis
alone it is completely new.

Corollary 1.2. Under the assumptions of Theorem 1.1 the value function V of
the HJB for the ergodic control problem has the stochastic representation

V (x) − V (y) = lim
t→∞

(
inf
U

E
U
x

[∫ t

0

r(Xs, Us) ds

]
− inf

U
E
U
y

[∫ t

0

r(Xs, Us) ds

])
for all x, y ∈ R

d.
We would like to note here that in [7] the authors study the VI algorithm for count-

able state controlled Markov chains with norm-like running costs, i.e., minu r(x, u) →
∞ as |x| → ∞. The initial condition ϕ0 is chosen as a Lyapunov function correspond-
ing to some stable control v0. We leave it to the reader to verify that under these
hypotheses ‖V ‖ϕ0 < ∞. Moreover they assume that ϕ0 is integrable with respect to
the invariant probability distribution μv∗ . (See the earlier discussion concerning the
PIA algorithm.) Thus their hypotheses imply that the optimal value function V from
(1.5) is also integrable with respect to μv∗ .

Work related to this paper has appeared in [12,13,21]. In [12] the author considers
a d-dimensional controlled diffusion governed by

(1.16) dXt = Ut dt+ dWt,

where the control process also lives in R
d and the running cost is of the form

(1.17) r(x, u) = l(x, u) + f(x),

and subject to the following assumption: The functions f and l are twice continuously
differentiable, u �→ l(x, u) is strictly convex, and there exist positive constants l0, f0,
α, and m∗ > 1 such that

l0|u|m
∗
≤ l(x, u) ≤ l−1

0 |u|m
∗
,

∣∣Dx l(x, u)
∣∣ ≤ l−1

0

(
1 + |u|m

∗)
∀(x, u) ∈ R

2d,

f0|x|α − f−1
0 ≤ f(x) ≤ f−1

0

(
1 + |x|α

)
, |Df(x)| ≤ f−1

0

(
1 + |x|α−1

)
∀x ∈ R

d.

It is shown that (1.9) admits a unique solution (V ∗, β) with V ∗ having polynomial
growth and satisfying minRd V ∗ = 1. Moreover, β = �. Provided that α ≥ m∗ and
that the initial condition ϕ0 is bounded below and has at most polynomial growth,
it is shown that the solution of (1.10) converges uniformly on compacta and that
ϕ(t, ·)− V ∗(·) tends to a constant as t→ ∞.

In [13] the authors consider the Cauchy problem

∂tf − 1

2
Δf +H(x,Df) = 0 in (0,∞)× R

d,

f(0, ·) = f0 in R
d.

They assume that the Hamiltonian H(x, p) has at most polynomial growth with re-
spect to x and that it is convex and has at most quadratic growth in p. They also as-
sume that the Hessian of H with respect to p is strictly positive definite and bounded.
Additional assumptions which result in ergodicity are also employed. Then provided
that the initial condition ϕ0 has a certain minimal rate of growth, and grows at most
at a polynomial rate, convergence of ϕ(t, ·) − V ∗(·) to a constant as t → ∞ is estab-
lished. The need for a minimal growth rate of the initial condition for convergence
can be compared to [7] and Theorem 3.15 in section 3.4.
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The paper is organized as follows. The next section introduces the notation used
in the paper. Section 3 starts by describing in detail the model and the assumptions
imposed. In section 3.2 we discuss some basic properties of the HJB equation for
the ergodic control problem under near-monotone costs and the implications of the
integrability of the value function under some optimal invariant distribution. In sec-
tion 3.3 we address the issue of existence and uniqueness of solutions to (1.7) and
(1.10) and describe some basic properties of these solutions. In section 3.4 we exhibit
a region of attraction for the solutions of the VI. In section 4 we derive some essential
growth estimates for the solutions of the VI and show that these solutions have locally
bounded oscillation in R

d, uniformly in t ≥ 0. Section 5 is dedicated to the proof of
convergence of the solutions of the RVI, while section 6 concludes with some pointers
to future work.

2. Notation. The standard Euclidean norm in R
d is denoted by |·|. The set of

nonnegative real numbers is denoted by R+, N stands for the set of natural numbers,
and I denotes the indicator function. We denote by τ(A) the first exit time of a
process {Xt, t ∈ R+} from a set A ⊂ R

d, defined by

τ(A) � inf {t > 0 : Xt �∈ A}.

The closure, the boundary, and the complement of a set A ⊂ R
d are denoted by A,

∂A, and Ac, respectively. The open ball of radius R in R
d, centered at the origin, is

denoted by BR, and we let τR � τ(BR) and τ̆R � τ(Bc
R).

The term domain in R
d refers to a nonempty, connected open subset of the

Euclidean space R
d. For a domain D ⊂ R

d, the space Ck(D) (C∞(D)) refers to the
class of all real-valued functions on D whose partial derivatives up to order k (of any
order) exist and are continuous, and Cb(D) denotes the set of all bounded continuous
real-valued functions on D.

We adopt the notation ∂t � ∂
∂t , and for i, j ∈ N, ∂i � ∂

∂xi
and ∂ij � ∂2

∂xi∂xj
. We

often use the standard summation rule that repeated subscripts and superscripts are
summed from 1 through d. For example,

aij∂ijϕ+ bi∂iϕ �
d∑

i,j=1

aij
∂2ϕ

∂xi∂xj
+

d∑
i=1

bi
∂ϕ

∂xi
.

For a nonnegative multi-index α = (α1, . . . , αd) we let Dα � ∂α1
1 · · ·∂αd

d . Let Q
be a domain in R+×R

d. Recall that Cr,k+2r(Q) stands for the set of continuous real-
valued functions ϕ(t, x) defined on Q such that the derivatives Dα∂�tϕ are bounded
and continuous in Q for

|α|+ 2� ≤ k + 2r, � ≤ r.

By a slight abuse of notation, whenever the whole space R
d is concerned, we write

f ∈ Cr,k+2r(I × R
d), where I is an interval in R+, whenever f ∈ Cr,k+2r(Q) for all

bounded domains Q ⊂ I × R
d.

In general if X is a space of real-valued functions onQ, Xloc consists of all functions
f such that fϕ ∈ X for every ϕ ∈ C∞

c (Q), the space of smooth functions on Q with
compact support. In this manner we obtain, for example, the space W

2,p
loc(Q).

We won’t introduce here the parabolic Sobolev space Wr,k+2r,p(Q), since the
solutions of (1.7) and (1.10) are in C1,2

(
(0,∞) × R

d
)
. The only exception is the

function ψ in Theorem 4.7 and the function ψT used in the proof of Lemma 4.8. We
refer the reader to [15] for definitions and properties of the parabolic Sobolev space.
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3. Problem statement and preliminary results.

3.1. The model. The dynamics are modeled by a controlled diffusion process
X = {Xt, t ≥ 0} taking values in the d-dimensional Euclidean space Rd and governed
by the Itô SDE in (1.1). All random processes in (1.1) live in a complete probability
space (Ω,F,P). The process W is a d-dimensional standard Wiener process indepen-
dent of the initial condition X0. The control process U takes values in a compact,
metrizable set U, and Ut(ω) is jointly measurable in (t, ω) ∈ [0,∞)×Ω. Moreover, it
is nonanticipative: for s < t, Wt −Ws is independent of

Fs � the completion of σ{X0, Ur,Wr, r ≤ s} relative to (F,P).

Such a process U is called an admissible control, and we let U denote the set of all
admissible controls.

We impose the following standard assumptions on the drift b and the diffusion
matrix σ to guarantee existence and uniqueness of solutions to (1.1).

(A1) Local Lipschitz continuity. The functions

b =
[
b1, . . . , bd

]T
: Rd × U �→ R

d and σ =
[
σij

]
: Rd �→ R

d×d

are locally Lipschitz in x with a Lipschitz constant κR > 0 depending on R > 0.
In other words, for all x, y ∈ BR and u ∈ U,

|b(x, u)− b(y, u)|+ ‖σ(x)− σ(y)‖ ≤ κR|x− y|.

We also assume that b is continuous in (x, u).
(A2) Affine growth condition. b and σ satisfy a global growth condition of the form

|b(x, u)|2 + ‖σ(x)‖2 ≤ κ1
(
1 + |x|2

)
∀(x, u) ∈ R

d × U,

where ‖σ‖2 � trace
(
σσT

)
.

(A3) Local nondegeneracy. For each R > 0, we have

d∑
i,j=1

aij(x)ξiξj ≥ κ−1
R |ξ|2 ∀x ∈ BR

for all ξ = (ξ1, . . . , ξd) ∈ R
d.

In integral form, (1.1) is written as

(3.1) Xt = X0 +

∫ t

0

b(Xs, Us) ds+

∫ t

0

σ(Xs) dWs.

The second term on the right-hand side of (3.1) is an Itô stochastic integral. We say
that a process X = {Xt(ω)} is a solution of (1.1) if it is Ft-adapted, continuous in t,
defined for all ω ∈ Ω and t ∈ [0,∞), and satisfies (3.1) for all t ∈ [0,∞) at once a.s.

We define the family of operators Lu : C2(Rd) �→ C(Rd), where u ∈ U plays the
role of a parameter, by

(3.2) Luf(x) = aij(x) ∂ijf(x) + bi(x, u) ∂if(x), u ∈ U.

We refer to Lu as the controlled extended generator of the diffusion.
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Of fundamental importance in the study of functionals of X is Itô’s formula. For
f ∈ C2(Rd) and with Lu as defined in (3.2), it holds that

(3.3) f(Xt) = f(X0) +

∫ t

0

LUsf(Xs) ds+Mt a.s.,

where

Mt �
∫ t

0

〈
∇f(Xs),σ(Xs) dWs

〉
is a local martingale. Krylov’s extension of Itô’s formula [14, p. 122] extends (3.3) to
functions f in the local Sobolev space W

2,p
loc(R

d), p ≥ d.
Recall that a control is called Markov if Ut = v(t,Xt) for a measurable map

v : R+ × R
d �→ U, and it is called stationary Markov if v does not depend on t, i.e.,

v : Rd �→ U. Correspondingly, the equation

(3.4) Xt = x0 +

∫ t

0

b
(
Xs, v(s,Xs)

)
ds+

∫ t

0

σ(Xs) dWs

is said to have a strong solution if given a Wiener process (Wt,Ft) on a complete
probability space (Ω,F,P), there exists a process X on (Ω,F,P), with X0 = x0 ∈ R

d,
which is continuous, Ft-adapted, and satisfies (3.4) for all t at once, a.s. A strong
solution is called unique if any two such solutions X and X ′ agree P-a.s. when viewed
as elements of C

(
[0,∞),Rd

)
. It is well known that under assumptions (A1)–(A3), for

any Markov control v, (3.4) has a unique strong solution [10].
Let USM denote the set of stationary Markov controls. Under v ∈ USM, the process

X is strong Markov, and we denote its transition function by P t
v(x, ·). It also follows

from the work of [6, 22] that under v ∈ USM, the transition probabilities of X have
densities which are locally Hölder continuous. Thus Lv defined by

Lvf(x) = aij(x) ∂ijf(x) + bi
(
x, v(x)

)
∂if(x), v ∈ USM,

for f ∈ C2(Rd), is the generator of a strongly continuous semigroup on Cb(Rd), which
is strong Feller. We let P

v
x denote the probability measure and E

v
x the expectation

operator on the canonical space of the process under the control v ∈ USM, conditioned
on the process X starting from x ∈ R

d at t = 0.

