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ERGODIC DIFFUSION CONTROL OF MULTICLASS MULTI-POOL
NETWORKS IN THE HALFIN–WHITT REGIME

BY ARI ARAPOSTATHIS1 AND GUODONG PANG2

University of Texas at Austin and Pennsylvania State University

We consider Markovian multiclass multi-pool networks with heteroge-
neous server pools, each consisting of many statistically identical parallel
servers, where the bipartite graph of customer classes and server pools forms
a tree. Customers form their own queue and are served in the first-come first-
served discipline, and can abandon while waiting in queue. Service rates are
both class and pool dependent. The objective is to study the limiting diffu-
sion control problems under the long run average (ergodic) cost criteria in the
Halfin–Whitt regime. Two formulations of ergodic diffusion control problems
are considered: (i) both queueing and idleness costs are minimized, and (ii)
only the queueing cost is minimized while a constraint is imposed upon the
idleness of all server pools. We develop a recursive leaf elimination algo-
rithm that enables us to obtain an explicit representation of the drift for the
controlled diffusions. Consequently, we show that for the limiting controlled
diffusions, there always exists a stationary Markov control under which the
diffusion process is geometrically ergodic. The framework developed in [Ann.
Appl. Probab. 25 (2015) 3511–3570] is extended to address a broad class of
ergodic diffusion control problems with constraints. We show that the uncon-
strained and constrained problems are well posed, and we characterize the
optimal stationary Markov controls via HJB equations.

1. Introduction. Consider a multiclass parallel server networks with I

classes of customers (jobs) and J parallel server pools, each of which has many sta-
tistically identical servers. Customers of each class can be served in a subset of the
server pools, and each server pool can serve a subset of the customer classes, which
forms a bipartite graph. We assume that this bipartite graph is a tree. Customers of
each class arrive according to a Poisson process and form their own queue. They
are served in the first-come-first-served (FCFS) discipline. Customers waiting in
queue may renege if their patience times are reached before entering service. The
patience times are exponentially distributed with class-dependent rates, while the
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service times are also exponentially distributed with rates depending on both the
customer class and the server pool. The scheduling and routing control decides
which class of customers to serve (if any waiting in queue) when a server becomes
free, and which server pool to route a customer when multiple server pools have
free servers to serve the customer. We focus on preemptive scheduling policies
that satisfy the usual work conserving condition (no server can idle if a customer
it can serve is in queue), as well as the joint work conserving condition [5–7] un-
der which, customers can be rearranged in such a manner that no server will idle
when a customer of some class is waiting in queue. In this paper, we study the
diffusion control problems of such multiclass multi-pool networks under the long
run average (ergodic) cost criteria in the Halfin–Whitt regime.

We consider two formulations of the ergodic diffusion control problems. In the
first formulation, both queueing and idleness are penalized in the running cost, and
we refer to this as the “unconstrained” problem. In the second formulation, only
the queueing cost is minimized, while a constraint is imposed upon the idleness
of all server pools. We refer to this as the “constrained” problem. The constraint
can be regarded as a “fairness” condition on server pools. We aim to study the
recurrence properties of the controlled diffusions, the well-posedness of these two
ergodic diffusion control problems, and characterize the optimal stationary Markov
controls via Hamilton–Jacobi–Bellman (HJB) equations.

The diffusion limit of the queueing processes for the multiclass multi-pool net-
works was established by Atar [5, 6]. Certain properties of the controlled diffusions
were proved in [5, 7], with the objective of studying the diffusion control problem
under the discounted cost criterion. However, those properties do not suffice for the
study the ergodic control problem. Our first task is to obtain a good understanding
of the recurrence properties of the limiting controlled diffusions. The main obsta-
cle lies in the implicitness of the drift, which is represented via the solution of a
linear program (Section 2.3). Our first key contribution is to provide an explicit
representation of the drift of the limiting controlled diffusions via a recursive leaf
elimination algorithm (Sections 4.1 and 4.2). As a consequence, we show that the
controlled diffusions have a piecewise linear drift (Lemma 4.3), which unfortu-
nately, does not belong to the class of piecewise linear diffusions studied in [14]
and [1], despite the somewhat similar representations. The dominating matrix in
the drift is a Hurwitz lower-diagonal matrix, instead of the negative of an M-
matrix. Applying the leaf elimination algorithm, we show that for any Markovian
multiclass multi-pool (acyclic) network in the Halfin–Whitt regime, assuming that
the abandonment rates are not identically zero, there exists a stationary Markov
control under which the limiting diffusion is geometrically ergodic, and as a re-
sult, its invariant probability distribution has all moments finite (Theorem 4.2).

A new framework to study ergodic diffusion control problems was introduced
in [1], in order to study the multiclass single-pool network (the “V” model) in the
Halfin–Whitt regime. It imposes a structural assumption (Hypothesis 3.1), which
extends the applicability of the theory beyond the two dominant models in the
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study of ergodic control for diffusions [2]: (i) the running cost is near-monotone
and (ii) the controlled diffusion is uniformly stable. The relevant results are re-
viewed in Section 3.2. Like the “V” model, the ergodic control problems of diffu-
sions associated with multiclass multi-pool networks do not fall into any of those
two categories. We show that the “unconstrained” ergodic diffusion control prob-
lem is well posed and can be solved using the framework in [1]. Verification of
the structural assumption in Hypothesis 3.1, relies heavily upon the explicit repre-
sentation of the drift in the limiting controlled diffusions (Theorem 4.1). We then
establish the existence of an optimal stationary Markov control, characterize all
such controls via a HJB equation in Section 5.2.

Ergodic control with constraints for diffusions was studied in [10, 11]; see Sec-
tions 4.2 and 4.5 in [2]. However, the existing methods and theory also fall into
the same two categories mentioned above. Therefore, to study the well-posedness
and solutions of the “constrained” problem, we extend the framework in [1] to
ergodic diffusion control problems with constraints under the same structural as-
sumption in Section 3.3. The well-posedness of the constrained problem follows
by Lemma 3.3 of that section. We characterize the optimal stationary controls via
an HJB equation, which has a unique solution in a certain class (Theorems 3.1
and 3.2). We also extend the “spatial truncation” technique developed in [1] to
problems under constraints (Theorems 3.3 and 3.4). These results are applied to
the ergodic diffusion control problem with constraints for the multiclass multi-
pool networks in Section 5.3. The special case of fair allocation of idleness in the
constrained problem is discussed in Section 5.4.

It is worth noting that if we only penalize the queue but not the idleness, the
unconstrained ergodic control problem may not be well posed. We discuss the
verification of the structural assumption (Hypothesis 3.1), in this formulation of
the ergodic diffusion control problem in Section 4.4. We show that under certain
restrictions on the systems parameters or network structure, Hypothesis 3.1 can be
verified and this formulation is therefore well posed (see Corollaries 4.1 and 4.2,
and Remark 4.6).

1.1. Literature review. Scheduling and routing control of multiclass multi-
pool networks in the Halfin–Whitt has been studied extensively in the recent liter-
ature. Atar [5, 6] was the first to study the scheduling and routing control problem
under infinite-horizon discounted cost. He has solved the scheduling control prob-
lem under a set of conditions on the network structure and parameters, and the
running cost function (Assumptions 2 and 3 in [6]). Simplified models with either
class only, or pool only dependent service rates under the infinite-horizon dis-
counted cost are further studied in Atar et al. [7]. Gurvich and Whitt [15–17] stud-
ied queue-and-idleness-ratio controls and their associated properties and staffing
implications for multiclass multi-pool networks, by proving a state-space-collapse
(SSC) property under certain conditions on the network structure and system pa-
rameters (Theorems 3.1 and 5.1 in [15]). Dai and Tezcan [12, 13] studied schedul-
ing controls of multiclass multi-pool networks in the finite-time horizon, also by
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proving an SSC property under certain assumptions. Despite all these results that
have helped us better understand the performance of a large class of multiclass
multi-pool networks, there is a lack of good understanding of the behavior of the
limiting controlled diffusions due to the implicit form of its drift. Our result on an
explicit representation of the drift breaks this fundamental barrier.

There is limited literature on ergodic control of multiclass multi-pool networks
in the Halfin–Whitt regime. Ergodic control of the multiclass “V” model is re-
cently studied in [1]. Armony [3] studied the inverted “V” model and showed that
the fastest-server-first policy is asymptotically optimal for minimizing the steady-
state expected queue length and waiting time. Armony and Ward [4] showed that
for the inverted “V” model, a threshold policy is asymptotically optimal for min-
imizing the steady-state the expected queue length and waiting time subject to
a “fairness” constraint on the workload division. Ward and Armony [26] studied
blind fair routing policies for multiclass multi-pool networks, which is based on
the number of customers waiting and the number of severs idling but not on the
system parameters, and used simulations to validate the performance of the blind
fair routing policies comparing them with non-blind policies derived from the lim-
iting diffusion control problem. Biswas [8] recently studied a multiclass multi-pool
network with “help” where each server pool has a dedicated stream of a customer
class, and can help with other customer classes only when it has idle servers. In
such a network, the control policies may not be work-conserving, and from the
technical perspective, the associated controlled diffusion has a uniform stability
property, which is not satisfied for general multiclass multi-pool networks.

1.2. Organization. The rest of this section contains a summary of the notation
used in the paper. In Section 2.1, we introduce the multiclass multi-pool parallel
server network model, the asymptotic Halfin–Whitt regime, the state descriptors
and the admissible scheduling and routing controls. In Section 2.2, we introduce
the diffusion-scaled processes in the Halfin–Whitt regime and the associated con-
trol parameterization, and in Section 2.3 we state the limiting controlled diffusions.
In Section 2.4, we describe the two formulations of the ergodic diffusion control
problems. In Section 3, we first review the general model of controlled diffusions
studied in [1], and then state the general hypotheses and the associated stability
results (Section 3.2). We then study the associated ergodic control problems with
constraints in Section 3.3. We focus on the recurrence properties of the controlled
diffusions for multiclass multi-pool networks in Section 4. The leaf elimination
algorithm and the resulting drift representation are introduced in Section 4.1, and
some examples applying the algorithm are given in Section 4.2. We verify the
structural assumption of Section 3.2 and study the positive recurrence properties
of the limiting controlled diffusions in Section 4.3. We discuss some special cases
in Section 4.4. The optimal stationary Markov controls for the limiting diffusions
are characterized in Section 5. Some concluding remarks are given in Section 6.
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1.3. Notation. The following notation is used in this paper. The symbol R,
denotes the field of real numbers, and R+ and N denote the sets of nonnegative real
numbers and natural numbers, respectively. Given two real numbers a and b, the
minimum (maximum) is denoted by a ∧b (a ∨b), respectively. Define a+ := a ∨0
and a− := −(a ∧ 0). The integer part of a real number a is denoted by �a�. We use
the notation ei , i = 1, . . . , d , to denote the vector with ith entry equal to 1 and all
other entries equal to 0. We also let e := (1, . . . ,1)T.

For a set A ⊂ R
d , we use Ā, Ac, ∂A, and 1A to denote the closure, the com-

plement, the boundary, and the indicator function of A, respectively. A ball of
radius r > 0 in R

d around a point x is denoted by Br(x), or simply as Br if x = 0.
The Euclidean norm on R

d is denoted by | · |, x · y, denotes the inner product of
x, y ∈R

d , and ‖x‖ :=∑d
i=1 |xi |.

For a nonnegative function g ∈ C(Rd) we let O(g) denote the space of functions
f ∈ C(Rd) satisfying supx∈Rd

|f (x)|
1+g(x)

< ∞. This is a Banach space under the norm

‖f ‖g := sup
x∈Rd

|f (x)|
1 + g(x)

.

We also let o(g) denote the subspace of O(g) consisting of those functions f

satisfying

lim sup
|x|→∞

|f (x)|
1 + g(x)

= 0.

Abusing the notation, O(x) and o(x) occasionally denote generic members of these
sets. For two nonnegative functions f and g, we use the notation f ∼ g to indicate
that f ∈ O(g) and g ∈ O(f ).

We denote by L
p
loc(R

d), p ≥ 1, the set of real-valued functions that are lo-

cally p-integrable and by W
k,p
loc (Rd) the set of functions in L

p
loc(R

d) whose ith
weak derivatives, i = 1, . . . , k, are in L

p
loc(R

d). The set of all bounded con-

tinuous functions is denoted by Cb(R
d). By Ck,α

loc (Rd), we denote the set of
functions that are k-times continuously differentiable and whose kth deriva-
tives are locally Hölder continuous with exponent α. We define Ck

b(Rd), k ≥ 0,
as the set of functions whose ith derivatives, i = 1, . . . , k, are continuous and
bounded in R

d and denote by Ck
c (Rd) the subset of Ck

b(Rd) with compact sup-
port. For any path X(·), we use the notation �X(t) to denote the jump at
time t .

Given any Polish space X , we denote by P(X ) the set of probability measures
on X and we endow P(X ) with the Prokhorov metric. Also B(X ) denotes its Borel
σ -algebra. By δx , we denote the Dirac mass at x. For ν ∈ P(X ) and a Borel mea-
surable map f :X → R, we often use the abbreviated notation ν(f ) := ∫

X f dν.
The quadratic variation of a square integrable martingale is denoted by 〈·, ·〉 and
the optional quadratic variation by [·, ·]. For presentation purposes, we use the
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time variable as the subscript for the diffusion processes. Also κ1, κ2, . . . and
C1,C2, . . . are used as generic constants whose values might vary from place to
place.

