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ERGODIC CONTROL OF MULTI-CLASS M/M/N + M QUEUES
IN THE HALFIN–WHITT REGIME

BY ARI ARAPOSTATHIS∗,1, ANUP BISWAS∗,2 AND GUODONG PANG†,3

The University of Texas at Austin∗ and Pennsylvania State University†

We study a dynamic scheduling problem for a multi-class queueing net-
work with a large pool of statistically identical servers. The arrival processes
are Poisson, and service times and patience times are assumed to be expo-
nentially distributed and class dependent. The optimization criterion is the
expected long time average (ergodic) of a general (nonlinear) running cost
function of the queue lengths. We consider this control problem in the Halfin–
Whitt (QED) regime, that is, the number of servers n and the total offered
load r scale like n ≈ r+ ρ̂

√
r for some constant ρ̂. This problem was pro-

posed in [Ann. Appl. Probab. 14 (2004) 1084–1134, Section 5.2].
The optimal solution of this control problem can be approximated by that

of the corresponding ergodic diffusion control problem in the limit. We in-
troduce a broad class of ergodic control problems for controlled diffusions,
which includes a large class of queueing models in the diffusion approxi-
mation, and establish a complete characterization of optimality via the study
of the associated HJB equation. We also prove the asymptotic convergence
of the values for the multi-class queueing control problem to the value of
the associated ergodic diffusion control problem. The proof relies on an ap-
proximation method by spatial truncation for the ergodic control of diffusion
processes, where the Markov policies follow a fixed priority policy outside a
fixed compact set.

.
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1. Introduction. One of the classical problems in queueing theory is to sched-
ule the customers/jobs in a network in an optimal way. These problems are known
as the scheduling problems which arise in a wide variety of applications, in par-
ticular, whenever there are different customer classes present in the network and
competing for the same resources. The optimal scheduling problem has a long his-
tory in the literature. One of the appealing scheduling rules is the well-known cμ
rule. This is a static priority policy in which it is assumed that each class-i cus-
tomer has a marginal delay cost ci and an average service time 1/μi , and the
classes are prioritized in the decreasing order of ciμi . This static priority rule has
proven asymptotically optimal in many settings [4, 28, 32]. In [11], a single-server
Markov modulated queueing network is considered and an averaged cμ-rule is
shown asymptotically optimal for the discounted control problem.

An important aspect of queueing networks is abandonment/reneging, that is,
customers/jobs may choose to leave the system while being in the queue before
their service. Therefore, it is important to include customer abandonment in mod-
eling queueing systems. In [5, 6], Atar et al. considered a multi-classM/M/N+M
queueing network with customer abandonment and proved that a modified priority
policy, referred to as cμ/θ rule, is asymptotically optimal for the long run aver-
age cost in the fluid scale. Dai and Tezcan [13] showed the asymptotic optimality
of a static priority policy on a finite time interval for a parallel server model un-
der the assumed conditions on the ordering of the abandonment rates and running
costs. Although static priority policies are easy to implement, it may not be op-
timal for control problems of many multi-server queueing systems. For the same
multi-class M/M/N+M queueing network, discounted cost control problems are
studied in [3, 7, 22], and asymptotically optimal controls for these problems are
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constructed from the minimizer of a Hamilton–Jacobi–Bellman (HJB) equation
associated with the controlled diffusions in the Halfin–Whitt regime.

In this article, we are interested in an ergodic control problem for a multi-class
M/M/N+M queueing network in the Halfin–Whitt regime. The network consists
of a single pool of n statistically identical servers and a buffer of infinite capac-
ity. There are d customer classes and arrivals of jobs/customers are d independent
Poisson processes with parameters λni , i = 1, . . . , d . The service rate for class-i
customers is μni , i = 1, . . . , d . Customers may renege from the queue if they have
not started to receive service before their patience times. Class-i customers re-
nege from the queue at rates γ ni > 0, i = 1, . . . , d . The scheduling policies are
work-conserving, that is, no server stays idle if any of the queues is nonempty. We
assume the system operates in the Halfin–Whitt regime, where the arrival rates and
the number of servers are scaled appropriately in a manner that the traffic intensity
of the system satisfies

√
n

(
1−

d∑
i=1

λni

nμni

)
−→
n→∞ ρ̂ ∈R.

In this regime, the system operations achieve both high quality (high server levels)
and high efficiency (high servers’ utilization), and hence it is also referred to as the
Quality-and-Efficiency-Driven (QED) regime; see, for example, [7, 16, 17, 19, 21]
on the many-server regimes. We consider an ergodic cost function given by

lim sup
T→∞

1

T
E

[∫ T

0
r
(
Q̂n(s)

)
ds
]
,

where the running cost r is a nonnegative, convex function with polynomial growth
and Q̂n = (Q̂n

1, . . . , Q̂
n
d)

T is the diffusion-scaled queue length process. It is worth
mentioning that in addition to the running cost above which is based on the queue-
length, we can add an idle-server cost provided that it has at most polynomial
growth. For such, a running cost structure the same analysis goes through. The
control is the allocation of servers to different classes of customers at the service
completion times. The value function is defined to be the infimum of the above
cost over all admissible controls (among all work-conserving scheduling policies).
In this article, we are interested in the existence and uniqueness of asymptotically
optimal stable stationary Markov controls for the ergodic control problem, and the
asymptotic behavior of the value functions as n tends to infinity. In [7], Section 5.2,
it is stated that analysis of this type of problems is important for modeling call
centers.

1.1. Contributions and comparisons. The usual methodology for studying
these problems is to consider the associated continuum model, which is the con-
trolled diffusion limit in a heavy-traffic regime, and to study the ergodic control
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problem for the controlled diffusion. Ergodic control problems governed by con-
trolled diffusions have been well studied in literature [1, 9] for models that fall in
these two categories: (a) the running cost is near-monotone, which is defined by
the requirement that its value outside a compact set exceeds the optimal average
cost, thus penalizing unstable behavior (see Assumption 3.4.2 in [1] for details),
or (b) the controlled diffusion is uniformly stable, that is, every stationary Markov
control is stable and the collection of invariant probability measures corresponding
to the stationary Markov controls is tight. However, the ergodic control problem
at hand does not fall under any of these frameworks. First, the running cost we
consider here is not near-monotone because the total queue length can be 0 when
the total number of customers in the system are O(n). On the other hand, it is not
at all clear that the controlled diffusion is uniformly stable (unless one imposes
nontrivial hypotheses on the parameters), and this remains an open problem. One
of our main contributions in this article is that we solve the ergodic control prob-
lem for a broad class of nondegenerate controlled diffusions, that in a certain way
can be viewed as a mixture of the two categories mentioned above. As we show in
Section 3, stability of the diffusion under any optimal stationary Markov control
occurs due to certain interplay between the drift and the running cost. The model
studied in Section 3 is far more general than the queueing problem described,
and thus it is of separate interest for ergodic control. We present a comprehensive
study of this broad class of ergodic control problems that includes existence of a
solution to the ergodic HJB equation, its stochastic representation and verification
of optimality (Theorem 3.4), uniqueness of the solution in a certain class (Theo-
rem 3.5), and convergence of the vanishing discount method (Theorem 3.6). These
results extend the well-known results for near-monotone running costs. The as-
sumptions in these theorems are verified for the multi-class queueing model and
the corresponding characterization of optimality is obtained (Corollary 3.1), which
includes growth estimates for the solution of the HJB.

We also introduce a new approximation technique, spatial truncation, for the
controlled diffusion processes; see Section 4. It is shown that if we freeze the
Markov controls to a fixed stable Markov control outside a compact set, then we
can still obtain nearly optimal controls in this class of Markov controls for large
compact sets. We should keep in mind that this property is not true in general.
This method can also be thought of as an approximation by a class of controlled
diffusions that are uniformly stable.

We remark that for a fixed control, the controlled diffusions for the queueing
model can be regarded as a special case of the piecewise linear diffusions con-
sidered in [14]. It is shown in [14] that these diffusions are stable under constant
Markov controls. The proof is via a suitable Lyapunov function. We conjecture that
uniform stability holds for the controlled diffusions associated with the queueing
model. For the same multi-class Markovian model, Gamarnik and Stolyar show
that the stationary distributions of the queue lengths are tight under any work-
conserving policy [15], Theorem 2. We also wish to remark here that we allow ρ̂
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to be negative, assuming abandonment rates are strictly positive, while in [15],
ρ̂ > 0 and abandonment rates can be zero.

Another important contribution of this work is the convergence of the value
functions associated with the sequence of multi-class queueing models to the value
of the ergodic control problem, say �∗, corresponding to the controlled diffusion
model. It is not obvious that one can have asymptotic optimality from the existence
of optimal stable controls for the HJB equations of controlled diffusions. This fact
is relatively straightforward when the cost under consideration is discounted. In
that situation, the tightness of paths on a finite time horizon is sufficient to prove
asymptotic optimality [7]. But we are in a situation where any finite time behavior
of the stochastic process plays no role in the cost. In particular, we need to establish
the convergence of the controlled steady states. Although uniform stability of sta-
tionary distributions for this multi-class queueing model in the case where ρ̂ > 0
and abandonment rates can be zero is established in [15], it is not obvious that
the stochastic model considered here has the property of uniform stability. There-
fore, we use a different method to establish the asymptotic optimality. First, we
show that the value functions are asymptotically bounded below by �∗. To study
the upper bound, we construct a sequence of Markov scheduling policies that are
uniformly stable (see Lemma 5.1). The key idea used in establishing such stability
results is a spatial truncation technique, under which the Markov policies follow a
fixed priority policy outside a given compact set. We believe these techniques can
also be used to study ergodic control problems for other many-server queueing
models.

The scheduling policies we consider in this paper allow preemption, that is, a
customer in service can be interrupted for the server to serve a customer of a dif-
ferent class and her service will be resumed later. In fact, the asymptotic optimal-
ity is shown within the class of the work-conserving preemptive policies. In [7],
both preemptive and nonpreemptive policies are studied, where a nonpreemptive
scheduling control policy is constructed from the HJB equation associated with
preemptive policies and thus is shown to be asymptotically optimal. However, as
far as we know, the optimal nonpreemptive scheduling problem under the ergodic
cost remains open.

For a similar line of work in uncontrolled settings, we refer the reader to [16,
19]. Admission control of the single class M/M/N +M model with an ergodic
cost criterion in the Halfin–Whitt regime is studied in [26]. For controlled prob-
lems and for finite server models, asymptotic optimality is obtained in [12] in
the conventional heavy-traffic regime. The main advantage in [12] is the uniform
exponential stability of the stochastic processes, which is obtained by using prop-
erties of the Skorohod reflection map. A recent work studying ergodic control of a
multi-class single-server queueing network is [25].

To summarize our main contributions in this paper:

– We introduce a new class of ergodic control problems and a framework to solve
them.
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– We establish an approximation technique by spatial truncation.
– We provide, to the best of our knowledge, the first treatment of ergodic control

problems at the diffusion scale for many server models.
– We establish asymptotic optimality results.

1.2. Organization. In Section 1.3, we summarize the notation used in the pa-
per. In Section 2, we introduce the multi-class many server queueing model and
describe the Halfin–Whitt regime. The ergodic control problem under the heavy-
traffic setting is introduced in Section 2.2, and the main results on asymptotic
convergence are stated as Theorems 2.1 and 2.2. Section 3 introduces a class of
controlled diffusions and associated ergodic control problems, which contains the
queueing models in the diffusion scale. The key structural assumptions are in Sec-
tion 3.2 and these are verified for a generic class of queueing models in Section 3.3,
which are characterized by piecewise linear controlled diffusions. Section 3.4 con-
cerns the existence of optimal controls under the general hypotheses, while Sec-
tion 3.5 contains a comprehensive study of the HJB equation. Section 3.6 is de-
voted to the proofs of the results in Section 3.5. The spatial truncation technique
is introduced and studied in Section 4. Finally, in Section 5 we prove the results of
asymptotic optimality.

1.3. Notation. The standard Euclidean norm in R
d is denoted by | · |. The set

of nonnegative real numbers is denoted by R+, N stands for the set of natural
numbers, and I denotes the indicator function. By Z

d+ we denote the set of d-
vectors of nonnegative integers. The closure, the boundary and the complement of
a set A⊂ R

d are denoted by A, ∂A and Ac, respectively. The open ball of radius
R around 0 is denoted by BR . Given two real numbers a and b, the minimum
(maximum) is denoted by a ∧ b (a ∨ b), respectively. Define a+ := a ∨ 0 and
a− := −(a ∧ 0). The integer part of a real number a is denoted by �a�. We use the
notation ei , i = 1, . . . , d , to denote the vector with ith entry equal to 1 and all other
entries equal to 0. We also let e := (1, . . . ,1)T. Given any two vectors x, y ∈ Rd

the inner product is denoted by x · y. By δx we denote the Dirac mass at x. For any
function f :Rd → R and domain D ⊂ R we define the oscillation of f on D as
follows:

osc
D
(f ) := sup

{
f (x)− f (y) :x, y ∈D}.

For a nonnegative function g ∈ C(Rd), we let O(g) denote the space of functions
f ∈ C(Rd) satisfying supx∈Rd

|f (x)|
1+g(x) <∞. This is a Banach space under the norm

‖f ‖g := sup
x∈Rd

|f (x)|
1+ g(x) .
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We also let o(g) denote the subspace of O(g) consisting of those functions f

satisfying

lim sup
|x|→∞

|f (x)|
1+ g(x) = 0.

By a slight abuse of notation, we also denote by O(g) and o(g) a generic member
of these spaces. For two nonnegative functions f and g, we use the notation f ∼ g

to indicate that f ∈O(g) and g ∈O(f ).
We denote by Lploc(R

d), p ≥ 1, the set of real-valued functions that are locally

p-integrable and by W
k,p
loc (R

d) the set of functions in L
p
loc(R

d) whose ith weak
derivatives, i = 1, . . . , k, are in Lploc(R

d). The set of all bounded continuous func-

tions is denoted by Cb(Rd). By Ck,αloc (R
d) we denote the set of functions that are

k-times continuously differentiable and whose kth derivatives are locally Hölder
continuous with exponent α. We define Ckb(Rd), k ≥ 0, as the set of functions
whose ith derivatives, i = 1, . . . , k, are continuous and bounded in R

d and denote
by Ckc (Rd) the subset of Ckb(Rd) with compact support. For any path X(·), we use
the notation 
X(t) to denote the jump at time t . Given any Polish space X , we
denote by P(X ) the set of probability measures on X and we endow P(X ) with
the Prokhorov metric. For ν ∈ P(X ) and a Borel measurable map f :X → R, we
often use the abbreviated notation

ν(f ) :=
∫
X
f dν.

The quadratic variation of a square integrable martingale is denoted by 〈·, ·〉 and
the optional quadratic variation by [·, ·]. For presentation purposes we use the time
variable as the subscript for the diffusion processes. Also κ1, κ2, . . . and C1,C2, . . .

are used as generic constants whose values might vary from place to place.

2. The controlled system in the Halfin–Whitt regime.

2.1. The multi-class Markovian many-server model. Let (,F,P) be a given
complete probability space and all the stochastic variables introduced below are
defined on it. The expectation w.r.t. P is denoted by E. We consider a multi-class
Markovian many-server queueing system which consists of d customer classes and
n parallel servers capable of serving all customers (see Figure 1).

The system buffer is assumed to have infinite capacity. Customers of class
i ∈ {1, . . . , d} arrive according to a Poisson process with rate λni > 0. Customers
enter the queue of their respective classes upon arrival if not being processed. Cus-
tomers of each class are served in the first-come-first-serve (FCFS) service dis-
cipline. While waiting in queue, customers can abandon the system. The service
times and patience times of customers are class-dependent and both are assumed
to be exponentially distributed, that is, class i customers are served at rate μni and
renege at rate γ ni . We assume that customer arrivals, service and abandonment of
all classes are mutually independent.
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FIG. 1. A schematic model of the system.

The Halfin–Whitt regime. We study this queueing model in the Halfin–Whitt
regime [or the Quality-and-Efficiency-Driven (QED) regime]. Consider a sequence
of such systems indexed by n, in which the arrival rates λni and the number
of servers n both increase appropriately. Let rni := λni /μ

n
i be the mean offered

load of class i customers. The traffic intensity of the nth system is given by
ρn = n−1∑d

i=1 rni . In the Halfin–Whitt regime, the parameters are assumed to sat-
isfy the following: as n→∞,

λni

n
→ λi > 0, μni → μi > 0, γ ni → γi > 0,

λni − nλi√
n

→ λ̂i ,
√
n
(
μni −μi

)→ μ̂i,(2.1)

rni
n
→ ρi := λi

μi
< 1,

d∑
i=1

ρi = 1.

This implies that

√
n
(
1− ρn)→ ρ̂ :=

d∑
i=1

ρiμ̂i − λ̂i
μi

∈R.

The above scaling is common in multi-class multi-server models [7, 22]. Note that
we do not make any assumption on the sign of ρ̂.

