
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS

2016, VOL. 41, NO. 9, 1472–1511

http://dx.doi.org/10.1080/03605302.2016.1207084

The Dirichlet problem for stable-like operators and related
probabilistic representations

Ari Arapostathisa, Anup Biswasb, and Luis Ca�arellic

aDepartment of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA;
bDepartment of Mathematics, Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra,
India; cDepartment of Mathematics, The University of Texas at Austin, Austin, TX, USA

ABSTRACT

We study stochastic di�erential equations with jumps with no di�usion
part, governed by a large class of stable-like operators, which may
contain adrift term. For this class of operators,weestablish the regularity
of solutions to the Dirichlet problem up to the boundary as well as the
usual stochastic characterization of these solutions. We also establish
key connections between the recurrence properties of the jumpprocess
and the associated nonlocal partial di�erential operator. Provided that
the process is positive (Harris) recurrent, we also show that the mean
hitting time of a ball is a viscosity solution of an exterior Dirichlet
problem.
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1. Introduction

Stochastic di�erential equations (SDEs) with jumps have received wide attention in stochastic

analysis as well as in the theory of di�erential equations. Unlike continuous di�usion pro-

cesses, SDEs with jumps have long range interactions and therefore the generators of such

processes are nonlocal in nature. These processes arise in various applications, for instance, in

mathematical �nance and control [23, 37] and image processing [26]. There have been various

studies on such processes from a stochastic analysis viewpoint concentrating on existence,

uniqueness, and stability properties of the solution of the SDE [1, 9, 21, 22, 31, 33] as well

as from a di�erential equation viewpoint focusing on the existence and regularity of viscosity

solutions [6, 7, 18]. One of our objectives in this paper is to establish stochastic representations

of solutions of SDEs with jumps through the associated integro-di�erential operator.

Let us consider a Markov process X in R
d with generator I . Let D be a smooth bounded

domain in R
d. We denote the �rst exit time of the process X from D by τ(D) = inf{t ≥ 0 :

Xt /∈ D}. One can formally say that

u(x) := Ex

[ ∫ τ(D)

0
f (Xs) ds

]
(1.1)

satis�es the equation

Iu = −f in D, u = 0 in Dc, (1.2)
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where Ex denotes the expectation operator on the canonical space of the process starting at x

when t = 0. An important question is when can we actually identify the solution of (1.2) as

the right-hand side of (1.1).When I = 1+b, i.e.,X is a dri�ed Brownian notion, one can use

the regularity of the solution and Itô’s formula to establish (1.1). Clearly, one standardmethod

to obtain a representation of the mean �rst exit time from D is to �nd a classical solution of

(1.2) for nonlocal operators. This is related to the work in [10] where estimates of classical

solutions for stable-like operators are obtained when D = R
d. A future research direction

mentioned in [10] concerns the existence and regularity of solutions to the Dirichlet problem

for stable-like operators. We provide an answer to some of these questions in Theorems 3.1

and 3.2.

One of the main results of this paper is the existence of a classical solution of (1.2) for a

fairly large class of nonlocal operators. We study operators of the form

Iu(x) = b(x) · ∇u(x)+

∫

Rd
du(x; z) π(x, z) dz, (1.3)

where

du(x; z) := u(x + z)− u(x)− 1{|z|≤1}∇u(x) · z, (1.4)

with 1A denoting the indicator function of a set A. Throughout the paper, we use the symbol

π to denote the “kernel” of the operator. We primarily focus on operators for which π takes

the form π(x, z) = k(x,z)
|z|d+α

, with α ∈ (1, 2), and b and k are locally Hölder in x with exponent

β , and k(x, ·) − k(x, 0) satis�es the integrability condition in (3.1). This class of operators,

without the dri� term, is essentially the one considered byBass in [10], and he referred to them

as stable-like, a term which we adopt. Some of the future research directions mentioned in

[10] concern the existence and regularity of solutions to the Dirichlet problem for stable-like

operators.We provide an answer to some of these questions in Theorem 3.1, Corollary 3.1 and

Theorem 3.2. We show in Theorem 3.2 that u de�ned by (1.1) is the unique solution of (1.2)

in C
2s+β
loc (D) ∩ C(Rd). This result can be extended to include nonzero boundary conditions

provided that the boundary data are regular enough. The proof is based on various regularity

results concerning the Dirichlet problem, including optimal regularity up to the boundary,

which comprise Section 3. We also wish to bring to the attention of the reader two recent

papers [27, 35] which are closely related to our work.