2. Controlled multiclass multi-pool networks in the Halfin–Whitt regime.

2.1. The multiclass multi-pool network model. All stochastic variables intro-
duced below are defined on a complete probability space (	,F,P). The expecta-
tion w.r.t. P is denoted by E. We consider a sequence of network systems with the
associated variables, parameters and processes indexed by n.

Consider a multiclass multi-pool Markovian network with I classes of cus-
tomers and J server pools. The classes are labeled as 1, . . . , I and the server pools
as 1, . . . , J . Set I = {1, . . . , I } and J = {1, . . . , J }. Customers of each class form
their own queue and are served in the first-come-first-served (FCFS) service disci-
pline. The buffers of all classes are assumed to have infinite capacity. Customers
can abandon/renege while waiting in queue. Each class of customers can be served
by a subset of server pools, and each server pool can serve a subset of customer
classes. For each i ∈ I , let J (i) ⊂ J be the subset of server pools that can serve
class i customers, and for each j ∈ J , let I(j) ⊂ I be the subset of customer
classes that can be served by server pool j . For each i ∈ I and j ∈ J , if customer
class i can be served by server pool j , we denote i ∼ j as an edge in the bipartite
graph formed by the nodes in I and J ; otherwise, we denote i � j . Let E be the
collection of all these edges. Let G = (I ∪ J ,E) be the bipartite graph formed
by the nodes (vertices) I ∪ J and the edges E . We assume that the graph G is
connected.

For each j ∈ J , let Nn
j be the number of servers (statistically identical) in server

pool j . Customers of class i ∈ I arrive according to a Poisson process with rate
λn

i > 0, i ∈ I , and have class-dependent exponential abandonment rates γ n
i ≥ 0.

These customers are served at an exponential rate μn
ij > 0 at server pool j , if i ∼ j ,

and otherwise, we set μn
ij = 0. We assume that the customer arrival, service and

abandonment processes of all classes are mutually independent. The edge set E
can thus be written as

E = {
(i, j) ∈ I ×J :μn

ij > 0
}
.

A pair (i, j) ∈ E is called an activity.

2.1.1. The Halfin–Whitt regime. We study these multiclass multi-pool net-
works in the Halfin–Whitt regime [or the Quality-and-Efficiency-Driven (QED)
regime], where the arrival rates of each class and the numbers of servers of each
server pool grow large as n → ∞ in such a manner that the system becomes criti-
cally loaded. In particular, the set of parameters is assumed to satisfy the following:
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as n → ∞, the following limits exist:

λn
i

n
→ λi > 0,

Nn
j

n
→ νj > 0,

(2.1)
μn

ij → μij ≥ 0, γ n
i → γi ≥ 0,

λn
i − nλi√

n
→ λ̂i ,

√
n
(
μn

ij − μij

)→ μ̂ij ,

(2.2) √
n
(
n−1Nn

j − νj

)→ 0,

where μij > 0 for i ∼ j and μij = 0 for i � j . Note that we allow the abandonment
rates to be zero for some, but not for all i ∈ I .

In addition, we assume that there exists a unique optimal solution (ξ∗, ρ∗) sat-
isfying ∑

i∈I
ξ∗
ij = ρ∗ = 1 ∀j ∈ J ,(2.3)

and ξ∗
ij > 0 for all i ∼ j (all activities) in E , to the following linear program (LP):

Minimize ρ

subject to
∑
j∈J

μijνj ξij = λi, i ∈ I,

∑
i∈I

ξij ≤ ρ, j ∈ J ,

subject to ξij ≥ 0, i ∈ I, j ∈ J .

This assumption is referred to as the complete resource pooling condition [6, 27].
It implies that the graph G is a tree [6, 27]. Following the terminology in [6, 27],
this assumption also implies that all activities in E are basic since ξ∗

ij > 0 for each
activity (i, j) or edge i ∼ j in E . Note that in our setting all activities are basic.

We define the vector x∗ = (x∗
i )i∈I and matrix z∗ = (z∗

ij )i∈I,j∈J by

x∗
i = ∑

j∈J
ξ∗
ij νj , z∗

ij = ξ∗
ij νj .(2.4)

The vector x∗ = (x∗
i ) can be interpreted as the steady-state total number of cus-

tomers in each class, and the matrix z∗ as the steady-state number of customers
in each class receiving service, in the fluid scale. Note that the steady-state queue
lengths are all zero in the fluid scale. The solution ξ∗ to the LP is the steady-state
proportion of customers in each class at each server pool. It is evident that (2.3)
and (2.4) imply that e · x∗ = e · ν, where ν := (νj )j∈J .
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2.1.2. The state descriptors. For each i ∈ I and j ∈ J , we let Xn
i = {Xn

i (t) :
t ≥ 0} be the total number of class i customers in the system, Qn

i = {Qn
i (t) : t ≥ 0}

be the number of class i customers in the queue, Zn
ij = {Zn

ij (t) : t ≥ 0} be the num-
ber of class i customers being served in server pool j , and Yn

j = {Yn
i (t) : t ≥ 0} be

the number of idle servers in server pool j . Set Xn = (Xn
i )i∈I , Yn = (Y n

i )i∈I ,
Qn = (Qn

i )i∈I , and Zn = (Zn
ij )i∈I,j∈J . The following fundamental equations

hold: for each i ∈ I and j ∈ J and t ≥ 0, we have

Xn
i (t) = Qn

i (t) + ∑
j∈J (i)

Zn
ij (t),

Nn
j = Yn

j (t) + ∑
i∈I(j)

Zn
ij (t),(2.5)

Xn
i (t) ≥ 0, Qn

i (t) ≥ 0, Y n
j (t) ≥ 0, Zn

ij (t) ≥ 0.

The processes Xn can be represented via rate-1 Poisson processes: for each i ∈ I
and t ≥ 0, it holds that

Xn
i (t) = Xn

i (0) + An
i

(
λnt

)− ∑
j∈J (i)

Sn
ij

(
μn

ij

∫ t

0
Zn

ij (s)ds

)
(2.6)

− Rn
i

(
γ n
i

∫ t

0
Qn

i (s)ds

)
,

where the processes An
i , Sn

ij and Rn
i are all rate-1 Poisson processes and mutually

independent, and independent of the initial quantities Xn
i (0).

2.1.3. Scheduling control. We only consider work conserving policies that are
nonanticipative and preemptive. The scheduling decisions are two-fold: (i) when a
server becomes free, if there are customers waiting in one or several buffers, it has
to decide which customer to serve, and (ii) when a customer arrives, if she finds
there are several free servers in one or multiple server pools, the manager has to
decide which server pool to assign the customer to. These decisions determine the
processes Zn at each time.

Work conservation requires that whenever there are customers waiting in
queues, if a server becomes free and can serve one of the customers, the server
cannot idle and must decide which customer to serve and start service immedi-
ately. Namely, the processes Qn and Yn satisfy

Qn
i (t) ∧ Yn

j (t) = 0 ∀i ∼ j,∀t ≥ 0.(2.7)

Service preemption is allowed, that is, service of a customer can be interrupted
at any time to serve some other customer of another class and resumed at a later
time. Following [6], we also consider a stronger condition, joint work conservation
(JWC), for preemptive scheduling policies. Specifically, let Xn be the set of all
possible values of Xn(t) at each time t ≥ 0 for which there is a rearrangement of
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customers such that there is no customer in queue or no idling server in the system
and the processes Qn and Yn satisfy

e · Qn(t) ∧ e · Yn(t) = 0, t ≥ 0.(2.8)

Note that the set Xn may not include all possible scenarios of the system state
Xn(t) for finite n at each time t ≥ 0.

We define the action set Un(x) as

U
n(x) :=

{
z ∈ Z

I×J+ : zij ≤ xi ∧ Nn
j , qi ∧ yj = 0 ∀i ∼ j,

qi :=
(
xi − ∑

j∈J (i)

zij

)+
, yj :=

(
Nn

j − ∑
i∈I(j)

zij

)+}
.

Then we can write Zn(t) ∈ U
n(Xn(t)) for each t ≥ 0.

Define the σ -fields

Fn
t := σ

{
Xn(0), Ãn

i (t), S̃
n
ij (t), R̃

n
i (t): i ∈ I, j ∈ J ,0 ≤ s ≤ t

}∨N
and

Gn
t := σ

{
δÃn

i (t, r), δS̃
n
ij (t, r), δR̃

n
i (t, r): i ∈ I, j ∈ J , r ≥ 0

}
,

where N is the collection of all P-null sets,

Ãn
i (t) := An

i

(
λn

i t
)
, δÃn

i (t, r) := Ãn
i (t + r) − Ãn

i (t),

S̃n
ij (t) := Sn

ij

(
μn

ij

∫ t

0
Zn

ij (s)ds

)
,

δS̃n
ij (t, r) := Sn

ij

(
μn

ij

∫ t

0
Zn

ij (s)ds + μn
ij r

)
− S̃n

ij (t)

and

R̃n
i (t) := Rn

i

(
γ n
i

∫ t

0
Qn

i (s)ds

)
,

δR̃n
i (t, r) := Rn

i

(
γ n
i

∫ t

0
Qn

i (s)ds + γ n
i r

)
− R̃n

i (t).

The filtration Fn := {Fn
t : t ≥ 0} represents the information available up to time t ,

and the filtration Gn := {Gn
t : t ≥ 0} contains the information about future incre-

ments of the processes. We say that a scheduling policy is admissible if:

(i) the “balance” equations in (2.5) hold.
(ii) Zn(t) is adapted to Fn

t ;
(iii) Fn

t is independent of Gn
t at each time t ≥ 0;

(iv) for each i ∈ I and i ∈ J , and for each t ≥ 0, the process δS̃n
ij (t, ·) agrees

in law with Sn
ij (μ

n
ij ·), and the process δR̃n

i (t, ·) agrees in law with Rn
i (γ n

i ·).
We denote the set of all admissible scheduling policies (Zn,Fn,Gn) by Zn. Abus-
ing the notation, we sometimes denote this as Zn ∈ Zn.



ERGODIC CONTROL OF MULTICLASS MULTI-POOL NETWORKS 3119

2.2. Diffusion scaling in the Halfin–Whitt regime. Define the diffusion-scaled
processes X̂n = (X̂n

i )i∈I , Q̂n = (Q̂n
i )i∈I , Ŷ n = (Ŷ n

j )j∈J , and Ẑn = (Ẑn
ij )i∈I,j∈J ,

by

X̂n
i (t) := 1√

n

(
Xn

i (t) − nx∗
i

)
,

Q̂n
i (t) := 1√

n
Qn

i (t),

(2.9)

Ŷ n
j (t) := 1√

n
Yn

j (t),

Ẑn
ij (t) := 1√

n

(
Zn

ij (t) − nz∗
ij

)
.

By (2.4), (2.5) and (2.9), we obtain the balance equations: for all t ≥ 0, we have

X̂n
i (t) = Q̂n

i (t) + ∑
j∈J (i)

Ẑn
ij (t) ∀i ∈ I,

(2.10)
Ŷ n

j (t) + ∑
i∈I(j)

Ẑn
ij (t) = 0 ∀j ∈ J .

Also, the work conservation conditions in (2.7), (2.8), translate to Q̂n
i (t)∧ Ŷ n

j (t) =
0 for all i ∼ j , and e · Q̂n(t) ∧ e · Ŷ n(t) = 0, respectively. By (2.10), we obtain

e · X̂n(t) = e · Q̂n(t) − e · Ŷ n(t),

and, therefore, the JWC condition is equivalent to

e · Q̂n(t) = (
e · X̂n(t)

)+
, e · Ŷ n(t) = (

e · X̂n(t)
)−

.(2.11)

In other words, in the diffusion scale and under the JWC condition, the total num-
ber of customers in queue and the total number of idle servers are equal to the
positive and negative parts of the centered total number of customers in the sys-
tem, respectively.

Let

M̂n
A,i(t) := 1√

n

(
An

i

(
λn

i t
)− λn

i t
)
,

M̂n
S,ij (t) := 1√

n

(
Sn

ij

(
μn

ij

∫ t

0
Zn

ij (s)ds

)
− μn

ij

∫ t

0
Zn

ij (s)ds

)
,

M̂n
R,i(t) := 1√

n

(
Rn

i

(
γ n
i

∫ t

0
Qn

i (s)ds

)
− γ n

i

∫ t

0
Qn

i (s)ds

)
.
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These are square integrable martingales w.r.t. the filtration Fn with quadratic vari-
ations 〈

M̂n
A,i

〉
(t) := λn

i

n
t,

〈
M̂n

S,ij

〉
(t) := μn

ij

n

∫ t

0
Zn

ij (s)ds and

〈
M̂n

R,i

〉
(t) := γ n

i

n

∫ t

0
Qn

i (s)ds.

By (2.6), we can write X̂n
i (t) as

X̂n
i (t) = X̂n

i (0) + �n
i t − ∑

j∈J (i)

μn
ij

∫ t

0
Ẑn

ij (s)ds − γ n
i

∫ t

0
Q̂n

i (s)ds

+ M̂n
A,i(t) − M̂n

S,ij (t) − M̂n
R,i(t),

where �n = (�n
1, . . . , �

n
I )

T is defined as

�n
i := 1√

n

(
λn

i − ∑
i∈J (i)

μn
ij z

∗
ij n

)
,

with z∗
ij as defined in (2.4). Note that under the assumptions on the parameters in

(2.1)–(2.2) and the first constraint in the LP, it holds that

�n
i −→

n→∞�i := λ̂i − ∑
j∈J (i)

μ̂ij z
∗
ij .