State descriptors. Let Xn
i = {Xn

i (t) : t ≥ 0} be the total number of class i cus-
tomers in the system, Qn

i = {Qn
i (t) : t ≥ 0} the number of class i customers in

the queue and Zn
i = {Zn

i (t) : t ≥ 0} the number of class i customers in service.
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The following basic relationships hold for these processes: for each t ≥ 0 and
i = 1, . . . , d ,

Xn
i (t)=Qn

i (t)+Zn
i (t),

(2.2)
Qn
i (t) ≥ 0, Zn

i (t)≥ 0 and e ·Zn(t)≤ n.
We can describe these processes using a collection {An

i , S
n
i ,R

n
i , i = 1, . . . , d} of

independent rate-1 Poisson processes. Define

Ãn
i (t) :=An

i

(
λni t

)
,

S̃ni (t) := Sni

(
μni

∫ t

0
Zn
i (s)ds

)
,

R̃n
i (t) := Rn

i

(
γ ni

∫ t

0
Qn
i (s)ds

)
.

Then the dynamics take the form

Xn
i (t)=Xn

i (0)+ Ãn
i (t)− S̃ni (t)− R̃n

i (t), t ≥ 0, i = 1, . . . , d.(2.3)

Scheduling control. Following [7, 22], we only consider work-conserving
policies that are nonanticipative and allow preemption. When a server becomes
free and there are no customers waiting in any queue, the server stays idle, but if
there are customers of multiple classes waiting in the queue, the server has to make
a decision on the customer class to serve. Service preemption is allowed, that is,
service of a customer class can be interrupted at any time to serve some other class
of customers and the original service is resumed at a later time. A scheduling con-
trol policy determines the processes Zn, which must satisfy the constraints in (2.2)
and the work-conserving constraint, that is,

e ·Zn(t)= (e ·Xn(t)
)∧ n, t ≥ 0.

Define the action set An(x) as

A
n(x) := {a ∈ Zd+ :a ≤ x and e · a = (e · x)∧ n}.

Thus, we can write Zn(t) ∈ A
n(Xn(t)) for each t ≥ 0. We also assume that all

controls are nonanticipative. Define the σ -fields

Fn
t := σ

{
Xn(0), Ãn

i (t), S̃
n
i (t), R̃

n
i (t) : i = 1, . . . , d,0≤ s ≤ t}∨N

and

Gnt := σ
{
δÃn

i (t, r), δS̃
n
i (t, r), δR̃

n
i (t, r) : i = 1, . . . , d, r ≥ 0

}
,

where

δÃn
i (t, r) := Ãn

i (t + r)− Ãn
i (t),

δS̃ni (t, r) := Sni

(
μni

∫ t

0
Zn
i (s)ds +μni r

)
− S̃ni (t),

δR̃n
i (t, r) := Rn

i

(
γ ni

∫ t

0
Qn
i (s)ds + γ ni r

)
− R̃n

i (t),
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and N is the collection of all P-null sets. The filtration {Fn
t , t ≥ 0} represents the

information available up to time t while Gnt contains the information about future
increments of the processes.

We say that a working-conserving control policy is admissible if:

(i) Zn(t) is adapted to Fn
t ,

(ii) Fn
t is independent of Gnt at each time t ≥ 0,

(iii) for each i = 1, . . . , d , and t ≥ 0, the process δS̃ni (t, ·) agrees in law with
Sni (μ

n
i ·), and the process δR̃n

i (t, ·) agrees in law with Rn
i (γ

n
i ·).

We denote the set of all admissible control policies (Zn,Fn,Gn) by Un.

2.2. The ergodic control problem in the Halfin–Whitt regime. Define the
diffusion-scaled processes

X̂n = (X̂n
1 , . . . , X̂

n
d

)T
, Q̂n = (Q̂n

1, . . . , Q̂
n
d

)T and Ẑn = (Ẑn
1 , . . . , Ẑ

n
d

)T
,

by

X̂n
i (t) :=

1√
n

(
Xn
i (t)− ρint

)
,

Q̂n
i (t) :=

1√
n
Qn
i (t),(2.4)

Ẑn
i (t) :=

1√
n

(
Zn
i (t)− ρint

)
for t ≥ 0. By (2.3), we can express X̂n

i as

X̂n
i (t)= X̂n

i (0)+ �ni t −μni
∫ t

0
Ẑn
i (s)ds − γ ni

∫ t

0
Q̂n
i (s)ds

(2.5) + M̂n
A,i(t)− M̂n

S,i(t)− M̂n
R,i(t),

where �n = (�n1, . . . , �
n
d)

T is defined as

�ni :=
1√
n

(
λni −μni ρin

)
,

and

M̂n
A,i(t) :=

1√
n

(
An
i

(
λni t

)− λni t),
M̂n

S,i(t) :=
1√
n

(
Sni

(
μni

∫ t

0
Zn
i (s)ds

)
−μni

∫ t

0
Zn
i (s)ds

)
,(2.6)

M̂n
R,i(t) :=

1√
n

(
Rn
i

(
γ ni

∫ t

0
Qn
i (s)ds

)
− γ ni

∫ t

0
Qn
i (s)ds

)

are square integrable martingales w.r.t. the filtration {Fn
t }.
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Note that

�ni =
1√
n

(
λni − λin

)− ρi√n(μni −μi) −→n→∞�i := (λ̂i − ρiμ̂i)
μi

.

Define

S := {u ∈Rd+ : e · u= 1
}
.

For Zn ∈ Un we define, for t ≥ 0 and for adapted Ûn(t) ∈ S ,

Q̂n(t) := (e · X̂n(t)
)+
Ûn(t),

(2.7)
Ẑn(t) := X̂n(t)− (e · X̂n(t)

)+
Ûn(t).

If Q̂n(t) = 0, we define Ûn(t) := ed = (0, . . . ,0,1)T. Thus, Ûn
i represents the

fraction of class-i customers in the queue when the total queue size is positive. As
we show later, it is convenient to view Ûn(t) as the control. Note that the controls
are nonanticipative and preemption is allowed.

2.2.1. The cost minimization problem. We next introduce the running cost
function for the control problem. Let r :Rd+→R+ be a given function satisfying

c1|x|m ≤ r(x)≤ c2
(
1+ |x|m) for some m≥ 1,(2.8)

and some positive constants ci , i = 1,2. We also assume that r is locally Lipschitz.
This assumption includes linear and convex running cost functions. For example,
if we let hi be the holding cost rate for class i customers, then some of the typical
running cost functions are the following:

r(x)=
d∑
i=1

hix
m
i , m≥ 1.

These running cost functions evidently satisfy the condition in (2.8).
Given the initial state Xn(0) and a work-conserving scheduling policy Zn ∈ Un,

we define the diffusion-scaled cost function as

J
(
X̂n(0), Ẑn) := lim sup

T→∞
1

T
E

[∫ T

0
r
(
Q̂n(s)

)
ds
]
,(2.9)

where the running cost function r satisfies (2.8). Note that the running cost is
defined using the scaled version of Zn. Then the associated cost minimization
problem becomes

V̂ n(X̂n(0)
) := inf

Zn∈Un J
(
X̂n(0), Ẑn).(2.10)

We refer to V̂ n(X̂n(0)) as the diffusion-scaled value function given the initial
state X̂n(0) in the nth system.
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From (2.7), it is easy to see that by redefining r as r(x,u) = r((e · x)+u) we
can rewrite the control problem as

V̂ n(X̂n(0)
)= inf J̃

(
X̂n(0), Ûn),

where

J̃
(
X̂n(0), Ûn) := lim sup

T→∞
1

T
E

[∫ T

0
r
(
X̂n(s), Ûn(s)

)
ds
]
,(2.11)

and the infimum is taken over all admissible pairs (X̂n, Ûn) satisfying (2.7).
For simplicity, we assume that the initial condition X̂n(0) is deterministic and

X̂n(0)→ x as n→∞ for some x ∈Rd .

2.2.2. The limiting controlled diffusion process. As in [7, 22], one formally
deduces that, provided X̂n(0)→ x, there exists a limit X for X̂n on every finite
time interval, and the limit process X is a d-dimensional diffusion process with
independent components, that is,

dXt = b(Xt ,Ut )dt +� dWt,(2.12)

with initial condition X0 = x. In (2.12), the drift b(x,u) :Rd × S→ R
d takes the

form

b(x,u)= �−R(x − (e · x)+u)− (e · x)+�u,(2.13)

with

� := (�1, . . . , �d)
T,

R := diag(μ1, . . . ,μd),

� := diag(γ1, . . . , γd).

The control Ut lives in S and is nonanticipative, W(t) is a d-dimensional standard
Wiener process independent of the initial condition X0 = x, and the covariance
matrix is given by

��T = diag(2λ1, . . . ,2λd).

A formal derivation of the drift in (2.13) can be obtained from (2.5) and (2.7).
A detailed description of equation (2.12) and related results are given in Section 3.
Let U be the set of all admissible controls for the diffusion model (for a definition
see Section 3).



ERGODIC CONTROL IN THE HALFIN–WHITT REGIME 3523

2.2.3. The ergodic control problem in the diffusion scale. Define r̃ :Rd+ ×
R
d+→R+ by

r̃(x, u) := r
(
(e · x)+u),

where r is the same function as in (2.9). In analogy with (2.11) we define the
ergodic cost associated with the controlled diffusion process X and the running
cost function r̃(x, u) as

J (x,U) := lim sup
T→∞

1

T
E
U
x

[∫ T

0
r̃(Xt ,Ut )dt

]
, U ∈ U.

We consider the ergodic control problem

�∗(x)= inf
U∈UJ (x,U).(2.14)

We call �∗(x) the optimal value at the initial state x for the controlled diffusion
processX. It is shown later that �∗(x) is independent of x. A detailed treatment and
related results corresponding to the ergodic control problem are given in Section 3.

We next state the main results of this section, the proof of which can be found
in Section 5.

THEOREM 2.1. Let X̂n(0)→ x ∈ R
d as n→∞. Also assume that (2.1)

and (2.8) hold. Then

lim inf
n→∞ V̂ n(X̂n(0)

)≥ �∗(x),
where �∗(x) is given by (2.14).

THEOREM 2.2. Suppose the assumptions of Theorem 2.1 hold. In addition,
assume that r in (2.9) is convex. Then

lim sup
n→∞

V̂ n(X̂n(0)
)≤ �∗(x).

Thus, we conclude that for any convex running cost function r , Theorems 2.1
and 2.2 establish the asymptotic convergence of the ergodic control problem for
the queueing model.

3. A broad class of ergodic control problems for diffusions.

3.1. The controlled diffusion model. The dynamics are modeled by a con-
trolled diffusion process X = {Xt, t ≥ 0} taking values in the d-dimensional Eu-
clidean space R

d , and governed by the Itô stochastic differential equation

dXt = b(Xt ,Ut )dt + σ(Xt)dWt.(3.1)
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All random processes in (3.1) live in a complete probability space (,F,P). The
process W is a d-dimensional standard Wiener process independent of the initial
condition X0. The control process U takes values in a compact, metrizable set U,
and Ut(ω) is jointly measurable in (t,ω) ∈ [0,∞)×. Moreover, it is nonantici-
pative: for s < t , Wt −Ws is independent of

Fs := the completion of σ {X0,Ur,Wr, r ≤ s} relative to (F,P).

Such a process U is called an admissible control, and we let U denote the set of all
admissible controls.

We impose the following standard assumptions on the drift b and the diffusion
matrix σ to guarantee existence and uniqueness of solutions to equation (3.1).

(A1) Local Lipschitz continuity: The functions

b= [b1, . . . , bd
]T :Rd ×U→R

d and σ = [σ ij ] :Rd→R
d×d

are locally Lipschitz in x with a Lipschitz constant CR > 0 depending on R > 0.
In other words, for all x, y ∈ BR and u ∈U,∣∣b(x,u)− b(y,u)∣∣+ ∥∥σ(x)− σ(y)∥∥≤ CR|x − y|.
We also assume that b is continuous in (x, u).

(A2) Affine growth condition: b and σ satisfy a global growth condition of the
form ∣∣b(x,u)∣∣2 + ∥∥σ(x)∥∥2 ≤C1

(
1+ |x|2) ∀(x, u) ∈Rd ×U,

where ‖σ‖2 := trace(σσ T).
(A3) Local nondegeneracy: For each R > 0, it holds that

d∑
i,j=1

aij (x)ξiξj ≥C−1
R |ξ |2 ∀x ∈ BR,

for all ξ = (ξ1, . . . , ξd)
T ∈Rd , where a := σσ T.

In integral form, (3.1) is written as

Xt =X0 +
∫ t

0
b(Xs,Us)ds +

∫ t

0
σ(Xs)dWs.(3.2)

The third term on the right-hand side of (3.2) is an Itô stochastic integral. We say
that a process X = {Xt(ω)} is a solution of (3.1), if it is Ft -adapted, continuous
in t , defined for all ω ∈ and t ∈ [0,∞), and satisfies (3.2) for all t ∈ [0,∞) a.s.
It is well known that under (A1)–(A3), for any admissible control there exists a
unique solution of (3.1) [1], Theorem 2.2.4.

We define the family of operators Lu :C2(Rd)→ C(Rd), where u ∈U plays the
role of a parameter, by

Luf (x) := 1
2a

ij (x)∂ij f (x)+ bi(x, u)∂if (x), u ∈U.(3.3)
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We refer to Lu as the controlled extended generator of the diffusion. In (3.3) and
elsewhere in this paper, we have adopted the notation ∂i := ∂

∂xi
and ∂ij := ∂2

∂xi ∂xj
.

We also use the standard summation rule that repeated subscripts and superscripts
are summed from 1 through d . In other words, the right-hand side of (3.3) stands
for

1

2

d∑
i,j=1

aij (x)
∂2f

∂xi ∂xj
(x)+

d∑
i=1

bi(x, u)
∂f

∂xi
(x).

Of fundamental importance in the study of functionals of X is Itô’s formula. For
f ∈ C2(Rd) and with Lu as defined in (3.3), it holds that

f (Xt)= f (X0)+
∫ t

0
LUsf (Xs)ds +Mt, a.s.,(3.4)

where

Mt :=
∫ t

0

〈∇f (Xs), σ (Xs)dWs

〉
is a local martingale. Krylov’s extension of Itô’s formula [27], page 122, ex-
tends (3.4) to functions f in the local Sobolev space W

2,p
loc (R

d), p ≥ d .
Recall that a control is called Markov if Ut = v(t,Xt ) for a measurable map

v :R+ × R
d → U, and it is called stationary Markov if v does not depend on t ,

that is, v :Rd→U. Correspondingly, (3.1) is said to have a strong solution if given
a Wiener process (Wt ,Ft ) on a complete probability space (,F,P), there exists
a process X on (,F,P), with X0 = x0 ∈ R

d , which is continuous, Ft -adapted,
and satisfies (3.2) for all t a.s. A strong solution is called unique, if any two such
solutions X and X′ agree P-a.s., when viewed as elements of C([0,∞),Rd). It is
well known that under assumptions (A1)–(A3), for any Markov control v, (3.1)
has a unique strong solution [20].

Let USM denote the set of stationary Markov controls. Under v ∈ USM, the pro-
cess X is strong Markov, and we denote its transition function by P t

v(x, ·). It also
follows from the work of [8, 31] that under v ∈ USM, the transition probabilities of
X have densities which are locally Hölder continuous. Thus, Lv defined by

Lvf (x) := 1
2a

ij (x)∂ij f (x)+ bi(x, v(x))∂if (x), v ∈ USM,

for f ∈ C2(Rd), is the generator of a strongly-continuous semi-group on Cb(Rd),
which is strong Feller. We let Pvx denote the probability measure and E

v
x the expec-

tation operator on the canonical space of the process under the control v ∈ USM,
conditioned on the process X starting from x ∈Rd at t = 0.

We need the following definition.

DEFINITION 3.1. A function h :Rd × U→ R is called inf-compact on a set
A ⊂ R

d if the set Ā ∩ {x : minu∈U h(x,u) ≤ β} is compact (or empty) in R
d for

all β ∈ R. When this property holds for A ≡ R
d , then we simply say that h is

inf-compact.
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Recall that control v ∈ USM is called stable if the associated diffusion is positive
recurrent. We denote the set of such controls by USSM, and let μv denote the unique
invariant probability measure on R

d for the diffusion under the control v ∈ USSM.
We also let M := {μv :v ∈ USSM}. Recall that v ∈ USSM if and only if there exists
an inf-compact function V ∈ C2(Rd), a bounded domain D ⊂ R

d , and a constant
ε > 0 satisfying

LvV(x)≤−ε ∀x ∈Dc.

We denote by τ(A) the first exit time of a process {Xt, t ∈R+} from a set A⊂R
d ,

defined by

τ(A) := inf{t > 0 :Xt /∈A}.
The open ball of radius R in R

d , centered at the origin, is denoted by BR , and we
let τR := τ(BR), and τ̆R := τ(Bc

R).
We assume that the running cost function r(x,u) is nonnegative, continuous

and locally Lipschitz in its first argument uniformly in u ∈ U. Without loss of
generality, we let κR be a Lipschitz constant of r(·, u) over BR . In summary, we
assume that

(A4) r :Rd ×U→R+ is continuous and satisfies, for some constant CR > 0∣∣r(x,u)− r(y,u)∣∣≤ CR|x − y| ∀x, y ∈ BR,∀u ∈U,
and all R > 0.