3.2. The ergodic control problem. We assume that the running cost function
r(x, u) is nonnegative, continuous, and locally Lipschitz in its first argument uniformly
in u ∈ U. Without loss of generality we let κR be a Lipschitz constant of r(·, u) over
BR. In summary, we assume the following:

(A4) r : Rd × U → R+ is continuous and satisfies, for some constant κR > 0,∣∣r(x, u)− r(y, u)
∣∣ ≤ κR|x− y| ∀x, y ∈ BR, ∀u ∈ U,

and for all R > 0.
As mentioned in section 1, an important class of running cost functions arising in

practice for which the ergodic control problem is well behaved are the near-monotone
cost functions. Throughout this paper the near-monotone hypothesis (1.8) is in effect.

The ergodic control problem for near-monotone cost functions is characterized
by the following theorem, which combines Theorems 3.4.7, 3.6.6, and 3.6.10 and
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Lemmas 3.6.8 and 3.6.9 in [4]. Note that we choose to normalize the value func-
tion V ∗ differently here in order to facilitate the use of weighted norms.

Theorem 3.1. There exists a unique function V ∗ ∈ C2(Rd) which solves the
HJB equation (1.5) and satisfies minRd V ∗ = 1. Also, a control v∗ ∈ USM is optimal
with respect to the criteria (1.2) and (1.3) if and only if it satisfies (1.6) a.e. in R

d.
Moreover, recalling that τ̆R = τ(Bc

R), R > 0, we have

V ∗(x) = inf
v∈USSM

E
v
x

[∫ τ̆R

0

(
r
(
Xt, v(Xt)

)
− �

)
dt+ V ∗(Xτ̆R

)

]
(3.5)

= E
v∗
x

[∫ τ̆R

0

(
r
(
Xt, v

∗(Xt)
)
− �

)
dt+ V ∗(Xτ̆R

)

]
∀x ∈ Bc

R

for all R > 0.
Recall that control v ∈ USM is called stable if the associated diffusion is positive

recurrent. We denote the set of such controls by USSM and let μv denote the unique
invariant probability measure on R

d for the diffusion under the control v ∈ USSM.
Recall that v ∈ USSM if and only if there exists an inf-compact function V ∈ C2(Rd),
a bounded domain D ⊂ R

d, and a constant ε > 0 satisfying

LvV(x) ≤ −ε ∀x ∈ Dc.

It follows that the optimal control v∗ in Theorem 3.1 is stable.
The technical assumption in Theorem 1.1 is the following.
Assumption 3.2. The value function V ∗ is integrable with respect to some optimal

invariant probability distribution μv∗ .
However, many results in this paper do not rely on Assumption 3.2.
Remark 3.3. Assumption 3.2 is equivalent to the following [4, Lemma 3.3.4]:

there exists an optimal stationary control v∗, an inf-compact function V ∈ C2(Rd),
and an open ball B ⊂ R

d such that

(3.6) Lv∗V(x) ≤ −V ∗(x) ∀x ∈ Bc.

For the rest of the paper v∗ ∈ USSM denotes some fixed control satisfying (1.6)
and (3.6).

Remark 3.4. Assumption 3.2 is pretty mild. In the case that r is bounded it
is equivalent to the statement that the mean hitting times to an open bounded set
are integrable with respect to some optimal invariant probability distribution. In the
case of one-dimensional diffusions, provided σ(x) > σ0 for some constant σ0 > 0,

and lim sup|x|→∞
x b(x)
σ2(x) < − 1

2 , the mean hitting time of 0 ∈ R is bounded above

by a second-degree polynomial in x [17, Theorem 5.6]. Therefore, in this case, the
existence of second moments for μv∗ implies Assumption 3.2. An example of this case,
borrowed from [4, section 3.8.1], is the one-dimensional controlled diffusion

dXt = Ut dt+ dWt, X0 = x,

where Ut ∈ [−1, 1] is the control variable. Let r(x, u) = 1− e−|x| be the running cost
function. Clearly r is near-monotone. An optimal stationary Markov control is given
by v∗(x) = − sign(x), and the corresponding invariant probability measure is

μv∗(dx) = e−2|x|dx.
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Also � = 1/3. Solving the HJB we obtain

V ∗(x) = 2
3

(
e−|x| + |x| − 1

)
,

which is clearly integrable with respect to μv∗ .

Another class of problems for which Assumption 3.2 holds is linear controlled
diffusions of the form

dXt =
(
AXt +BUt

)
dt+ dWt, X0 = x,

where Xt ∈ R
d, A ∈ R

d×d, B ∈ R
d×m, and Ut ∈ R

m. Let r(x, u) = xTRx + uTSu
with R and S positive definitive square matrices. Suppose that the pair (A,B) is
controllable. Then under any constant feedback control v(x) = Zx, Z ∈ R

m×d, such
that the matrix A+BZ is Hurwitz, the diffusion is positive recurrent and the average
cost finite. Therefore � <∞ and r is clearly near-monotone. Since the action space is
not compact this problem does not fit our model exactly. So we modify the model as
follows. Let Z ⊂ R

m×d be a compact set that contains the optimal gain corresponding
to the optimal linear feedback control for the linear quadratic problem above. We use
the transformation Ut = ZtXt with Zt denoting the new control variable which lives
in Z. It is well known that the optimal invariant distribution is Gaussian and that
V ∗ is quadratic in x. Integrability of V ∗ follows.

Assumption 3.2 is also implied by Assumption 3.18 in section 3.4, under which
we obtain convergence of the VI algorithm (see Theorem 3.20).

We need the following lemma.

Lemma 3.5. Under Assumption 3.2,

E
v∗
x

[
V ∗(Xt)

]
−−−→
t→∞ μv∗ [V ∗] �

∫
Rd

V ∗(x)μv∗(dx) ∀x ∈ R
d,

where, as defined earlier, μv∗ is the invariant probability measure of the diffusion
under the control v∗. Also there exists a constant mr depending on r such that

(3.7) sup
t≥0

E
v∗
x

[
V ∗(Xt)

]
≤ mr(V

∗(x) + 1) ∀x ∈ R
d.

Proof. Since r is nonnegative, by Dynkin’s formula we have

(3.8) E
v∗
x [V ∗(Xt)] ≤ V ∗(x) + � t ∀t ≥ 0, ∀x ∈ R

d.

Therefore, since V ∗ is integrable with respect to μv∗ by Assumption 3.2, the first result
follows by [20, Theorem 5.3(i)]. The bound in (3.7) is the continuous time analogue
of (14.5) in [18]. Recall that a skeleton of a continuous time Markov process is a

discrete time Markov process with transition probability P̂ =
∫∞
0 ν(dt)P t, where ν is

a probability measure on (0,∞). Since the diffusion is nondegenerate, any skeleton
of the process is φ-irreducible, with an irreducibility measure absolutely continuous
with respect to the Lebesgue measure. (For a definition of φ-irreducibility we refer
the reader to [18, Chapter 4].) It is also straightforward to show that compact subsets

of Rd are petite. Define the transition probability P̃ by

P̃ f(x) =

∫
Rd

P̃ (x, dy) f(y) � E
v∗
x [f(Xt)]|t=1, x ∈ R

d,
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for all functions f ∈ Cb(Rd), and gr : R
d → R+ by

gr(x) � E
v∗
x

[∫ 1

0

r
(
Xs, v

∗(Xs)
)
ds

]
, x ∈ R

d.

Then (1.5) translates into the discrete time Poisson equation:

(3.9) P̃ V ∗(x) − V ∗(x) = �− gr(x), x ∈ R
d.

It easily follows from the near-monotone hypothesis (1.8) that there exists a constant
ε0 > 0 and a ball BR0 ⊂ R

d, R0 > 0, such that gr(x)− � > ε0 for all x ∈ Bc
R0

. Since,
in addition,

∫
Rd V

∗(x)μv∗(dx) <∞, it follows by (3.9) and [18, Theorem 14.0.1] that
there exists a constant m̃ such that

(3.10)
∞∑

n=0

∣∣P̃ngr(x)− �
∣∣ ≤ m̃(V ∗(x) + 1) ∀x ∈ R

d.

By (3.9)–(3.10) we obtain

P̃nV ∗(x) = V ∗(x)−
n−1∑
k=0

(P̃ kgr(x) − �)(3.11)

≤ (m̃+ 1)(V ∗(x) + 1).

By (3.8) and (3.11), writing the arbitrary t ∈ R+ as t = n+ δ, where n is the integer
part of t and using the Markov property, we obtain

E
v∗
x

[
V ∗(Xt)

]
= E

v∗
x

[
E
v∗
Xδ

[
V ∗(Xt−δ)

]]
= E

v∗
x

[
P̃nV ∗(Xδ)

]
≤ E

v∗
x

[
(m̃+ 1)(V ∗(Xδ) + 1)

]
≤ (m̃+ 1) (V ∗(x) + � δ + 1)

≤ (m̃+ 1) (V ∗(x) + �+ 1) ∀t ≥ 0, ∀x ∈ R
d,

thus establishing (3.7).
Definition 3.6. We let CV ∗(Rd) denote the Banach space of functions f ∈ C(Rd)

with norm

‖f‖V ∗ � sup
x∈Rd

|f(x)|
V ∗(x)

.

We also define

OV ∗ �
{
f ∈ CV ∗(Rd)∩C2(Rd) : f ≥ 0

}
.