To help the reader, we summarize here the di�erent classes of operators used in the paper.

The most general class considered denoted by Lα consists of operators as in (1.3) with

π(x, z) = k(x,z)
|z|d+α

, α ∈ (1, 2), and with b : R
d → R

d and k : R
d × R

d → (0,∞)

Borel measurable and locally bounded. The subclass of Lα with symmetric kernels, i.e.,

k(x, z) = k(x,−z) is denoted by L
sym
α (De�nition 2.2). Results concerning these classes are

in Lemma 2.3. A subclass of these denoted by Lα(λ), where λ is a parameter that controls

the growth of b and k, is studied in Sections 4 and 5.1 (De�nition 4.1). The main results of

the paper in Section 3 hold over the class of stable-like operators mentioned earlier, which is

denoted by Iα(β , θ , λ). Here β , θ , and λ are parameters (De�nition 3.1). This class is then

studied further in Section 5.3. The kernels in this class are not assumed to be symmetric.

Recall that a function h is said to be harmonic with respect to X in D if h(Xt∧τ(D))

is a martingale. One of the important properties of non-negative harmonic functions for

nondegenerate continuous di�usions is the Harnack inequality, which plays a crucial role

in various regularity and stability estimates. The work in [13] proves the Harnack inequality
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for a class of pure jump processes, and this is further generalized in [11] for nonsymmetric

kernels that may have variable order. A parabolic Harnack inequality is obtained in [8] for

symmetric jump processes associated with the Dirichlet form, with a symmetric kernel.

Su�cient conditions onMarkov processes to satisfy theHarnack inequality are identi�ed [38].

The Harnack property is also established for jump processes with a nondegenerate di�usion

part in [5, 24, 39]. A Harnack-type estimate for harmonic functions that are not necessarily

non-negative in all of Rd is established in [29]. Nevertheless, the Harnack property is quite

delicate for nonlocal operators, and important counterexamples can be found in [17, 28].

In this paper, we prove aHarnack inequality for harmonic functions relative to the operator

I in (1.3) when k and b are locally bounded andmeasurable, and either k(x, z) = k(x,−z), or

k satis�es (3.1) (Theorem 4.1). The proof is based on verifying the su�cient conditions [38],

through a series of lemmas. So, even though in a sense it lacks novelty, we include the proof

in the paper since we use the Harnack property in Section 5. Let us also mention that the

estimates obtained in Section 4 may also be used to establish Hölder continuity for harmonic

functions by following a similar method as in [12]. However, we do not pursue this here.

In Section 5, we study the ergodic properties of the Markov process such as positive

(Harris) recurrence, invariant probability measures, etc. We provide a su�cient condition

for positive recurrence and the existence of an invariant probability measure (Theorems 5.1

and 5.2). This is done through imposing a Lyapunov stability condition on the genera-

tor. Following Has’minskĭı’s method, we establish the existence of an invariant probability

measure for a fairly large class of processes. We also show that one may obtain a positive

recurrent process using a nonsymmetric kernel and no dri� (Theorem 5.3). In this case, the

nonsymmetric part of the kernel plays the role of the dri�. Let usmention here that in [41] the

author provides su�cient conditions for positive recurrence of a class of jump di�usions and

this is accomplished by constructing suitable Lyapunov-type functions. However, the class

of kernels considered in [41] satis�es a di�erent set of hypotheses than those assumed in this

paper and in a certain way lies in the complement of the class of Lévy kernels that we consider.

Stability of one-dimensional processes is discussed in [40] under the assumption of Lebesgue-

irreducibility. Last, we want to point out one of the interesting results of this paper, and this is

the characterization of the mean hitting time of a bounded domain as a viscosity solution of

an exterior Dirichlet problem (Theorem 5.4). This is established for the class of operators in

De�nition 3.1 and can be viewed as a partial converse to Theorem 5.1. Therefore, provided

that the dri� b(x) and the numerator k(x, z) of the kernel have at most a�ne growth in x (2.5),

Theorems 5.1 and 5.4 imply that a Markov process with generator in the class of stable-like

operators studied in Section 3 is positive recurrent if and only if the Lyapunov criterion in

De�nition 5.1 holds. For nondegenerate di�usions, this is of course a well-known result due

to Has’minskĭı.