In general, U may not be a convex set. It is therefore often useful to enlarge
the control set to P(U). For any v(du) ∈ P(U) we can redefine the drift and the
running cost as

b̄(x, v) :=
∫
U

b(x,u)v(du) and r̄(x, v) :=
∫
U

r(x,u)v(du).(3.5)

It is easy to see that the drift and running cost defined in (3.5) satisfy all the afore-
mentioned conditions (A1)–(A4). In what follows, we assume that all the controls
take values in P(U). These controls are generally referred to as relaxed controls.
We endow the set of relaxed stationary Markov controls with the following topol-
ogy: vn→ v in USM if and only if∫

Rd
f (x)

∫
U

g(x,u)vn(du|x)dx −→
n→∞

∫
Rd
f (x)

∫
U

g(x,u)v(du|x)dx

for all f ∈ L1(Rd)∩L2(Rd) and g ∈ Cb(Rd ×U). Then USM is a compact metric
space under this topology [1], Section 2.4. We refer to this topology as the topology
of Markov controls. A control is said to be precise if it takes value in U. It is easy
to see that any precise control Ut can also be understood as a relaxed control by
Ut(du) = δUt . Abusing the notation, we denote the drift and running cost by b

and r , respectively, and the action of a relaxed control on them is understood as
in (3.5).
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3.2. Structural assumptions. Assumptions 3.1 and 3.2, described below, are
in effect throughout the analysis, unless otherwise stated.

ASSUMPTION 3.1. For some open set K⊂R
d , the following hold:

(i) The running cost r is inf-compact on K.
(ii) There exist inf-compact functions V ∈ C2(Rd) and h ∈ C(Rd × U), such

that

LuV(x)≤ 1− h(x,u) ∀(x, u) ∈Kc ×U,
(3.6)

LuV(x)≤ 1+ r(x,u) ∀(x, u) ∈K×U.

Without loss of generality, we assume that V and h are nonnegative.

REMARK 3.1. In the statement of Assumption 3.1, we refrain from using any
constants in the interest of notational economy. There is no loss of generality in do-
ing so, since the functions V and h can always be scaled to eliminate unnecessary
constants.

The next assumption is not a structural one, but rather the necessary requirement
that the value of the ergodic control problem is finite. Otherwise, the problem is
vacuous. For U ∈ U, define

�U(x) := lim sup
T→∞

1

T
E
U
x

[∫ T

0
r(Xs,Us)ds

]
.(3.7)

ASSUMPTION 3.2. There exists U ∈ U such that �U(x) < ∞ for some
x ∈Rd .

Assumption 3.2 alone does not imply that �v <∞ for some v ∈ USSM. How-
ever, when combined with Assumption 3.1, this is the case as the following lemma
asserts.

LEMMA 3.1. Let Assumptions 3.1 and 3.2 hold. Then there exists u0 ∈ USSM
such that �u0 <∞. Moreover, there exists a nonnegative inf-compact function V0 ∈
C2(Rd), and a positive constant η such that

Lu0V0(x)≤ η− r(x,u0(x)
) ∀x ∈Rd .(3.8)

Conversely, if (3.8) holds, then Assumption 3.2 holds.

PROOF. The first part of the result follows from Theorem 3.1(e) and (3.23)
whereas the converse part follows from Lemma 3.2. These proofs are stated later
in the paper. �
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REMARK 3.2. There is no loss of generality in using only the constant η in
Assumption 3.2, since V0 can always be scaled to achieve this.

We also observe that for K = R
d the problem reduces to an ergodic control

problem with near-monotone cost, and for K = ∅ we obtain an ergodic control
problem under a uniformly stable controlled diffusion.

3.3. Piecewise linear controlled diffusions. The controlled diffusion process
in (2.12) belongs to a large class of controlled diffusion processes, called piecewise
linear controlled diffusions [14]. We describe this class of controlled diffusions and
show that it satisfies the assumptions in Section 3.2.

DEFINITION 3.2. A square matrix R is said to be an M-matrix if it can be
written as R = sI − N for some s > 0 and nonnegative matrix N with property
that ρ(N)≤ s, where ρ(N) denotes the spectral radius of N .

Let � = [γ ij ] be a given matrix whose diagonal elements are positive,
γ id = 0 for i = 1, . . . , d − 1, and the remaining elements are in R. (Note that
for the queueing model, � is a positive diagonal matrix. Our results below hold for
the more general �.) Let � ∈Rd and R be a nonsingular M-matrix. Define

b(x,u) := �−R(x − (e · x)+u)− (e · x)+�u,(3.9)

with u ∈ S := {u ∈Rd+ : e · u= 1}. Assume that

eTR ≥ 0T.

We consider the following controlled diffusion in R
d :

dXt = b(Xt ,Ut )dt +� dWt,(3.10)

where� is a constant matrix such that��T is invertible. It is easy to see that (3.10)
satisfies conditions (A1)–(A3).

Analysis of these types of diffusion approximations is an established tradition
in queueing systems. It is often easy to deal with the limiting object and it also
helps to obtain information on the behavior of the actual queueing model.

We next introduce the running cost function. Let r :Rd×S→[0,∞) be locally
Lipschitz with polynomial growth and

c1
[
(e · x)+]m ≤ r(x,u)≤ c2

(
1+ [(e · x)+]m),(3.11)

for some m ≥ 1 and positive constants c1 and c2 that do not depend on u. Some
typical examples of such running costs are

r(x,u)= [(e · x)+]m d∑
i=1

hiu
m
i with m≥ 1,

for some positive vector (h1, . . . , hd)
T.
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REMARK 3.3. The controlled dynamics in (3.9) and running cost in (3.11) are
clearly more general than the model described in Section 2.2. In (3.10), X denotes
the diffusion approximation for the number customers in the system in the Halfin–
Whitt regime and its ith component Xi denotes the diffusion approximation of
the number of class i customers. Therefore, (e · X)+ denotes the total number
of customers in the queue. For R and � diagonal as in (2.13), the diagonal entries
of R and � denote the service and abandonment rates, respectively, of the customer
classes. The ith coordinate of U denotes the fraction of class-i customers waiting
in the queue. Therefore, the vector-valued process Xt − (e · Xt)

+Ut denotes the
diffusion approximation of the numbers of customers in service from different
customer classes.

PROPOSITION 3.1. Let b and r be given by (3.9) and (3.11), respectively.
Then (3.10) satisfies Assumptions 3.1 and 3.2, with h(x)= c0|x|m and

K := {x : δ|x|< (e · x)+}(3.12)

for appropriate positive constants c0 and δ.

PROOF. We recall that if R is a nonsingular M-matrix, then there exists a
positive definite matrix Q such that QR + RTQ is strictly positive definite [14].
Therefore, for some positive constant κ0 it holds that

κ0|y|2 ≤ yT[QR +RTQ
]
y ≤ κ−1

0 |y|2 ∀y ∈Rd .

The set K in (3.12), where δ > 0 is chosen later, is an open convex cone, and
the running cost function r is inf-compact on K. Let V be a nonnegative function
in C2(Rd) such that V(x) = [xTQx]m/2 for |x| ≥ 1, where the constant m is as
in (3.11).

Let |x| ≥ 1 and u ∈ S . Then

∇V(x) · b(x,u)= � · ∇V(x)− m[xTQx]m/2−1

2
xT[QR +RTQ

]
x

+m[xTQx
]m/2−1

Qx · (R − �)(e · x)+u
≤ � · ∇V(x)−m[xTQx

]m/2−1
(
κ0

2
|x|2 −C|x|(e · x)+

)
for some positive constant C. If we choose δ = κ0

4C , then on Kc∩{|x| ≥ 1} we have
the estimate

∇V(x) · b(x,u)≤ � · ∇V(x)− mκ0

4

[
xTQx

]m/2−1|x|2.(3.13)

Note that � · V is globally bounded for m = 1. For any m ∈ (1,∞), it follows
by (3.13) that

∇V(x) · b(x,u)≤m(�TQx
)[
xTQx

]m/2−1 − mκ0

4

[
xTQx

]m/2−1|x|2
(3.14)

≤ m|�TQ|(λ(Q))m/2

λ(Q)
|x|m−1 − mκ0(λ(Q))

m/2

4λ(Q)
|x|m
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for x ∈ Kc ∩ {|x| ≥ 1}, where λ(Q) and λ(Q) are the smallest and largest eigen-
values of Q, respectively. We use Young’s inequality

|ab| ≤ |a|
m

m
+ m− 1

m
|b|m/(m−1), a, b ≥ 0,

in (3.14) to obtain the bound

∇V(x) · b(x,u)≤ κ1 − mκ0

8λ(Q)

(
λ(Q)

)m/2|x|m(3.15)

for some constant κ1 > 0. A similar calculation shows for some constant κ2 > 0 it
holds that

∇V(x) · b(x,u)≤ κ2
(
1+ [(e · x)+]m) ∀x ∈K ∩ {|x| ≥ 1

}
.(3.16)

Also note that we can select κ3 > 0 large enough such that

1

2

∣∣trace
(
��T∇2V(x)

)∣∣≤ κ3 + mκ0

16λ(Q)

(
λ(Q)

)m/2|x|m.(3.17)

Hence, by (3.13)–(3.17) there exists κ4 > 0 such that

LuV(x)≤ κ4 − mκ0

16λ(Q)

(
λ(Q)

)m/2|x|mIKc (x)+ κ2
[
(e · x)+]mIK(x)(3.18)

for all x ∈ Rd . It is evident that we can scale V , by multiplying it with a constant,
so that (3.18) takes the form

LuV(x)≤ 1− c0|x|mIKc (x)+ c1
[
(e · x)+]mIK(x) ∀x ∈Rd .(3.19)

By (3.11), the running cost r is inf-compact on K. It then follows from (3.11)
and (3.19) that (3.6) is satisfied with h(x) := c0|x|m.

We next show that (3.10) satisfies Assumption 3.2. Let

u0(·)≡ ed = (0, . . . ,0,1)T.

Then we can write (3.10) as

dXt = (�−R(Xt − (e ·Xt)
+u0

)− (e · x)+�u0
)

dt +� dWt.(3.20)

It is shown in [14] that the solution Xt in (3.20) is positive recurrent and, therefore,
u0 is a stable Markov control. This is done by finding a suitable Lyapunov function.
In particular, in [14], Theorem 3, it is shown that there exists a positive definite
matrix Q̃ such that if we define

ψ(x) := (e · x)2 + κ̃[x − edφ(e · x)]TQ̃[x − edφ(e · x)],(3.21)

for some suitably chosen constant κ̃ and a function φ ∈ C2(R), given by

φ(y)=
⎧⎪⎨
⎪⎩
y, if y ≥ 0,
−1

2 δ̃, if y ≤−δ̃,

smooth, if − δ̃ < y < 0,
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where δ̃ > 0 is a suitable constant and 0≤ φ′(y)≤ 1, then it holds that

Lu0ψ(x)≤−κ̃1|x|2,(3.22)

for |x| large enough and positive constant κ̃1. We define V0 := eaψ where a is to
be determined later. Note that |∇ψ(x)| ≤ κ̃2(1 + |x|) for some constant κ̃2 > 0.
Hence, a straightforward calculation shows that if we choose a small enough, then
for some constant κ̃3 > 0 it holds that

Lu0V0(x)≤ (−κ̃1a|x|2 + a2‖�‖2κ̃2
(
1+ |x|)2)V0(x)

≤−κ̃3|x|2V0(x),

for all |x| large enough. Since V0(x) > [(e · x)+]m, m ≥ 1, for all large enough
|x| we see that V0 satisfies (3.8) with control u0. Hence, Assumption 3.2 holds by
Lemma 3.1. �

3.4. Existence of optimal controls.

DEFINITION 3.3. Recall the definition of �U in (3.7). For β > 0, we define

Uβ := {U ∈ U :�U(x)≤ β for some x ∈Rd}.
We also let UβSM := Uβ ∩ USM, and

�̂∗ := inf
{
β > 0 :Uβ �=∅

}
,

�∗ := inf
{
β > 0 :UβSM �=∅

}
,

�̃∗ := inf
{
π(r) :π ∈ G},

where

G :=
{
π ∈ P(Rd ×U

)
:
∫
Rd×U

Luf (x)π(dx,du)= 0 ∀f ∈ C∞c
(
R
d)},

and Luf (x) is given by (3.3). It is well known that G is the set of ergodic occupa-
tion measures of the controlled process in (3.1), and that G is a closed and convex
subset of P(Rd ×U) [1], Lemmas 3.2.2 and 3.2.3. We use the notation πv when
we want to indicate the ergodic occupation measure associated with the control
v ∈ USSM. In other words,

πv(dx,du) := μv(dx)v(du|x).

LEMMA 3.2. If (3.8) holds for some V0 and u0, then we have πu0(r) ≤ η.
Therefore, �̂∗ <∞.
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PROOF. Let (Xt , u0(Xt)) be the solution of (3.1). Recall that τR is the first
exit time from BR for R > 0. Then by Itô’s formula

E
u0
x

[
V0(XT∧τR )

]− V0(x)≤ ηT −E
u0
x

[∫ T∧τR
0

r
(
Xs,u0(Xs)

)
ds
]
.

Therefore, letting R→∞ and using Fatou’s lemma, we obtain the bound

E
u0
x

[∫ T

0
r
(
Xs,u0(Xs)

)
ds
]
≤ ηT + V0(x)−min

Rd
V0,

and thus

lim sup
T→∞

1

T
E
u0
x

[∫ T

0
r
(
Xs,u0(Xs)

)
ds
]
≤ η. �

In the analysis, we use a function h̃ ∈ C(Rd ×U) which, roughly speaking, is of
the same order as r in K×U and lies between r and a multiple of r+h on Kc×U,
with K as in Assumption 3.1. The existence of such a function is guaranteed by
Assumption 3.1 as the following lemma shows.

LEMMA 3.3. Define

H := (K×U)∪ {(x, u) ∈Rd ×U : r(x,u) > h(x,u)
}
,

where K is the open set in Assumption 3.1. Then there exists an inf-compact func-
tion h̃ ∈ C(Rd ×U) which is locally Lipschitz in its first argument uniformly w.r.t.
its second argument, and satisfies

r(x,u)≤ h̃(x, u)≤ k0

2

(
1+ h(x,u)IHc (x, u)+ r(x,u)IH(x, u))(3.23)

for all (x, u) ∈Rd ×U, and for some positive constant k0 ≥ 2. Moreover,

LuV(x)≤ 1− h(x,u)IHc (x, u)+ r(x,u)IH(x, u)(3.24)

for all (x, u) ∈Rd ×U, where V is the function in Assumption 3.1.

PROOF. If f (x,u) denotes the right-hand side of (3.23), with k0 = 4, then

f (x,u)− r(x,u) > h(x,u)IHc (x, u)+ r(x,u)IH(x, u)
≥ h(x,u)IKc (x)+ r(x,u)IK(x),

since r(x,u) > h(x,u) on H \ (K × U). Therefore, by Assumption 3.1, the set
{(x, u) :f (x,u) − r(x,u) ≤ n} is bounded in R

d × U for every n ∈ N. Hence,
there exists an increasing sequence of open balls Dn, n = 1,2, . . . , centered at 0
in R

d such that f (x,u)− r(x,u)≥ n for all (x, u) ∈Dc
n ×U. Let g :Rd→ R be

any nonnegative smooth function such that n− 1 ≤ g(x) ≤ n for x ∈Dn+1 \Dn,
n= 1,2, . . . , and g(x)= 0 on D1. Clearly, h̃ := r + g is continuous, inf-compact,
locally Lipschitz in its first argument, and satisfies (3.23). That (3.24) holds is clear
from (3.6) and the fact that H⊇K×U. �
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REMARK 3.4. It is clear from the proof of Lemma 3.3 that we could fix the
value of the constant k0 in (3.23), say k0 = 4. However, we keep the variable k0
because this provides some flexibility in the choice of h̃, and also in order to be
able to trace it along the different calculations.

REMARK 3.5. Note that if h ≥ r and r is inf-compact, then H = K×U and
h̃ := r satisfies (3.23). Note also, that in view of (3.11) and Proposition 3.1, for the
multi-class queueing model we have

r(x,u)≤ c2
(
1+ [(e · x)+]m)

≤ c2d
m−1

1∧ c0

(
1+ (1∧ c0)|x|m)

≤ c2d
m−1

1∧ c0

(
1+ c0|x|mIKc (x)+ 1

δm

[
(e · x)+]mIK(x)

)

≤ c2d
m−1

1∧ c0

(
1+ h(x)IKc (x)+ 1

c1δm
r(x,u)IK(x)

)

≤ c2d
m−1

1∧ c0 ∧ c1δm

(
1+ h(x)IKc (x)+ r(x,u)IK(x))

≤ c2d
m−1

1∧ c0 ∧ c1δm

(
1+ h(x)IHc (x, u)+ r(x,u)IH(x, u)).

Therefore, h̃(x, u) := c2 + c2d
m−1|x|m satisfies (3.23).

REMARK 3.6. We often use the fact that if g ∈ C(Rd ×U) is bounded below,
then the map P(Rd×U) � ν �→ ν(g) is lower semi-continuous. This easily follows
from two facts: (a) g can be expressed as an increasing limit of bounded continuous
functions, and (b) if g is bounded and continuous, then π �→ π(g) is continuous.

THEOREM 3.1. Let β ∈ (�̂∗,∞). Then:

(a) For all U ∈ Uβ and x ∈Rd such that �U(x)≤ β , then

lim sup
t→∞

1

T
E
U
x

[∫ T

0
h̃(Xs,Us)ds

]
≤ k0(1+ β).(3.25)

(b) �̂∗ = �∗ = �̃∗.
(c) For any β ∈ (�∗,∞), we have U

β
SM ⊂ USSM.

(d) The set of invariant probability measures Mβ corresponding to controls in
U
β
SM satisfies ∫

Rd
h̃
(
x, v(x)

)
μv(dx)≤ k0(1+ β) ∀μv ∈Mβ.