We let � := (�1, . . . , �I )
T.

2.2.1. Control parameterization. Define the following processes: for i ∈ I ,
and t ≥ 0,

U
c,n
i (t) :=

⎧⎪⎨⎪⎩
Q̂n

i (t)

e · Q̂n(t)
, if e · Q̂n(t) > 0,

eI , otherwise,

(2.12)

and for j ∈ J , and t ≥ 0,

U
s,n
j (t) :=

⎧⎪⎨⎪⎩
Ŷ n

j (t)

e · Ŷ n(t)
, if e · Ŷ n(t) > 0,

eJ , otherwise.

(2.13)

The process U
c,n
i (t) represents the proportion of the total queue length in the net-

work at queue i at time t , while U
s,n
j (t) represents the proportion of the total

idle servers in the network at station j at time t . Let Un := (Uc,n,Us,n), with
Uc,n := (U

c,n
1 , . . . ,U

c,n
I )T, and Us,n := (U

s,n
1 , . . . ,U

s,n
J )T. Given Zn ∈ Zn the pro-

cess Un is uniquely determined via (2.10) and (2.12)–(2.13) and lives in the set

U := {
u = (

uc,us) ∈ R
I+ ×R

J+: e · uc = e · us = 1
}
.(2.14)
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It follows by (2.10) and (2.11) that, under the JWC condition, we have that for
each t ≥ 0,

Q̂n(t) = (
e · X̂n(t)

)+
Uc,n(t),

(2.15)
Ŷ n(t) = (

e · X̂n(t)
)−

Us,n(t).

2.3. The limiting controlled diffusion. Before introducing the limiting diffu-
sion, we define a mapping to be used for the drift representation as in [5, 6]. For
any α ∈R

I and β ∈ R
J , let

DG := {
(α,β) ∈ R

I ×R
J : e · α = e · β},

and define a linear map G : DG →R
I×J such that∑

j

ψij = αi ∀i ∈ I,

∑
i

ψij = βj ∀j ∈ J ,(2.16)

ψij = 0 ∀i � j.

It is shown in Proposition A.2 of [5] that, provided G is a tree, there exists a unique
map G satisfying (2.16). We define the matrix

� := (ψij )i∈I,j∈J = G(α,β) for (α,β) ∈ DG.(2.17)

Following the parameterization in Section 2.2.1, we define the action set U as
in (2.14). We use uc and us to represent the control variables for customer classes
and server pools, respectively, throughout the paper. For each x ∈ R

I and u =
(uc, us) ∈ U, define a mapping

Ĝ[u](x) := G
(
x − (e · x)+uc,−(e · x)−us).(2.18)

REMARK 2.1. Note that the function Ĝ[u](x) is clearly well defined for u =
(uc, us) = (0,0), in which case we denote it by Ĝ0(x). See also Remark 4.3.

We quote the following result (Lemma 3 in [6]).

LEMMA 2.1. There exists a constant c0 > 0 such that, whenever Xn ∈ X̆n

which is defined by

X̆n := {
x ∈ Z

I+:
∥∥x − nx∗∥∥≤ c0n

}
,

the following holds: If Qn ∈ Z
I+ and Yn ∈ Z

J+ satisfy (e · Qn) ∧ (e · Yn) = 0, then

Zn = G
(
Xn − Qn,Nn − Yn)

satisfies Zn ∈ Z
I×J+ and (2.5) holds.
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REMARK 2.2. It is clear from (2.5) and (2.10) that

Zn(t) = G
(
Xn(t) − Qn(t),Nn − Yn(t)

)
,

Ẑn(t) = G
(
X̂n(t) − Q̂n(t),−Ŷ n(t)

)
.

Also, by (2.15), under the JWC condition, we have

Ẑn(t) = Ĝ
[
Un(t)

](
X̂n(t)

)
.

Note that the requirement that (Xn −Qn,Nn −Yn) ∈ DG is an implicit assump-
tion in the statement of the lemma. As a consequence of the lemma, X̆n ⊂ Xn.
Thus, asymptotically as n → ∞, the JWC condition can be met for all diffusion
scaled system states.

DEFINITION 2.1. We say that Zn ∈ Zn is jointly work conserving (JWC) in a
domain D ⊂ R

I if (2.8) holds whenever X̂n(t) ∈ D. We say that a sequence {Zn ∈
Zn, n ∈ N} is eventually jointly work conserving (EJWC) if there is an increasing
sequence of domains Dn ⊂ R

I , n ∈ N, which cover RI and such that each Zn is
JWC on Dn. We denote the class of all these sequences by Z. By Lemma 2.1, the
class Z is nonempty.

Under the EJWC condition, convergence in distribution of the diffusion-scaled
processes X̂n to the limiting diffusion X in (2.19) follows by Proposition 3 in [6].

The limit process X is an I -dimensional diffusion process satisfying the Itô
equation:

dXt = b(Xt ,Ut )dt + � dWt,(2.19)

with initial condition X0 = x and the control Ut ∈U, where the drift b :RI ×U →
R

I takes the form

bi(x, u) = bi

(
x,
(
uc,us))

(2.20)
:= − ∑

j∈J (i)

μij Ĝij [u](x) − γi(e · x)+uc
i + �i

for all i ∈ I , and the covariance matrix is given by

� := diag(
√

2λ1, . . . ,
√

2λI ).

Let U be the set of all admissible controls for the limiting diffusion (see Sec-
tion 3.1).

The limiting processes Q, Y , and Z satisfy the following: Qi ≥ 0 for i ∈ I ,
Yj ≥ 0 for j ∈ J , and for all t ≥ 0, and it holds that

Xi(t) = Qi(t) + ∑
j∈J (i)

Zij (t) ∀i ∈ I,

Yj (t) + ∑
i∈I(j)

Zij (t) = 0 ∀j ∈ J .



ERGODIC CONTROL OF MULTICLASS MULTI-POOL NETWORKS 3123

Note that these “balance” conditions imply that JWC always holds at the diffusion
limit, that is,

e · Q(t) = (
e · X(t)

)+
, e · Y(t) = (

e · X(t)
)− ∀t ≥ 0.(2.21)

It is clear then that by (2.16) and (2.21), we have

Z(t) = G
(
X(t) − Q(t),−Y(t)

)
.

2.4. The limiting diffusion ergodic control problems. We now introduce two
formulations of ergodic control problems for the limiting diffusion.

(1) Unconstrained control problem. Define the running cost function r : RI ×
U →R

I by

r(x,u) = r
(
x,
(
uc,us)),

where

r(x,u) = [
(e · x)+

]m I∑
i=1

ξi

(
uc

i

)m + [
(e · x)−

]m J∑
j=1

ζj

(
us

j

)m
,

(2.22)
m ≥ 1,

for some positive vectors ξ = (ξ1, . . . , ξI )
T and ζ = (ζ1, . . . , ζJ )T.

The ergodic criterion associated with the controlled diffusion X and the running
cost r is defined as

Jx,U [r] := lim sup
T →∞

1

T
E

U
x

[∫ T

0
r(Xt ,Ut )dt

]
, U ∈ U.(2.23)

The ergodic cost minimization problem is then defined as

�∗(x) = inf
U∈UJx,U [r].(2.24)

The quantity �∗(x) is called the optimal value of the ergodic control problem for
the controlled diffusion process X with initial state x.

(2) Constrained control problem. The second formulation of the ergodic control
problem is as follows. The running cost function r0(x, u) is as defined in (2.22)
with ζ ≡ 0. Also define

rj (x, u) := [
(e · x)−us

j

]m
, j ∈ J ,(2.25)

and let δ = (δ1, . . . ,δJ ) be a positive vector. The ergodic cost minimization prob-
lem under idleness constraints is defined as

�∗
c (x) = inf

U∈UJx,U [r0](2.26)

subject to Jx,U [rj ] ≤ δj , j ∈ J .(2.27)
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The constraint in (2.27) can be written as

lim
T →∞

1

T
E

U
x

[∫ T

0

(
− ∑

i∈I(j)

Ĝij [U ](Xt)

)m

dt

]
≤ δj , j ∈ J .

As we show in Section 3, the optimal values �∗(x) and �∗
c (x) do not depend on

x ∈ R
I , and thus we remove their dependence on x in the statements below. We

prove the well-posedness of these ergodic diffusion control problems, and charac-
terize their optimal solutions in Sections 4 and 5.

3. Ergodic control of a broad class of controlled diffusions. We review the
model and the structural properties of a broad class of controlled diffusions for
which the ergodic control problem is well posed [1]. We augment the results in [1]
with the study of ergodic control under constraints.

3.1. The model. Consider a controlled diffusion process X = {Xt, t ≥ 0} tak-
ing values in the d-dimensional Euclidean space R

d , and governed by the Itô
stochastic differential equation:

dXt = b(Xt ,Ut )dt + σ(Xt)dWt.(3.1)

All random processes in (3.1) live in a complete probability space (	,F,P). The
process W is a d-dimensional standard Wiener process independent of the initial
condition X0. The control process U takes values in a compact, metrizable set U,
and Ut(ω) is jointly measurable in (t,ω) ∈ [0,∞) × 	. Moreover, it is nonantici-
pative: for s < t , Wt − Ws is independent of

Fs := the completion of σ {X0,Ur,Wr, r ≤ s} relative to (F,P).

Such a process U is called an admissible control. Let U denote the set of all ad-
missible controls.

We impose the following standard assumptions on the drift b and the diffusion
matrix σ to guarantee existence and uniqueness of solutions to equation (3.1).

(A1) Local Lipschitz continuity: The functions

b = [b1, . . . , bd ]T:Rd ×U→R
d and σ = [σij ]:Rd →R

d×d

are locally Lipschitz in x with a Lipschitz constant CR > 0 depending on R > 0.
In other words, for all x, y ∈ BR and u ∈U,∣∣b(x,u) − b(y,u)

∣∣+ ∥∥σ(x) − σ(y)
∥∥≤ CR|x − y|.

We also assume that b is continuous in (x, u).
(A2) Affine growth condition: b and σ satisfy a global growth condition of the

form ∣∣b(x,u)
∣∣2 + ∥∥σ(x)

∥∥2 ≤ C1
(
1 + |x|2) ∀(x, u) ∈ R

d ×U,

where ‖σ‖2 := trace(σσT).
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(A3) Local nondegeneracy: For each R > 0, it holds that

d∑
i,j=1

aij (x)ξiξj ≥ C−1
R |ξ |2 ∀x ∈ BR,

for all ξ = (ξ1, . . . , ξd)T ∈ R
d , where a := σσT.

In integral form, (3.1) is written as

Xt = X0 +
∫ t

0
b(Xs,Us)ds +

∫ t

0
σ(Xs)dWs.(3.2)

The third term on the right-hand side of (3.2) is an Itô stochastic integral. We say
that a process X = {Xt(ω)} is a solution of (3.1), if it is Ft -adapted, continuous
in t , defined for all ω ∈ 	 and t ∈ [0,∞), and satisfies (3.2) for all t ∈ [0,∞) a.s.
It is well known that under (A1)–(A3), for any admissible control there exists a
unique solution of (3.1); see Theorem 2.2.4 in [2].

The controlled extended generator Lu of the diffusion in (3.1) is defined by
Lu:C2(Rd) → C(Rd), where u ∈ U plays the role of a parameter, by

Luf (x) := 1

2

d∑
i,j=1

aij (x)∂ij f (x) +
d∑

i=1

bi(x, u)∂if (x), u ∈ U.(3.3)

We adopt the notation ∂i := ∂
∂xi

and ∂ij := ∂2

∂xi∂xj
.

Of fundamental importance in the study of functionals of X is Itô’s formula. For
f ∈ C2(Rd) and with Lu as defined in (3.3), it holds that

f (Xt) = f (X0) +
∫ t

0
LUsf (Xs)ds + Mt a.s.,(3.4)

where

Mt :=
∫ t

0

〈∇f (Xs),σ(Xs)dWs

〉
is a local martingale. Krylov’s extension of Itô’s formula (page 122 in [19]) extends
(3.4) to functions f in the local Sobolev space W

2,p
loc (Rd), p ≥ d .