The organization of the paper is as follows. In Section 1.1, we introduce the notation used

in the paper. In Section 2, we introduce the model and derive some basic results. Section 3

is devoted to the regularity of solutions to the Dirichlet problem. In Section 4, we establish

the Harnack property as mentioned earlier. Section 5 establishes connections between the

recurrence properties of the process and the solutions of the nonlocal equations.

1.1. Notation

The standard norm in the d-dimensional Euclidean spaceRd is denoted by | · |, and letRd
∗ :=

R
d \{0}. The set of nonnegative real numbers is denoted byR+,N stands for the set of natural
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numbers, and 1A denotes the indicator function of a set A. For vectors a, b ∈ R
d, we denote

the scalar product by a · b. We denote the maximum (minimum) of two real numbers a and

b by a ∨ b (a ∧ b). Let a+ := a ∨ 0 and a− := (−a) ∨ 0. By ⌊a⌋ (⌈a⌉), we denote the largest

(least) integer less than (greater than) or equal to the real number a. For x ∈ R
d and r ≥ 0,

we denote by Br(x) the open ball of radius r around x in R
d, while Br without an argument

denotes the ball of radius r around the origin. Also in the interest of simplifying the notation,

we use B ≡ B1, i.e., the unit ball centered at 0.

Given a metric space S , we denote by B(S) and Bb(S) the Borel σ -algebra of S and the

set of bounded Borel measurable functions on S , respectively. The set of Borel probability

measures on S is denoted by P(S), ‖ · ‖TV denotes the total variation norm on P(S), and δx
the Dirac mass at x. For any function g : S → R

d, we de�ne ‖g‖∞ := supx∈S |g(x)|.

The closure and the boundary of a set A ⊂ R
d are denoted bySA and ∂A, respectively, and

|A| denotes the Lebesgue measure of A. We also de�ne

τ(A) := inf {s ≥ 0 : Xs /∈ A}.

Therefore, τ(A) denotes the �rst exit time of the process X from A. For R > 0, we o�en use

the abbreviated notation τR := τ(BR).

We introduce the following notation for spaces of real-valued functions on a set A ⊂ R
d.

The space Lp(A), p ∈ [1,∞), stands for the Banach space of (equivalence classes) measurable

functions g satisfying
∫
A |g(x)|p dx < ∞, and L∞(A) is the Banach space of functions that are

essentially bounded in A. For an integer k ≥ 0, the space Ck(A) (C∞(A)) refers to the class of

all functions whose partial derivatives up to order k (of any order) exist and are continuous,

Ck
c (A) is the space of functions in Ck(A) with compact support, and Ck

b(A) is the subspace of

Ck(A) consisting of those functions whose derivatives up to order k are bounded. Also, the

space Ck,r(A), r ∈ (0, 1], is the class of all functions whose partial derivatives up to order k

are Hölder continuous of order r. For simplicity, we write C0,r(A) = Cr(A). For any γ > 0,

Cγ (A) denotes the space C⌊γ ⌋,γ−⌊γ ⌋(A), under the convention Ck,0(A) = Ck(A).

In general, if X is a space of real-valued functions on a domain D, Xloc consists of all

functions g such that gϕ ∈ X for every ϕ ∈ C∞
c (D).

For a non-negative multiindex β = (β1, . . . ,βd), let |β| := β1 + · · · + βd and Dβ :=

∂
β1
1 · · · ∂

βd
d , where ∂i :=

∂
∂xi

.

Given a domainDwith aC2 boundary, we de�ne dx := dist(x, ∂D) and dxy := min(dx, dy),

for x, y ∈ D. For u ∈ C(D) and r ∈ R, we introduce the weighted norm

[[u]]
(r)
0;D := sup

x∈D
drx |u(x)|,

and, for k ∈ N and δ ∈ (0, 1], the seminorms

[[u]]
(r)
k;D := sup

|β|=k

sup
x∈D

dk+r
x

∣∣Dβu(x)
∣∣,

[[u]]
(r)
k,δ;D := sup

|β|=k

sup
x,y∈D

(
dk+δ+r
xy

∣∣Dβu(x)− Dβu(y)
∣∣

|x − y|δ

)
.