3.3. The RVI. The RVI and VI equations in (1.7) and (1.10) can also be written
in the form

∂tϕ(t, x) = min
u∈U

[
Luϕ(t, x) + r(x, u)

]
− ϕ(t, 0), ϕ(0, x) = ϕ0(x),(3.12)

∂tϕ(t, x) = min
u∈U

[
Luϕ(t, x) + r(x, u)

]
− �, ϕ(0, x) = ϕ0(x).(3.13)
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Definition 3.7. Let v̂ = {v̂t, t ∈ R+} denote a measurable selector from the
minimizer in (3.13) corresponding to a solution ϕ ∈ C

(
[0,∞)×R

d
)
∩C1,2

(
(0,∞)×R

d
)
.

This is also a measurable selector from the minimizer in (3.12), provided ϕ and ϕ are
related by (1.11) and (1.14) and vice versa. Note that the Markov control associated
with v̂ is computed “backward” in time (see (1.15)). Hence, for each t ≥ 0 we define
the (nonstationary) Markov control

v̂t �
{
v̂ts = v̂t−s, s ∈ [0, t]

}
.

Also, we adopt the simplifying notation

r(x, u) � r(x, u) − �.

In most of the statements of intermediary results the initial data ϕ0 is assumed
without loss of generality to be nonnegative. We start with a theorem that proves the
existence of a solution to (3.13) that admits the stochastic representation in (1.15).
This does not require Assumption 3.2.

First we need the following definition.

Definition 3.8. We define R
d
T � (0, T )×R

d and let Rd
T denote its closure. We

also let CT
V ∗(Rd) denote the Banach space of functions in C(Rd

T ) with norm

‖f‖V ∗,T � sup
(t,x)∈Rd

T

|f(t, x)|
V ∗(x)

.

Theorem 3.9. Provided ϕ0 ∈ OV ∗ , then

ϕ(t, x) = inf
U∈U

E
U
x

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]
(3.14a)

is the minimal solution of (3.13) in C
(
[0,∞)×R

d
)
∩C1,2

(
(0,∞)×R

d
)
which is bounded

below on R
d
T for any T > 0. With v̂t as in Definition 3.7, it admits the representation

ϕ(t, x) = E
v̂t

x

[∫ t

0

r
(
Xs, v̂

t
s(Xs)

)
ds+ ϕ0(Xt)

]
,(3.14b)

and it holds that

(3.15) E
v̂t

x

[
ϕ(t− τR ∧ t,XτR) I{τR < t}

]
−−−−→
R→∞

0

for all (t, x) ∈ R+ × R
d. Moreover ϕ(t, ·) ≥ −� t and satisfies the estimate

(3.16) ‖ϕ‖V ∗,T ≤ (1 + � T ) max
(
1, ‖ϕ0‖V ∗

)
∀T > 0.

Proof. Let ε0 > 0 be such that

lim inf
|x|→∞

min
u∈U

r(x, u) > �+ ε0.

With d(x,B) denoting the Euclidean distance of the point x ∈ R
d from the set B ⊂ R

d

and Bn ⊂ R
d denoting the ball of radius n centered at the origin, we define

rn(x, u) =
d(x,Bc

n+1) r(x, u) + d(x,Bn) (�+ ε0)

d(x,Bc
n+1) + d(x,Bn)

.
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Note that each rn is Lipschitz in x, and by the near-monotone property of r, we have
rn ≤ rn+1 ≤ r for all large enough n. In addition, rn → r as n → ∞. Let �n denote
the optimal ergodic cost corresponding to rn. Since �n ≤ �, it follows that rn is
near-monotone for all n sufficiently large. Let also {ϕn

0 : n ∈ N} ⊂ OV ∗ be a sequence
satisfying ϕn

0 = 0 on Bc
n and ϕn

0 ↑ ϕ0 as n → ∞. Without loss of generality we
assume that ‖rn‖∞ ≤ n and ‖ϕn

0‖∞ ≤ n for all n ∈ N; otherwise we can slow down
the growth of these sequences by repeating terms. The boundary value problem

∂tϕ̂
R
n (t, x) = min

u∈U

[
Luϕ̂R

n (t, x) + rn(x, u)
]

in (0, T )×BR,

ϕ̂R
n (0, x) = ϕn

0 (x) ∀x ∈ BR, ϕ̂R
n (t, ·)|∂BR = 0 ∀t ∈ [0, T ],

has a unique nonnegative solution in C
(
[0, T ]×BR

)
∩C1,2

loc

(
(0, T )×BR

)
for all T > 0

and R > n. This solution has the stochastic representation

(3.17) ϕ̂R
n (t, x) = inf

U∈U
E
U
x

[∫ τR∧t

0

rn(Xs, Us) ds+ ϕn
0 (Xt) I{t < τR}

]
,

where, as defined in section 2, τR denotes the first exit time from the ball BR. By
(3.17) we obtain

ϕ̂R
n (t, x) ≤ E

v∗
x

[∫ τR∧t

0

rn
(
Xs, v

∗(Xs)
)
ds+ ϕn

0 (Xt) I{t < τR}
]

≤ max
(
1, ‖ϕ0‖V ∗

)
E
v∗
x

[∫ τR∧t

0

r
(
Xs, v

∗(Xs)
)
ds+ V ∗(XτR∧t)

]
≤ max

(
1, ‖ϕ0‖V ∗

)(
V ∗(x) + � t

)
.

From [16, Theorem 6.2, p. 457] the derivatives
{
Dα∂�t ϕ̂

R
n : |α|+2� ≤ 2, R > n, n ∈ N

}
are locally Hölder equicontinuous in R

d
T . Thus passing to the limit as R → ∞ along a

subsequence we obtain a nonnegative function ϕ̂n ∈ C
(
Rd

T

)
∩C1,2

(
R

d
T

)
for all T > 0,

which satisfies

∂tϕ̂n(t, x) = min
u∈U

[Luϕ̂n(t, x) + rn(x, u)] in (0,∞)× R
d,(3.18)

ϕ̂n(0, x) = ϕn
0 (x) ∀x ∈ R

d.

By using Dynkin’s formula on the cylinder [0, t]×BR, we obtain from (3.18) that

(3.19) ϕ̂n(t, x) = inf
U∈U

E
U
x

[∫ τR∧t

0

rn(Xs, Us) ds+ ϕ̂n(t− τR ∧ t,XτR∧t)

]
.

It also follows by (3.17) that ‖ϕ̂n(t, ·)‖∞ ≤ n(t+1) for all n ∈ N and t ≥ 0. By (3.19)
we have the inequality

(3.20)

ϕ̂n(t, x) ≤ E
U
x

[∫ τR∧t

0

rn(Xs, Us) ds+ ϕ̂n(t− τR ∧ t,XτR∧t)

]
≤ E

U
x

[∫ τR∧t

0

rn(Xs, Us) ds+ ϕn
0 (Xt) I{τR > t}

]
+ n(t+ 1)PU

x (τR ≤ t)
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for all U ∈ U. Taking limits as R → ∞ in (3.20), using dominated convergence, we
obtain

(3.21) ϕ̂n(t, x) ≤ E
U
x

[∫ t

0

rn(Xs, Us) ds+ ϕn
0 (Xt)

]
∀ U ∈ U.

Note that

(3.22) 0 ≤ ϕ̂n(t, x) ≤ lim sup
R→∞

ϕ̂R
n (t, x) ≤ max

(
1, ‖ϕ0‖V ∗

)(
V ∗(x) + � t

)
.

Hence, as mentioned earlier, the derivatives
{
Dα∂�t ϕ̂n : |α| + 2� ≤ 2, n ∈ N

}
are

locally Hölder equicontinuous in (0,∞) × R
d. Also as shown in [4, p. 119] we have

�n → � as n→ ∞. Let {kn}n∈N ⊂ N be an arbitrary increasing sequence. Then there

exists some subsequence {k′n} ⊂ {kn} such that ϕ̂k′
n
→ ϕ̂ ∈ C

(
Rd

T

)
∩C1,2

(
R

d
T

)
for all

T > 0, and ϕ̂ satisfies

∂tϕ̂(t, x) = min
u∈U

[Luϕ̂(t, x) + r(x, u)] in (0,∞)× R
d,(3.23)

ϕ̂(0, x) = ϕ0(x) ∀x ∈ R
d.

Let v̂t denote a stationary Markov control associated with the minimizer in (3.23) as
in Definition 3.7. By using Dynkin’s formula on the cylinder [0, t] × BR, we obtain
from (3.23) that

ϕ̂(t, x) = inf
U∈U

E
U
x

[∫ τR∧t

0

r(Xs, Us) ds+ ϕ̂(t− τR ∧ t,XτR∧t)

]
,(3.24a)

ϕ̂(t, x) = E
v̂t

x

[∫ τR∧t

0

r
(
Xs, v̂

t
s(Xs)

)
ds+ ϕ̂(t− τR ∧ t,XτR∧t)

]
.(3.24b)

Since ϕ̂(t, ·) is nonnegative, letting R → ∞ in (3.24b), by Fatou’s lemma we obtain

ϕ̂(t, x) ≥ E
v̂t

x

[∫ t

0

r
(
Xs, v̂

t
s(Xs)

)
ds+ ϕ0(Xt)

]
(3.25)

≥ inf
U∈U

E
U
x

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]
.

Taking limits as n→ ∞ in (3.21), using monotone convergence for the first term
on the right-hand side, we obtain

(3.26) ϕ̂(t, x) ≤ E
U
x

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]
∀ U ∈ U.

By (3.25)–(3.26) we have

ϕ̂(t, x) = inf
U∈U

E
U
x

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]
,(3.27a)

ϕ̂(t, x) = E
v̂t

x

[∫ t

0

r
(
Xs, v̂

t
s(Xs)

)
ds+ ϕ0(Xt)

]
.(3.27b)

Let ϕ(t, x) � ϕ̂(t, x) − � t. Then ϕ solves (3.13) and (3.14a)–(3.14b) follow by
(3.27a)–(3.27b). It is also clear that ϕ(t, x) ≥ −� t, which together with (3.22) im-
plies (3.16).
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By (3.24b) we have

ϕ̂(t, x) = E
v̂t

x

[∫ τR∧t

0

r
(
Xs, v̂

t
s(Xs)

)
ds+ ϕ0(Xt) I{τR ≥ t}

]
(3.28)

+ E
v̂t

x

[
ϕ̂(t− τR ∧ t,XτR) I{τR < t}

]
.