In particular, UβSM is tight in P(Rd).
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(e) There exists (Ṽ , �̃) ∈ C2(Rd)×R+, with Ṽ inf-compact, such that

min
u∈U

[
LuṼ (x)+ h̃(x, u)]= �̃.(3.26)

PROOF. Using Itô’s formula, it follows by (3.24) that

1

T

(
E
U
x

[
V(XT∧τR )

]− V(x)
)

≤ 1− 1

T
E
U
x

[∫ T∧τR
0

h(Xs,Us)IHc (Xs,Us)ds
]

(3.27)

+ 1

T
E
U
x

[∫ T∧τR
0

r(Xs,Us)IH(Xs,Us)ds
]
.

Since V is inf-compact, (3.27) together with (3.23) implies that

2

k0
lim sup
T→∞

1

T
E
U
x

[∫ T

0
h̃(Xs,Us)ds

]
(3.28)

≤ 2+ 2 lim sup
T→∞

1

T
E
U
x

[∫ T

0
r(Xs,Us)ds

]
.

Part (a) then follows from (3.28).
Now fix U ∈ Uβ and x ∈ R

d such that �U(x) ≤ β . The inequality in (3.25)
implies that the set of mean empirical measures {ζUx,t : t ≥ 1}, defined by

ζUx,t (A×B) :=
1

t
E
U
x

[∫ t

0
IA×B(Xs,Us)ds

]

for any Borel sets A⊂R
d and B ⊂U, is tight. It is the case that any limit point of

the mean empirical measures in P(Rd ×U) is an ergodic occupation measure [1],
Lemma 3.4.6. Then in view of Remark 3.6 we obtain

π(r)≤ lim sup
t→∞

ζUx,t (r)≤ β(3.29)

for some ergodic occupation measure π . Therefore, �̃∗ ≤ �̂∗. Disintegrating the
measure π as π(dx,du) = v(du|x)μv(dx), we obtain the associated control v ∈
USSM. From ergodic theory [33], we also know that

lim sup
T→∞

1

T
E
v
x

[∫ T

0
r
(
Xs, v(Xs)

)
ds
]
= πv(r) for almost every x.

It follows that �∗ ≤ �̃∗, and since it is clear that �̂∗ ≤ �∗, equality must hold among
the three quantities.

If v ∈ UβSM, then (3.28) implies that (3.29) holds with U ≡ v and π ≡ πv . There-
fore, parts (c) and (d) follow.
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Existence of (Ṽ , �̃), satisfying (3.26), follows from Assumption 3.2 and [1],
Theorem 3.6.6. The inf-compactness of Ṽ follows from the stochastic representa-
tion of Ṽ in [1], Lemma 3.6.9. This proves (e). �

Existence of a stationary Markov control that is optimal is asserted by the fol-
lowing theorem.

THEOREM 3.2. Let G denote the set of ergodic occupation measures corre-
sponding to controls in USSM, and Gβ those corresponding to controls in U

β
SM, for

β > �∗. Then:

(a) The set Gβ is compact in P(Rd) for any β > �∗.
(b) There exists v ∈ USM such that �v = �∗.

PROOF. By Theorem 3.1(d), the set Gβ is tight for any β > �∗. Let {πn} ⊂ Gβ ,
for some β > �∗, be any convergent sequence in P(Rd) such that πn(r)→ �∗ as
n→∞ and denote its limit by π∗. Since G is closed, π∗ ∈ G, and since the map
π → π(r) is lower semi-continuous, it follows that π∗(r) ≤ �∗. Therefore, Gβ is
closed, and hence compact. Since π(r)≥ �∗ for all π ∈ G, the equality π∗(r)= �∗
follows. Also v is obtained by disintegrating π∗. �

REMARK 3.7. The reader might have noticed at this point that Assumption 3.1
may be weakened significantly. What is really required is the existence of an open
set Ĥ⊂R

d ×U and inf-compact functions V ∈ C2(Rd) and h ∈ C(Rd ×U), satis-
fying

(H1) inf{u : (x,u)∈Ĥ} r(x,u) −→|x|→∞∞.

(H2) LuV(x)≤ 1− h(x,u)IĤc (x, u)+ r(x,u)IĤ(x, u) ∀(x, u) ∈Rd ×U.

In (H1), we use the convention that the ‘inf’ of the empty set is +∞. Also note
that (H1) is equivalent to the statement that {(x, u) : r(x,u) ≤ c} ∩ Ĥ is bounded
in R

d × U for all c ∈ R+. If (H1)–(H2) are met, we define H := Ĥ ∪ {(x, u) ∈
R
d ×U : r(x,u) > h(x,u)}, and following the proof of Lemma 3.3, we assert the

existence of an inf-compact h̃ ∈ C(Rd × U) satisfying (3.23). In fact, throughout
the rest of the paper, Assumption 3.1 is not really invoked. We only use (3.24), the
inf-compact function h̃ satisfying (3.23), and, naturally, Assumption 3.2.

3.5. The HJB equation. For ε > 0, let

rε(x, u) := r(x,u)+ εh̃(x, u).
By Theorem 3.1(d), for any π ∈ Gβ , β > �∗, we have the bound

π(rε)≤ β + εk0(1+ β).(3.30)
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Therefore, since rε is near-monotone, that is,

lim inf|x|→∞min
u∈U rε(x, u) > inf

π∈Gπ(rε),

there exists πε ∈ arg minπ∈G π(rε). Let π∗ ∈ G be as in the proof of Theorem 3.2.
The sub-optimality of π∗ relative to the running cost rε and (3.30) imply that

πε(r)≤ πε(rε)
≤ π∗(rε)(3.31)

≤ �∗ + εk0(1+ �∗) ∀ε > 0.

It follows from (3.31) and Theorem 3.1(d) that {πε : ε ∈ (0,1)} is tight. Since πε �→
πε(r) is lower semi-continuous, if π̄ is any limit point of πε as ε↘ 0, then taking
limits in (3.31), we obtain

π̄(r)≤ lim sup
ε↘0

πε(r)≤ �∗.(3.32)

Since G is closed, π̄ ∈ G, which implies that π̄(r) ≥ �∗. Therefore, equality must
hold in (3.32), or in other words, π̄ is an optimal ergodic occupation measure.

THEOREM 3.3. There exists a unique function V ε ∈ C2(Rd) with V ε(0)= 0,
which is bounded below in R

d , and solves the HJB

min
u∈U

[
LuV ε(x)+ rε(x, u)]= �ε,(3.33)

where �ε := infπ∈G π(rε), or in other words, �ε is the optimal value of the er-
godic control problem with running cost rε . Also a stationary Markov control vε
is optimal for the ergodic control problem relative to rε if and only if it satisfies

Hε

(
x,∇V ε(x)

)= b
(
x, vε(x)

) · ∇V ε(x)+ rε(x, vε(x)) a.e. in R
d,(3.34)

where

Hε(x,p) :=min
u∈U

[
b(x,u) · p+ rε(x, u)].(3.35)

Moreover:

(a) for every R > 0, there exists kR such that

osc
BR

V ε ≤ kR;(3.36)

(b) if vε is a measurable a.e. selector from the minimizer of the Hamiltonian
in (3.35), that is, if it satisfies (3.33), then for any δ > 0,

V ε(x)≥ E
vε
x

[∫ τ̆δ

0

(
rε
(
Xs, vε(Xs)

)− �ε)ds
]
+ inf

Bδ
V ε;
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(c) for any stationary control v ∈ USSM and for any δ > 0,

V ε(x)≤ E
v
x

[∫ τ̆δ

0

(
rε
(
Xs, v(Xs)

)− �ε)ds + V ε(Xτ̆δ )

]
,

where τ̆δ is hitting time to the ball Bδ .

THEOREM 3.4. Let V ε , �ε , and vε , for ε > 0, be as in Theorem 3.3. The
following hold:

(a) The function V ε converges to some V∗ ∈ C2(Rd), uniformly on compact
sets, and �ε→ �∗, as ε↘ 0, and V∗ satisfies

min
u∈U

[
LuV∗(x)+ r(x,u)]= �∗.(3.37)

Also, any limit point v∗ (in the topology of Markov controls) as ε↘ 0 of the set
{vε} satisfies

Lv∗V∗(x)+ r(x, v∗(x))= �∗ a.e. in R
d .

(b) A stationary Markov control v is optimal for the ergodic control problem
relative to r if and only if it satisfies

H
(
x,∇V∗(x))= b

(
x, v(x)

) · ∇V∗(x)+ r(x, v(x)) a.e. in R
d,(3.38)

where

H(x,p) :=min
u∈U

[
b(x,u) · p+ r(x,u)].

Moreover, for an optimal v ∈ USM, we have

lim
T→∞

1

T
E
v
x

[∫ T

0
r
(
Xs, v(Xs)

)
ds
]
= �∗ ∀x ∈Rd .

(c) The function V∗ has the stochastic representation

V∗(x)= lim
δ↘0

inf
v∈⋃β>0 U

β
SM

E
v
x

[∫ τ̆δ

0

(
r
(
Xs, v(Xs)

)− �∗)ds
]

(3.39)

= lim
δ↘0

E
v̄
x

[∫ τ̆δ

0

(
r
(
Xs, v∗(Xs)

)− �∗)ds
]

for any v̄ ∈ USM that satisfies (3.38).
(d) If U is a convex set, u �→ {b(x,u) · p+ r(x,u)} is strictly convex whenever

it is not constant, and u �→ h̃(x, u) is strictly convex for all x, then any measur-
able minimizer of (3.33) converges pointwise, and thus in USM, to the minimizer
of (3.37).
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Theorem 3.4 guarantees the existence of an optimal stable control, which is
made precise by (3.38), for the ergodic diffusion control problem with the running
cost function r . Moreover, under the convexity property in part (d), the optimal
stable control can be obtained as a pointwise limit from the minimizing selector
of (3.33). For instance, if we let

r(x,u)= (e · x)+
d∑
i=1

hiu
m
i , m > 1,

then by choosing h and h̃+ |u|2 as in Proposition 3.1, we see that the approximate
value function V ε and approximate control vε converge to the desired optimal
value function V∗ and optimal control v∗, respectively.

Concerning the uniqueness of the solution to the HJB equation in (3.37), re-
call that in the near-monotone case the existing uniqueness results are as follows:
there exists a unique solution pair (V ,�) of (3.37) with V in the class of func-
tions C2(Rd) which are bounded below in R

d . Moreover, it satisfies V (0)= 0 and
� ≤ �∗. If the restriction � ≤ �∗ is removed, then in general, there are multiple
solutions. Since in our model r is not near-monotone in R

d , the function V∗ is not,
in general, bounded below. However, as we show later in Lemma 3.10 the neg-
ative part of V∗ grows slower than V , that is, it holds that V −∗ ∈ o(V), with o(·)
as defined in Section 1.3. Therefore, the second part of the theorem that follows
may be viewed as an extension of the well-known uniqueness results that apply to
ergodic control problems with near-monotone running cost. The third part of the
theorem resembles the hypotheses of uniqueness that apply to problems under a
blanket stability hypothesis.

THEOREM 3.5. Let (V̂ , �̂) be a solution of

min
u∈U

[
LuV̂ (x)+ r(x,u)]= �̂,(3.40)

such that V̂ − ∈ o(V) and V̂ (0)= 0. Then the following hold:

(a) Any measurable selector v̂ from the minimizer of the associated Hamilto-
nian in (3.38) is in USSM and �v̂ <∞.

(b) If �̂ ≤ �∗ then necessarily �̂= �∗ and V̂ = V∗.
(c) If V̂ ∈O(minu∈U h̃(·, u)), then �̂= �∗ and V̂ = V∗.

Applying these results to the multi-class queueing diffusion model, we have the
following corollary.

COROLLARY 3.1. For the queueing diffusion model with controlled dynamics
given by (3.10), drift given by (3.9), and running cost as in (3.11), there exists
a unique solution V , satisfying V (0) = 0, to the associated HJB in the class of
functions C2(Rd)∩O(|x|m), whose negative part is in o(|x|m). This solution agrees
with V∗ in Theorem 3.4.



ERGODIC CONTROL IN THE HALFIN–WHITT REGIME 3539

PROOF. Existence of a solution V follows by Theorem 3.4. Select V ∼ |x|m as
in the proof of Proposition 3.1. That the solution V is in the stated class then fol-
lows by Lemma 3.10 and Corollary 4.1 that appear later in Sections 3.6 and 4,
respectively. With h ∼ |x|m as in the proof of Proposition 3.1, it follows that
minu∈U h̃(x, u) ∈O(|x|m). Therefore, uniqueness follows by Theorem 3.5. �

We can also obtain the HJB equation in (3.37) via the traditional vanishing
discount approach as the following theorem asserts. Similar results are shown for a
one-dimensional degenerate ergodic diffusion control problem in [29] and certain
multi-dimensional ergodic diffusion control problems (allowing degeneracy and
spatial periodicity) in [2].

THEOREM 3.6. Let V∗ and �∗ be as in Theorem 3.4. For α > 0, we define

Vα(x) := inf
U∈UE

U
x

[∫ ∞
0

e−αt r(Xt ,Ut )dt
]
.

The function Vα−Vα(0) converges, as α↘ 0, to V∗, uniformly on compact subsets
of Rd . Moreover, αVα(0)→ �∗, as α↘ 0.

The proofs of the Theorems 3.3–3.6 are given in Section 3.6. The following re-
sult, which follows directly from (3.31), provides a way to find ε-optimal controls.

PROPOSITION 3.2. Let {vε} be the minimizing selector from Theorem 3.3 and
{μvε} be the corresponding invariant probability measures. Then almost surely for
all x ∈Rd ,

lim
T→∞

1

T
E
vε
x

[∫ T

0
r
(
Xs, vε(Xs)

)
ds
]
=
∫
Rd
r
(
x, vε(x)

)
μvε(dx)

≤ �∗ + εk0(1+ �∗).

3.6. Technical proofs. Recall that rε(x, u)= r(x,u)+ εh̃(x, u), with h̃ as in
Lemma 3.3. We need the following lemma.

For α > 0 and ε ≥ 0, we define

V ε
α (x) := inf

U∈UE
U
x

[∫ ∞
0

e−αt rε(Xt ,Ut )dt
]
,(3.41)

where we set r0 ≡ r . Clearly, when ε = 0, we have V 0
α ≡ Vα .

We quote the following result from [1], Theorem 3.5.6, Remark 3.5.8.

LEMMA 3.4. Provided ε > 0, then V ε
α defined above is in C2(Rd) and is the

minimal nonnegative solution of

min
u∈U

[
LuV ε

α (x)+ rε(x, u)
]= αV ε

α (x).
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The HJB in Lemma 3.4 is similar to the equation in [7], Theorem 3, which
concerns the characterization of the discounted control problem.

LEMMA 3.5. Let u be any precise Markov control and Lu be the correspond-
ing generator. Let ϕ ∈ C2(Rd) be a nonnegative solution of

Luϕ − αϕ = g,

where g ∈ L∞loc(R
d). Let κ :R+ → R+ be any nondecreasing function such that

‖g‖L∞(BR) ≤ κ(R) for all R > 0. Then for any R > 0 there exists a constant D(R)
which depends on κ(4R), but not on u, or ϕ, such that

osc
BR

ϕ ≤D(R)
(
1+ α inf

B4R
ϕ
)
.

PROOF. Define g̃ := α(g − 2κ(4R)) and ϕ̃ := 2κ(4R) + αϕ. Then g̃ ≤ 0 in
B4R and ϕ̃ solves

Luϕ̃ − αϕ̃ = g̃ in B4R.

Also

‖g̃‖L∞(B4R) ≤ α
(
2κ(4R)+ ‖g‖L∞(B4R)

)
≤ 3α

(
2κ(4R)− ‖g‖L∞(B4R)

)
= 3 inf

B4R
|g̃|

≤ 3|B4R|−1‖g̃‖L1(B4R)
.

Hence by [1], Theorem A.2.13, there exists a positive constant C̃H such that

sup
x∈B3R

ϕ̃(x)≤ C̃H inf
x∈B3R

ϕ̃(x),

implying that

α sup
x∈B3R

ϕ(x)≤ C̃H
(
2κ(4R)+ inf

x∈B3R
αϕ(x)

)
.(3.42)

We next consider the solution of

Luψ = 0 in B3R, ψ = ϕ on ∂B3R.

Then

Lu(ϕ −ψ)= αϕ + g in B3R.

If ϕ(x̂) = infx∈B3R ϕ(x), then applying the maximum principle ([1], Theo-
rem A.2.1, [18]) it follows from (3.42) that

sup
x∈B3R

|ϕ −ψ | ≤ Ĉ(1+ αϕ(x̂)).(3.43)
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Again ψ attains its minimum at the boundary ([1], Theorem A.2.3, [18]). There-
fore, ψ − ϕ(x̂) is a nonnegative function, and hence by the Harnack inequality,
there exists a constant CH > 0 such that

ψ(x)− ϕ(x̂)≤ CH (ψ(x̂)− ϕ(x̂))≤ CHĈ(1+ αϕ(x̂)) ∀x ∈ B2R.

Thus, combining the above display with (3.43) we obtain

osc
B2R

ϕ ≤ sup
B2R

(ϕ −ψ)+ sup
B2R

ψ − ϕ(x̂)≤ Ĉ(1+CH)(1+ αϕ(x̂)).
This completes the proof. �

LEMMA 3.6. Let V ε
α be as in Lemma 3.4. Then for any R > 0, there exists a

constant kR > 0 such that

osc
BR

V ε
α ≤ kR for all α ∈ (0,1] and ε ∈ [0,1].