For r ∈ R and γ ≥ 0, with γ + r ≥ 0, we de�ne the space

C
(r)
γ (D) :=

{
u ∈ Cγ (D) ∩ C(Rd) : u(x) = 0 for x ∈ Dc, ||u||

(r)
γ ;D < ∞

}
,
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where

||u||
(r)
γ ;D :=

⌈γ ⌉−1∑

k=0

[[u]]
(r)
k,D + [[u]]

(r)
⌈γ ⌉−1, γ+1−⌈γ ⌉;D ,

under the convention ||u||
(r)
0;D = [[u]]

(r)
0;D. We also use the notation ||u||

(r)
k,δ;D = ||u||

(r)
k+δ;D for

δ ∈ (0, 1]. It is straightforward to verify that ||u||
(r)
γ ;D is a norm, under which C

(r)
γ (D) is a

Banach space.

If the distance functions dx or dxy are not included in the above de�nitions, we denote the

corresponding seminorms by [ · ]k;D or [ · ]k,δ;D and de�ne

‖u‖Ck,δ(D) :=

k∑

ℓ=0

[u]ℓ;D + [u]k,δ;D.

Thus, ‖u‖Cγ (D) is well de�ned for any γ > 0, by the identi�cation Cγ (D) = C⌊γ ⌋,γ−⌊γ ⌋(A).

We recall the well-known interpolation inequalities [25, Lemma 6.32, p. 30]. Let u ∈

C2,β(D). Then for any ε there exists a constant C = C(ε, j, k, r) such that

[[u]]
(0)
j,γ ;D ≤ C ||u||

(0)
0;D + ε [[u]]

(0)
k,β ;D

||u||
(0)
j,γ ;D ≤ C ||u||

(0)
0;D + ε [[u]]

(0)
k,β ;D

j = 0, 1, 2, 0 ≤ β , γ ≤ 1, j + γ < k + β .

Throughout the paper s ∈ (1/2, 1) is a parameter, and α = 2s.

2. Preliminary results

Let b : Rd → R
d and π : Rd × R

d → R+ be two given measurable functions. We de�ne the

nonlocal operator I as follows:

Iu(x) := b(x) · ∇u(x)+

∫

Rd
du(x; z) π(x, z) dz, (2.1)

with du as in (1.4). We always assume that
∫

Rd
(|z|2 ∧ 1) π(x, z) dz < ∞ ∀ x ∈ R

d.

Note that (2.1) is well de�ned for any u ∈ C2
b(R

d). Let � = D([0,∞),Rd) denotes the

space of all right-continuous functionsmapping [0,∞) toRd, having �nite le� limits (cádlág).

De�ne Xt = ω(t) for ω ∈ � and let {Ft} be the right-continuous �ltration generated by the

process {Xt}. In this paper, we always assume that given any initial distribution ν0, there exists

a strong Markov process (X,Pν0) that satis�es the martingale problem corresponding to I ,

i.e., Pν0(X0 ∈ A) = ν0(A) for all A ∈ B(Rd) and for any g ∈ C2
b(R

d),

g(Xt)− g(X0)−

∫ t

0
Ig(Xs) ds

is a martingale with respect to the �ltration {Ft}. We denote the law of the process by Px

when ν0 = δx. Su�cient conditions on b and π to ensure the existence of such processes

are available in the literature. Unfortunately, the available su�cient conditions do not cover a

wide class of operators I . We refer the reader to [9] for the available results in this direction
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as well as to [2, 14, 21, 22, 31, 33]. When b ≡ 0, well posedness of the martingale problem is

obtained under some regularity assumptions on π in [1].

Let us mention once more that our goal here is not to study the existence of a solution

to the martingale problem. Therefore, we do not assume any regularity conditions on the

coe�cients, unless otherwise stated.

We recall the de�nition of a viscosity solution [6, 18].