Recall that a control is called Markov if Ut = v(t,Xt ) for a measurable map
v:R+ × R

d → U, and it is called stationary Markov if v does not depend on t ,
that is, v:Rd →U. Correspondingly, (3.1) is said to have a strong solution if given
a Wiener process (Wt ,Ft ) on a complete probability space (	,F,P), there exists
a process X on (	,F,P), with X0 = x0 ∈ R

d , which is continuous, Ft -adapted,
and satisfies (3.2) for all t a.s. A strong solution is called unique, if any two such
solutions X and X′ agree P-a.s., when viewed as elements of C([0,∞),Rd). It is
well known that under assumptions (A1)–(A3), for any Markov control v, (3.1)
has a unique strong solution [18].
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Let USM denote the set of stationary Markov controls. Under v ∈ USM, the pro-
cess X is strong Markov, and we denote its transition function by P t

v(x, ·). It also
follows from the work of [9, 21] that under v ∈ USM, the transition probabilities of
X have densities which are locally Hölder continuous. Thus, Lv defined by

Lvf (x) := 1

2

d∑
i,j=1

aij (x)∂ij f (x) +
d∑

i=1

bi

(
x, v(x)

)
∂if (x), v ∈ USM,

for f ∈ C2(Rd), is the generator of a strongly-continuous semigroup on Cb(R
d),

which is strong Feller. We let Pv
x denote the probability measure and E

v
x the expec-

tation operator on the canonical space of the process under the control v ∈ USM,
conditioned on the process X starting from x ∈ R

d at t = 0.
Recall that control v ∈ USM is called stable if the associated diffusion is positive

recurrent. We denote the set of such controls by USSM, and let μv denote the unique
invariant probability measure on R

d for the diffusion under the control v ∈ USSM.
We also let M := {μv:v ∈ USSM}, and G denote the set of ergodic occupation
measures corresponding to controls in USSM, that is,

G :=
{

π ∈ P
(
R

d ×U
)
:
∫
Rd×U

Luf (x)π(dx,du) = 0 ∀f ∈ C∞
c

(
R

d)},
where Luf (x) is given by (3.3).

We need the following definition.

DEFINITION 3.1. A function h:Rd × U → R is called inf-compact on a set
A ⊂ R

d if the set Ā ∩ {x: minu∈U h(x,u) ≤ c} is compact (or empty) in R
d for

all c ∈ R. When this property holds for A ≡ R
d , then we simply say that h is

inf-compact.

Recall that v ∈ USSM if and only if there exists an inf-compact function V ∈
C2(Rd), a bounded domain D ⊂R

d , and a constant ε > 0 satisfying

LvV(x) ≤ −ε ∀x ∈ Dc.

We denote by τ(A) the first exit time of a process {Xt, t ∈ R+} from a set A ⊂ R
d ,

defined by

τ(A) := inf{t > 0:Xt /∈ A}.
The open ball of radius R in R

d , centered at the origin, is denoted by BR and we
let τR := τ(BR), and τ̆R := τ(Bc

R).
We assume that the running cost function r(x,u) is nonnegative, continuous

and locally Lipschitz in its first argument uniformly in u ∈ U. Without loss of
generality, we let CR be a Lipschitz constant of r(·, u) over BR . In summary, we
assume that:
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(A4) r:Rd ×U →R+ is continuous and satisfies, for some constant CR > 0∣∣r(x,u) − r(y,u)
∣∣≤ CR|x − y| ∀x, y ∈ BR,∀u ∈ U,

and all R > 0.

In general, U may not be a convex set. It is therefore often useful to enlarge
the control set to P(U). For any v(du) ∈ P(U), we can redefine the drift and the
running cost as

b̄(x, v) :=
∫
U

b(x,u)v(du) and r̄(x, v) :=
∫
U

r(x,u)v(du).(3.5)

It is easy to see that the drift and running cost defined in (3.5) satisfy all the afore-
mentioned conditions (A1)–(A4). In what follows, we assume that all the controls
take values in P(U). These controls are generally referred to as relaxed controls,
while a control taking values in U is called precise. We endow the set of relaxed
stationary Markov controls with the following topology: vn → v in USM if and
only if ∫

Rd
f (x)

∫
U

g(x,u)vn(du|x)dx −→
n→∞

∫
Rd

f (x)

∫
U

g(x,u)v(du|x)dx

for all f ∈ L1(Rd) ∩ L2(Rd) and g ∈ Cb(R
d × U). Then USM is a compact met-

ric space under this topology (Section 2.4 in [2]). We refer to this topology as the
topology of Markov controls. A control is said to be precise if it takes value in U.
It is easy to see that any precise control Ut can also be understood as a relaxed
control by Ut(du) = δUt . Abusing the notation, we denote the drift and running
cost by b and r , respectively, and the action of a relaxed control on them is un-
derstood as in (3.5). In this manner, the definition of Jx,U [r] in (2.23), is naturally
extended to relaxed U ∈ U and x ∈ R

d . For v ∈ USSM, the functional Jx,v[r] does
not depend on x ∈ R

d . In this case we drop the dependence on x and denote this by
Jv[r]. Note that if πv(dx,du) := μv(dx)v(du|x) is the ergodic occupation measure
corresponding to v ∈ USSM, then we have

Jv[r] =
∫
Rd×U

r(x,u)πv(dx,du).

Therefore, the restriction of the ergodic control problem in (2.24) to stable station-
ary Markov controls is equivalent to minimizing

π(r) =
∫
Rd×U

r(x,u)π(dx,du)

over all π ∈ G. If the infimum is attained in G, then we say that the ergodic control
problem is well posed, and we refer to any π̄ ∈ G that attains this infimum as an
optimal ergodic occupation measure.
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3.2. Hypotheses and review of some results from [1]. A structural hypothe-
sis was introduced in [1] to study ergodic control for a broad class of controlled
diffusion models. This is as follows.

HYPOTHESIS 3.1. For some open set K ⊂ R
d , the following hold:

(i) The running cost r is inf-compact on K.
(ii) There exist inf-compact functions V ∈ C2(Rd) and h ∈ C(Rd × U), such

that

LuV(x) ≤ 1 − h(x,u) ∀(x, u) ∈ Kc ×U,

LuV(x) ≤ 1 + r(x,u) ∀(x, u) ∈ K ×U.

Without loss of generality, we assume that V and h are nonnegative.

In Hypothesis 3.1, for notational economy, and without loss of generality, we
refrain from using any constants. Observe that for K = R

d the problem reduces
to an ergodic control problem with inf-compact cost, and for K = ∅ we obtain
an ergodic control problem for a uniformly stable controlled diffusion. As shown
in [1], Hypothesis 3.1 implies that

Jx,U [h1Kc×U] ≤ Jx,U [r1K×U] ∀U ∈ U.

The hypothesis that follows is necessary for the value of the ergodic control
problem to be finite. It is a standard assumption in ergodic control.

HYPOTHESIS 3.2. There exists Û ∈ U such that J
x,Û

[r] < ∞ for some

x ∈ R
d .

It is shown in [1] that under Hypotheses 3.1 and 3.2 the ergodic control prob-
lem in (2.23)–(2.24) is well posed. The following result which is contained in
Lemma 3.3 and Theorem 3.1 of [1] plays a key role in the analysis of the problem.
Let

H := (K ×U) ∪ {(x, u) ∈ R
d ×U: r(x,u) > h(x,u)

}
,

where K is the open set in Hypothesis 3.1.

LEMMA 3.1. Under Hypothesis 3.1, the following are true.

(a) There exists an inf-compact function h̃ ∈ C(Rd ×U) which is locally Lips-
chitz in its first argument uniformly w.r.t. its second argument, and satisfies

r(x,u) ≤ h̃(x, u)
(3.6)

≤ k0

2

(
1 + h(x,u)1Hc (x, u) + r(x,u)1H(x, u)

)
for all (x, u) ∈ R

d ×U, and for some positive constant k0 ≥ 2.
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(b) The function V in Hypothesis 3.1 satisfies

LuV(x) ≤ 1 − h(x,u)1Hc (x, u) + r(x,u)1H(x, u) ∀(x, u) ∈R
d ×U.

(c) It holds that

Jx,U [h̃] ≤ k0
(
1 + Jx,U [r]) ∀U ∈ U.(3.7)

Hypothesis 3.2 together with (3.7) imply that J
x,Û

[h̃] < ∞. This together with

the fact that h̃ is inf-compact and dominates r is used in [1] to prove that the
ergodic control problem is well posed. Also, there exists a constant �∗ such that

�∗ = inf
U∈U lim sup

T →∞
1

T
E

U
x

[∫ T

0
r(Xt ,Ut )dt

]
∀x ∈R

d .(3.8)

Moreover, the infimum in (3.8) is attained at a precise stationary Markov control,
and the set of optimal stationary Markov controls is characterized via an HJB equa-
tion that has a unique solution in a certain class of functions (Theorems 3.4 and
3.5 in [1]).

Another important result in [1] is an approximation technique which plays a cru-
cial role in the proof of asymptotic optimality (as n → ∞) of the Markov control
obtained from the HJB for the ergodic control problem of the multiclass single-
pool queueing systems. In summary, this can be described as follows. We truncate
the data of the problem by fixing the control outside a ball in R

d . The control is
chosen in a manner that the set of ergodic occupation measures for the truncated
problem is compact. We have shown that as the radius of the ball tends to infinity,
the optimal value of the truncated problem converges to the optimal value of the
original problem.

The precise definition of the “truncated” model is as follows.

DEFINITION 3.2. Let v0 ∈ USSM be any control such that πv0(r) < ∞. We fix
the control v0 on the complement of the ball B̄R and leave the parameter u free
inside. In other words, for each R ∈ N we define

bR(x,u) :=
{

b(x,u), if (x, u) ∈ B̄R ×U,
b
(
x, v0(x)

)
, otherwise,

(3.9)

rR(x,u) :=
{

r(x,u), if (x, u) ∈ B̄R ×U,
r
(
x, v0(x)

)
, otherwise.

(3.10)

Consider the ergodic control problem for the family of controlled diffusions, pa-
rameterized by R ∈ N, given by

dXt = bR(Xt ,Ut )dt + σ(Xt)dWt,(3.11)

with associated running costs rR(x,u). We denote by USM(R, v0) the subset of
USM consisting of those controls v which agree with v0 on B̄c

R , and by G(R) we
denote the set of ergodic occupation measures of (3.11).
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Let η0 := πv0(h̃). By (3.7), η0 is finite. Let ϕ0 ∈ W
2,p
loc (Rd), for any p > d , be

the minimal nonnegative solution to the Poisson equation (see Lemma 3.7.8(ii) in
[2])

Lv0ϕ0(x) = η0 − h̃
(
x, v0(x)

)
, x ∈ R

d .(3.12)

Under Hypotheses 3.1 and 3.2, all the conclusions of Theorems 4.1 and 4.2 in [1]
hold. Consequently, we have the following lemma.

LEMMA 3.2. Under Hypotheses 3.1 and 3.2, the following hold:

(i) The set G(R) is compact for each R > 0, and thus the set of optimal ergodic
occupation measures for rR in G(R), denoted as Ḡ(R), is nonempty.

(ii) The collection
⋃

R>0 Ḡ(R) is tight in P(Rd ×U).

Moreover, provided ϕ0 ∈ O(minu∈U h̃(·, u)), for any collection {π̄R ∈ Ḡ(R):R >

0}, we have:

(iii) Any limit point of π̄R as R → ∞ is an optimal ergodic occupation measure
of (3.1) for r .

(iv) It holds that limR↗∞ π̄R(rR) = �∗.

3.3. Ergodic control under constraints. Let ri :Rd → R+, 0 ≤ i ≤ k̄, be a set
of continuous functions, each satisfying (A4). Define

r :=
k̄∑

i=0

ri .(3.13)

We are also given a set of positive constants δi , i = 1, . . . , k̄. The objective is to
minimize

π(r0) =
∫
Rd×U

r0(x, u)π(dx,du)(3.14)

over all π ∈ G, subject to

π(ri) =
∫
Rd×U

ri(x, u)π(dx,du) ≤ δi , i = 1, . . . , k̄.(3.15)

For δ = (δ1, . . . ,δk̄) ∈ R
k̄+, let

H(δ) := {
π ∈ G: π(ri) ≤ δi , i = 1, . . . , k̄

}
,

(3.16)
Ho(δ) := {

π ∈ G: π(ri) < δi , i = 1, . . . , k̄
}
.

It is straightforward to show that H(δ) is convex and closed in G. Let He(δ) (Ge)
denote the set of extreme points of H(δ) (G).

Throughout this section, we assume that Hypothesis 3.1 holds for r in (3.13)
without any further mention. We have the following lemma.
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LEMMA 3.3. Suppose that

H(δ) ∩ {π ∈ G: π(r0) < ∞} �=∅.

Then there exists π∗ ∈ H(δ) such that

π∗(r0) = inf
π∈H(δ)

π(r0).

Moreover, π∗ may be selected so as to correspond to a precise stationary Markov
control.

PROOF. By hypothesis, there exists δ0 ∈ R+ such that Ĥ := H(δ) ∩ {π ∈
G: π(r0) ≤ δ0} �=∅. By (3.7), we have

π(h̃) ≤ k0 + k0

k̄∑
i=1

δi + k0π(r0) ∀π ∈H(δ),(3.17)

which implies, since h̃ is inf-compact, that Ĥ is precompact in P(Rd ×U). Let πn

be any sequence in Ĥ such that

πn(r0) −→
n→∞�0 := inf

π∈H(δ)
π(r0).

By compactness πn → π∗ ∈ P(Rd ×U) along some subsequence. Since G is closed
in P(Rd × U), it follows that π∗ ∈ G. On the other hand, since the functions ri
are continuous and bounded below, it follows that the map π �→ π(ri) is lower-
semicontinuous, which implies that π∗(r0) ≤ �0 and π∗(ri) ≤ δi for i = 1, . . . , k̄. It
follows that π∗ ∈ Ĥ ⊂H(δ). Therefore, Ĥ is closed and, therefore, also compact.