PROOF. Recall that μu0 is the stationary probability distribution for the pro-
cess under the control u0 ∈ USSM in Lemma 3.1. Since u0 is sub-optimal for the
α-discounted criterion in (3.41), and V ε

α is nonnegative, then for any ball BR , using
Fubini’s theorem, we obtain

μu0(BR) inf
BR

V ε
α ≤

∫
Rd
V ε
α (x)μu0(dx)

≤
∫
Rd

E
u0
x

[∫ ∞
0

e−αt rε
(
Xt,u0(Xt)

)
dt
]
μu0(dx)

= 1

α
μu0(rε)

≤ 1

α

(
η+ εk0(1+ η)),

where for the last inequality we used Lemma 3.2 and Theorem 3.1(a).
Therefore, we have the estimate

α inf
BR

V ε
α ≤

η+ εk0(1+ η)
μu0(BR)

.

The result then follows by Lemma 3.5. �

We continue with the proof of Theorem 3.3.

PROOF OF THEOREM 3.3. Consider the function V̄ ε
α := V ε

α − V ε
α (0). In view

of Lemma 3.5 and Lemma 3.6, we see that V̄ ε
α is locally bounded uniformly in

α ∈ (0,1] and ε ∈ (0,1]. Therefore, by standard elliptic theory, V̄ ε
α and its first- and

second-order partial derivatives are uniformly bounded in Lp(B), for any p > 1,
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in any bounded ball B ⊂ R
d , that is, for some constant CB depending on B and

p, ‖V̄ ε
α ‖W2,p(B) ≤ CB ([18], Theorem 9.11, page 117). Therefore, we can extract

a subsequence along which V̄ ε
α converges. Then the result follows from Theo-

rems 3.6.6, Lemma 3.6.9 and Theorem 3.6.10 in [1]. The proof of (3.36) follows
from Lemma 3.5 and Lemma 3.6. �

REMARK 3.8. In the proof of the following lemma, and elsewhere in the pa-
per, we use the fact that if U ⊂ USSM is a any set of controls such that the corre-
sponding set {μv :v ∈ U} ⊂M of invariant probability measures is tight then the
map v �→ πv from the closure of U to P(Rd ×U) is continuous, and so is the map
v �→ μv . In fact, the latter is continuous under the total variation norm topology
[1], Lemma 3.2.6. We also recall that G and M are closed and convex subsets of
P(Rd×U) and P(Rd). Therefore,{πv :v ∈ Ū} is compact in G. Note also that since
U is compact, tightness of a set of invariant probability measures is equivalent to
tightness of the corresponding set of ergodic occupation measures.

LEMMA 3.7. If {vε : ε ∈ (0,1]} is a collection of measurable selectors from
the minimizer of (3.33), then the corresponding invariant probability measures
{με : ε ∈ (0,1]} are tight. Moreover, if vεn→ v∗ along some subsequence εn↘ 0,
then the following hold:

(a) μεn→ μv∗ as εn↘ 0,
(b) v∗ is a stable Markov control,
(c)

∫
Rd r(x, v∗(x))μv∗(dx)= limε↘0 �ε = �∗.

PROOF. By (3.25) and (3.31), the set of ergodic occupation measures corre-
sponding to {vε : ε ∈ (0,1]} is tight. By Remark 3.8, the same applies to the set
{με : ε ∈ (0,1]}, and also part (a) holds. Part (b) follows from the equivalence of
the existence of an invariant probability measure for a controlled diffusion and the
stability of the associated stationary Markov control (see [1], Theorem 2.6.10).
Part (c) then follows since equality holds in (3.32). �

We continue with the following lemma that asserts the continuity of the mean
hitting time of a ball with respect to the stable Markov controls.

LEMMA 3.8. Let {vn :n ∈ N} ⊂ U
β
SM, for some β > 0, be a collection of

Markov controls such that vn→ v̂ in the topology of Markov controls as n→∞.
Let μn, μ̂ be the invariant probability measures corresponding to the con-
trols vn, v̂, respectively. Then for any δ > 0, it holds that

E
vn
x [τ̆δ] −→n→∞E

v̂
x[τ̆δ] ∀x ∈ Bc

δ .
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PROOF. Define H(x) := minu∈U h̃(x, u). It is easy to see that H is inf-
compact and locally Lipschitz. Therefore, by Theorem 3.1(d) we have

sup
n∈N

μn(H)≤ k0(1+ β),

and since μn→ μ̂, we also have μ̂(H) ≤ k0(1+ β). Then by [1], Lemma 3.3.4,
we obtain

sup
n∈N

E
vn
x

[∫ τ̆δ

0
H(Xs)ds

]
+E

v̂
x

[∫ τ̆δ

0
H(Xs)ds

]
<∞.(3.44)

LetR be a positive number greater than |x|. Then by (3.44), there exists a positive k
such that

E
v
x

[∫ τ̆δ

0
I{H>R}(Xs)ds

]
≤ 1

R
E
v
x

[∫ τ̆δ

0
H(Xs)I{H>R}(Xs)ds

]
≤ k

R

for v ∈ {{vn}, v̂}. From this assertion and (3.44), we see that

sup
v∈{{vn},v̂}

E
v
x

[∫ τ̆δ

0
I{H>R}(Xs)ds

]
−→
R→∞0.

Therefore, in order to prove the lemma it is enough to show that, for any R > 0,
we have

E
vn
x

[∫ τ̆δ

0
I{H≤R}(Xs)ds

]
−→
n→∞E

v̂
x

[∫ τ̆δ

0
I{H≤R}(Xs)ds

]
.

But this follows from [1], Lemma 2.6.13(iii). �

LEMMA 3.9. Let (V ε, �ε) be as in Theorem 3.3, and vε satisfy (3.35). There
exists a subsequence εn↘ 0, such that V εn converges to some V∗ ∈ C2(Rd), uni-
formly on compact sets, and V∗ satisfies

min
u∈U

[
LuV∗(x)+ r(x,u)]= �∗.(3.45)

Also, any limit point v∗ (in the topology of Markov controls) of the set {vε}, as
ε↘ 0, satisfies

Lv∗V∗(x)+ r(x, v∗(x))= �∗ a.e. in R
d .(3.46)

Moreover, V∗ admits the stochastic representation

V∗(x)= inf
v∈⋃β>0 U

β
SM

E
v
x

[∫ τ̆δ

0

(
r
(
Xs, v(Xs)

)− �∗)ds + V∗(Xτ̆δ )

]
(3.47)

= E
v∗
x

[∫ τ̆δ

0

(
r
(
Xs, v∗(Xs)

)− �∗)ds + V∗(Xτ̆δ )

]
.

It follows that V∗ is the unique limit point of V ε as ε↘ 0.



3544 A. ARAPOSTATHIS, A. BISWAS AND G. PANG

PROOF. From (3.36), we see that the family {V ε : ε ∈ (0,1]} is uniformly
locally bounded. Hence, applying the theory of elliptic PDE, it follows that
{V ε : ε ∈ (0,1]} is uniformly bounded in W

2,p
loc (R

d) for p > d . Consequently,

{V ε : ε ∈ (0,1]} is uniformly bounded in C1,γ
loc for some γ > 0. Therefore, along

some subsequence εn ↘ 0, V εn → V∗ ∈W2,p ∩ C1,γ , as n→∞, uniformly on
compact sets. Also, limε↘0 �ε = �∗ by Lemma 3.6(c). Therefore, passing to the
limit we obtain the HJB equation in (3.45). It is straightforward to verify that (3.46)
holds [1], Lemma 2.4.3.

By Theorem 3.3(c), taking limits as ε↘ 0, we obtain

V∗(x)≤ inf
v∈⋃β>0 U

β
SM

E
v
x

[∫ τ̆δ

0

(
r
(
Xs, v(Xs)

)− �∗)ds + V∗(Xτ̆δ )

]
.(3.48)

Also by Theorem 3.3(b) we have the bound

V ε(x)≥−�εEvεx [τ̆δ] + inf
Bδ
V ε.

Using Lemma 3.8 and taking limits as εn↘ 0, we obtain the lower bound

V∗(x)≥−�∗Ev∗x [τ̆δ] + inf
Bδ
V∗.(3.49)

By Lemma 3.7(c) and Theorem 3.1(d), v∗ ∈ USSM, and πv∗(h̃)≤ k0(1+ �∗). De-
fine

ϕ(x) := E
v∗
x

[∫ τ̆δ

0
h̃
(
Xs, v∗(Xs)

)
ds
]
.(3.50)

For |x|> δ, we have

E
v∗
x

[
I{τR<τ̆δ}ϕ(XτR)

]= E
v∗
x

[
I{τR<τ̆δ}

∫ τ̆δ

τR∧τ̆δ
h̃
(
Xs, v∗(Xs)

)
ds
]
.

Therefore, by the dominated convergence theorem and the fact that ϕ(x) <∞ we
obtain

E
v∗
x

[
ϕ(XτR)I{τR<τ̆δ}

] −→
R↗∞0.

By (3.48) and (3.49), we have |V∗| ∈O(ϕ). Thus (3.49) and (3.50) imply that

lim inf
R↗∞ E

v∗
x

[
V∗(XτR)I{τR<τ̆δ}

]= 0,

and thus

lim inf
R↗∞ E

v∗
x

[
V∗(XτR∧τ̆δ )

]= E
v∗
x

[
V∗(Xτ̆δ )

]
.(3.51)

Applying Itô’s formula to (3.46), we obtain

V∗(x)= E
v∗
x

[∫ τ̆δ∧τR
0

(
r
(
Xs, v∗(Xs)

)− �∗)ds + V∗(Xτ̆δ∧τR )
]
.(3.52)
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Taking limits as R→∞, and using the dominated convergence theorem, we ob-
tain (3.47) from (3.48). �

Recall the definition of o(·) from Section 1.3. We need the following lemma.

LEMMA 3.10. Let V∗ be as in Lemma 3.9. It holds that V −∗ ∈ o(V).
PROOF. Let v∗ be as in Lemma 3.9. Applying Itô’s formula to (3.24) with

u≡ v∗ we obtain

E
v∗
x

[∫ τ̆δ

0
h
(
Xs, v∗(Xs)

)
IHc

(
Xs, v∗(Xs)

)
ds
]

(3.53)

≤ E
v∗
x

[∫ τ̆δ

0
r
(
Xs, v∗(Xs)

)
IH
(
Xs, v∗(Xs)

)
ds
]
+E

v∗
x [τ̆δ] + V(x).

Therefore, adding the term

E
v∗
x

[∫ τ̆δ

0
r
(
Xs, v∗(Xs)

)
IH
(
Xs, v∗(Xs)

)
ds
]
− (1+ 2�∗)Ev∗x [τ̆δ]

to both sides of (3.53) and using the stochastic representation of V∗ we obtain

F(x) := 2k−1
0 E

v∗
x

[∫ τ̆δ

0
h̃
(
Xs, v∗(Xs)

)
ds
]
− 2(1+ �∗)Ev∗x [τ̆δ]

(3.54)
≤ 2V∗(x)+ V(x)− 2 inf

Bδ
V∗.

From the stochastic representation of V∗ we have V −∗ (x) ≤ �∗Ev∗x [τ̆δ] − infBδ V∗.
For any R > δ, we have

E
v∗
x

[∫ τ̆δ

0
h̃
(
Xs, v∗(Xs)

)
ds
]
≥
(

inf
Bc
R×U

h̃
)
Ex[τ̆R] ∀x ∈ Bc

R.(3.55)

It is also straightforward to show that lim|x|→∞ Ex [τ̆R]
Ex [τ̆δ] = 1. Therefore, since h̃ is

inf-compact, it follows by (3.54) and (3.55) that the map x �→ E
v∗
x [τ̆δ] is in o(F ),

which implies that V −∗ ∈ o(F ). On the other hand, by (3.54) we obtain F(x) ≤
V(x)− 2 supBδ V∗ for all x such that V∗(x)≤ 0, which implies that the restriction
of F to the support of V −∗ is in O(V). It follows that V −∗ ∈ o(V). �

We next prove Theorem 3.4.

PROOF OF THEOREM 3.4. Part (a) is contained in Lemma 3.9.
To prove part (b), let v̄ be any control satisfying (3.38). By Lemma 3.10 the map

V + 2V∗ is inf-compact and by Theorem 3.4 and (3.24) it satisfies

Lv̄(V + 2V∗)(x)≤ 1+ 2�∗ − r(x, v̄(x))− h(x, v̄(x))IHc

(
x, v̄(x)

)
≤ 2+ 2�∗ − 2k−1

0 h̃
(
x, v̄(x)

) ∀x ∈Rd .
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This implies that v̄ ∈ USSM. Applying Itô’s formula, we obtain

lim sup
T→∞

1

T
E
v̄
x

[∫ T

0
h̃
(
Xs, v̄(Xs)

)
ds
]
≤ k0(1+ �∗).(3.56)

Therefore, πv̄(h̃) <∞. By (3.24), we have

E
v̄
x

[
V(Xt)

]≤ V(x)+ t +E
v̄
x

[∫ t

0
r
(
Xs, v̄(Xs)

)
ds
]
,

and since r ≤ h̃, this implies by (3.56) that

lim sup
T→∞

1

T
E
v̄
x

[
V(XT )

]≤ 1+ k0(1+ �∗).(3.57)

Since V −∗ ∈ o(V), it follows by (3.57) that

lim sup
T→∞

1

T
E
v̄
x

[
V −∗ (XT )

]= 0.

Therefore, by Itô’s formula, we deduce from (3.37) that

lim sup
T→∞

1

T
E
v̄
x

[∫ T

0
r
(
Xs, v̄(Xs)

)
ds
]
≤ �∗.(3.58)

On the other hand, since the only limit point of the mean empirical measures
ζ v̄x,t , as t →∞, is πv̄ , and πv̄(r) = �∗, then in view of Remark 3.6, we obtain
lim inft→∞ ζ v̄x,t (r) ≥ �∗. This proves that equality holds in (3.58) and that the
“lim sup” may be replaced with “lim.”

Conversely, suppose v ∈ USM is optimal but does not satisfy (3.38). Then there
exists R > 0 and a nontrivial nonnegative f ∈ L∞(BR) such that

fε(x) := IBR(x)
(
LvV ε(x)+ rε(x, v(x))− �ε)

converges to f , weakly in L1(BR), along some subsequence ε↘ 0. By applying
Itô’s formula to (3.33), we obtain

1

T

(
E
v
x

[
V ε(XT∧τR )

]− V ε(x)
)+ 1

T
E
v
x

[∫ T∧τR
0

rε
(
Xs, v(Xs)

)
ds
]

(3.59)

≥ �ε + 1

T
E
v
x

[∫ T∧τR
0

fε
(
Xs, v(Xs)

)
ds
]
.

Define, for some δ > 0,

G(x) := E
v
x

[∫ τ̆δ

0
rε
(
Xs, v(Xs)

)
ds
]
.

Since V ε is bounded from below, by Theorem 3.3(c) we have V ε ∈ O(G). Invok-
ing [1], Corollary 3.7.3, we obtain

lim
T→∞

1

T
E
v
x

[
V ε(XT )

]= 0,
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and

lim
R→∞E

v
x

[
V ε(XT∧τR )

]= E
v
x

[
V ε(XT )

]
.

Therefore, taking limits in (3.59), first as R↗∞, and then as T →∞, we obtain

πv(rε)≥ �ε + πv(fε).(3.60)

Taking limits as ε↘ 0 in (3.60), since μv has a strictly positive density in BR , we
obtain

πv(r)≥ �∗ + πv(f ) > �∗,

which is a contradiction. This completes the proof of part (b).
The first equality (3.39) follows by Lemma 3.9, taking limits as δ↘ 0. To show

that the second equality holds for any optimal control, suppose v̄ satisfies (3.38).
By (3.24) we have, for δ > 0 and |x|> δ,

E
v̄
x

[
V(XτR)I{τR<τ̆δ}

]≤ V(x)+ sup
Bδ

V− +E
v̄
x

[∫ τR∧τ̆δ
0

(
1+ r(Xs, v̄(Xs)

))
ds
]
.

It follows that (see [1], Lemma 3.3.4)

lim sup
R→∞

E
v̄
x

[
V(XτR)I{τR<τ̆δ}

]
<∞,

and since V −∗ ∈ o(V) we must have

lim sup
R→∞

E
v̄
x

[
V −∗ (XτR)I{τR<τ̆δ}

]= 0.

By the first equality in (3.47), we obtain V +∗ ∈ O(ϕ), with ϕ as defined in (3.50)
with v∗ replaced by v̄. Thus, in analogy to (3.51), we obtain

lim inf
R↗∞ E

v̄
x

[
V∗(XτR∧τ̆δ )

]= E
v̄
x

[
V∗(Xτ̆δ )

]
.

The rest follows as in the proof of Lemma 3.9 via (3.52).
We next prove part (d). We assume that U is a convex set and that

c(x,u,p) := {b(x,u) · p+ r(x,u)}
is strictly convex in u if it is not identically a constant for fixed x and p. We fix
some point ū ∈U. Define

B := {x ∈Rd : c(x, ·,p)= c(x, ū,p) for all p
}
.