The first term on the right-hand side of (3.28) tends to the right-hand side of (3.27b)
by monotone convergence as R ↑ ∞. Therefore (3.15) holds.

Suppose ϕ̃ is a solution of (3.23) in C
(
Rd

T

)
∩C1,2

(
R

d
T

)
for some T > 0, which is

bounded below, and ṽt is a Markov control from the minimizer of (3.23). Applying
Dynkin’s formula on the cylinder [0, t]×BR and letting R → ∞ using Fatou’s lemma,
we obtain

ϕ̃(t, x) ≥ E
ṽt

x

[∫ t

0

r
(
Xs, ṽ

t
s(Xs)

)
ds+ ϕ0(Xt)

]
≥ inf

U∈U
E
U
x

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]
≥ ϕ̂(t, x).

Therefore ϕ(t, x) is the minimal solution of (3.13) in C
(
[0,∞)×R

d
)
∩C1,2

(
(0,∞)×R

d
)

which is bounded below on R
d
T for each T > 0.

In the interest of economy of language we refer to the solution in (3.14a) as
canonical. This is detailed in the following definition.

Definition 3.10. Given an initial condition ϕ0 ∈ OV ∗ we define the canonical
solution to the VI in (3.13) as the solution which was constructed in the proof of
Theorem 3.9 and was shown to admit the stochastic representation in (3.14a). In other
words, this is the minimal solution of (3.13) in C

(
[0,∞) × R

d
)
∩C1,2

(
(0,∞) × R

d
)

which is bounded below on R
d
T for any T > 0. The canonical solution to the VI well

defines the canonical solution to the RVI in (3.12) via (1.14).
For the rest of the paper a solution to the RVI or VI is always meant to be a

canonical solution. In summary, these are characterized by

ϕ(t, x) +

∫ t

0

ϕ(s, 0) ds = inf
U∈U

E
U
x

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]
(3.29)

=

∫ t

0

E
v̂t

x

[
r
(
Xs, v̂

t
s(Xs)

)]
ds+ E

v̂t

x

[
ϕ0(Xt)

]
.

Similarly

ϕ(t, x) = inf
U∈U

E
U
x

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]
=

∫ t

0

E
v̂t

x

[
r
(
Xs, v̂

t
s(Xs)

)]
ds+ E

v̂t

x

[
ϕ0(Xt)

]
.

The next lemma provides an important estimate for the canonical solutions of
the VI.

Lemma 3.11. Provided ϕ0 ∈ CV ∗(Rd)∩C2(Rd), the canonical solution ϕ ∈
C1,2(R+ × R

d) of (3.13) satisfies the bound

(3.30) E
v̂t

x

[
ϕ0(Xt)− V ∗(Xt)

]
≤ ϕ(t, x) − V ∗(x) ≤ E

v∗
x

[
ϕ0(Xt)− V ∗(Xt)

]
for all (t, x) ∈ R+ × R

d.
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Proof. By (1.5) and (3.13) we obtain

−∂t(V ∗ − ϕ) + Lv∗
(V ∗ − ϕ) ≤ 0

and

−∂t(V ∗ − ϕ) + Lv̂t(V ∗ − ϕ) ≥ 0

from which, by an application of Itô’s formula to V ∗(Xs)− ϕ(t− s,Xs), s ∈ [0, t], it
follows that

E
v∗
x

[
V ∗(Xt)− ϕ0(Xt)

]
≤ V ∗(x)− ϕ(t, x)

and

E
v̂t

x

[
V ∗(Xt)− ϕ0(Xt)

]
≥ V ∗(x)− ϕ(t, x),

respectively, and the estimate follows.
Concerning the uniqueness of the canonical solution in a larger class of functions,

this depends on the growth of V ∗ and the coefficients of the SDE in (1.1). Various
such uniqueness results can be given based on different hypotheses on the growth of
the data. The following result assumes that V ∗ has polynomial growth, which is the
case in many applications.

Theorem 3.12. Let ϕ0 ∈ OV ∗ and suppose that for some constants c1, c2, and

m > 0, V ∗(x) ≤ c1+ c2|x|m. Then any solution ϕ′ ∈ C
(
Rd

T

)
∩C1,2

(
R

d
T

)
of (3.13), for

some T > 0, which is bounded below in Rd
T and satisfies ‖ϕ′‖V ∗,T < ∞ agrees with

the canonical solution ϕ on Rd
T .

Proof. Let ϕ′ be a solution satisfying the hypothesis in the theorem, and let ϕ
be the canonical solution of (3.13) and v̂t an associated Markov control as in Defini-
tion 3.7. Let ϕε, for ε > 0, denote the canonical solution of (3.13) with initial data
ϕ0 + εV ∗ and let {v̂ε,t, t ∈ R+} denote a measurable selector from the corresponding
minimizer. By Theorem 3.9 for each ε > 0 we obtain

ϕε(t, x) = inf
U∈U

E
U
x

[∫ t

0

r
(
Xs, Us

)
ds+ ϕ0(Xt) + εV ∗(Xt)

]
≥ −� t+ ε inf

U∈U
E
U
x

[∫ t

0

r
(
Xs, Us

)
ds+ V ∗(Xt)

]
≥ εV ∗(x) − � t.

Therefore by (3.15) for each ε > 0, we have

(3.31) E
v̂t
ε

x

[
V ∗(XτR) I{τR < t}

]
−−−−→
R→∞

0 ∀(t, x) ∈ R
d
T ,

which in turn implies, since ‖ϕ′‖V ∗,T <∞, that

(3.32) E
v̂t
ε

x

[
ϕ′(t− τR, XτR) I{τR < t}

]
−−−−→
R→∞

0 ∀(t, x) ∈ R
d
T .

Since −∂tϕ′ + Lv̂ε,tϕ′ + r(x, v̂ε,t(x)
)
≥ 0, we have that for all (t, x) ∈ R

d
T ,

(3.33) ϕ′(t, x) ≤ E
v̂t
ε

x

[∫ τR∧t

0

r
(
Xs, v̂

t
ε,s(Xs)

)
ds+ ϕ′(t− τR ∧ t,XτR∧t)

]
,

and taking limits as R → ∞ in (3.33), using (3.32), it follows that ϕ′ ≤ ϕε on Rd
T .
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The polynomial growth of V ∗ implies that there exists a constant m(x, T ) such
that EU

x [V
∗(Xt)] ≤ m(x, T ) for all (t, x) ∈ R

d
T and U ∈ U [4, Theorem 2.2.2]. There-

fore, since

ϕε(t, x) ≤ E
v̂t

x

[∫ t

0

r
(
Xs, v̂

t
s(Xs)

)
ds+ ϕ0(Xt) + εV ∗(Xt)

]
(3.34)

≤ ϕ(t, x) + εm(x, T ) ∀(t, x) ∈ R
d
T ,

and ϕε ≥ ϕ, it follows by (3.34) that ϕε → ϕ on Rd
T as ε ↓ 0. Thus ϕ′ ≤ ϕ on Rd

T ,
and by the minimality of ϕ we must have equality.

We can also obtain a uniqueness result on a larger class of functions that does
not require V ∗ to have polynomial growth but assumes that the diffusion matrix is
bounded in R

d. This is given in Theorem 3.13 below, whose proof uses the technique
in [8].

We define the following class of functions:

G �
{
f ∈ C2(Rd) : lim

|x|→∞
f(x) e−k|x|2 = 0 for some k > 0

}
.

Theorem 3.13. Suppose V ∗ ∈ G and that ‖σ‖ is bounded in R
d. Then, provided

ϕ0 ∈ OV ∗ , there exists a unique solution ψ to (3.13) such that maxt∈[0,T ] ψ(t, ·) ∈ G
for each T > 0.

Proof. Let ϕ̂ ∈ C
(
[0,∞) × R

d
)
∩C1,2

(
(0,∞) × R

d
)
be the minimal nonnegative

solution of

∂tϕ̂(t, x) = min
u∈U

[Luϕ̂(t, x) + r(x, u)] in (0,∞)× R
d,(3.35)

ϕ̂(0, x) = ϕ0(x) ∀x ∈ R
d,

and let {v̂t, t ∈ R+} denote a measurable selector from the minimizer in (3.35). Sup-
pose that ϕ̃ ∈ C

(
[0,∞)× R

d
)
∩C1,2

(
(0,∞) × R

d
)
is any solution of (3.35) satisfying

the hypothesis of the theorem, and let {ṽt, t ∈ R+} denote a measurable selector from
the corresponding minimizer. Then f � ϕ̃− ϕ̂ satisfies, for any T > 0,

(3.36) ∂tf − Lv̂tf ≤ 0 and ∂tf − Lṽtf ≥ 0 in (0, T ]× R
d,

and f(0, x) = 0 for all x ∈ R
d. By (3.16), the hypothesis that V ∗ ∈ G, and the

hypothesis on the growth of f , it follows that for some k = k(T ) > 0 large enough

(3.37) lim
|x|→∞

max
t∈[0,T ]

|f(t, x)| e−k|x|2 = 0.

It is straightforward to verify by direct computation using the bounds on the co-
efficients of the SDE that there exists γ = γ(k) > 1 such that g(t, x) � e(1+γt)(1+k|x|2)

is a supersolution of

(3.38) ∂tg − Lvtg ≥ 0 in (0, T0]× R
d with T0 ≡ γ−1

under any Markov control {vt}. By (3.37), for any ε > 0 we can select R > 0 large
enough such that |f(t, x)| ≤ εg(t, x) for all (t, x) ∈ [0, γ−1]×∂BR. Using (3.36), (3.38),
and Dynkin’s formula on the strip [0, γ−1]×BR it follows that |f(t, x)| ≤ εg(t, x) for
all (t, x) ∈ [0, γ−1]×BR. Since ε > 0 was arbitrary this implies f ≡ 0, or equivalently
that ϕ̃ = ϕ̂ on [0, γ−1]× R

d.
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Since, by (3.16), ϕ̂(γ−1, ·) ∈ OV ∗ , we can repeat the argument to show that ϕ̃ = ϕ̂
on [γ−1, 2γ−1]×R

d and that the same holds by induction on [nγ−1, (n+1)γ−1]×R
d,

n = 2, 3, . . . , until we cover the interval [0, T ]. This shows that ϕ̃ = ϕ̂ on Rd
T , and

since T > 0 was arbitrary the same holds on [0,∞)× R
d.