De�nition 2.1. LetD be a domain with C2 boundary. A function u : Rd → Rwhich is upper

(lower) semicontinuous on SD is said to be a subsolution (supersolution) to

Iu = −f in D,

u = g in Dc,

where I is given by (2.1), if for any x ∈ SD and a function ϕ ∈ C2(Rd) such that ϕ(x) = u(x)

and ϕ(z) > u(z)
(
ϕ(z) < u(z)

)
on R

d \ {x}, it holds that

Iϕ(x) ≥ −f (x)
(
Iϕ(x) ≤ −f (x)

)
, if x ∈ D,

while, if x ∈ ∂D, then

max (Iϕ(x)+ f (x), g(x)− u(x)) ≥ 0
(
min (Iϕ(x)+ f (x), g(x)− u(x)) ≤ 0

)
.

A function u is said to be a viscosity solution if it is both a sub and a supersolution.

In De�nition 2.1, wemay assume that ϕ is bounded, provided u is bounded. Otherwise, we

may modify the function ϕ by replacing it with u outside a small ball around x. It is evident

that every classical solution is also a viscosity solution.

2.1. Three lemmas concerning operators withmeasurable kernels

Lemma 2.1. Let D be a bounded domain. Suppose X is a strong Markov process associated with

I in (2.1), with b locally bounded, and that the integrability conditions

sup
x∈K

∫

{|z|>1}
|z|π(x, z) dz < ∞, and inf

x∈K

∫

Rd
|z|2π(x, z) dz = ∞ (2.2)

hold for any compact set K. Then supx∈D Ex[(τ (D))
m] < ∞, for any positive integer m.

Proof. Without loss of generality, we assume that 0 ∈ D. Otherwise we in�ate the domain

to include 0. Let d̄ = diam(D) and MD = supx∈D |b(x)|. Recall that BR denotes the ball of

radius R around the origin. We choose R > 1 ∨ 2(d̄ ∨ MD), and large enough so as to satisfy

the inequality

inf
x∈D

∫

BR

|z|2 π(x, z) dz > 1 + 2d̄MD + 2d̄ sup
x∈D

∫

{1<|z|≤R}

|z|π(x, z) dz.

Let ϕ ∈ C2
b(R

d) be a radially increasing function such that ϕ(x) = |x|2 for |x| ≤ 2R and

ϕ(x) = 8R2 for |x| ≥ 2R + 1. Then, for any x ∈ D, we have

Iϕ(x) = b(x) · ∇ϕ(x)+

∫

Rd
dϕ(x; z) π(x, z) dz

≥ −2d̄MD +

∫

BR

(
ϕ(x + z)− ϕ(x)− ∇ϕ(x) · z

)
π(x, z) dz

+

∫

{1<|z|≤R}

∇ϕ(x) · z π(x, z) dz +

∫

BcR

(
ϕ(x + z)− ϕ(x)

)
π(x, z) dz.
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Also, for any |z| ≥ R, it holds that |x + z| ≥ d̄ ≥ |x|. Therefore ϕ(x + z) ≥ ϕ(x). Hence

Iϕ(x) ≥ −2d̄MD +

∫

{1<|z|≤R}

(
∇ϕ(x) · z

)
π(x, z) dz

+

∫

BR

(
ϕ(x + z)− ϕ(x)− ∇ϕ(x) · z

)
π(x, z) dz

≥ −2d̄MD − 2d̄

∫

{1<|z|≤R}

|z|π(x, z) dz +

∫

BR

|z|2 π(x, z) dz

≥ 1.

Thus

Ex[ϕ(Xτ(D)∧t)] − ϕ(x) = Ex

[ ∫ τ(D)∧t

0
Iϕ(Xs) ds

]

≥ Ex[τ(D) ∧ t] ∀ x ∈ D.

Letting t → ∞, we obtain Ex[τ(D)] ≤ 8R2. Since x ∈ D is arbitrary, this shows that

sup
x∈D

Ex[τ(D)] ≤ 8R2.