It is easy to see that on B both b and r do not depend on u. It is also easy to
check that B is a closed set. Let (V∗, v∗) be the limit of (V ε, vε), where V∗ is
the solution to (3.37) and v∗ is the corresponding limit of vε . We have already
shown that v∗ is a stable Markov control. We next show that it is, in fact, a precise
Markov control. By our assumption, vε is the unique minimizing selector in (3.34)
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and, moreover, vε is continuous in x. By the definition of rε it is clear that the
restriction of vε to B does not depend on ε. Let vε(x) = v′(x) on B. Using the
strict convexity property of c(x, ·,∇V∗) it is easy to verify that vε converges to the
unique minimizer of (3.37) on Bc. In fact, since Bc is open, then for any sequence
xε→ x ∈ Bc it holds that vε(xε)→ v∗(x). This follows from the definition of the
minimizer and the uniform convergence of ∇V ε to ∇V∗. Therefore, we see that v∗
is a precise Markov control, v∗ = v′ on B, and vε→ v∗ pointwise as ε→ 0. It is
also easy to check that pointwise convergence implies convergence in the topology
of Markov controls. �

We now embark on the proof of Theorem 3.5.

PROOF OF THEOREM 3.5. The hypothesis that V̂ − ∈ o(V) implies that the
map V + 2V̂ is inf-compact. Also by (3.24) and (3.40), it satisfies

Lv̂(V + 2V̂ )(x)≤ 1+ 2�̂− r(x, v̂(x))− h(x, v̂(x))IHc

(
x, v̂(x)

)
≤ 2+ 2�̂− 2k−1

0 h̃
(
x, v̂(x)

) ∀x ∈Rd .

Therefore,
∫
h̃(x, v̂(x))dπv̂ <∞ from which it follows that �v̂ <∞. This proves

part (a).
By (3.24), we have

E
v̂
x

[
V(Xt)

]≤ V(x)+ t +E
v̂
x

[∫ t

0
r
(
Xs, v̂(Xs)

)
ds
]
,

and since �v̂ <∞, this implies that

lim sup
T→∞

1

T
E
v̂
x

[
V(XT )

]≤ 1+ �v̂.(3.61)

Since V̂ − ∈ o(V), it follows by (3.61) that

lim sup
T→∞

1

T
E
v̂
x

[
V̂ −(XT )

]= 0.

Therefore, by Itô’s formula, we deduce from (3.40) that

lim sup
T→∞

(
1

T
E
v̂
x

[
V̂ +(XT )

]+ 1

T
E
v̂
x

[∫ T

0
r
(
Xs, v̂(Xs)

)
ds
])
= �̂.

This implies that �v̂ ≤ �̂ and since by hypothesis �̂ ≤ �∗ we must have �̂= �∗.
Again by (3.24), we have

E
v̂
x

[
V(XτR)I{τR<τ̆δ}

]≤ V(x)+ sup
Bδ

V− +E
v̂
x

[∫ τR∧τ̆δ
0

(
1+ r(Xs, v̂(Xs)

))
ds
]
.

It follows by [1], Lemma 3.3.4, that

lim sup
R→∞

E
v̂
x

[
V(XτR)I{τR<τ̆δ}

]
<∞,
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and since V̂ − ∈ o(V) we must have

lim sup
R→∞

E
v̂
x

[
V̂ −(XτR)I{τR<τ̆δ}

]= 0.(3.62)

Using (3.62) and following the steps in the proof of the second equality in (3.47),
we obtain

V̂ (x)≥ E
v̂
x

[∫ τ̆δ

0

(
r
(
Xs, v̂(Xs)

)− �∗)ds
]
+ inf

Bδ
V̂

≥ V∗(x)− sup
Bδ

V∗ + inf
Bδ
V̂ .

Taking limits as δ↘ 0, we have V∗ ≤ V̂ . Since Lv̂(V∗− V̂ )≥ 0 and V∗(0)= V̂ (0),
we must have V̂ = V∗ on R

d , and the proof of part (b) is complete.
To prove part (c) note that by part (a) we have �v̂ <∞. Therefore,

∫
h̃dπv̂ ≤∞

by Theorem 3.1(a), which implies that
∫ |V̂ |dμv̂ ≤∞ by the hypothesis. There-

fore, Ev̂x(|V̂ (Xt )|) converges as t→∞ by [23], Proposition 2.6, which of course
implies that 1

t
E
v̂
x(|V̂ (Xt )|) tends to 0 as t → ∞. Similarly, we deduce that

1
t
E
v∗
x (|V̂ (Xt )|) as t→∞. Applying Itô’s formula to (3.40), with u≡ v∗, we ob-

tain �̂ ≤ �∗. Another application with u≡ v̂ results in �̂ = �v̂ . Therefore, �̂ = �∗.
The result then follows by part (b). �

We finish this section with the proof of Theorem 3.6.

PROOF OF THEOREM 3.6. We first show that limα↘0 αVα(0) = �∗. Let
Ṽ(t, x) := e−αtV(x), and τn(t) := τn ∧ t . Applying Itô’s formula to (3.24), we
obtain

E
U
x

[
Ṽ
(
τn(t),Xτn(t)

)]≤ V(x)−E
U
x

[∫ τn(t)

0
αṼ(s,Xs)ds

]

+E
U
x

[∫ τn(t)

0
e−αs

(
1− h(Xs,Us)

)
IHc (Xs,Us)ds

]

+E
U
x

[∫ τn(t)

0
e−αs

(
1+ r(Xs,Us)

)
IH(Xs,Us)ds

]
.

It follows that

E
U
x

[∫ τn(t)

0
e−αsh(Xs,Us)IHc (Xs,Us)ds

]
(3.63)

≤ 1

α
+ V(x)+E

U
x

[∫ τn(t)

0
e−αsr(Xs,Us)IH(Xs,Us)ds

]
.

Taking limits first as n↗∞ and then as t ↗∞ in (3.63), and evaluating U at
an optimal α-discounted control v∗α , relative to r we obtain the estimate, using
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also (3.23),

2k−1
0 E

v∗α
x

[∫ ∞
0

e−αsh̃
(
Xs, v

∗
α(Xs)

)
ds
]
≤ 2

α
+ V(x)+ 2Vα(x).(3.64)

By (3.23) and (3.64), it follows that

Vα(x)≤ V ε
α (x)≤ E

v∗α
x

[∫ ∞
0

e−αsrε
(
Xs, v

∗
α(Xs)

)
ds
]

≤ Vα(x)+ εk0
(
α−1 + V(x)+ Vα(x)).

Multiplying by α and taking limits as α↘ 0 we obtain

lim sup
α↘0

αVα(0)≤ �ε ≤ (1+ εk0) lim sup
α↘0

αVα(0)+ εk0.

The same inequalities hold for the “lim inf.” Therefore, limα↘0 αVα(0)= �∗.
Let

Ṽ := lim
α↘0

(
Vα − Vα(0)).

(Note that a similar result as Lemma 3.5 holds.) Then Ṽ satisfies

Ṽ (x)≤ lim
δ↘0

E
v
x

[∫ τ̆δ

0

(
r
(
Xs, v(Xs)

)− �∗)ds
]

∀v ∈ ⋃
β>0

U
β
SM.

This can be obtained without the near-monotone assumption on the running cost;
see, for example, [1], Lemma 3.6.9 or Lemma 3.7.8. It follows from (3.39) that
Ṽ ≤ V∗. On the other hand, since Lv∗(Ṽ − V∗) ≥ 0, and Ṽ (0) = V∗(0), we must
have Ṽ = V∗ by the strong maximum principle. �

4. Approximation via spatial truncations. We introduce an approximation
technique which is in turn used to prove the asymptotic convergence results in
Section 5.

Let v0 ∈ USSM be any control such that πv0(r) <∞. We fix the control v0 on the
complement of the ball B̄l and leave the parameter u free inside. In other words,
for each l ∈N we define

bl(x, u) :=
{
b(x,u), if (x, u) ∈ B̄l ×U,
b
(
x, v0(x)

)
, otherwise,

rl(x, u) :=
{
r(x,u), if (x, u) ∈ B̄l ×U,
r
(
x, v0(x)

)
, otherwise.

We consider the family of controlled diffusions, parameterized by l ∈N, given by

dXt = bl(Xt ,Ut )dt + σ(Xt)dWt,(4.1)



ERGODIC CONTROL IN THE HALFIN–WHITT REGIME 3551

with associated running costs rl(x, u). We denote by USM(l, v0) the subset of USM
consisting of those controls v which agree with v0 on B̄c

l . Let η0 := πv0(r). It is

well known that there exists a nonnegative solution ϕ0 ∈W2,p
loc (R

d), for any p > d ,
to the Poisson equation (see [1], Lemma 3.7.8(ii))

Lv0ϕ0(x)= η0 − h̃(x, v0(x)
)

x ∈Rd,

which is inf-compact, and satisfies, for all δ > 0,

ϕ0(x)= E
v0
x

[∫ τ̆δ

0

(
h̃
(
Xs, v0(Xs)

)− η0
)

ds + ϕ0(Xτ̆δ )

]
∀x ∈Rd .

We recall the Lyapunov function V from Assumption 3.1. We have the following
theorem.

THEOREM 4.1. Let Assumptions 3.1 and 3.2 hold. Then for each l ∈ N there
exists a solution V l in W

2,p
loc (R

d), for any p > d , with V l(0) = 0, of the HJB
equation

min
u∈U

[
Lul V

l(x)+ rl(x, u)]= �l,(4.2)

where Lul is the elliptic differential operator corresponding to the diffusion in (4.1).
Moreover, the following hold:

(i) �l is nonincreasing in l;
(ii) there exists a constant C0, independent of l, such that V l(x)≤ C0+2ϕ0(x)

for all l ∈N;
(iii) (V l)− ∈ o(V + ϕ0) uniformly over l ∈N;
(iv) the restriction of V l on Bl is in C2.

PROOF. As earlier, we can show that

V l
α(x) := inf

U∈UE
U
x

[∫ ∞
0

e−αsrl(Xs,Us)ds
]

is the minimal nonnegative solution to

min
u∈U

[
Lul V

l
α(x)+ rl(x, u)

]= αV l
α(x),(4.3)

and V l
α ∈W

2,p
loc (R

d), p > d . Moreover, any measurable selector from the mini-
mizer in (4.3) is an optimal control. A similar estimate as in Lemma 3.5 holds
and, therefore, there exists a subsequence {αn}, along which V l

αn
(x)−V l

αn
(0) con-

verges to V l in W
2,p
loc (R

d), p > d , and αnV
l
αn
(0)→ �l as αn ↘ 0, and (V l, �l)

satisfies (4.2) (see also [1], Lemma 3.7.8).
To show that πvl (r) = �l , vl is a minimizing selector in (4.2), we use the fol-

lowing argument. Since πv0(r) <∞, we claim that there exists a nonnegative, inf-
compact function g ∈ C(Rd) such that πv0(g · (1+ r)) <∞. Indeed, this is true
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since integrability and uniform integrability of a function under any given mea-
sure are equivalent (see also the proof of [1], Lemma 3.7.2). Since every control in
USM(l, v0) agrees with v0 on Bc

l , then for any x0 ∈ B̄c
l the map

v �→ E
v
x0

[∫ τ̆l

0
g(Xs)

(
1+ r(Xs, v(Xs)

))
ds
]

is constant on USM(l, v0). By the equivalence of (i) and (iii) in Lemma 3.3.4 of [1],
this implies that

sup
v∈USM(l,v0)

πv
(
g · (1+ r))<∞ ∀l ∈N,

and thus r is uniformly integrable with respect to the family {πv :v ∈ USM(l, v0)}
for any l ∈N. It then follows by [1], Theorem 3.7.11, that

�l = inf
v∈USM(l,v0)

πv(r), l ∈N.(4.4)

This yields part (i). Moreover, in view of Lemmas 3.5 and 3.6, we deduce that
for any δ > 0 it holds that supBδ |V l| ≤ κδ , where κδ is a constant independent of
l ∈N. It is also evident by (4.4) that �l is decreasing in l and �l ≤ η0 for all l ∈N.
Fix δ such that minu∈U h̃(x, u)≥ 2η0 on Bc

δ . Since ϕ0 is nonnegative, we obtain

E
v0
x

[∫ τ̆δ

0

(
h̃
(
Xs, v0(Xs)

)− η0
)

ds
]
≤ ϕ0(x) ∀x ∈Rd .(4.5)

Using an analogous argument as the one used in the proof of [1], Lemma 3.7.8, we
have

V l(x)≤ E
v
x

[∫ τ̆δ

0

(
rl
(
Xs, v(Xs)

)− �l)ds
]
+ κδ ∀v ∈ USM(l, v0).(4.6)

Thus, by (4.5) and (4.6), and since by the choice of δ > 0, it holds that r ≤ h̃ ≤
2(h̃− η0) on Bc

δ , we obtain

V l(x)≤ E
v0
x

[∫ τ̆δ

0
2
(
h̃
(
Xs, v0(Xs)

)− η0
)

ds
]
+ κδ

(4.7)
≤ κδ + 2ϕ0(x) ∀x ∈Rd .

This proves part (ii).
Now fix l ∈ N. Let vlα be a minimizing selector of (4.3). Note then that vlα ∈

USM(l, v0). Therefore, vlα is a stable Markov control. Let vlαn→ vl in the topology
of Markov controls along the same subsequence as above. Then it is evident that
vl ∈ USM(l, v0). Also from Lemma 3.8, we have

E
vlαn
x [τ̆δ] −→

αn↘0
E
vl

x [τ̆δ] ∀x ∈ Bc
δ ,∀δ > 0.
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Using [1], Lemma 3.7.8, we obtain the lower bound

V l(x)≥−�lEvlx [τ̆δ] − κδ.(4.8)

By [1], Theorem 3.7.12(i) (see also (3.7.50) in [1]), it holds that

V l(x)= E
vl

x

[∫ τ̆δ

0

(
rl
(
Xs, v

l(Xs)
)− �l)ds + V l(Xτ̆δ )

]
(4.9)

≥ E
vl

x

[∫ τ̆δ

0
rl
(
Xs, v

l(Xs)
)

ds
]
− �lEvlx [τ̆δ] − κδ ∀x ∈ Bc

l .

By (3.23), we have

2k−1
0 h̃(x, u)IH(x, u)≤ 1+ r(x,u)IH(x, u).

Therefore, using the preceding inequality and (4.9), we obtain

V l(x)+ (1+ �l)Evlx [τ̆δ] + κδ
(4.10)

≥ 2

k0
E
vl

x

[∫ τ̆δ

0
h̃
(
Xs, v

l(Xs)
)
IH
(
Xs, v

l(Xs)
)

ds
]
.

By (3.24), (4.9) and the fact that V is nonnegative, we have

2

k0
E
vl

x

[∫ τ̆δ

0
h̃
(
Xs, v

l(Xs)
)
IHc

(
Xs, v

l(Xs)
)

ds
]
− V(x)−E

vl

x [τ̆δ]

≤ E
vl

x

[∫ τ̆δ

0
r
(
Xs, v

l(Xs)
)
IH
(
Xs, v

l(Xs)
)

ds
]

(4.11)

≤ V l(x)+ �lEvlx [τ̆δ] + κδ.
Combining (4.7), (4.10) and (4.11), we obtain

E
vl

x

[∫ τ̆δ

0
h̃
(
Xs, v

l(Xs)
)

ds
]
≤ k0(1+ �l)Evlx [τ̆δ]

+ k0

2
V(x)+ 2k0

(
ϕ0(x)+ κδ)

for all l ∈ N. As earlier, using the inf-compact property of h̃ and the fact that
�l ≤ η0 is bounded, we can choose δ large enough such that

η0E
vl

x [τ̆δ] ≤ E
vl

x

[∫ τ̆δ

0
h̃
(
Xs, v

l(Xs)
)

ds
]
≤ k0V(x)+ 4k0

(
ϕ0(x)+ κδ)(4.12)

for all l ∈N. Since h̃ is inf-compact, part (iii) follows by (4.8) and (4.12).
Part (iv) is clear from regularity theory of elliptic PDE [18], Theorem 9.19,

page 243. �
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Similar to Theorem 3.3, we can show that oscillations of {V l} are uniformly
bounded on compacts. Therefore, if we let l→∞ we obtain a HJB equation

min
u∈U

[
LuV̂ (x)+ r(x,u)]= �̂,(4.13)

with V̂ ∈ C2(Rd) and liml→∞ �l = �̂. By Theorem 4.1, we have the bound

V̂ (x)≤ C0 + 2ϕ0(x),(4.14)

for some positive constant C0. This of course, implies that V̂ +(x)≤ C0+ 2ϕ0(x).
Moreover, it is straightforward to show that for any v ∈ USSM with �v <∞, we
have

lim sup
t→∞

1

t
E
v
x

[
V(Xt)

]
<∞.

Therefore, if in addition, we have

lim sup
t→∞

1

t
E
v
x

[
ϕ0(Xt)

]
<∞,

then it follows by Theorem 4.1(iii) that

lim sup
t→∞

1

t
V̂ −(Xt)−→

t→∞0.(4.15)

THEOREM 4.2. Suppose that ϕ0 ∈ O(minu∈U h̃(·, u)). Then, under the as-
sumptions of Theorem 4.1, we have liml→∞ �l = �̂ = �∗, and V̂ = V∗. Moreover,
V∗ ∈O(ϕ0).

PROOF. Let {v̂l} be any sequence of measurable selectors from the minimizer
of (4.2) and {πl} the corresponding sequence of ergodic occupation measures.
Since by Theorem 3.1 {πl} is tight, then by Remark 3.8 if v̂ is a limit point of
a subsequence {v̂l}, which we also denote by {v̂l}, then π̂ = πv̂ is the correspond-
ing limit point of {πl}. Therefore, by the lower semi-continuity of π → π(r) we
have

�̂= lim
l→∞πl(r)≥ π̂(r)= �v̂.