Applying Choquet’s theorem as in the proof of Lemma 4.2.3 in [2], it follows
that there exists π̃∗ ∈ Ĥe, the set of extreme points of Ĥ, such that π̃∗(r0) = �0.
On the other hand, we have Ĥe ⊂ Ge by Lemma 4.2.5 in [2]. It follows that π̃∗ ∈
H(δ) ∩ Ge. Since every element of Ge corresponds to a precise stationary Markov
control, the proof is complete. �

DEFINITION 3.3. We say that the vector δ ∈ (0,∞)k̄ is feasible [or that the
constraints in (3.15) are feasible] if there exists π′ ∈ Ho(δ) such that π′(r0) < ∞.

LEMMA 3.4. If δ̂ ∈ (0,∞)k̄ is feasible, then δ �→ infπ∈H(δ) π(r0) is continu-

ous at δ̂.

PROOF. This follows directly from the fact that, since δ̂ is feasible, the primal
functional

δ �→ inf
π∈G

{
π(r0): π(ri) ≤ δi , i = 1, . . . , k̄

}
is bounded and convex in some ball centered at δ̂ in R

k̄ . �
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DEFINITION 3.4. For δ ∈ R
k̄+ and λ = (λ1, . . . ,λk̄)

T ∈ R
k̄+ define the running

cost gδ,λ by

gδ,λ(x, u) := r0(x, u) +
k̄∑

i=1

λi

(
ri(x, u) − δi

)
.

Also, for β > 0 and δ̂ ∈ (0,∞)k̄ , we define the set of Markov controls

Uβ(δ) := {
v ∈ USSM: πv ∈ H(δ),πv(r0) ≤ β

}
,

and let Hβ(δ) denote the corresponding set of ergodic occupation measures.

Lagrange multiplier theory provides us with the following.

LEMMA 3.5. Suppose that δ is feasible. Then the following hold:

(i) There exists λ∗ ∈ R
k̄+ such that

inf
π∈H(δ)

π(r0) = inf
π∈Gπ(gδ,λ∗).(3.18)

(ii) Moreover, for any π∗ ∈ H(δ) that attains the infimum of π �→ π(r0) in H(δ),
we have

π∗(r0) = π∗(gδ,λ∗)

and

π∗(gδ,λ) ≤ π∗(gδ,λ∗) ≤ π(gδ,λ∗) ∀(π,λ) ∈ G×R
k̄+.

PROOF. The proof is standard. See [20], pages 216–221. �

We next state the associated dynamic programming formulation of the ergodic
control problem under constraints. Recall that τ̆ε denotes the first hitting time of
the ball Bε , for ε > 0.

THEOREM 3.1. Suppose that δ ∈ (0,∞)k̄ is feasible. Let λ∗ ∈ R
k̄+ be as in

Lemma 3.5, and π∗ be any element of H(δ) that attains the infimum in (3.18).
Then the following hold:

(a) There exists a ϕ∗ ∈ C2(Rd) satisfying

min
u∈U

[
Luϕ∗(x) + gδ,λ∗(x, u)

]= π∗(gδ,λ∗) x ∈ R
d .(3.19)

(b) With V as in Hypothesis 3.1, we have ϕ∗ ∈ O(V), and ϕ−∗ ∈ o(V).
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(c) A stationary Markov control v ∈ USSM is optimal if and only if it satisfies

min
u∈URδ,λ∗

(
x,∇ϕ∗(x);u)= b

(
x, v(x)

) · ∇ϕ∗(x)

(3.20)
+ gδ,λ∗

(
x, v(x)

)
, x ∈ R

d,

where

Rδ,λ∗(x,p;u) := b(x,u) · p + gδ,λ∗(x, u).

(d) The function ϕ∗ has the stochastic representation

ϕ∗(x) = lim
ε↘0

inf
v∈⋃β>0 Uβ(δ)

E
v
x

[∫ τ̆ε

0

(
gδ,λ∗

(
Xs, v(Xs)

)− π∗(gδ,λ∗)
)

ds

]

= lim
ε↘0

E
v̄
x

[∫ τ̆ε

0

(
gδ,λ∗

(
Xs, v̄(Xs)

)− π∗(gδ,λ∗)
)

ds

]
,

for any v̄ ∈ USM that satisfies (3.20).

PROOF. Let v∗ ∈ USSM satisfy π∗(dx,du) := μv∗(dx)v∗(du|x). Since
π∗(gδ,λ∗) < ∞, there exists a function ϕ∗ ∈ W

2,p
loc (Rd), for any p > d , and such

that ϕ∗(0) = 0, which solves the Poisson equation (Lemma 3.7.8(ii) in [2]),

Lv∗
ϕ∗(x) + gδ,λ∗

(
x, v∗(x)

)= π∗(gδ,λ∗), x ∈ R
d,(3.21)

and satisfies, for all ε > 0,

ϕ∗(x) = E
v∗
x

[∫ τ̆ε

0

(
gδ,λ∗

(
Xs, v

∗(Xs)
)− π∗(gδ,λ∗)

)
ds + ϕ∗(Xτ̆ε

)

]
∀x ∈R

d .

Let R > 0 be arbitrary, and select a Markov control vR satisfying

vR(x) =
{

Arg min
u∈U

Rλ∗
(
x,∇ϕ∗(x);u), if |x| < R,

v∗(x), otherwise.

It is clear that vR ∈ USSM, and that if πR denotes the corresponding ergodic occu-
pation measure, then we have πR(r) < ∞. It follows by (3.21) and the definition
of vR that

LvRϕ∗(x) + gδ,λ∗
(
x, vR(x)

)≤ π∗(gδ,λ∗), x ∈ R
d .(3.22)

By (3.22) using Corollary 3.7.3 in [2], we obtain

πR(gδ,λ∗) ≤ π∗(gδ,λ∗).

However, since πR(gδ,λ∗) ≥ π∗(gδ,λ∗) by Lemma 3.5, it follows that we must have
equality in (3.22) a.e. in R

d . Therefore, since R > 0 was arbitrary, we obtain
(3.19). By elliptic regularity, we have ϕ∗ ∈ C2(Rd). This proves part (a).
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Continuing, note that by (3.17) we have π∗(h̃) < ∞ and, moreover, that
supπ∈Hβ(δ) π(h̃) < ∞ for all β > 0. Thus we can follow the approach in Sec-
tion 3.5 of [1], by considering the perturbed problem with running cost of the
form gδ,λ∗ + εh̃ and then take limits as ε ↘ 0. Parts (b)–(d) then follow as in
Theorem 3.4 and Lemma 3.10 of [1]. �

Concerning uniqueness, the analogue of Theorem 3.5 in [1] holds, which we
quote next. The proof follows that of Theorem 3.5 in [1], and is therefore omitted.

THEOREM 3.2. Let the hypotheses of Theorem 3.1 hold, and (ϕ̂, �̂) ∈
C2(Rd) ×R be a solution of

min
u∈U

[
Luϕ̂(x) + gδ,λ∗(x, u)

]= �̂,(3.23)

such that ϕ̂− ∈ o(V) and ϕ̂(0) = 0. Then the following hold:

(a) Any measurable selector v̂ from the minimizer of (3.23) is in USSM and
πv̂(gδ,λ∗) < ∞.

(b) If either �̂ ≤ π∗(gδ,λ∗), or ϕ̂ ∈ O(minu∈U h̃(·, u)), then necessarily �̂ =
π∗(gδ,λ∗), and ϕ̂ = ϕ∗.

We finish this section by presenting analogues to Theorems 4.1 and 4.2 in
[1] (see also Lemma 3.2), for the ergodic control problem under constraints. Let
v0 ∈ USSM be any control such that πv0(r) < ∞. For j = 0,1, . . . , k̄, define the
truncated running costs rR

j relative to rj as in (3.10). We consider the ergodic
control problem under constraints in (3.14)–(3.15) for the family of controlled dif-
fusions, parameterized by R ∈ N, given by (3.11) with running costs ri ≡ rR

j (x,u),

j = 0,1, . . . , k̄. Recall that, as defined in Section 3.2, G(R) denotes the set of er-
godic occupation measures of (3.11). We also let H(δ;R), Ho(δ;R) be defined as
in (3.16) relative to the set G(R). We have the following theorem.

THEOREM 3.3. Suppose that δ̂ ∈ (0,∞)k̄ is feasible, and that ϕ0 defined in
(3.12) satisfies ϕ0 ∈ O(minu∈U h̃(·, u)). Then the following are true:

(a) There exists R0 > 0 such that

Ho(δ̂;R) ∩ {π ∈ G(R): π(r0) < ∞} �= ∅ ∀R ≥ R0.

(b) It holds that

inf
π∈H(δ̂;R)

π(r0) −→
R→∞ inf

π∈H(δ̂)

π(r0).
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PROOF. Let ε > 0 be given. By Lemma 3.4, for all sufficiently small ε > 0,
there exist δε

i < δ̂i , i = 1, . . . , k̄, such that δε is feasible and

inf
π∈H(δε)

π(r0) ≤ inf
π∈H(δ̂)

π(r0) + ε

4
.(3.24)

For ε̃ > 0, let rε̃ := r0 + ε̃h̃. By (3.7), we have

π(r0) ≤ π(rε̃) ≤ (1 + k0ε̃)π(r0) + k0ε̃ + k0ε̃

k̄∑
i=1

δi ∀π ∈H(δ).

Therefore, for any ε > 0, we can choose ε̃ > 0 small enough so that

inf
π∈H(δε)

π(rε̃) ≤ inf
π∈H(δε)

π(r0) + ε

4
.(3.25)

Let

gε̃,δε,λ(x, u) := rε̃(x, u) +
k̄∑

i=1

λi

(
ri(x, u) − δε

i

)
.

By Lemmas 3.3 and 3.5, there exist λ∗ ∈ R
k̄+ and π∗ ∈ H(δε) such that

π∗(rε̃) = inf
π∈H(δε)

π(rε̃) = inf
π∈H(δε)

π(gε̃,δε,λ∗) = π∗(gε̃,δε,λ∗).(3.26)

Define the truncated running cost gR
ε̃,δε,λ∗ relative to gε̃,δε,λ∗ as in (3.10). Since

πv0(g
R
ε̃,δε,λ∗) is finite, the hypotheses of Lemma 3.2 are satisfied. Let Ḡ(R) de-

note the collection of ergodic occupation measures in G(R) which are optimal for
gR

ε̃,δε,λ∗ . Therefore, it follows by Lemma 3.2 that {Ḡ(R):R > 0} is tight, and any

limit point of π̄R ∈ Ḡ(R) as R → ∞ satisfies (3.26). Since ri ≤ h̃, it follows by
dominated convergence that

lim sup
R→∞

π̄R(rR
i

)≤ δε
i < δ̂i , i = 1, . . . , k̄,

which establishes part (a).
Therefore, there exists R0 > 0 such that π̄R ∈ H(δ̂,R) for all R > R0, and

by (3.26),

π̄R(rε̃) ≤ inf
π∈H(δε)

π(rε̃) + ε

2
∀R > R0.(3.27)

Combining (3.24)–(3.25) and (3.27), we obtain

π̄R(r0) ≤ π̄R(rε̃) ≤ inf
π∈H(δ̂)

π(r0) + ε,

which establishes part (b). The proof is complete. �
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Let δ ∈ (0,∞)k̄ and R > 0. Provided Ho(δ;R) �= ∅ we denote by λ∗
R =

(λ1,R, . . . ,λk̄,R)T ∈ R
k̄+ any such vector satisfying

inf
π∈H(δ,R)

π(r0) = inf
π∈G(R)

π(gδ,λ∗
R
),

and by π∗
R , any member of H(δ,R) that attains this infimum. It follows by The-

orem 3.3(a) that, provided Ho(δ) �= ∅, then Ho(δ;R) �= ∅ for all R sufficiently
large. Clearly, π∗

R satisfies (3.17) and R �→ π∗
R(r0) is nonincreasing. Therefore,

{π∗
R} is a tight family. It then follows by Theorem 3.3(b) that any limit point of π∗

R
as R → ∞ attains the minimum of π → π(r0) in H(δ). Concerning the conver-
gence of the solutions to the associated HJB equations, we have the following.

THEOREM 3.4. Suppose that δ ∈ (0,∞)k̄ is feasible. Let Lu
R denote the con-

trolled extended generator corresponding to the diffusion in (3.11), ϕ0 be as in
(3.12), and λ∗

R , gR
δ,λ∗ defined as in (3.10) relative to the running cost gδ,λ∗ , π∗

R be
as defined in the previous paragraph. Then there exists R0 > 0 such that for all
R > R0 the HJB equation

min
u∈U

[
Lu

RVR(x) + gR
δ,λ∗

R
(x,u)

]= π∗
R(r0),(3.28)

has a solution VR in W
2,p
loc (Rd), for any p > d , with VR(0) = 0, and such that the

restriction of VR on BR is in C2(BR). Also, the following hold:

(i) there exists a constant C0, independent of R, such that VR ≤ C0 + 2ϕ0 for
all R > R0;

(ii) (VR)− ∈ o(V + ϕ0) uniformly over R > R0;
(iii) every π∗

R corresponds to a stationary Markov control v ∈ USSM that satis-
fies

min
u∈U

[
bR(x,u) · ∇VR(x) + gR

δ,λ∗
R
(x,u)

]
(3.29)

= b
(
x, v(x)

) · ∇VR(x) + gδ,λ∗
R

(
x, v(x)

)
, a.e. x ∈R

d .