We continue using the method of induction.We have proved the result form = 1. Assume

that it is true for m, i.e., Mm := supx∈D Ex[(τ (D))
m] < ∞. Let h(x) = Mmϕ(x) where ϕ is

de�ned above. Then from the calculations above, we obtain

Ex[h(Xτ(D)∧t)] − h(x) ≥ Ex[Mm(τ (D) ∧ t)] ∀ x ∈ D. (2.3)

Denoting τ(D) by τ , we have

Ex[τ
m+1] = Ex

[ ∫ ∞

0
(m + 1)(τ − t)m 1{t<τ } dt

]

= Ex

[ ∫ ∞

0
(m + 1)Ex

[
(τ − t)m 1{t<τ }

∣∣ Ft∧τ

]
dt

]

= Ex

[ ∫ ∞

0
(m + 1)1{t∧τ<τ }EXt∧τ [τ

m] dt

]

≤ sup
x∈D

Ex[τ
m]Ex

[ ∫ ∞

0
(m + 1)1{t∧τ<τ } dt

]

≤ Mm(m + 1)Ex[τ ],

and in view of (2.3), the proof is complete.

Boundedness of solutions to the Dirichlet problem on bounded domains and with zero

boundary data is asserted in the following lemma.

Lemma 2.2. Let b and f be locally bounded functions and D a bounded domain. Suppose π

satis�es (2.2). Then there exists a constant C, depending on diam(D), supx∈D |b(x)| and π ,

such that any viscosity solution u to the equation

Iu = f in D,

u = 0 in Dc

satis�es ‖u‖∞ ≤ C supx∈D |f (x)|.
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Proof. As shown in the proof of Lemma 2.1, there exists a non-negative, radially nondecreas-

ing function ξ ∈ C2
b(R

d) satisfying Iξ(x) > supx∈D |f (x)| for all x ∈ D̄. Let M > 0 be the

smallest number such that M − ξ touches u from above at least at one point. We claim that

M ≤ ‖ξ‖∞. If not, then M − ξ(x) > 0 for all x ∈ Dc. Therefore M − ξ touches u in D

from above. Hence by the de�nition of a viscosity solution, we have I(M − ξ(x)) ≥ f (x),

or equivalently, Iξ(x) ≤ −f (x), where x ∈ D is a point of contact from above. But this

contradicts the de�nition of ξ . ThusM ≤ ‖ξ‖∞. Also by the de�nition ofM, we have

sup
x∈D

u(x) ≤ sup
x∈D

(M − ξ(x)) ≤ M ≤ ‖ξ‖∞.

The result then follows by applying the same argument to −u.

De�nition 2.2. Let Lα denotes the class of operators I of the form

Iu(x) := b(x) · ∇u(x)+

∫

Rd
du(x; z)

k(x, z)

|z|d+α
dz, u ∈ C2

b(R
d), (2.4)

with b : Rd → R
d and k : Rd × R

d → (0,∞) Borel measurable and locally bounded, and

α ∈ (1, 2). We also assume that x 7→ supz∈Rd k−1(x, z) is locally bounded. The subclass of

Lα consisting of those I satisfying k(x, z) = k(x,−z) is denoted by L
sym
α .

Consider the following growth condition: There exists a constant K0 such that

x · b(x) ∨ |x| k(x, z) ≤ K0 (1 + |x|2) ∀ x, z ∈ R
d. (2.5)

It turns out that under (2.5), the Markov process associated with I does not have �nite

explosion time, as the following lemma shows.

Lemma 2.3. Let I ∈ Lα and suppose that for some constant K0 > 0, the data satisfy the growth

condition in (2.5). Let X be a Markov process associated with I . Then

Px

(
sup

s∈[0,T]

|Xs| < ∞

)
= 1 ∀T > 0.

Proof. Let δ ∈ (0,α − 1) and ϕ ∈ C2(Rd) be a nondecreasing, radial function satisfying

ϕ(x) =
(
1 + |x|δ

)
for |x| ≥ 1, and ϕ(x) ≥ 1 for |x| < 1.