It also holds that

Lv̂V̂ (x)+ r(x, v̂(x))= �̂, a.s.(4.16)

By (4.15), we have

lim inf
T→∞

1

T
E
v̂
x

[
V̂ (XT )

]= 0,

and hence applying Itô’s rule on (4.16) we obtain �v̂ ≤ �̂. On the other hand, if
v∗ is an optimal stationary Markov control, then by the hypothesis ϕ0 ∈ O(h̃),
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the fact that πv∗(h̃) < ∞, (4.14) and [23], Proposition 2.6, we deduce that
E
v∗
x [V̂ +(Xt)] converges as t→∞, which of course together with (4.15) implies

that 1
t
E
v̂
x[V̂ (Xt )] tends to 0 as t →∞. Therefore, evaluating (4.13) at v∗ and

applying Itô’s rule we obtain �v∗ ≥ �̂. Combining the two estimates, we have
�v̂ ≤ �̂ ≤ �∗, and thus equality must hold. Here, we have used the fact that there
exists an optimal Markov control for r by Theorem 3.4.

Next, we use the stochastic representation in (4.9)

V l(x)= E
v̂l
x

[∫ τ̆δ

0

(
r
(
Xs, v̂l(Xs)

)− �l)ds + V l(Xτ̆δ )

]
, x ∈ Bc

δ .(4.17)

Fix any x ∈ Bc
δ . Since U

�v0
SM is compact, it follows that for each δ and R with

0< δ <R, the map Fδ,R(v) :U
�v0
SM→R+ defined by

Fδ,R(v) := E
v
x

[∫ τ̆δ∧τR
0

r
(
Xs, v(Xs)

)
ds
]

is continuous. Therefore, the map F̄δ := limR↗∞Fδ,R is lower semi-continuous.
It follows that

E
v̂
x

[∫ τ̆δ

0
r
(
Xs, v̂(Xs)

)
ds
]
≤ lim

l→∞E
v̂l
x

[∫ τ̆δ

0
r
(
Xs, v̂l(Xs)

)
ds
]
.(4.18)

On the other hand, since h̃ is inf-compact, it follows by (4.12) that τ̆δ is uni-
formly integrable with respect to the measures {Pv̂lx }. Therefore, as also shown
in Lemma 3.8, we have

lim
l→∞E

v̂l
x [τ̆δ] = E

v̂
x[τ̆δ].(4.19)

Since V l→ V̂ , uniformly on compact sets, and �l→ �∗, as l→∞, it follows by
(4.17)–(4.19) that

V̂ (x)≥ E
v̂
x

[∫ τ̆δ

0

(
r
(
Xs, v̂(Xs)

)− �∗)ds + V̂ (Xτ̆δ )

]
, x ∈ Bc

δ .

Therefore, by Theorem 3.4(b), for any δ > 0 and x ∈ Bc
δ we obtain

V∗(x)≤ E
v̂
x

[∫ τ̆δ

0

(
r
(
Xs, v̂(Xs)

)− �∗)ds + V∗(Xτ̆δ )

]

≤ V̂ (x)+E
v̂
x

[
V ∗(Xτ̆δ )

]−E
v̂
x

[
V̂ (Xτ̆δ )

]
,

and taking limits as δ↘ 0, using the fact that V̂ (0)= V∗(0)= 0, we obtain V∗ ≤ V̂
on R

d . Since Lv̂(V∗− V̂ )≥ 0, we must have V∗ = V̂ . By Theorem 4.1(ii), we have
V∗ ∈O(ϕ0). �
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REMARK 4.1. It can be seen from the proof of Theorem 4.2 that the assump-
tion ϕ0 ∈O(h̃) can be replaced by the weaker hypothesis that 1

T
E
v∗
x [ϕ0(XT )]→ 0

as T →∞.

REMARK 4.2. It is easy to see that if one replaces rl by

rl(x, u)=

⎧⎪⎪⎨
⎪⎪⎩
r(x,u)+ 1

l
f (u), for x ∈ B̄l ,

r
(
x, v0(x)

)+ 1

l
f
(
v0(x)

)
, otherwise,

for some positive valued continuous function f , the same conclusion of Theo-
rem 4.2 holds.

If we consider the controlled dynamics given by (3.20), with running cost as
in (3.11), then there exists a function V ∼ |x|m satisfying (3.6). This fact is proved
in Proposition 3.1. There also exists a Lyapunov function V0 ∈ O(|x|m), satisfy-
ing the assumption in Theorem 4.2, relative to any control v0 with πv0(h̃) <∞,
where h̃ is selected as in Remark 3.5. Indeed, in order to construct V0 we recall the
function ψ in (3.21). Let V0 ∈ C2(Rd) be any function such that V0 =ψm/2 on the
complement of the unit ball centered at the origin. Observe that for some positive
constants κ1 and κ2 it holds that

κ1|x|2 ≤ψ(x)≤ κ2|x|2.
Then a straightforward calculation from (3.22) shows that (3.8) holds with the
above choice of V0. By the stochastic representation of ϕ0, it follows that ϕ0 ∈
O(V0). We have proved the following corollary.

COROLLARY 4.1. For the queueing diffusion model with controlled dynamics
given by (3.20), and running cost given by (3.11), there exists a solution (up to an
additive constant) to the associated HJB in the class of functions in C2(Rd) whose
positive part grows no faster than |x|m and whose negative part is in o(|x|m).

We conclude this section with the following remark.

REMARK 4.3. Comparing the approximation technique introduced in this sec-
tion with that in Section 3, we see that the spatial truncation technique relies on
more restrictive assumption on the Lyapunov function V0 and the running cost
function (Theorem 4.2). In fact, the growth of h̃ also restricts the growth of r
by (3.23). Therefore, the class of ergodic diffusion control problems considered in
this section is more restrictive. For example, if the running cost r satisfies (3.11)
and h̃ ∼ |x|m, then it is not obvious that one can obtain a Lyapunov function V0
with growth at most of order |x|m. For instance, if the drift has strictly sub-linear
growth, then it is expected that the Lyapunov function should have growth larger
than |x|m. Therefore, the class of problems considered in Section 3 is larger than
those considered in this section.
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5. Asymptotic convergence. In this section, we prove that the value of the
ergodic control problem corresponding to the multi-class M/M/N +M queueing
network asymptotically converges to �∗, the value of the ergodic control for the
controlled diffusion.

Recall the diffusion-scaled processes X̂n, Q̂n and Ẑn defined in (2.4), and from
(2.5) and (2.6) that

X̂n
i (t)= X̂n

i (0)+ �ni t −μni
∫ t

0
Ẑn
i (s)ds − γ ni

∫ t

0
Q̂n
i (s)ds

(5.1)
+ M̂n

A,i(t)− M̂n
S,i(t)− M̂n

R,i(t),

where M̂n
A,i(t), M̂

n
S,i(t) and M̂n

R,i(t), i = 1, . . . , d , as defined in (2.6), are square
integrable martingales w.r.t. the filtration {Fn

t } with quadratic variations

〈
M̂n

A,i

〉
(t)= λni

n
t,

〈
M̂n

S,i

〉
(t)= μni

n

∫ t

0
Zn
i (s)ds,

〈
M̂n

R,i

〉
(t)= γ ni

n

∫ t

0
Qn
i (s)ds.

5.1. The lower bound. In this section, we prove Theorem 2.1.

PROOF OF THEOREM 2.1. Recall the definition of V̂ n in (2.10), and consider
a sequence such that supn V̂

n(X̂n(0)) <∞. Let ϕ ∈ C2(Rd) be any function sat-
isfying ϕ(x) := |x|m for |x| ≥ 1. As defined in Section 1.3, 
X(t) denotes the
jump of the process X at time t . Applying Itô’s formula on ϕ (see, e.g., [24], The-
orem 26.7), we obtain from (5.1) that

E
[
ϕ
(
X̂n

1(t)
)]= E

[
ϕ
(
X̂n

1(0)
)]+E

[∫ t

0
�n

1
(
X̂n

1(s), Ẑ
n
1 (s)

)
ϕ′
(
X̂n

1(s)
)
ds
]

+E

[∫ t

0
�n

2
(
X̂n

1(s), Ẑ
n
1 (s)

)
ϕ′′
(
X̂n

1(s)
)

ds
]

+E
∑
s≤t

(

ϕ

(
X̂n

1(s)
)− ϕ′(X̂n

1(s−)
) ·
X̂n

1(s)

− 1

2
ϕ′′
(
X̂n(s−))
X̂n

1(s)
X̂
n
1(s)

)
,

where

�n
1(x, z) := �n1 −μn1z− γ n1 (x − z),

�n
2(x, z) :=

1

2

(
μn1ρ1 + λn1

n
+ μn1z+ γ n1 (x − z)√

n

)
.
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Since {�n1} is a bounded sequence, it is easy to show that for all n there exist positive
constants κi , i = 1,2, independent of n, such that

�n
1(x, z)ϕ

′(x)≤ κ1
(
1+ ∣∣(e · x)+∣∣m)− κ2|x|m,

�n
2(x, z)ϕ

′′(x)≤ κ1
(
1+ ∣∣(e · x)+∣∣m)+ κ2

4
|x|m,

provided that x−z≤ (e ·x)+ and z√
n
≤ 1. We next compute the terms correspond-

ing to the jumps. For that, first we see that the jump size is of order 1√
n

. We can
also find a positive constant κ3 such that

sup
|y−x|≤1

∣∣ϕ′′(y)∣∣≤ κ3
(
1+ |x|m−2) ∀x ∈Rd .

Using Taylor’s approximation, we obtain the inequality


ϕ
(
X̂n

1(s)
)− ϕ′(X̂n

1(s−)
) ·
X̂n

1(s)≤
1

2
sup

|y−X̂n
1 (s−)|≤1

∣∣ϕ′′(y)∣∣[
(X̂n
1(s)

)]2
.

Hence, combining the above facts we obtain

E
∑
s≤t

(

ϕ

(
X̂n

1(s)
)− ϕ′(X̂n

1(s−)
) ·
X̂n

1(s)−
1

2
ϕ′′
(
X̂n

1(s−)
)

X̂n

1(s)
X̂
n
1(s)

)

≤ E
∑
s≤t

κ3
(
1+ ∣∣X̂n

1(s−)
∣∣m−2)(



(
X̂n

1(s)
))2

(5.2)

= κ3E

[∫ t

0

(
1+ ∣∣X̂n

1(s)
∣∣m−2)(λn1

n
+ μn1Z

n
1 (s)

n
+ γ n1 Q

n
1(s)

n

)
ds
]

≤ E

[∫ t

0

(
κ4 + κ2

4

∣∣X̂n
1(s)

∣∣m + κ5
((
e · X̂n(s)

)+)m)ds
]
,

for some suitable positive constants κ4 and κ5, independent of n, where in the
second inequality we use the fact that the optional martingale [X̂n

1 ] is the sum of
the squares of the jumps, and that [X̂n

1 ]−〈X̂n
1〉 is a martingale. Therefore, for some

positive constants C1 and C2 it holds that

0≤ E
[
ϕ
(
X̂n

1(t)
)]

≤ E
[
ϕ
(
X̂n

1(0)
)]+C1t − κ2

2
E

[∫ t

0

∣∣X̂n
1(s)

∣∣m ds
]

(5.3)

+C2E

[∫ t

0

((
e · X̂n(s)

)+)m ds
]
.

By (2.8), we have

r
(
Q̂n(s)

)≥ c1

dm

((
e · X̂n(s)

)+)m
,
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which, combined with the assumption that supn V̂
n(X̂n(0)) <∞, implies that

sup
n

lim sup
T→∞

1

T
E

[∫ T

0

((
e · X̂n(s)

)+)m ds
]
<∞.

In turn, from (5.3) we obtain

sup
n

lim sup
T→∞

1

T
E

[∫ T

0

∣∣X̂n
1(s)

∣∣m ds
]
<∞.

Repeating the same argument for coordinates i = 2, . . . , d , we obtain

sup
n

lim sup
T→∞

1

T
E

[∫ T

0

∣∣X̂n(s)
∣∣m ds

]
<∞.(5.4)

We introduce the process

Un
i (t) :=

⎧⎪⎨
⎪⎩
X̂n
i (t)− Ẑn

i (t)

(e · X̂n(t))+
, i = 1, . . . , d, if

(
e · X̂n(t)

)+
> 0,

ed, otherwise.

Since Zn is work-conserving, it follows that Un takes values in S , and Un
i (t)

represents the fraction of class i customers in queue. Define the mean empirical
measures

�n
T (A×B) :=

1

T
E

[∫ T

0
IA×B

(
X̂n(s),Un(s)

)
ds
]

for Borel sets A⊂R
d and B ⊂ S .

From (5.4), we see that the family {�n
T :T > 0, n ≥ 1} is tight. Hence, for

any sequence Tk→∞, there exists a subsequence, also denoted by Tk , such that
�n
Tk
→ πn, as k→∞. It is evident that {πn :n ≥ 1} is tight. Let πn→ π along

some subsequence, with π ∈ P(Rd × S). Therefore, it is not hard to show that

lim
n→∞ V̂

n(X̂n(0)
)≥ ∫

Rd×U
r̃(x, u)π(dx,du),

where, as defined earlier, r̃(x, u) = r((e · x)+u). To complete the proof of the
theorem, we only need to show that π is an ergodic occupation measure for the
diffusion. For that, consider f ∈ C∞c (Rd). Recall that [X̂n

i , X̂
n
j ] = 0 for i �= j [30],

Lemmas 9.2 and 9.3. Therefore, using Itô’s formula and the definition of �n
T , we

obtain
1

T
E
[
f
(
X̂n(T )

)]

= 1

T
E
[
f
(
X̂n(0)

)]

+
∫
Rd×U

(
d∑
i=1

An
i (x, u) · fxi (x)+Bni (x, u)fxixi (x)

)
�n
T (dx,du)(5.5)
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+ 1

T
E
∑
s≤T

[

f

(
X̂n(s)

)− d∑
i=1

fxi
(
X̂n(s−)) ·
X̂n

i (s)

− 1

2

d∑
i,j=1

fxixj
(
X̂n(s−))
X̂n

i (s)
X̂
n
j (s)

]
,

where

An
i (x, u) := �ni −μni

(
xi − (e · x)+ui)− γ ni (e · x)+ui,

Bni (x, u) :=
1

2

(
μni ρi +

λni
n
+ μni xi + (γ ni −μni )(e · x)+ui√

n

)
.

We first bound the last term in (5.5). Using Taylor’s formula, we see that


f
(
X̂n(s)

)− d∑
i=1

∇f (X̂n(s−)) ·
X̂n(s)

− 1

2

d∑
i,j=1

fxixj
(
X̂n(s−))
X̂n

i (s)
X̂
n
j (s)

= k‖f ‖C3√
n

d∑
i,j=1

∣∣
X̂n
i (s)
X̂

n
j (s)

∣∣
for some positive constant k, where we use the fact that the jump size is 1√

n
. Hence,

using the fact that independent Poisson processes do not have simultaneous jumps
w.p.1, using the identity Q̂n

i = X̂n
i − Ẑn

i , we obtain

1

T
E
∑
s≤T

[

f

(
X̂n(s)

)− d∑
i=1

∇f (X̂n(s−)) ·
X̂n(s)

− 1

2

d∑
i,j=1

fxixj
(
X̂n(s−))
X̂n

i (s)
X̂
n
j (s)

]
(5.6)

≤ k‖f ‖C3

T
√
n

E

[∫ T

0

d∑
i=1

(
λni
n
+ μni Z

n
i (s)

n
+ γ ni Q

n
i (s)

n

)
ds

]
.

Therefore, first letting T →∞ and using (5.2) and (5.4) we see that the expectation
on the right-hand side of (5.6) is bounded above. Therefore, as n→∞, the left-
hand side of (5.6) tends to 0. Thus, by (5.5) and the fact that f is compactly
supported, we obtain ∫

Rd×U
Luf (x)π(dx,du)= 0,
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where

Luf (x)= λi∂iif (x)+ (�i −μi(xi − (e · x)+ui)− γi(e · x)+ui)∂if (x).
Therefore, π ∈ G. �

5.2. The upper bound. The proof of the upper bound in Theorem 2.2 is a little
more involved than that of the lower bound. Generally, it is very helpful if one
has uniform stability across n ∈N (see, e.g., [12]). In [12], uniform stability is ob-
tained from the reflected dynamics with the Skorohod mapping. However, here we
establish the asymptotic upper bound by using the technique of spatial truncation
that we have introduced in Section 4. Let vδ be any precise continuous control in
USSM satisfying vδ(x)= u0 = (0, . . . ,0,1) for |x|>K > 1.

First, we construct a work-conserving admissible policy for each n ∈ N (see
[7]). Define a measurable map � : {z ∈ Rd+ : e · z ∈ Z} → Z

d+ as follows: for z =
(z1, . . . , zd) ∈Rd , let

�(z) :=
(
�z1�, . . . , �zd−1�, �zd� +

d∑
i=1

(
zi − �zi�)

)
.

Note that |�(z)− z| ≤ 2d . Define

uh(x) :=�
(
(e · x − n)+vδ(x̂n)), x ∈Rd,

x̂n :=
(
x1 − ρ1n√

n
, . . . ,

xd − ρdn√
n

)
,

An :=
{
x ∈Rd+ : sup

i

|xi − ρin| ≤K√n
}
.