Let ϕ∗ and λ∗ be as in Theorem 3.1. Then, under the additional hypothesis that

ϕ0 ∈ O
(
min
u∈U h̃(·, u)

)
,

for every sequence R ↗ ∞, there exists a subsequence along which it holds that
VR → ϕ∗ and λ∗

R → λ∗. Also, if v̂R is a measurable selector from the minimizer of
(3.29), then any limit point of v̂R in the topology of Markov controls as R → ∞ is
a measurable selector from the minimizer of (3.20).

PROOF. We can start from the perturbed problem with running cost of the
form gδ,λ∗

R
+ εh̃ to establish (3.29) in Section 3.5 of [1], and then take limits as

ε ↘ 0. Parts (i) and (ii) can be established by following the proof of Theorem 4.1
in [1]. Convergence to (3.20) as R → ∞ follows as in the proof of Theorem 4.2
in [1]. �
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4. Recurrence properties of the controlled diffusions. In this section, we
show that the limiting diffusions for a multiclass multi-pool network satisfy Hy-
pothesis 3.1 relative to the running cost in (2.22) for any value of the parameters.
Also, provided γ �= 0, Hypothesis 3.2 is also satisfied. The proofs rely on a recur-
sive leaf elimination algorithm which we introduce next.

4.1. A leaf elimination algorithm and drift representation. We present a leaf
elimination algorithm and prove some properties. Recall the linear map G de-
fined in (2.16) and the associated matrix � in (2.17), and also the map Ĝ defined
in (2.18).

DEFINITION 4.1. Let G(I ∪ J ,E, (α,β)) denote the labeled graph, whose
nodes are labeled by (α,β), that is, each node i ∈ I has the label αi , and each
node j ∈ J has the label βj . The graph G is a tree and there is a one to one
correspondence between this graph and the matrix � = �(α,β) defined in (2.17).
We denote this correspondence by � ∼ G.

Let �(−i) denote the (I − 1) × J submatrix of � obtained after eliminating
the ith row of � . Similarly, �(−j) is the I × (J − 1) submatrix resulting after the
elimination of the j th column.

If ı̂ ∈ I is a leaf of G(I ∪ J ,E, (α,β)), we let jı̂ ∈ J denote the unique node
such that (ı̂, jı̂) ∈ E and define

(α,β)(−ı̂) := (α1, . . . , αı̂−1, αı̂+1, . . . , αI , β1, . . . , βjı̂−1,

βjı̂
− αı̂, βjı̂+1, . . . , βJ ),

that is, (α,β)(−ı̂) ∈ R
I−1+J is the vector of parameters obtained after removing

αı̂ and replacing βjı̂
with βjı̂

− αı̂ . Similarly, if ĵ ∈ J is a leaf, we define iĵ and
(α,β)(−ĵ ) in a completely analogous manner.

LEMMA 4.1. If ı̂ ∈ I and/or ĵ ∈ J are leafs of G(I ∪J ,E, (α,β)), then

�(−ı̂)(α,β) ∼ G
((
I \ {ı̂})∪J ,E \ {(ı̂, jı̂)

}
, (α,β)(−ı̂)),

�(−ĵ )(α,β) ∼ G
(
I ∪ (J \ {ĵ}),E \ {(iĵ , ĵ )

}
, (α,β)(−ĵ )

)
.

PROOF. If ı̂ ∈ I is a leaf of G(I ∪J ,E, (α,β)), then ψı̂,jı̂
is the unique non-

zero element in the ı̂th row of �(α,β). Therefore, the equivalence follows by the
fact that the concatenation of �(−ı̂)(α,β) and row ı̂ of �(α,β) has the same row
and column sums as �(α,β). Similarly, if ĵ ∈ J is a leaf. �

DEFINITION 4.2. In the interest of simplifying the notation, for a labeled tree
G = G(I ∪J ,E, (α,β)), we denote

G(−ı̂) := G
((
I \ {ı̂})∪J ,E \ {(ı̂, jı̂)

}
, (α,β)(−ı̂))
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and

G(−ĵ ) := G
(
I ∪ (J \ {ĵ}),E \ {(iĵ , ĵ )

}
, (α,β)(−ĵ )

)
,

for leaves ı̂ ∈ I and ĵ ∈ J , respectively.

We now present a leaf elimination algorithm, which starts from a server leaf
elimination. A similar algorithm can start from a customer leaf elimination.

LEAF ELIMINATION ALGORITHM. Let G = G(I ∪ J ,E, (α,β)) be the tree
in Definition 4.1.

Server leaf elimination. Let Jleaf ⊂ J be the collection of all leaves of G which
are members of J . We eliminate each ĵ ∈ Jleaf sequentially in any order, each time
replacing G by G(−ĵ ) and setting ψiĵ ĵ = βĵ . Let G1 = G(I1 ∪ J 1,E1, (α1, β1))

denote the graph obtained. Note that I1 = I and J 1 = J \Jleaf, and all the leaves
of G1 are in I . Note also that since G1 is a tree, it contains at least two leaves unless
its maximum degree equals 1. Let �̃1 denote the collection of nonzero elements
of � thus far defined.

Given Gk = G(Ik ∪ J k,Ek, (αk, βk)), for each k = 1,2,3, . . . , I − 1, we per-
form the following:

(i) Choose any leaf ı̂ ∈ Ik and set ψı̂jı̂
= αk

ı̂
and π(ı̂) = k. Replace Gk with

(Gk)(−ı̂). Let �̃k+1 = �̃k ∪ {ψı̂jı̂
}.

(ii) For (Gk)(−ı̂) obtained in (i), perform the server leaf elimination as described
above, and denote the resulting graph by Gk+1, and by �̃k+1 denote the collection
of nonzero elements of � thus far defined.

At step I − 1, the resulting graph GI has a maximum degree of zero, where
Ik = {ı̂} is a singleton and J k is empty and � contains exactly I + J − 1 non-
zero elements. We set π(ı̂) = I .

REMARK 4.1. We remark that in the first step of server leaf elimination, all
leaves in J are removed while in each customer leaf elimination, only one leaf in I
(if more than one) is removed. Thus, exactly I steps of customer leaf elimination
are conducted in the algorithm. The input of the algorithm is a tree G with the
vertices I ∪ J , the edges E and the indices (α,β). The output of the algorithm
is the matrix � = �(α,β)—the unique solution to the linear map G defined in
(2.16), and the permutation of the leaves I which tracks the order of the leaves
being eliminated, that is, for each k = 1,2, . . . , I , π(i) = k for some i ∈ I . Note
that the permutation π may not be unique, but the matrix � is unique for a given
tree G. The elements of the matrix � determine the drift b(x,u) = b(x, (uc, us))

by (2.20). It is shown in the lemma below that the nonzero elements of � are
linear functions of (α,β), which provides an important insight on the structure of
the drift b(x,u); see Lemma 4.3.
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LEMMA 4.2. Let π denote the permutation of I defined in the leaf elimination
algorithm, and π−1 denote its inverse. For each k ∈ I:

(a) the elements of the matrix �̃k are functions of

{απ−1(1), . . . , απ−1(k−1), β};
(b) the set {

ψij ∈ �̃k: i = π−1(1), . . . , π−1(k), j ∈ J
}

and the set of nonzero elements of rows π−1(1), . . . , π−1(k) of � are equal;
(c) there exists a linear function Fk such that

αk
π−1(k)

= απ−1(k) − Fk(απ−1(1), . . . , απ−1(k−1), β).

PROOF. This is evident from the incremental definition of � in the algorithm.
�

LEMMA 4.3. The drift b(x,u) = b(x, (uc, us)) in the limiting diffusion X in
(2.19) can be expressed as

b(x,u) = −B1
(
x − (e · x)+uc)+ (e · x)−B2u

s − (e · x)+Γ uc + �,(4.1)

where B1 is a lower-diagonal I × I matrix with positive diagonal elements, B2 is
an I × J matrix and Γ = diag{γ1, . . . , γI }.

PROOF. We perform the leaf elimination algorithm and reorder the indices in
I according to the permutation π . Thus, leaf i ∈ I is eliminated in step i of the
customer leaf elimination. Let ji ∈ J denote the unique node corresponding to
i ∈ I , when i is eliminated as a leaf in step i of the algorithm. It is important to
note that, with respect to the reordered indices, the matrix Ĝ0(x) (see Remark 2.1)
takes the following form:

Ĝ0
i,j (x) =

⎧⎪⎨⎪⎩
xi + G̃iji

(x1, . . . , xi−1), for j = ji ,
G̃ij (x1, . . . , xi−1), for i ∼ j, j �= ji ,
0, otherwise,

where each G̃ij is a linear function of its arguments. As a result of Lemma 4.2,
the drift takes the form

bi(x, u) = −μiji
xi + b̃i (x1, . . . , xi−1) + F̃i

(
(e · x)+uc, (e · x)−us)

− γi(e · x)+uc
i + �i.

Two things are important to note: (a) F̃i is a linear function, and (b) μiji
> 0 (since

i ∼ ji).
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Let b̂ denote the vector field

b̂i(x) := −μiji
xi + b̃i(x1, . . . , xi−1).(4.2)

Then b̂ is a linear vector field corresponding to a lower-diagonal matrix with neg-
ative diagonal elements, and this is denoted by −B1. The form of the drift in (4.1)
then readily follows by the leaf elimination algorithm and (2.20). �

REMARK 4.2. By the representation of the drift b(x,u) in (4.1), the limiting
diffusion X can be classified as a piecewise-linear controlled diffusion as discussed
in Section 3.3 of [1]. The difference of the drift b(x,u) from that in [1] lies in two
aspects: (i) there is an additional term (e · x)−B2u

s , and (ii) B1 may not be an M-
matrix (see, e.g., the B1 matrices in the W model and the model in Example 4.4
below).

4.2. Examples. In this section, we provide several examples to illustrate the
leaf elimination algorithm, including the classical “N,” “M,” “W” models and the
nonstandard models that cannot be solved in [5, 6]. Note that in Assumption 3 of
[6] (and in Theorem 1 of [5]), it is required that either of the following conditions
holds: (i) the service rates μij are either class or pool dependent, and γi = 0 for
all i ∈ I; (ii) the tree G is of diameter 3 at most and in addition, γi ≤ μij for each
i ∼ j in G. We do not impose any of these conditions in asserting Hypotheses 3.1
and 3.2 later in Section 4.3.

EXAMPLE 4.1 (The “N” model). Let I = {1,2}, J = {1,2} and E = {1 ∼
1,1 ∼ 2,2 ∼ 2}. The matrix � takes the form �(α,β) = [β1

0
α1−β1

α2

]
and the per-

mutation π satisfies π−1(k) = k for k = 1,2. The matrices B1 and B2 in the drift
b(x,u) are B1 = diag{μ12,μ22} and B2 = diag{μ11 − μ12,0}.

REMARK 4.3. Recall Ĝ0(x) in Remark 2.1. Applying the leaf elimination
algorithm, there may be more than one realizations of Ĝ0(x). For example, in
the “N” network, the solution can be expressed as �(α,β) = [β1

0
α1−β1

α2

]
, or

�(α,β) = [β1
0

β2−α2
α2

]
, and these give different answers when u ≡ 0. It depends

on the permutation order in the implementation of elimination, that is, which pair
of nodes is eliminated last.

EXAMPLE 4.2 (The “W” model). Let I = {1,2,3}, J = {1,2} and E = {1 ∼
1,2 ∼ 1,2 ∼ 2,3 ∼ 2}. Following the algorithm, we obtain that the matrix � takes
the form

�(α,β) =
⎡⎣ α1 0

β1 − α1 α2 − (β1 − α1)

0 α3

⎤⎦ ,
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and the permutation π satisfies π−1(k) = k for k = 1,2,3. The matrices B1 and
B2 in the drift b(x,u) are

B1 =
⎡⎣ μ11 0 0

μ21 + μ22 μ22 0
0 0 μ32

⎤⎦ and B2 =
⎡⎣ 0 0

μ21 − μ22 0
0 0

⎤⎦ .

EXAMPLE 4.3 (The “M” model). Let I = {1,2}, J = {1,2,3}, and E = {1 ∼
1,1 ∼ 2,2 ∼ 2,2 ∼ 3}. The matrix � takes the form

�(α,β) =
[
β1 α1 − β1 0
0 α2 − β3 β3

]
,

and the permutation π satisfies π−1(k) = k for k = 1,2. The matrices B1 and B2
in the drift b(x,u) are

B1 = diag{μ12,μ22} and B2 =
[
μ11 − μ12 0 0

0 0 μ23 − μ22

]
.

EXAMPLE 4.4. Let I = {1,2,3,4}, J = {1,2,3} and E = {1 ∼ 1,2 ∼ 1,2 ∼
2,2 ∼ 3,3 ∼ 3,4 ∼ 3}. We obtain

�(α,β) =

⎡⎢⎢⎢⎣
α1 0 0

β1 − α1 β2 (α2 − β2) − (β1 − α1)

0 0 α3

0 0 α4

⎤⎥⎥⎥⎦ ,

and the permutation π satisfies π−1(k) = k for k = 1,2,3,4. The matrices B1 and
B2 in the drift b(x,u) are

B1 =

⎡⎢⎢⎢⎣
μ11 0 0 0

−μ21 + μ23 μ23 0 0
0 0 μ33 0
0 0 0 μ43

⎤⎥⎥⎥⎦ ,

B2 =

⎡⎢⎢⎢⎣
0 0 0

−μ21 − μ23 −μ23 0
0 0 0
0 0 0

⎤⎥⎥⎥⎦ .