We claim that ∣∣∣∣
∫

Rd
dϕ(x; z)

k(x, z)

|z|d+α
dz

∣∣∣∣ ≤ κ0 (1 + |x|δ) ∀x ∈ R
d, (2.6)

for some constant κ0. To prove (2.6), �rst note that since the second partial derivatives of ϕ

are bounded overRd, it follows that
∣∣∣
∫
|z|≤1 dϕ(x; z)

k(x,z)
|z|d+α

dz
∣∣∣ is bounded by some constant. It

is easy to verify that, provided z 6= 0, then
∣∣|x + z|δ − |x|δ

∣∣ ≤ 2δ|z| |x|δ−1, if |x| ≥ 2|z|,
(2.7)∣∣|x + z|δ − |x|δ

∣∣ ≤ 8|z|δ , if |x| < 2|z|,

for some constant κ . By the hypothesis in (2.5), for some constant c, we have

k(x, z) ≤ c (1 + |x|) ∀x ∈ R
d. (2.8)
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Combining (2.7)–(2.8), we obtain, for |x| > 1,
∣∣∣∣
∫

|z|>1
dϕ(x; z)

k(x, z)

|z|d+α
dz

∣∣∣∣ ≤

∫

1<|z|≤ |x|
2

2δ c (1 + |x|) |x|δ−1 |z|
1

|z|d+α
dz

+

∫

|z|> |x|
2

8c (1 + |x|) |z|δ
1

|z|d+α
dz

≤ κ(d)

(
2 δ c

α − 1
(1 + |x|) |x|δ−1 +

23+α−δc

α − δ
(1 + |x|) |x|δ−α

)

for some constant κ(d), thus establishing (2.6).

By (2.6) and the assumption on the growth of b in (2.5), we obtain

|Iϕ(x)| ≤ K1 ϕ(x) ∀x ∈ R
d,

for some constant K1. Then, by Dynkin’s formula, we have,

Ex

[
ϕ(Xt∧τn)

]
= ϕ(x)+ Ex

[ ∫ t∧τn

0
Iϕ(Xs) ds

]

≤ ϕ(x)+ K1 Ex

[ ∫ t∧τn

0
ϕ(Xs) ds

]

≤ ϕ(x)+ K1

∫ t

0
Ex

[
ϕ(Xs∧τn)

]
ds,

where in the second inequality, we use the property that ϕ is radial and nondecreasing. Hence,

by the Gronwall inequality, we have

Ex

[
ϕ(Xt∧τn)

]
≤ ϕ(x) eK1t ∀ t > 0, ∀ n ∈ N. (2.9)

Since Ex

[
ϕ(Xt∧τn)

]
≥ ϕ(n)Px(τn ≤ t), we obtain by (2.9) that

Px

(
sup

s∈[0,T]

|Xs| ≥ n

)
= Px(τn ≤ T)

≤
ϕ(x)

1 + nδ
eK1T ∀T > 0, ∀ n ∈ N,

from which the conclusion of the lemma follows.

3. The Dirichlet problem for a class of stable-like operators

The class of operators studied in this section is de�ned as follows.

De�nition 3.1. Let λ : [0,∞) → (0,∞) be a nondecreasing function that plays the role of

a parameter. For a bounded domain D de�ne λD := sup {λ(R) : D ⊂ BR+1}. Let Iα(β , θ , λ),

where β ∈ (0, 1], θ ∈ (0, 1), denotes the class of operators I as in (2.4) that satisfy, on each

bounded domain D, the following properties:

(a) α ∈ (1, 2).

(b) b is locally Hölder continuous with exponent β and satis�es

|b(x)| ≤ λD and |b(x)− b(y)| ≤ λD |x − y|β ∀ x, y ∈ D.
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(c) The map k(x, z) is continuous in x and measurable in z and satis�es

|k(x, z)− k(y, z)| ≤ λD |x − y|β ∀ x, y ∈ D, ∀ z ∈ R
d

λ−1
D ≤ k(x, z) ≤ λD ∀ x ∈ D, ∀ z ∈ R

d.

(d) For any x ∈ D, we have
∫

Rd

(
|z|α−θ ∧ 1

) |k(x, z)− k(x, 0)|

|z|d+α
dz ≤ λD. (3.1)

Remark 3.1. It is evident that if |k(x, z)− k(x, 0)| ≤ λ̃D|z|θ
′
for some θ ′ > θ , then property

(d) of De�nition 3.1 is satis�ed.

We study the Dirichlet problem

Iu = f in D,
(3.2)

u = 0 in Dc,

where I ∈ Iα(β , θ , λ), f is Hölder continuous with exponent β , and D is a bounded open set

with a C2 boundary.