We do not enforce any of the assumptions of Theorems 3.12 or 3.13 for the main
results of the paper. Rather our analysis is based on the canonical solution to the VI
and RVI which is well defined (see Definition 3.10).

3.4. A region of attraction for the VI algorithm. In this section we de-
scribe a region of attraction for the VI algorithm. This is a subset of C2(Rd) which
is positively invariant under the semiflow defined by (3.13) and all its points are
convergent, i.e., converge to a solution of (1.5).

Definition 3.14. We let Φt[ϕ0] : C2(Rd) → C2(Rd), t ∈ [0,∞), denote the
canonical solution (semiflow) of the VI in (3.13) starting from ϕ0 and let Φt[ϕ0] denote
the corresponding canonical solution (semiflow) of the RVI in (3.12). Let E denote
the set of solutions of the HJB in (1.5), i.e.,

E � {V ∗ + c : c ∈ R}.

Also for c ∈ R we define the set Gc ⊂ C2(Rd) by

Gc �
{
h ∈ C2(Rd) : h− V ∗ ≥ c, ‖h‖V ∗ <∞

}
.

Let Assumption 3.2 hold. We claim that for each c ∈ R, Gc is positively invariant
under the semiflow Φt. Indeed by (3.7) and (3.30), if ϕ0 ∈ Gc, then we have that

c ≤ Φt[ϕ0](x) − V ∗(x)(3.39)

≤ E
v∗
x

[
ϕ0(Xt)− V ∗(Xt)

]
≤ mr‖ϕ0 − V ∗‖V ∗(V ∗(x) + 1) ∀(t, x) ∈ R+ × R

d.

Since translating ϕ0 by a constant simply translates the orbit {Φt[ϕ0], t ≥ 0} by the
same constant, without loss of generality we let c = 0, and we show that all the points
of G0 are convergent.

Theorem 3.15. Under Assumption 3.2, for each ϕ0 ∈ G0, the semiflow Φt[ϕ0]
converges to c0 + V ∗ ∈ E as t→ ∞ for some c0 ∈ R that satisfies

(3.40) 0 ≤ c0 ≤
∫
Rd

(
ϕ0(x)− V ∗(x)

)
μv∗(dx).

Also Φt[ϕ0] converges to V ∗(·) − V ∗(0) + � as t→ ∞.
Proof. Since, as we showed in the paragraph preceding the theorem, Φt[ϕ0] ∈ G0

for all t ≥ 0, by (3.14a) we have

(3.41) Φt[ϕ0](x) ≤ E
v∗
x

[∫ t−τ

0

r
(
Xs, v

∗(Xs)
)
ds+Φτ [ϕ0](Xt−τ )

]
∀τ ∈ [0, t]

and for all x ∈ R
d. Since Φt[ϕ0](x) − V ∗(x) ≥ 0, and

∫
Rd Φt[ϕ0](x)μv∗(dx) is finite

by Assumption 3.2, it follows by integrating (3.41) with respect to μv∗ that the map

(3.42) t �→
∫
Rd

Φt[ϕ0](x)μv∗(dx)
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is nonincreasing and bounded below. Hence it must be constant on the ω-limit
set of ϕ0 under the semiflow Φt which is denoted by ω(ϕ0). By (3.39) we have
supt>0

∥∥Φt[ϕ0]
∥∥
V ∗ < ∞. Therefore by the interior estimates of solutions of (3.13){

Φt[ϕ0], t > 0
}
is locally precompact in C2(Rd). Hence ω(ϕ0) �= ∅. Let h ∈ ω(ϕ0)

and define

(3.43) f(t, x) � −∂tΦt[h](x) + Lv∗(
Φt[h](x) − V ∗(x)

)
.

Then f(t, x) ≥ 0 for all (t, x), and by applying Itô’s formula to (3.43), we obtain

(3.44) Φt[h](x)− V ∗(x) − E
v∗
x [h(Xt)− V ∗(Xt)] = −E

v∗
x

[∫ t

0

f(t− s,Xs) ds

]
.

Integrating (3.44) with respect to the invariant distribution μv∗ we obtain

(3.45)

∫
Rd

(
Φt[h](x) − h(x)

)
μv∗(dx) = −

∫ t

0

∫
Rd

f(t− s, x)μv∗(dx) ds ∀t ≥ 0.

Since the term on the left-hand side of (3.45) equals 0, as we argued above, it follows
that f(t, x) = 0, (t, x)-a.e., which in turn implies by (3.44) and Lemma 3.5 that

lim
t→∞ Φt[h](x) = V ∗(x)−

∫
Rd

(
V ∗(x)− h(x)

)
μv∗(dx).

It follows that ω(ϕ0) ⊂ E∩G0 and since the map in (3.42) is nonincreasing, it is
straightforward to verify that ω(ϕ0) must be a singleton and that (3.40) is satisfied.
The convergence of Φt[ϕ0] follows from the fact that by (1.14) Φt[ϕ0] converges when-
ever Φt[ϕ0] does and also by observing that by (3.12) the only fixed point of Φt is the
function V ∗(·)− V ∗(0) + �.

Remark 3.16. It follows from Theorem 3.15 that the functional in (3.42) is strictly
decreasing along the semiflow Φt unless ϕ0 ∈ E. This is because if the map in (3.42)
is constant on some interval [t0, t1], with t1 > t0, then we must have

(3.46) Φt[ϕ0](x) = E
v∗
x

[∫ t−t0

0

r
(
Xs, v

∗(Xs)
)
ds+Φt0 [ϕ0](Xt−t0)

]
∀t ∈ [t0, t1].

But (3.46) implies that for some constant C0, we must have Φt[ϕ0](x) = C0 + V ∗(x)
for all t ∈ [t0, t1]. As a result of this monotone property of the map in (3.42), if
A is a bounded subset of CV ∗(Rd), then the only subsets of Gc ∩A, with c ∈ R,
which are invariant under the semiflow Φt are the subsets of E∩Gc ∩A. Similarly,
the only subset of Gc ∩A which is invariant under the semiflow Φt is the singleton
{V ∗(·) − V ∗(0) + �}, assuming of course that it is contained in Gc ∩A. These facts
are used later in the proof of Theorem 1.1.

We also have the following result, which does not require Assumption 3.2.
Corollary 3.17. Suppose ϕ0 ∈ C2(Rd) is such that ϕ0 − V ∗ is bounded. Then

Φt[ϕ0] converges as t→ ∞ to a point in E.
Proof. By (3.30) and under the hypothesis, x �→ ϕ(t, x) − V ∗(x) is bounded

uniformly in t. Thus the result follows as in the proof of Theorem 3.15.
An interesting class of problems are those for which V ∗ does not grow faster than

minu∈U r(·, u). More precisely, we consider the following property.
Assumption 3.18. There exist positive constants θ1 and θ2 such that

min
u∈U

r(x, u) ≥ θ1V
∗(x)− θ2 ∀x ∈ R

d.
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Remark 3.19. Assumption 3.18 is satisfied for linear systems with quadratic cost
as described in Remark 3.4. It is also satisfied for the model in (1.16)–(1.17) if and
only if α ≥ m∗. This is because as shown in [12, Theorem 2.2 and Proposition 4.2],
there exist positive constants k1, k2, and k3 such that

k1|x|α+1−α/m∗ − k2 ≤ V ∗(x) ≤ k3
(
1 + |x|α+1−α/m∗) ∀x ∈ R

d.

Under Assumption 3.18 we have that

Lv∗
V ∗(x) = �− r

(
x, v∗(x)

)
(3.47)

≤ �+ θ2 − θ1V
∗(x),

and it follows that under the control v∗ the diffusion is geometrically ergodic with a
Lyapunov function V ∗. In particular Assumption 3.18 implies Assumption 3.2.

We have the following theorem.

Theorem 3.20. Suppose Assumption 3.18 and the hypotheses of either Theo-
rem 3.12 or 3.13 hold. Then, provided ϕ0 ∈ OV ∗ , the semiflow Φt[ϕ0] converges, as
t→ ∞, to a point c0 + V ∗ ∈ E satisfying

−�+ θ2
θ1

≤ c0 ≤ �+ θ2
θ1

‖ϕ0‖V ∗ .

Therefore Φt[ϕ0] converges to V ∗(·)− V ∗(0) + � as t→ ∞.

Proof. We derive a lower bound for ϕ using the technique in [12, Proposition 5.5].
Let ϕε, for ε > 0, denote the canonical solution of (3.13) with initial data ϕ0+εV

∗ and
let {v̂ε,t, t ∈ R+} denote a measurable selector from the corresponding minimizer. Let

fε(t, x) � ϕε(t, x)−
(
1− e−θ1t

)(
V ∗(x)− �+ θ2

θ1

)
.

Then, since Lv̂ε,tV ∗(x) ≥ −r
(
x, v̂ε,t(x)

)
, using Assumption 3.18 we obtain that

Fε(t, x) � ∂tfε(t, x)− Lv̂ε,tfε(t, x)

(3.48)

= r
(
x, v̂ε,t(x)

)
− θ1e

−θ1t

(
V ∗(x)− �+ θ2

θ1

)
+
(
1− e−θ1t

)
Lv̂ε,tV ∗(x)

≥ r
(
x, v̂ε,t(x)

)
− θ1e

−θ1t

(
V ∗(x)− �+ θ2

θ1

)
−
(
1− e−θ1t

)
r
(
x, v̂ε,t(x)

)
= e−θ1t

(
r
(
x, v̂ε,t(x)

)
− θ1V

∗(x) + θ2
)

≥ 0 ∀(t, x) ∈ R+ × R
d.

By (3.16) we have

(3.49) ‖ϕε‖V ∗,T ≤ (1 + � T ) max
(
1, ε+ ‖ϕ0‖V ∗

)
∀T > 0.

Therefore by (3.49) and (3.31), for all T > 0, we have that

(3.50) E
v̂t
ε

x

[∣∣fε(t− τR ∧ t,XτR)
∣∣ I{τR < t}

]
−−−−→
R→∞

0 ∀(t, x) ∈ R
d
T .
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By using Dynkin’s formula on the cylinder [0, t]×BR, we obtain from (3.48) that

fε(t, x) = E
v̂t
ε

x

[∫ τR∧t

0

Fε(t− s,Xs) ds+
(
ϕ0(Xt) + εV ∗(Xt)

)
I{τR ≥ t}

]
(3.51)

+ E
v̂t
ε

x

[
fε(t− τR ∧ t,XτR) I{τR < t}

]
.