We define a state-dependent, work-conserving policy as follows:

Zn
i

[
Xn] :=

⎧⎪⎪⎨
⎪⎪⎩
Xn
i − uh

(
Xn), if Xn ∈An,

Xn
i ∧

(
n−

i−1∑
j=1

Xn
j

)+
, otherwise.

(5.7)

Therefore, whenever the state of the system is in Ac
n, the system works under

the fixed priority policy with the least priority given to class-d jobs. First, we
show that this is a well-defined policy for all large n. It is enough to show that
Xn
i − uh(X

n) ≥ 0 for all i when Xn ∈ An. If not, then for some i, 1 ≤ i ≤ d , we
must have Xn

i − uh(X
n) < 0 and so Xn

i < (e ·Xn − n)+ + d . Since Xn ∈ An, we
obtain

−K√n+ ρin ≤ Xn
i

<
(
e ·Xn − n)+ + d
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=
(

d∑
i=1

(
Xn
i − ρin

))+ + d
≤ dK

√
n+ d.

But this cannot hold for large n. Hence, this policy is well defined for all large n.
Under the policy defined in (5.7), Xn is a Markov process and its generator given
by

Lnf (x)=
d∑
i=1

λni
(
f (x + ei)− f (x))+ d∑

i=1

μni Z
n
i [x]

(
f (x − ei)− f (x))

+
d∑
i=1

γ ni Q
n
i [x]

(
f (x − ei)− f (x)), x ∈ Zd+,

where Zn[x] is as above and Qn[x] := x−Zn[x]. It is easy to see that, for x /∈An,

Qn
i [x] =

[
xi −

(
n−

i−1∑
j=1

xj

)+]+
.

LEMMA 5.1. Let Xn be the Markov process corresponding to the above con-
trol. Let q be an even positive integer. Then there exists n0 ∈N such that

sup
n≥n0

lim sup
T→∞

1

T
E

[∫ T

0

∣∣X̂n(s)
∣∣q ds

]
<∞,

where X̂n = (X̂n
1 , . . . , X̂

n
d)

T is the diffusion-scaled process corresponding to the
process Xn, as defined in (2.4).

PROOF. The proof technique is inspired by [6], Lemma 3.1. Define

fn(x) :=
d∑
i=1

βi(xi − ρin)q,

where βi , i = 1, . . . , d , are positive constants to be determined later. We first show
that for a suitable choice of βi , i = 1, . . . , d , there exist constants Ci , i = 1,2,
independent of n≥ n0, such that

Lnfn(x)≤ C1n
q/2 −C2fn(x), x ∈ Zd+.(5.8)

Choose n large enough so that the policy is well defined. We define Yni := xi−ρin.
Note that

(a ± 1)q − aq =±qa · aq−2 +O
(
aq−2), a ∈R.
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Also, μni Z
n
i [x] = μni xi −μni Qn

i [x]. Then

Lnfn(x)=
d∑
i=1

βiλ
n
i

[
qYni

∣∣Yni ∣∣q−2 +O
(∣∣Yni ∣∣q−2)]

−
d∑
i=1

βiμ
n
i xi

[
qYni

∣∣Yni ∣∣q−2 +O
(∣∣Yni ∣∣q−2)]

−
d∑
i=1

βi
(
γ ni −μni

)
Qn
i [x]

[
qYni

∣∣Yni ∣∣q−2 +O
(∣∣Yni ∣∣q−2)]

≤
d∑
i=1

βi
(
λni +μni xi +

∣∣γ ni −μni ∣∣Qi
n[x]

)
O
(∣∣Yni ∣∣q−2)(5.9)

+
d∑
i=1

βiqY
n
i

∣∣Yni ∣∣q−2(
λni −μni xi −

(
γ ni −μni

)
Qn
i [x]

)

≤
d∑
i=1

βi
(
λni +

(
μni +

∣∣γ ni −μni ∣∣)(Yni + ρin))O(∣∣Yni ∣∣q−2)

+
d∑
i=1

βiqY
n
i

∣∣Yni ∣∣q−2(
λni −μni xi −

(
γ ni −μni

)
Qn
i [x]

)
,

where in the last inequality we use the fact that Qn
i [x] ≤ xi for x ∈ Zd+. Let

δni := λni −μni ρin=O(
√
n).

The last estimate is due to the assumptions in (2.1) concerning the parameters in
the Halfin–Whitt regime. Then

d∑
i=1

βiqY
n
i

∣∣Yni ∣∣q−2(
λni −μni xi −

(
γ ni −μni

)
Qn
i [x]

)
(5.10)

=−q
d∑
i=1

βiμ
n
i

∣∣Yni ∣∣q +
d∑
i=1

βiqY
n
i

∣∣Yni ∣∣q−2(
δni −

(
γ ni −μni

)
Qn
i [x]

)
.

If x ∈An and n is large, then

Qn
i [x] = uh(x)=�

(
(e · x − n)+vδ(x̂n))

≤ (e · x − n)+ + d ≤ 2dK
√
n.
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Let x ∈Ac
n. We use the fact that for any a, b ∈R it holds that a+ − b+ = ξ [a− b]

for some ξ ∈ [0,1]. Also,[
nρi −

(
n−

i−1∑
j=1

nρj

)+]+
= 0, i = 1, . . . , d.

Thus, we obtain maps ξ, ξ̃ :Rd→[0,1]d such that

−Qn
i [x] =

[
nρi −

(
n−

i−1∑
j=1

nρj

)+]+
−Qn

i [x]

= ξi(x)(nρi − xi)− ξ̃i (x)
i−1∑
j=1

(xj − nρj ), x ∈Ac
n.

Hence, from (5.10) we obtain

d∑
i=1

βiqY
n
i

∣∣Yni ∣∣q−2(
λni −μni xi −

(
γ ni −μni

)
Qn
i [x]

)

≤O(
√
n)q

d∑
i=1

βi
∣∣Yni ∣∣q−1 − q

d∑
i=1

βi
((

1− ξi(x))μni + ξi(x)γ ni )∣∣Yni ∣∣q

+ q
d∑
i=1

βiY
n
i

∣∣Yni ∣∣q−2
(
δni −

(
γ ni −μni

)
ξ̃i (x)

i−1∑
j=1

Ynj

)
,

where we used the fact that on An we have[
xi −

(
n−

i−1∑
j=1

xj

)+]+
=O(

√
n) ∀i.

Observe that there exists ϑ > 0, independent of n due to (2.1), such that(
1− ξi(x))μni + ξi(x)γ ni ≥min

(
μni , γ

n
i

)≥ ϑ
for all n ∈N, all x ∈Rd , and all i = 1, . . . , d . As a result, we obtain

d∑
i=1

βiqY
n
i

∣∣Yni ∣∣q−2(
λni −μni xi −

(
γ ni −μni

)
Qn
i [x]

)

≤O(
√
n)q

d∑
i=1

βi
∣∣Yni ∣∣q−1 − qϑ

d∑
i=1

βi
∣∣Yni ∣∣q(5.11)

+ q
d∑
i=1

βiY
n
i

∣∣Yni ∣∣q−2
(
δni −

(
γ ni −μni

)
ξ̃i (x)

i−1∑
j=1

Y jn

)
.
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We next estimate the last term on the right-hand side of (5.11). Let κ :=
supn,i |γ ni −μni |, and ε1 := ϑ

8κ . Using Young’s inequality, we obtain the estimate

∣∣Yni ∣∣q−1

∣∣∣∣∣
i−1∑
j=1

Y jn

∣∣∣∣∣≤ ε1
∣∣Yni ∣∣q + 1

ε
q−1
1

∣∣∣∣∣
i−1∑
j=1

Ynj

∣∣∣∣∣
q

.

Therefore,

q

d∑
i=1

βiY
n
i

∣∣Yni ∣∣q−2
(
−(γ ni −μni )ξ̃i (x)

i−1∑
j=1

Ynj

)

≤ qκ
d∑
i=1

(
ε1βi

∣∣Yni ∣∣q + βi

ε
q−1
1

∣∣∣∣∣
i−1∑
j=1

Ynj

∣∣∣∣∣
q)

≤ qκ
d∑
i=1

(
ε1βi

∣∣Yni ∣∣q + βi

ε
q−1
1

dq−1
i−1∑
j=1

∣∣Ynj ∣∣q
)

= qϑ

8

d∑
i=1

(
βi
∣∣Yni ∣∣q + βi

ε
q
1

dq−1
i−1∑
j=1

∣∣Ynj ∣∣q
)
.

We choose β1 = 1 and for i ≥ 2, we define βi by

βi := ε
q
1

dq
min
j≤i−1

βj .

With this choice of βi it follows from above that

q

d∑
i=1

βiY
n
i

∣∣Yni ∣∣q−2
(
−(γ ni −μni )ξ̃i (x)

i−1∑
j=1

Y jn

)
≤ qϑ

4

d∑
i=1

βi
∣∣Yni ∣∣q.

Using the preceding inequality in (5.11), we obtain

d∑
i=1

βiqY
n
i

∣∣Yni ∣∣q−2(
λni −μni xi −

(
γ ni −μni

)
Qn
i [x]

)
(5.12)

≤O(
√
n)q

d∑
i=1

βi
∣∣Yni ∣∣q−1 − 3

4
qϑ

d∑
i=1

βi
∣∣Yni ∣∣q .

Combining (5.9) and (5.12), we obtain

Lnfn(x)≤
d∑
i=1

O(
√
n)O

(∣∣Yni ∣∣q−1)+ d∑
i=1

O(n)O
(∣∣Yni ∣∣q−2)

(5.13)

− 3

4
qϑ

d∑
i=1

βi
∣∣Yni ∣∣q .
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By Young’s inequality, for any ε > 0, we have the bounds

O(
√
n)O

(∣∣Yni ∣∣q−1)≤ ε[O(∣∣Yni ∣∣q−1)]q/(q−1) + ε(1−q)[O(√n)]q,
O(n)O

(∣∣Yni ∣∣q−2)≤ ε[O(∣∣Yni ∣∣q−2)]q/(q−2) + ε(1−q/2)[O(n)]q/2
.

Thus, choosing ε properly in (5.13) we obtain (5.8).
We proceed to complete the proof of the lemma by applying (5.8). First, we

observe that E[sups∈[0,T ] |Xn(s)|p] is finite for any p ≥ 1 as this quantity is domi-
nated by the Poisson arrival process. Therefore, from (5.8) we see that

E
[
fn
(
Xn(T )

)]− fn(Xn(0)
)= E

[∫ T

0
Lnfn

(
Xn(s)

)
ds
]

≤ C1n
q/2T −C2E

[∫ T

0
fn
(
Xn(s)

)
ds
]
,

which implies that

C2E

[∫ T

0

d∑
i=1

βi
(
X̂n
i (s)

)q ds

]
≤ C1T +

d∑
i=1

βi
(
X̂n
i (0)

)q
.

Hence, the proof follows by dividing both sides by T and letting T →∞. �

PROOF OF THEOREM 2.2. Let r be the given running cost with polynomial
growth with exponent m in (2.8). Let q = 2(m + 1). Recall that r̃(x, u) = r((e ·
x)+u) for (x, u) ∈Rd×S . Then r̃ is convex in u and satisfies (3.11) with the same
exponent m. For any δ > 0, we choose vδ ∈ USSM such that vδ is a continuous
precise control with invariant probability measure μδ and∫

Rd
r̃
(
x, vδ(x)

)
μδ(dx)≤ �∗ + δ.(5.14)

We also want the control vδ to have the property that vδ(x)= (0, . . . ,0,1) outside
a large ball. To obtain such vδ , we see that by Theorems 4.1, 4.2 and Remark 4.2
we can find v′δ and a ball Bl for l large, such that v′δ ∈ USSM, v′δ(x)= ed for |x|> l,
v′δ is continuous in Bl , and∣∣∣∣

∫
Rd
r̃
(
x, v′δ(x)

)
μ′δ(dx)− �∗

∣∣∣∣< δ

2
,

where μ′δ is the invariant probability measure corresponding to v′δ . We note that v′δ
might not be continuous on ∂Bl . Let {χn :n ∈N} be a sequence of cut-off functions
such that χn ∈ [0,1], it vanishes on Bc

l−(1/n), and it takes the value 1 on Bl−(2/n).
Define the sequence vnδ (x) := χn(x)v′δ(x) + (1 − χn(x))ed . Then vnδ → v′δ , as
n→∞, and the convergence is uniform on the complement of any neighborhood
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of ∂Bl . Also by Proposition 3.1 the corresponding invariant probability measures
μnδ are exponentially tight. Thus,∣∣∣∣

∫
Rd
r̃
(
x, v′δ(x)

)
μ′δ(dx)−

∫
Rd
r̃
(
x, vnδ (x)

)
μnδ (dx)

∣∣∣∣ −→n→∞0.

Combining the above two expressions, we can easily find vδ which satisfies (5.14).
We construct a scheduling policy as in Lemma 5.1. By Lemma 5.1, we see that for
some constant K1 it holds that

sup
n≥n0

lim sup
T→∞

1

T
E

[∫ T

0

∣∣X̂n(s)
∣∣q ds

]
<K1, q = 2(m+ 1).(5.15)

Define

vh(x) :=�
(
(e · x − n)+vδ(x̂n)),

v̂h
(
x̂n
) :=�

(√
n
(
e · x̂n)+vδ(x̂n)).

Since vδ(x̂n)= (0, . . . ,0,1) when |x̂n| ≥K , it follows that

Qn[Xn]=Xn −Zn[Xn]= vh
(
Xn)

for large n, provided that
∑d−1

i=1 X
n
i ≤ n. Define

Dn :=
{
x :

d−1∑
i=1

x̂ni > ρd
√
n

}
.

Then

r
(
Q̂n(t)

)= r

(
1√
n
v̂h
(
X̂n(t)

))+ r(X̂n(t)− Ẑn(t)
)
I{X̂n(t)∈Dn}

− r
(

1√
n
v̂h
(
X̂n(t)

))
I{X̂n(t)∈Dn}.

Define, for each n, the mean empirical measure "n
T by

"n
T (A) :=

1

T
E

[∫ T

0
IA
(
X̂n(t)

)
dt
]
.

By (5.15), the family {"n
T :T > 0, n≥ 1} is tight. We next show that

lim
n→∞ lim sup

T→∞
1

T
E

[∫ T

0
r
(
Q̂n(t)

)
dt
]
=
∫
Rd
r
(
(e · x)+vδ(x))μδ(dx).(5.16)

For each n, select a sequence {T n
k :k ∈ N} along which the “lim sup” in (5.16) is

attained. By tightness, there exists a limit point "n of "n
T n
k

. Since "n has support
on a discrete lattice, we have∫

Rd
r

(
1√
n
v̂h(x)

)
"n
T n
k
(dx) −→

k→∞

∫
Rd
r

(
1√
n
v̂h(x)

)
"n(dx).
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Therefore,

lim sup
T→∞

1

T
E

[∫ T

0
r
(
Q̂n(t)

)
dt
]
≶
∫
Rd
r

(
1√
n
v̂h(x)

)
"n(dx)± En,

where

En = lim sup
T→∞

1

T
E

[∫ T

0

(
r
(
Q̂n(t)

)+ r( 1√
n
v̂h
(
X̂n(t)

)))
I{X̂n(t)∈Dn} dt

]
.

By (5.15), the family {"n :n ≥ 1} is tight. Hence, it has a limit " . By definition,
we have ∣∣∣∣ 1√

n
v̂h(x)− (e · x)+vδ(x)

∣∣∣∣≤ 2d√
n
.

Thus, using the continuity property of r and (2.8) it follows that∫
Rd
r

(
1√
n
v̂h(x)

)
"n(dx) −→

n→∞

∫
Rd
r
(
(e · x)+vδ(x))"(dx),

along some subsequence. Therefore, in order to complete the proof of (5.16) we
need to show that

lim sup
n→∞

En = 0.

Since the policies are work-conserving, we observe that 0≤ X̂n− Ẑn ≤ (e · X̂n)+,
and therefore for some positive constants κ1 and κ2, we have

r

(
1√
n
v̂h
(
X̂n(t)

))∨ r(X̂n(t)− Ẑn(t)
)≤ κ1 + κ2

[(
e · X̂n)+]m.

Given ε > 0 we can choose n1 so that for all n≥ n1,

lim sup
T→∞

1

T
E

[∫ T

0

[(
e · X̂n(s)

)+]m
I{|X̂n(s)|>(ρd/

√
d)
√
n} ds

]
≤ ε,

where we use (5.15). We observe that Dn ⊂ {|x̂n|> ρd
√
d/n}. Thus, (5.16) holds.

In order to complete the proof, we only need to show that " is the invariant prob-
ability measure corresponding to vδ . This can be shown using the convergence of
generators as in the proof of Theorem 2.1. �

6. Conclusion. We have answered some of the most interesting questions for
the ergodic control problem of the Markovian multi-class many-server queueing
model. This current study has raised some more questions for future research. One
of the interesting questions is to consider nonpreemptive policies and try to estab-
lish asymptotic optimality in the class of nonpreemptive admissible polices [7]. It
will also be interesting to study a similar control problem when the system has
multiple heterogeneous agent pools with skill-based routing.

It has been observed that customers’ service requirements and patience times
are nonexponential [10] in some situations. It is therefore important and interesting
to address similar control problems under general assumptions on the service and
patience time distributions.
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