4.3. Verification of Hypotheses 3.1 and 3.2. In this section, we show that the
controlled diffusions X in (2.19) for the multiclass multi-pool networks satisfy
Hypotheses 3.1 and 3.2.

THEOREM 4.1. For the unconstrained ergodic control problem (2.24) under
a running cost r in (2.22) with strictly positive vectors ξ and ζ , Hypothesis 3.1
holds for K = Kδ defined by

Kδ := {
x ∈ R

I : |e · x| > δ|x|}(4.3)



3142 A. ARAPOSTATHIS AND G. PANG

for some δ > 0 small enough, and for a function h(x) := C̃|x|m with some posi-
tive C̃.

PROOF. Recall the form of the drift b(x,u) in (4.1) in Lemma 4.3. The set
Kδ in (4.3) is an open convex cone, and the running cost function r(x,u) =
r(x, (uc, us)) in (2.22) is inf-compact on Kδ . Define V ∈ C2(RI ) by V(x) :=
(xTQx)

m/2 for |x| ≥ 1, where m is as given in (2.22), and the matrix Q is a di-
agonal matrix satisfying xT(QB1 +BT

1 Q)x ≥ 8|x|2. This is always possible, since
−B1 is a Hurwitz lower diagonal matrix. Then we have

b(x,u) · ∇V(x) = � · ∇V(x) − m

2

(
xTQx

)m/2−1
xT(QB1 + BT

1 Q
)
x

+ m
(
xTQx

)m/2−1
Qx

(
(B1 − Γ )(e · x)+uc + B2(e · x)−us)

≤ m
(
xTQx

)m/2−1(
�TQx + C1|x||e · x| − 4|x|2)

for some positive constant C1. Choosing δ = C−1
1 , we obtain

b(x,u) · ∇V(x) ≤ C2 − m
(
xTQx

)m/2−1|x|2 ∀x ∈Kc
δ,

for some positive constant C2. Similarly, on the set Kδ ∩ {|x| ≥ 1}, we can obtain
the following inequality:

b(x,u) · ∇V(x) ≤ C3
(
1 + |e · x|m) ∀x ∈ Kδ,

for some positive constant C3 > 0. Combining the above and rescaling V , we ob-
tain

LuV(x) ≤ 1 − C4|x|m1Kc
δ
(x) + C5|e · x|m1Kδ (x), x ∈ R

I ,

for some positive constants C4 and C5. Thus, Hypothesis 3.1 is satisfied. �

REMARK 4.4. It follows by Theorem 4.1 that Lemma 3.3 holds for the ergodic
control problem with constraints in (2.26)–(2.27) under a running cost r0 as in
(2.22) with ζ ≡ 0.

THEOREM 4.2. Suppose that the vector γ is not identically zero. There exists
a constant Markov control ū = (ūc, ūs) ∈ U which is stable and has the following
property: For any m ≥ 1, there exists a Lyapunov function V of the form V(x) =
(xTQx)

m/2 for a diagonal positive matrix Q, and positive constants κ0 and κ1 such
that

LūV(x) ≤ κ0 − κ1V(x) ∀x ∈ R
I .(4.4)

As a result, the controlled process under ū is geometrically ergodic, and its invari-
ant probability distribution has all moments finite.
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PROOF. Let ı̂ ∈ I be such that γı̂ > 0. At each step of the algorithm, the graph
Gk has at least two leaves in I , unless it has maximum degree zero. We eliminate
the leaves in I sequentially until we end up with a graph consisting only of the
edge (ı̂, ĵ ). Then we set ūc

ı̂
= ūs

ĵ
= 1. This defines ūc and ūs . It is clear that ū =

(ūc, ūs) ∈ U. Note also that in the new ordering of the indices (replace with the
permutation π ) we have ı̂ = I and we can also let ĵ = J .

By construction (see also proof of Lemma 4.3), the drift takes the form

bi(x, u0) =
{

b̂i (x), if i < I ,
b̃I (x1, . . . , xI−1) − μIJ xI − (γI − μIJ )(e · x)+ + �I , if i = I ,

where b̂ is as in (4.2). Note that the term (e · x)− does not appear in bi(x, u0). The
result follows by the lower-diagonal structure of the drift. �

REMARK 4.5. It is well known ([2], Lemma 2.5.5), that (4.4) implies that

E
ū
x

[
V(Xt)

]≤ κ0

κ1
+ V(x)e−κ1t ∀x ∈R

I ,∀t ≥ 0.(4.5)

4.4. Special cases. In the unconstrained control problems, we have assumed
that the running cost function r(x,u) takes the form in (2.22), where both the
vectors ξ and ζ are positive. However, if we were to select ζ ≡ 0 (thus penalizing
only the queue), then in order to apply the framework in Section 3.1, we need to
verify Hypothesis 3.1 for a cone of the form

Kδ,+ := {
x ∈ R

I : e · x > δ|x|},(4.6)

for some δ > 0. Hypothesis 3.1 relative to a cone Kδ,+ implies that, for some
κ > 0, we have

Jv

[
(e · x)−

]≤ κJv

[
(e · x)+

] ∀v ∈ USM.(4.7)

In other words, if under some Markov control the average queue length is finite,
then so is the average idle time.

Consider the “W” model in Example 4.2. When e · x < 0, the drift is

b(x,u) = −
⎡⎣ μ11 0 0

μ21
(
1 + us

1

)+ μ22u
s
2 μ21u

s
1 + μ22u

s
2 μ21u

s
1 + μ22u

s
2

0 0 μ32

⎤⎦x + �.

We leave it to the reader to verify that Hypothesis 3.1 holds relative to a cone Kδ,+
with a function V of the form V(x) = (xTQx)

m/2. The same holds for the “N”
model, and the model in Example 4.4.

However, for the “M” model, when e · x < 0, the drift takes the form

b(x,u) = −
[
μ12

(
1 − us

1

)+ μ11u
s
1 (μ11 − μ12)u

s
1

(μ23 − μ22)u
s
3 μ22

(
1 − us

3

)+ μ23u
s
3

]
x + �.
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Then it does not seem possible to satisfy Hypothesis 3.1 relative to the cone Kδ,+,
unless restrictions on the parameters are imposed, for example, if the service rates
for each class do not differ much among the servers. We leave it to the reader to
verify that, provided

|μ11 − μ12| ∨ |μ23 − μ22| ≤ 1
2(μ12 ∧ μ22),

Hypothesis 3.1 holds relative to the cone Kδ,+, with Q equal to the identity matrix.
An important implication from this example is that the ergodic control problem
may not be well posed if only the queueing cost is minimized without penalizing
the idleness either by including it in the running cost, or by imposing constraints
in the form of (2.27).

We present two results concerning special networks.

COROLLARY 4.1. Consider the ergodic control problem in (2.24) with X in
(2.19) and r(x,u) in (2.22) with ζ ≡ 0. For any m ≥ 1, there exist positive con-
stants δ, δ̃ and κ̃ , and a positive definite Q ∈ R

I×I such that, if the service rates
satisfy

max
i∈I,j,k∈J (i)

|μij − μik| ≤ δ̃ max
i∈I,j∈J {μij },

then with V(x) = (xTQx)
m/2 and Kδ,+ in (4.6) we have

LuV(x) ≤ κ̂ − |x|m ∀x ∈ Kc
δ,+,∀u ∈U.

PROOF. By (2.16), (2.18) and (2.20), if μij = μik = μ̄ for all i ∈ I and j, k ∈
J , then bi(x, u) = −μ̄xi when e · x ≤ 0, for all i ∈ I . The result then follows by
continuity. �

COROLLARY 4.2. Suppose there exists at most one i ∈ I such that |J (i)| > 1.
Then the conclusions of Corollary 4.1 hold.

PROOF. The proof follows by a straightforward application of the leaf elimi-
nation algorithm. �

REMARK 4.6. Consider the single-class multi-pool network (inverted “V”
model). This model has been studied in [3, 4]. The service rates are pool-
dependent, μj for j ∈ J . The limiting diffusion X is one-dimensional. It is easy
to see from (2.20) that

b(x,u) = x− ∑
j∈J

μju
s
j − γ x+ + �

= −γ x + x−
(∑

j∈J
μju

s
j + γ

)
+ �.
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It can be easily verified that the controlled diffusion X for this model not only sat-
isfies Hypothesis 3.1 relative to Kδ,+, but it is positive recurrent under any Markov
control, and the set of invariant probability distributions corresponding to station-
ary Markov controls is tight.

REMARK 4.7. Consider the multiclass multi-pool networks with class-
dependent service rates, that is, μij = μi for all j ∈ J (i) and i ∈ I . In the leaf
elimination algorithm, the sum of the elements of row i of the matrix �(α,β) is
equal to αi , for each i ∈ I . Thus, by (2.20), we have

bi(x, u) = bi

(
x,
(
uc,us))= −μi

(
xi − (e · x)+uc

i

)− γi(e · x)+uc
i + �i ∀i ∈ I.

This drift is independent of us , and has the same form as the piecewise linear drift
studied in the multiclass single-pool model in [1]. Thus, the controlled diffusion X

for this model satisfies Hypothesis 3.1 relative to Kδ,+. Also Hypothesis 3.2 holds
for general running cost functions that are continuous, locally Lipschitz and have
at most polynomial growth, as shown in [1].

5. Characterization of optimality. In this section, we characterize the opti-
mal controls via the HJB equations associated with the ergodic control problems
for the limiting diffusions.

5.1. The discounted control problem. The discounted control problem for the
multiclass multi-pool network has been studied in [5]. The results strongly depend
on estimates on moments of the controlled process that are subexponential in the
time variable. We note here that the discounted infinite horizon control problem
is always solvable for the multiclass multi-pool queueing network at the diffusion
scale, without requiring any additional hypotheses (compare with the assumptions
in Theorem 1 of [5]). Let g:RI × U → R+ be a continuous function, which is
locally Lipschitz in x uniformly in u, and has at most polynomial growth. For
θ > 0, define

Jθ (x;U) := E
U
x

[∫ ∞
0

e−θsg(Xs,Us)ds

]
.(5.1)

It is immediate by (4.5) that Jθ (x; ū) < ∞ and that it inherits a polynomial growth
from g. Therefore, infU∈U Jθ (x;U) < ∞. It is fairly standard then to show (see
Section 3.5.2 in [2]) that Vθ(x) := infU∈U Jθ (x;U) is the minimal nonnegative
solution in C2(RI ) of the discounted HJB equation

1
2 trace

(
��T∇2Vθ(x)

)+ H(x,∇Vθ) = θVθ (x), x ∈ R
I ,

where

H(x,p) := min
u∈U

[
b(x,u) · p + g(x,u)

]
.(5.2)

Moreover, a stationary Markov control v is optimal for the criterion in (5.1) if and
only if it satisfies

b
(
x, v(x)

) · ∇Vθ(x) + g
(
x, v(x)

)= H
(
x,∇Vθ(x)

)
a.e. in R

I .
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5.2. The HJB for the unconstrained problem. The ergodic control problem for
the limiting diffusion falls under the general framework in [1]. We state the results
for the existence of an optimal stationary Markov control, and the existence and
characterization of the HJB equation.

Recall the definition of Jx,U [r] and �∗(x) in (2.23)–(2.24), and recall from Sec-
tion 3.1 that if v ∈ USSM, then Jx,v[r] does not depend on x and is denoted by
Jv[r]. Consequently, if the ergodic control problem is well posed, then �∗(x) does
not depend on x. We have the following theorem.

THEOREM 5.1. There exists a stationary Markov control v ∈ USSM that is
optimal, that is, it satisfies Jv[r] = �∗.

PROOF. Recall that Hypothesis 3.1 is satisfied with h(x) := C̃|x|m for some
constant C̃ > 0, as in the proof of Theorem 4.1. It is rather routine to verify that
(3.6) holds for an inf-compact function h̃ ∼ |x|m. The result then follows from
Theorem 3.2 in [1]. �

We next state the characterization of the optimal solution via the associated HJB
equations.

THEOREM 5.2. For the ergodic control problem of the limiting diffusion in
(2.24), the following hold:

(i) There exists a unique solution V ∈ C2(RI )∩O(|x|m), satisfying V (0) = 0,
to the associated HJB equation

min
u∈U

[
LuV (x) + r(x,u)

]= �∗.(5.3)

The positive part of V grows no faster than |x|m, and its negative part is in o(|x|m).
(ii) A stationary Markov control v is optimal if and only if it satisfies

H
(
x,∇V (x)

)= b
(
x, v(x)

) · ∇V (x) + r
(
x, v(x)

)
a.e. in R

I ,(5.4)

where H is defined in (5.2), with g replaced by r .
(iii) The function V has the stochastic representation

V (x) = lim
δ↘0

inf
v∈⋃β>0 U

β
SM

E
v
x

[∫ τ̆δ

0

(
r
(
Xs, v(Xs)

)− �∗)ds

]

= lim
δ↘0

E
v̄
x

[∫ τ̆δ

0

(
r
(
Xs, v∗(Xs)

)− �∗)ds

]
for any v̄ ∈ USM that satisfies (5.4), where v∗ is the optimal Markov control satis-
fying (5.4).
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PROOF. The existence of a solution V to the HJB (5.3) follows from The-
orem 3.4 in [1]. It is facilitated by defining a running cost function rε(x, u) :=
r(x,u)+ εh̃(x,u) for ε > 0, and studying the corresponding ergodic control prob-
lem. Uniqueness of the solution V follows from Theorem 3.5 in [1].