Letting R → ∞ in (3.51), by Fatou’s lemma and (3.50) we obtain that fε(t, x) ≥ 0
for all (t, x) ∈ R+ × R

d. By construction ϕε satisfies

∂tϕε(t, x) = min
u∈U

[
Luϕε(t, x) + r(x, u)

]
− �,(3.52)

ϕε(0, x) = ϕ0(x) + εV ∗(x),

and by (3.49) it is locally bounded uniformly in ε ∈ (0, 1). Therefore by the interior
estimates of solutions of (3.52), as mentioned earlier, the derivatives

{
Dα∂�tϕε : |α|+

2� ≤ 2, ε ∈ (0, 1)
}
are locally Hölder equicontinuous in R+×R

d. Also by Theorem 3.9

ϕε(t, ·) ≥ −� t for all t > 0. It follows that ϕε ↓ ϕ0 ∈ C1,2
(
(0,∞)×R

d
)
uniformly over

compact subsets in (0,∞)× R
d and that the limit ϕ0 satisfies (3.13) and is bounded

below in Rd
T for all T > 0. By the uniqueness results of Theorem 3.12 or 3.13, ϕ0

agrees with the canonical solution ϕ of (3.13). It follows that

(3.53) ϕ(t, x) −
(
1− e−θ1t

)(
V ∗(x)− �+ θ2

θ1

)
= lim

ε↓0
fε(t, x) ≥ 0

for all (t, x) ∈ R+ × R
d. It is well known (see [4, Lemma 2.5.5]) that (3.47) implies

that

E
v∗
x [V ∗(Xt)] ≤

�+ θ2
θ1

+ e−θ1tV ∗(x) ∀(t, x) ∈ R+ × R
d, ∀U ∈ U.

Therefore, the inequality on the right-hand side of (3.30) together with (3.53) imply
that
(3.54)(
1− e−θ1t

)(
V ∗(x) − �+ θ2

θ1

)
≤ ϕ(t, x) ≤ V ∗(x) + ‖ϕ0‖V ∗

(
�+ θ2
θ1

+ e−θ1tV ∗(x)
)
.

Since by (3.54) the orbit {Φt[ϕ0], t ≥ 0} is bounded in CV ∗(Rd) one may follow the
proof of Theorem 3.15 to establish the result. Alternatively, we can use the following
argument: By (3.54) every ω-limit point h of Φt[ϕ0] lies in the set

G(ϕ0) �
{
h ∈ C2(Rd) : −�+ θ2

θ1
≤ h− V ∗ ≤ �+ θ2

θ1
‖ϕ0‖V ∗

}
.

Since the ω-limit set of ϕ0 under Φt is invariant and since by Remark 3.16 the only
invariant subsets of G(ϕ0) are the subsets of E∩G(ϕ0), the result follows.

4. Growth estimates for solutions of the VI. Most of the results of this
section do not require Assumption 3.2. It is needed only for Lemma 4.10. Throughout
this section and also in section 5 a solution ϕ (ϕ) always refers to the canonical solution
of the VI (RVI) without further mention (see Definition 3.10).

Lemma 4.1. Suppose ϕ0 ∈ OV ∗. Then

1

t
ϕ(t, x) −−−→

t→∞ 0.
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Proof. Since ‖ϕ0‖V ∗ < ∞ it follows that 1
t E

v∗
x [ϕ0(Xt)] → 0 as t → ∞ (see [4,

Lemma 3.7.2(ii)]), and so we have

0 ≤ lim inf
t→∞

1

t
inf
U∈U

E
U
x

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]
= lim inf

t→∞
ϕ(t, x)

t
≤ lim sup

t→∞
ϕ(t, x)

t

≤ lim sup
t→∞

1

t
E
v∗
x

[∫ t

0

r
(
Xs, v

∗(Xs)
)
ds+ ϕ0(Xt)

]
= 0.

The first inequality above uses the fact that ϕ0 is bounded below and that � is the
optimal ergodic cost.

Lemma 4.2. Provided ‖ϕ0‖∞ <∞, it holds that for all t ≥ 0

ϕ(t− τ, x)− ϕ(t, x) ≤ � τ + osc
Rd

ϕ0 ∀x ∈ R
d, ∀τ ∈ [0, t].

Proof. We have

ϕ(t− τ, x)− ϕ(t, x) = inf
U∈U

E
U
x

[∫ t−τ

0

r(Xs, Us) ds+ ϕ0(Xt−τ )

]
− inf

U∈U
E
U
x

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]
≤ − inf

U∈U
E
U
x

[
ϕ0(Xt)− ϕ0(Xt−τ ) +

∫ t

t−τ

r(Xs, Us) ds

]
≤ � τ + osc

Rd
ϕ0.

Definition 4.3. We define

K �
{
x ∈ R

d : min
u∈U

r(x, u) ≤ �
}
.

Let B0 be some open bounded ball containing K and define τ̆ � τ(Bc
0). Also let δ0 > 0

be such that r(x, u) ≥ �+ δ0 on Bc
0.

Lemma 4.4. Suppose ϕ0 ∈ OV ∗. Then it holds that

(4.1) ϕ(t, x) ≤ E
v∗
x

[∫ τ̆∧t

0

r
(
Xs, v

∗(Xs)
)
ds+ ϕ(t− τ̆ ∧ t,Xτ̆∧t)

]
and

(4.2) ϕ(t, x) ≥ E
v̂t

x

[∫ τ̆∧t

0

r
(
Xs, v̂

t
s(Xs)

)
ds+ ϕ(t− τ̆ ∧ t,Xτ̆∧t)

]
for all x ∈ Bc

0.
Proof. Let BR be any ball that contains B0 and for n ∈ N, let τn denote the first

exit time from BnR. Using Dynkin’s formula on (3.13), we obtain

(4.3) ϕ(t, x) = inf
U∈U

E
U
x

[∫ τ̆∧τn∧t

0

r(Xs, Us) ds+ ϕ(t− τ̆ ∧ τn ∧ t,Xτ̆∧τn∧t)

]
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for x ∈ BR ∩Bc
0. By (4.3) we have

ϕ(t, x) ≤ E
v∗
x

[∫ τ̆∧τn∧t

0

r
(
Xs, v

∗(Xs)
)
ds

]
− � E

v∗
x [τ̆ ∧ τn ∧ t](4.4)

+ E
v∗
x

[
ϕ(t− τ̆ ∧ τn ∧ t,Xτ̆∧τn∧t)

]
.

We use the expansion

E
v∗
x

[
ϕ(t− τ̆ ∧ τn ∧ t,Xτ̆∧τn∧t)

]
= E

v∗
x

[
ϕ(t− τ̆ ∧ t,Xτ̆∧t) I{τn > τ̆ ∧ t}

]
+ E

v∗
x

[
ϕ(t− τn ∧ t,Xτn) I{τn ≤ τ̆ ∧ t}

]
.

By (3.16) and the fact that, as shown in [4, Corollary 3.7.3],

E
v∗
x

[
V ∗(Xτn) I{τn ≤ t}

]
−−−−→
n→∞ 0,

we obtain

E
v∗
x

[
ϕ(t− τn ∧ t,Xτn) I{τn ≤ τ̆ ∧ t}

]
−−−−→
n→∞ 0.

Therefore by taking limits as n → ∞ in (4.4) and also using monotone convergence
for the first two terms on the right-hand side, we obtain (4.1).

To obtain a lower bound we start from

(4.5) ϕ(t, x) = E
v̂t

x

[∫ τ̆∧τn∧t

0

r
(
Xs, v̂

t
s(Xs)

)
ds+ ϕ(t− τ̆ ∧ τn ∧ t,Xτ̆∧τn∧t)

]
.

Since for any fixed t the functions
{
ϕ(t− s, x) : s ≤ t

}
are uniformly bounded below,

taking limits in (4.5) as n→ ∞, and using Fatou’s lemma, we obtain (4.2).
Lemma 4.5. Suppose ϕ0 ∈ OV ∗. Then for any t > 0 we have

ϕ(t, x) > min

(
min

[0,t]×B0

ϕ, min
Rd

ϕ0

)
∀x ∈ R

d \B0.

Proof. Let x be any point in the interior of Bc
0. By (4.2) we have

ϕ(t, x) ≥ E
v̂t

x

[∫ τ̆∧t

0

r
(
Xs, v̂

t
s(Xs)

)
ds+ ϕ(t− τ̆ ∧ t,Xτ̆∧t)

]
≥ δ0 E

v̂t

x [τ̆ ∧ t] + P
v̂t

x (τ̆ ≤ t) min
[0,t]×B0

ϕ+ P
v̂t

x (τ̆ > t) min
Rd

ϕ0,

and the result follows.
Remark 4.6. By Lemma 4.5, if inf [0,∞)×B0

ϕ > −∞, then ϕ is bounded below

on [0,∞)×R
d. If this is the case, the convergence of the VI and therefore also of the

RVI follows as in the proof of Theorem 3.15. Therefore without loss of generality we
assume for the remainder of the paper that

inf
[0,∞)×B0

ϕ = −∞.

It follows that there exists T0 > 0 such that

(4.6) min
[0,t]×B0

ϕ ≤ min
Rd

ϕ0 ∀t ≥ T0.
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We use the parabolic Harnack inequality, which we quote in simplified form from
the more general result in [9, Theorem 4.1] as follows.

Theorem 4.7 (parabolic Harnack). Let B2R ⊂ R
d be an open ball and ψ be a

nonnegative caloric function, i.e., a nonnegative solution of

∂tψ(t, x)− aij(t, x) ∂ijψ(t, x) + bi(t, x) ∂iψ(t, x) = 0 on [0, T ]×B2R

with aij(t, x) continuous in x and uniformly nondegenerate on [0, T ]× B2R, and a
ij

and bi bounded on [0, T ]×B2R. Then for any τ ∈
(
0, T/4

]
, there exists a constant CH

depending only on R, τ , and the ellipticity constant (and modulus of continuity) of
aij and the bounds of aij and bi on B2R such that

max
[T−3τ,T−2τ ]×BR

ψ ≤ CH min
[T−τ,T ]×BR

ψ.

In the three lemmas that follow we apply Theorem 4.7 with τ ≡ 1 and B′
0 = 2B0.

Lemma 4.8. There exists a constant M0 such that for all T ≥ T0+4 it holds that

max
[T−3,T−2]×B0

ϕ− min
[0,T ]×B0

ϕ ≤M0 + CH

(
min

[T−1,T ]×B0

ϕ− min
[0,T ]×B0

ϕ

)
.

Proof. Let ψT (t, x) be the unique solution inW
1,2,p
loc

(
(0, T )×B′

0

)
∩C

(
[0, T ]×B′

0

)
of

∂tψT (t, x)− aij(x) ∂ijψT (t, x) − bi
(
x, v̂t(x)

)
∂iψT (t, x) = 0 on [0, T ]×B′

0,

ψT (t, x) = ϕ(t, x) on
(
[0, T ]× ∂B′

0

)
∪
(
{0} ×B

′
0

)
with v̂t as in Definition 3.7. By the maximum principle

(4.7) min
[0,t]×B

′
0

ψT ≥ min

(
min

[0,t]×∂B′
0

ϕ, min
B

′
0

ϕ0

)
.

Since ψT � ψT − ϕ satisfies

∂tψT (t, x) − aij(x) ∂ijψT (t, x)− bi
(
x, v̂t(x)

)
∂iψT (t, x) + r

(
x, v̂t(x)

)
= 0

on [0, T ]×B′
0, and

ψT (t, x) = 0 on
(
[0, T ]× ∂B′

0

)
∪
(
{0} ×B

′
0

)
,

it follows that there exists a constantM0 which depends only on B′
0 (it is independent

of T ) such that

(4.8) max
[0,T ]×B

′
0

∣∣ψT

∣∣ ≤M0 ∀T > 0.

Indeed a direct calculation yields

∣∣ψT (t, x)
∣∣ = ∣∣∣∣∣Ev̂t

x

[∫ t∧τ(B′
0)

0

r
(
Xs, v̂t−s(Xs)

)
ds

]∣∣∣∣∣
≤ sup

U∈U
E
U
x

[∫ τ(B′
0)

0

∣∣r(Xs, Us)
∣∣ ds]

≤ ‖r‖∞,B′
0

sup
x∈B′

0

sup
U∈U

E
U
x [τ(B

′
0)] <∞
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since the mean exit time from B′
0 is upper bounded by a constant uniformly over all

initial x ∈ B′
0 and all controls U ∈ U by the weak maximum principle of Alexandroff.

Let (t̂, x̂) be a point at which ϕ attains its minimum on [T − 1, T ] × B0. By
Lemma 4.5, (4.6), and (4.7) the function (t, x) �→ ψT (t, x)−min[0,T ]×B0

ϕ is nonneg-

ative on [T − 4, T ]×B′
0 for all T ≥ T0 + 4. Therefore by Theorem 4.7 we have

ψT (t, x)− min
[0,T ]×B0

ϕ ≤ CH

(
ψT (t̂, x̂)− min

[0,T ]×B0

ϕ

)
(4.9)

≤ CH

(
ψT (t̂, x̂) + min

[T−1,T ]×B0

ϕ− min
[0,T ]×B0

ϕ

)
for all t ∈ [T − 3, T − 2] and x ∈ B0. Expressing the left-hand side of (4.9) as

ϕ(t, x)− min
[0,T ]×B0

ϕ+ ψT (t, x),

and using (4.8), Lemma 4.8 follows with

M0 � (CH + 1)M0.

Lemma 4.9. Provided ϕ0 ∈ C2(Rd) is nonnegative and bounded, we have

ϕ(t, x)−max
∂B0

ϕ(t, ·) ≤ 2 ‖ϕ0‖∞ +
(
1 + � δ−1

0

)
V ∗(x) ∀x ∈ Bc

0.

Proof. By Lemma 4.2

(4.10) ϕ(t− τ, x) ≤ ϕ(t, x) + � τ + osc
Rd

ϕ0 ∀x ∈ R
d, 0 ≤ τ ≤ t.

Therefore by (4.1) and (4.10), using the fact that r ≥ 0 on Bc
0, we obtain

ϕ(t, x) ≤ E
v∗
x

[∫ τ̆∧t

0

r
(
Xs, v

∗(Xs)
)
ds+ ϕ(t− τ̆ ∧ t,Xτ̆∧t)

]
(4.11)

≤ E
v∗
x

[∫ τ̆

0

r
(
Xs, v

∗(Xs)
)
ds

]
+ E

v∗
x

[
ϕ(t− τ̆ ∧ t,Xτ̆) I{τ̆ ≤ t}

]
+ E

v∗
x

[
ϕ0(Xt) I{τ̆ > t}

]
≤ V ∗(x) + E

v∗
x

[
ϕ(t,Xτ̆) I{τ̆ ≤ t}

]
+ �Ev∗

x

[
τ̆ I{τ̆ ≤ t}

]
+ osc

Rd
ϕ0 + ‖ϕ0‖∞

≤ V ∗(x) + P
v∗
x

(
{τ̆ ≤ t}

) (
max
∂B0

ϕ(t, ·)
)

+ �Ev∗
x

[
τ̆ I{τ̆ ≤ t}

]
+ 2 ‖ϕ0‖∞

for x ∈ Bc
0. Since −ϕ(t, x) ≤ � t, we have

−P
v∗
x

(
{τ̆ > t}

)(
max
∂B0

ϕ(t, ·)
)
≤ �Pv∗

x

(
{τ̆ > t}

)
t(4.12)

≤ �Ev∗
x

[
τ̆ I{τ̆ > t}

]
.
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Hence subtracting max∂B0 ϕ(t, ·) from both sides of (4.11) and using (4.12) together

with the estimate E
v∗
x [τ̆] ≤ δ−1

0 V ∗(x), which follows by (3.5), we obtain

ϕ(t, x)−max
∂B0

ϕ(t, ·) ≤ V ∗(x) + � δ−1
0 V ∗(x) + 2 ‖ϕ0‖∞.

We define the set T ⊂ R+ by

T �
{
t ≥ T0 + 4 : min

[t−1,t]×B0

ϕ = min
[0,t]×B0

ϕ

}
,

where T0 is as in Remark 4.6. By Remark 4.6, T �= ∅.
Lemma 4.10. Let Assumption 3.2 hold and suppose that the initial condition

ϕ0 ∈ C2(Rd) is nonnegative and bounded. Then there exists a constant C0 such that

osc
B0

ϕ(t, ·) ≤ C0 ∀t ≥ 0.

Proof. Suppose t ∈ T . Then, by Lemma 4.8,

max
x∈B0

ϕ(t− 2, x)− min
[0,t]×B0

ϕ ≤M0.

Therefore, by Lemma 4.9 we have

(4.13) ϕ(t− 2, x)− min
[0,t]×B0

ϕ ≤M0 + 2 ‖ϕ0‖∞ +
(
1 + � δ−1

0

)
V ∗(x)

for all (t, x) ∈ T × R
d. Next, fix any t0 ∈ T . It suffices to prove the result for

t ≥ t0 since it trivially holds for t in the compact interval [0, t0]. Given t ≥ t0 let
τ � sup T ∩ [t0, t]. Note then that

(4.14) min
[0,τ ]×B0

ϕ = min
[0,t]×B0

ϕ.

By (4.13)–(4.14) we obtain

sup
x∈B0

ϕ(t, x) ≤ sup
x∈B0

E
v∗
x

[∫ t−τ+2

0

r
(
Xs, v

∗(Xs)
)
ds+ ϕ(τ − 2, Xt−τ+2)

]
(4.15)

≤ sup
x∈B0

E
v∗
x

[∫ t−τ+2

0

r
(
Xs, v

∗(Xs)
)
ds+ V ∗(Xt−τ+2)

]
+M0

+ min
[0,τ ]×B0

ϕ+ 2 ‖ϕ0‖∞ + � δ−1
0 sup

x∈B0

E
v∗
x

[
V ∗(Xt−τ+2)

]
≤ ‖V ∗‖∞,B0 +M0 + min

[0,t]×B0

ϕ+ 2 ‖ϕ0‖∞ + � δ−1
0 K0

with

K0 � sup
t≥0

sup
x∈B0

E
v∗
x

[
V ∗(Xt)

]
.

By Lemma 3.5, K0 is finite. Since

osc
B0

ϕ(t, ·) ≤ max
x∈B0

ϕ(t, x)− min
[0,t]×B0

ϕ,

and t ≥ t0 was arbitrary, the result follows for all t ≥ t0 by (4.15).
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5. Convergence of the RVI. We define the set T0 ⊂ R+ by

T0 �
{
t ∈ R+ : ϕ(t, 0) ≤ ϕ(t′, 0) ∀t′ ≤ t

}
.

In the next lemma we use the variable

Ψ(t, x) � ϕ(t, x)− ϕ(t, 0).

Lemma 5.1. Let Assumption 3.2 hold and also suppose that the initial condition
ϕ0 ∈ C2(Rd) is nonnegative and bounded. Then

Ψ(t, x) ≤ C0 + 2 ‖ϕ0‖∞ +
(
1 + � δ−1

0

)
V ∗(x) ∀(t, x) ∈ R+ × R

d,(5.1a)

where C0 is the constant in Lemma 4.10, and there exists a constant M̂0 such that

ϕ(t, 0)− ϕ(t′, 0) ≤ M̂0 ∀t ≥ t′.(5.1b)

Proof. The estimate in (5.1a) follows by Lemmas 4.9 and 4.10. To show (5.1b)
note that

(5.2) ϕ(t, 0)− ϕ(t′, 0) ≤ ϕ(t, 0)− min
s∈[0,t]

ϕ(s, 0) ∀t′ ∈ [0, t].

Let t∗ ∈ Argmins∈[0,t] ϕ(s, 0) and define T � t−t∗. Clearly, t∗ = t−T ∈ T0. We have

ϕ(t, 0)− ϕ(t− T, 0) ≤ E
v∗
0

[∫ T

0

r
(
Xs, v

∗(Xs)
)
ds+ ϕ(t− T,XT )

]
− ϕ(t− T, 0)

(5.3)

= E
v∗
0

[∫ T

0

r
(
Xs, v

∗(Xs)
)
ds+ Ψ(t− T,XT )

]
= V ∗(0)− E

v∗
0 [V ∗(XT )] + E

v∗
0

[
Ψ(t− T,XT )

]
≤ V ∗(0) + C0 + 2 ‖ϕ0‖∞ + � δ−1

0 E
v∗
0

[
V ∗(XT )

]
,

where the last inequality follows by (5.1a). It then follows by (5.3) that the map
t �→ ϕ(t, 0)− ϕ(t− T, 0) is bounded above by the constant

M̂0 � C0 + 2 ‖ϕ0‖∞ +
(
1 + � δ−1

0

)
K0.