The claim that the positive part of V grows no faster than |x|m follows from
Theorems 4.1 and 4.2 in [1], and the claim that its negative part is in o(|x|m)

follows from Lemma 3.10 in [1].
Parts (ii)–(iii) follow from Theorem 3.4 in [1]. �

For uniqueness of solutions to HJB, see Theorem 3.5 in [1].
The HJB equation in (5.3) can be also obtained via the traditional vanishing

discount approach. For α > 0, we define

Vα(x) := inf
U∈UE

U
x

[∫ ∞
0

e−αt r(Xt ,Ut )dt

]
.(5.5)

The following result follows directly from Theorem 3.6 of [1].

THEOREM 5.3. Let V∗ and �∗ be as in Theorem 5.2, and let Vα be as in (5.5).
The function Vα −Vα(0) converges, as α ↘ 0, to V∗, uniformly on compact subsets
of RI . Moreover, αVα(0) → �∗, as α ↘ 0.

The result that follows concerns the approximation technique via spatial trun-
cations of the control. For more details, including the properties of the associated
approximating HJB equations we refer the reader to Section 4 in [1].

THEOREM 5.4. Let ū ∈ U satisfy (4.4). There exists a sequence {vk ∈ USSM :
k ∈N} such that each vk agrees with ū on Bc

k , and

Jvk
[r] −→

k→∞�∗.

PROOF. This follows by Theorems 4.1 and 4.2 in [1], using the fact that h̃ ∼
V ∼ |x|m. �

Since U is convex, and r as defined in (2.22) is convex in u, we have the fol-
lowing.

THEOREM 5.5. Let ū ∈ U satisfy (4.4). Then, for any given ε > 0, there exists
an R > 0 and an ε-optimal continuous precise control vε ∈ USSM which is equal to
ū on Bc

R . In other words, if πvε is the ergodic occupation measure corresponding
to vε , then

πvε (r) =
∫
Rd×U

r(x,u)πvε (dx, du) ≤ �∗ + ε.
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PROOF. Let f̃ : U → [0,1] be some strictly convex continuous function, and
define rε(x, u) := r(x,u) + ε

3 f̃ (u), for ε > 0. Let �∗
ε be the optimal value of the

ergodic problem with running cost rε . It is clear that �∗
ε ≤ �∗ + ε

3 .
Let v0 ∈ USSM be the constant control which is equal to ū, and for each R ∈ N,

let bR(x,u) be as defined in (3.9) and analogously define rR
ε (x,u) as in (3.10)

relative to rε . Let Lu
R denote the controlled extended generator of the diffusion

with drift bR in (3.11). Consider the associated HJB equation

min
u∈U

[
Lu

RVR(x) + rR
ε (x,u)

]= �(ε,R).(5.6)

Since u �→ [bR(x,u) · VR + rR
ε (x,u)] is strictly convex in u for x ∈ BR , and Lip-

schitz in x, it follows that there is a (unique) continuous selector vε,R from the
minimizer in (5.6). By Theorem 5.4 (see also Theorems 4.1 and 4.2 in [1]), we can
select R large enough so that

�(ε,R) ≤ �∗
ε + ε

3
.(5.7)

Next, we modify vε,R so as to make it continuous on R
d . Let {χk : k ∈ N}

be a sequence of cutoff functions such that χk ∈ [0,1], χk ≡ 0 on Bc
R−1/k , and

χk ≡ 1 on BR−2/k . For R fixed and satisfying (5.7), define the sequence of con-
trols ṽk,ε(x) := χk(x)vε,R(x)+ (1 −χk(x))v0(x), and let πk denote the associated
sequence of ergodic occupation measures. It is evident that ṽk,ε → vε,R in the
topology of Markov controls (Section 2.4 in [2]). Moreover, the sequence of mea-
sures πk is tight and, therefore, converges as k → ∞ to the ergodic occupation
measure πε corresponding to vε,R (Lemma 3.2.6 in [2]). Since rε is uniformly
integrable with respect to the sequence {πk}, we have∫

Rd×U

rε(x, u)πk(dx,du) −→
k→∞�(ε,R).

Combining this with the earlier estimates completes the proof. �

5.3. The HJB for the constrained problem. As seen from Theorems 3.1
and 3.2, the dynamic programming formulation of the problem with constraints
in (2.26)–(2.27) follows in exactly the same manner as the unconstrained problem.
Also, Theorems 3.3 and 3.4 apply.

We next state the analogous results of Theorems 5.4 and 5.5 for the constrained
problem.

THEOREM 5.6. Let ū ∈ U satisfy (4.4). Suppose that δ ∈ (0,∞)J is feasible.
Then there exist k0 ∈ N and a sequence {vk ∈ USSM:k ∈ N} such that for each
k ≥ k0, vk is equal to ū on Bc

k and

Jvk
[r0] −→

k→∞�∗
c = inf

π∈H(δ)
π(r0).
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PROOF. This follows from Theorem 3.4. �

Since rj (x, u) defined in (2.25) is convex in u for j = 0,1, . . . , J , we have the
following.

THEOREM 5.7. Let ū ∈ U satisfy (4.4). Suppose that δ ∈ (0,∞)J is feasible.
Then for any given ε > 0, there exists R0 > 0 and a family continuous precise
controls vε,R ∈ USSM, R > R0 satisfying the following:

(i) Each vε,R is equal to ū on Bc
R .

(ii) The corresponding ergodic occupation measures πvε,R
satisfy

πvε,R
(r0) ≤ �∗

c + ε ∀R > R0,

sup
R>R0

πvε,R
(rj ) < δj , j ∈ J .

PROOF. By Lemma 3.4, for all sufficiently small ε > 0, there exist δε
j < δj ,

j ∈ J , such that δε is feasible and

inf
π∈H(δε)

π(r0) ≤ inf
π∈H(δ)

π(r0) + ε

4
.

Let

gε
δ,λ(x, u) := gδ,λ(x, u) + ε

3
f̃ (u), λ ∈ R

J+,

where ε > 0, gδ,λ, is as in Definition 3.4, and f̃ :U→ [0,1] is some strictly convex
continuous function. Let v0 ∈ USSM be the constant control which is equal to ū, and
for each R ∈ N, let bR(x,u) be as defined in (3.9). Recall the definition of G(R)

and H(δ;R) in the paragraph preceding Theorem 3.3. By Theorem 3.4, there exists
λ∗

R ∈R
J+ such that

inf
π∈G(R)

π
(
gε

δε,λ∗
R

)= inf
π∈H(δε;R)

π
(
r0 + ε

4
f̃

)
,

and (3.28) holds and, moreover, R > 0 can be selected large enough so that

inf
π∈H(δε;R)

π
(
r0 + ε

4
f̃

)
≤ inf

π∈H(δε)
π
(
r0 + ε

4
f̃

)
+ ε

4

≤ inf
π∈H(δε)

π(r0) + ε

2
.

Combining these estimates, we obtain

inf
π∈G(R)

π
(
gε

δε,λ∗
R

)≤ inf
π∈H(δ)

π(r0) + 3ε

4
.

By strict convexity, there exists a (unique) continuous selector vε,R from the min-
imizer in (3.28). Using a cutoff function χ as in the proof of Theorem 5.5, and
redefining completes the argument. �
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5.4. Fair allocation of idleness. There is one special case of the ergodic prob-
lem under constraints which is worth investigating further. Let

SJ := {
z ∈R

J+: e · z = 1
}
.

Consider the following assumption.

ASSUMPTION 5.1. Hypothesis 3.1 holds relative to a cone Kδ,+ in (4.3), and
for every ûs ∈ SJ there exists a stationary Markov control v(x) = (vc(x), ûs) such
that Jv[r0] < ∞.

Examples of networks that Assumption 5.1 holds were discussed in Section 4.2.
In particular, it holds for the “W” network, the network in Example 4.4, and in
general under the hypotheses of Corollaries 4.1 and 4.2.

Let r0(x, u) be as defined in (2.22) with ζ ≡ 0, and

rj (x, u) := (e · x)−us
j , j ∈ J .

Let θ be an interior point of SJ , i.e., θj > 0 for all j ∈ J , and consider the problem
with constraints given by

�∗
c = inf

v∈USSM
Jv[r0](5.8)

subject to Jv[rj ] = θj

J∑
k=1

Jv[rk], j = 1, . . . , J − 1.(5.9)

The constraints in (5.9) impose fairness on idleness. In terms of ergodic occupation
measures, the problem takes the form

�∗
c = inf

π∈Gπ(r0)(5.10)

subject to π(rj ) = θj

J∑
k=1

π(rk), j = 1, . . . , J − 1.(5.11)

Following the proof of Lemma 3.3, using (4.7) and Assumption 5.1, we deduce
that the infimum in (5.10)–(5.11) is finite, and is attained at some π∗ ∈ G. Define

L(π,λ) := π(r0) +
J−1∑
j=1

λj

(
π(rj ) − θj

J∑
k=1

π(rk)

)
.

We have the following theorem.

THEOREM 5.8. Let Assumption 5.1 hold. Then for any θ in the interior of
SJ there exists a v∗ ∈ USSM which is optimal for the ergodic cost problem with
constraints in (5.8)–(5.9). Moreover, there exists λ∗ ∈ R

J−1+ such that

�∗
c = inf

π∈GL
(
π,λ∗),

and v∗ can be selected to be a precise control.
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PROOF. The proof is analogous to the one in Lemma 3.5. It suffices to show
that the constraint is linear and feasible (see also [20], Problem 7, page 236). Let
G̃ := {π ∈ G : π(r0) < ∞}. By the convexity of the set of ergodic occupation mea-
sures, it follows that G̃ is a convex set. Consider the map F : G̃ → R

J−1 given
by

Fj (π) := π(rj ) − θj

J∑
k=1

π(rk), j = 1, . . . , J − 1.

The constraints in (5.11) can be written as F(π) = 0 and, therefore, are linear.
We claim that 0 is an interior point of F(G̃). Indeed, since θ be an interior point

of SJ , for each ĵ ∈ {1, . . . , J − 1} we may select ûs ∈ SJ such that ûs
j = θj for

j ∈ {1, . . . , J − 1} \ {ĵ}, and ûs
ĵ

> θĵ . By Assumption 5.1, there exists v ∈ USSM,

of the form v = (vc, ûs) such that πv ∈ G̃. It is clear that Fj (πv) = 0 for j �= ĵ , and
Fĵ (πv) > 0. Repeating the same argument with ûs

ĵ
< θĵ we obtain πv ∈ G̃ such

that Fj (πv) = 0 for j �= ĵ , and Fĵ (πv) < 0. Thus, we can construct a collection

G̃0 = {π̃1, . . . , π̃2J−2} of elements of G̃ such that 0 is an interior point of the convex
hull of F(G̃0). This proves the claim and the theorem. �

REMARK 5.1. Theorem 5.8 remains of course valid if fewer than J − 1 con-
straints, or no constraints at all are imposed, in which case the assumptions can
be weakened. For example, in the case of no constraints, we only require that Hy-
pothesis 3.1 holds relative to a cone Kδ,+ in (4.3), and the results reduce to those
of Theorem 5.2.

Also, the dynamic programming counterpart of Theorem 5.8 is completely anal-
ogous to Theorem 3.1, and the conclusions of Theorems 5.6 and 5.7 hold.

6. Conclusion. We have developed a new framework to study the (uncon-
strained and constrained) ergodic diffusion control problems for Markovian multi-
class multi-pool networks in the Halfin–Whitt regime. The explicit representation
for the drift of the limiting controlled diffusions, resulting from the recursive leaf
elimination algorithm of tree bipartite networks, plays a crucial role in establishing
the needed positive recurrence properties of the limiting diffusions. These results
are relevant to the recent study of the stability/recurrence properties of the mul-
ticlass multi-pool networks in the Halfin–Whitt regime under certain classes of
control policies [22–25]. The stability/recurrence properties for general multiclass
multi-pool networks under other scheduling policies remain open. It is important
to note that our approach to ergodic control of these networks does not, a priori,
rely on any uniform stability properties of the networks.

We did not include in this paper any asymptotic optimality results of the control
policies constructed from the HJB equation in the Halfin–Whitt regime. We can es-
tablish the lower bound following the method in [1] for the “V” model, albeit with
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some important differences in technical details. The upper bound is more challeng-
ing. What is missing here, is a result analogous to Lemma 5.1 in [1]. Hence, we
leave asymptotic optimality as the subject of a future paper.

The results in this paper may be useful to study other diffusion control problems
of multiclass multi-pool networks in the Halfin–Whitt regime. The methodology
developed for the ergodic control of diffusions for such networks may be applied
to study other classes of stochastic networks; for example, it remains to study er-
godic control problems for multiclass multi-pool networks that do not have a tree
structure and/or have feedback. This class of ergodic control problems of diffu-
sions may also be of independent interest to the ergodic control literature. It would
be interesting to study numerical algorithms, such as the policy or value iteration
schemes, for this class of models.
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