The result then holds for any t′ < t by (5.2).
The following corollary now follows by Lemmas 4.2, 4.10, and 5.1.
Corollary 5.2. Under the hypotheses of Lemma 5.1, it holds that

osc
[t,t′]×B0

ϕ ≤ 2C0 + osc
Rd

ϕ0 + M̂0 + �(t′ − t) ∀t′ > t ≥ 0.

Proof. By Lemmas 4.2 and 5.1

(5.4) |ϕ(s, 0)− ϕ(s′, 0)| ≤ � τ + osc
Rd

ϕ0 + M̂0 ∀x ∈ R
d, ∀s, s′ ∈ [t, t+ τ ].

Hence the result follows by (5.4) and Lemma 4.10.
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Lemma 5.3. Under the hypotheses of Lemma 5.1 there exists a constant k0 > 0
such that

E
v̂t

x [τ̆ ∧ t] ≤ k0 + 2 δ−1
0

(
1 + � δ−1

0

)
V ∗(x) ∀x ∈ Bc

0.

Proof. Subtracting ϕ(t, 0) from both sides of (4.2), we obtain

Ψ(t, x) ≥ E
v̂t

x

[∫ τ̆∧t

0

r
(
Xs, v̂

t
s(Xs)

)
ds+ Ψ(t− τ̆ ∧ t,Xτ̆∧t) I{τ̆ ≤ t} − ϕ(t, 0) I{τ̆ > t}

+ϕ0(Xt) I{τ̆ > t}+
(
ϕ(t− τ̆ ∧ t, 0)− ϕ(t, 0)

)
I{τ̆ ≤ t}

]
.

We discard the nonnegative term ϕ0(Xt) I{τ̆ > t}, and we use Lemma 4.10 and (5.1b)
to write the above inequality as

Ψ(t, x) ≥ E
v̂t

x

[∫ τ̆∧t

0

r
(
Xs, v̂

t
s(Xs)

)
ds

]
− sup

0≤s≤t
‖Ψ(s, ·)‖∞,B0(5.5)

− E
v̂t

x

[
ϕ(t, 0) I{τ̆ > t}

]
+ E

v̂t

x

[(
ϕ(t− τ̆ ∧ t, 0)− ϕ(t, 0)

)
I{τ̆ ≤ t}

]
≥ E

v̂t

x

[∫ τ̆∧t

0

r
(
Xs, v̂

t
s(Xs)

)
ds

]
− C0 − ϕ(t, 0)Pv̂t

x

(
{τ̆ > t}

)
− M̂0.

By (5.1a) and (5.5) we obtain

C0 + 2 ‖ϕ0‖∞ +
(
1 + � δ−1

0

)
V ∗(x) ≥ δ0 E

v̂t

x [τ̆ ∧ t]− ϕ(t, 0)Pv̂t

x

(
{τ̆ > t}

)
− C0 − M̂0

≥
(
δ0 −

ϕ(t, 0)

t

)
E
v̂t

x [τ̆ ∧ t]− C0 − M̂0.

The result then follows by Lemma 4.1.
Lemma 5.4. Under the hypotheses of Lemma 5.1,

ϕ(t, 0)Pv̂t

x

(
{τ̆ > t}

)
−−−→
t→∞ 0

uniformly on x in compact sets of Rd.
Proof. By Lemmas 4.1 and 5.3 we have

ϕ(t, 0)Pv̂t

x

(
{τ̆ > t}

)
≤ ϕ(t, 0)

t

(
k0 + 2 δ−1

0

(
1 + � δ−1

0

)
V ∗(x)

)
−−−→
t→∞ 0

for all x ∈ Bc
0.

Lemma 5.5. Let Assumption 3.2 hold and also suppose the initial condition
ϕ0 ∈ C2(Rd) is nonnegative and bounded. Then the map t �→ ϕ(t, 0) is bounded on
[0,∞), and it holds that

− osc
Rd

ϕ0 ≤ lim inf
t→∞ ϕ(t, 0) ≤ lim sup

t→∞
ϕ(t, 0) ≤ M̂0 + �.

Proof. Define

g(t) � inf
U∈U

E
U
0

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]
.
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By (3.29) we have ∫ t

0

ϕ(s, 0) ds =

∫ t

0

es−tg(s) ds,

and hence

ϕ(t, 0) = g(t)−
∫ t

0

es−tg(s) ds

(5.6)

=
(
1− e−t

)−1
∫ t

0

es−t
(
g(t)− g(s)

)
ds+

(
1− e−t

)−1
e−t

∫ t

0

es−tg(s) ds

for t > 0. By Lemma 5.1, g(t) ≤ M̂0 + ϕ0(0) + � t. Therefore the second term on the
right-hand side of (5.6) vanishes as t→ ∞. By Lemma 4.2, g(t)− g(s) ≥ − oscRd ϕ0

for all s ≤ t. Also, by Lemma 5.1, g(t)−g(s) ≤ M̂0+�(t−s) for all s ≤ t. Evaluating
the first integral on the right-hand side of (5.6) we obtain the bound

(5.7) − osc
Rd

ϕ0 ≤
∫ t

0

es−t
(
g(t)− g(s)

)
ds ≤ M̂0 + � ∀t > 0.

The result follows by (5.6)–(5.7).
Combining Corollary 5.2, the boundedness of t �→ ϕ(t, 0) asserted in Lemma 5.5,

and (1.12), it follows that x �→ ϕ(t, x) is locally bounded in R
d, uniformly in t ≥ 0.

Recall Definition 3.14. The standard interior estimates of the solutions of (3.12)
provide us with the following regularity result.

Theorem 5.6. Under the hypotheses of Lemma 5.5 the closure of the orbit
{Φt[ϕ0], t ∈ R+} is locally compact in C2(Rd).

Proof. By Lemma 4.9 and Corollary 5.2, the oscillation of ϕ is bounded on any
cylinder [n, n+1]×BR uniformly over n ∈ N. This together with Lemma 5.5 implies
that Φt[ϕ0](x) is bounded on (t, x) ∈ [n, n + 1] × BR for any R > 0, uniformly in
n ∈ N. It follows that the derivatives ∂ijΦt[ϕ0] are Hölder equicontinuous on every
ball BR uniformly in t. The result follows.

We now turn to the proof of our main result.
Proof of Theorem 1.1. Let {tn} be any sequence tending to ∞ and let f be

any limit in in the topology of Markov controls (see [4, section 2.4]) of {v̂tn} along
some subsequence of {tn} also denoted as {tn}. By Fatou’s lemma and the stochastic
representation of V ∗ in Theorem 3.1, we have

lim inf
n→∞ E

v̂tn

x

[∫ τ̆∧tn

0

r
(
Xs, v̂

tn
s (Xs)

)
ds

]
≥ E

f
x

[∫ τ̆

0

r
(
Xs, fs(Xs)

)
ds

]
(5.8)

≥ inf
v∈USSM

E
v
x

[∫ τ̆

0

r
(
Xs, v(Xs)

)
ds

]
≥ V ∗(x)− ‖V ∗‖∞,B0 ∀x ∈ Bc

0.

The second inequality in (5.8) is due to the fact that the infimum of

E
U
x

[∫ τ̆

0

r
(
Xs, Us)

)
ds

]
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over all U ∈ U is realized at some v ∈ USSM, while the third inequality follows by
(3.5). Therefore, by (1.12), (5.5), (5.8), and Lemmas 5.4 and 5.5 we have that

lim inf
t→∞ ϕ(t, x) = lim inf

t→∞
(
Ψ(t, x) + ϕ(t, 0)

)
(5.9)

≥ V ∗(x)− ‖V ∗‖∞,B0 − C0 − M̂0 − osc
Rd

ϕ0 ∀x ∈ Bc
0.

Also, by (5.1a) and Lemma 5.5 we obtain

lim sup
t→∞

ϕ(t, x) = lim sup
t→∞

(
Ψ(t, x) + ϕ(t, 0)

)
(5.10)

≤ C0 + 2 ‖ϕ0‖∞ +
(
1 + � δ−1

0

)
V ∗(x) + M̂0 + �

for all (t, x) ∈ R+ × R
d.

Hence, by (5.9)–(5.10) if we select

c = −
(
‖V ∗‖∞,B0 + C0 + M̂0 + osc

Rd
ϕ0)

and define

A �
{
h ∈ C2(Rd) : ‖h‖V ∗ ≤ C0 + M̂0 + �+ 2 ‖ϕ0‖∞ +

(
1 + � δ−1

0

)}
,

then any ω-limit point of ϕ(t, x) as t → ∞ lies in Gc ∩A (see Definition 3.14). Since
the ω-limit set of ϕ0 is invariant under the semiflow Φt, and by Remark 3.16 the only
invariant subset of Gc ∩A is the singleton {V ∗ − V ∗(0) + �}, the result follows.

6. Concluding remarks. We have studied the RVI algorithm for an important
class of ergodic control problems wherein instability is possible but is heavily penalized
by the near-monotone structure of the running cost. The near-monotone cost structure
plays a crucial role in the analysis and the proof of stabilization of the quasi-linear
parabolic Cauchy initial value problem that models the algorithm.

We would like to conjecture that the RVI converges starting from any initial
condition ϕ0 ∈ OV ∗ . It is only the estimate in Lemma 4.2 that restricts us to consider
bounded initial conditions only. We want to mention here that a related such estimate
can be obtained as follows:

ϕ(t, x) = inf
U∈U

E
U
x

[∫ t

0

r(Xs, Us) ds+ ϕ0(Xt)

]
= inf

U∈U
E
U
x

[∫ τ

0

r(Xs, Us) ds+ ϕ(t− τ,Xt−τ )

]
≥ −� τ + min

y∈Rd
ϕ(t− τ, y) ∀τ ∈ [0, t], ∀x ∈ R

d.

In particular

min
Rd

ϕ(t− τ, ·)−min
Rd

ϕ(t, ·) ≤ � τ ∀τ ∈ [0, t],

and this estimate does not depend on the initial data ϕ0. This suggests that it is
probably worth studying the variation of the RVI algorithm that results by replacing
ϕ(t, 0) by minRd ϕ(t, ·) in (1.7).

Rate of convergence results and computational aspects of the algorithm are open
issues.
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