In this section, it is convenient to use s ≡ α
2 as the parameter re�ecting the order of the

kernel. Throughout this section, we assume s > 1/2.

We may view I as the sum of the operator I0 de�ned by

I0 u(x) := b(x) · ∇u(x)+

∫

Rd
du(x; z)

k(x, 0)

|z|d+2s
dz,

which is uniformly elliptic on every bounded domain, and a perturbation that takes the form

Ĩ u(x) :=

∫

Rd
du(x; z)

k(x, z)− k(x, 0)

|z|d+2s
dz.

We are not assuming that the numerator k is symmetric, as in the approximation techniques

in [15, 19, 32]. Moreover, these operators are not addressed in [20] due to the presence of the

dri� term.

Recall the de�nition of weighted Hölder norms in Section 1.1. We start with the following

lemma.

Lemma 3.1. Let D be a C2 bounded domain in R
d and r ∈ (0, s]. Suppose k : Rd × R

d → R

and the constants β ∈ (0, 1), θ ∈
(
0, (2s − 1) ∧ β

)
, and λD > 0 satisfy parts (c) and (d) of

De�nition 3.1. We de�ne

k̃(x, z) := c(d, 2s)

(
k(x, z)

k(x, 0)
− 1

)
,

H[v](x) :=

∫

Rd
dv(x; z)

k̃(x, z)

|z|d+2s
dz,

where c(d, 2s) = c(d,α) is the normalization constant of the fractional Laplacian.

Suppose that either of the following assumptions hold:

(i) β ≤ r.



1482 A. ARAPOSTATHIS ET AL.

(ii) β ∈ (r, 1) and k̃(x,z)
|z|θ

is bounded on (x, z) ∈ D × R
d, or, equivalently, it satis�es

|k(x, z)− k(x, 0)| ≤ λ̃D |z|θ ∀x ∈ D, ∀z ∈ R
d, (3.3)

for some positive constant λ̃D.

Then, if v ∈ C
(−r)
2s−θ (D), we have

[[H[v]]]
(2s−r−θ)
0;D ≤ M0 ||v||

(−r)
2s−θ ;D,

and if v ∈ C
(−r)
2s+β−θ (D), it holds thatH[v] ∈ C

(2s−r−θ)
β (D), and

∣∣∣∣H[v]
∣∣∣∣(2s−r−θ)

β ;D
≤ M1 ||v||

(−r)
2s+β−θ ;D (3.4)

for some constants M0 and M1 which depend only on d, s, β, r, and D.

Moreover, over a set of parameters of the form {(r,β) : r ∈ (ε, 1), β ∈ (0, 1)}, constants M0

and M1 can be selected which do not depend on β or r, but only on ε > 0.

Proof. Let x ∈ D and de�ne R = dx
4 . We suppose that R < 1. It is clear that k̃ satis�es (3.1),

and that it is Hölder continuous. Abusing the notation, we will use the same symbol λD as a

constant in the estimates. We have,
∣∣dv(x; z)

∣∣ ≤ |z|2s−θ Rr+θ−2s [[v]]
(−r)
2s−θ ;D ∀ z ∈ BR. (3.5)

Also, since |z| ≥ R on BcR, we obtain

∣∣dv(x; z)
∣∣ ≤

(
|z|r [[v]]

(−r)
r;D + |z|Rr−1 [[v]]

(−r)
1;D

)
1{|z|≤1} + 2 ‖v‖C(D) 1{|z|>1}

≤
(
|z| ∧ 1

)2s−θ
Rr+θ−2s

(
[[v]]

(−r)
r;D + [[v]]

(−r)
1;D

)
+ 2 ‖v‖C(D) 1{|z|>1} (3.6)

for all z ∈ BcR. Integrating, using (3.1), and (3.5)–(3.6), as well as the Hölder interpolation

inequalities, we obtain

|H[v](x)| ≤ c1 (4 dx)
r+θ−2s ||v||

(−r)
2s−θ ;D ∀x ∈ D,

for some constant c1. Therefore, for some constantM0, we have

[[H[v]]]
(2s−r−θ)
0;D ≤ M0 ||v||

(−r)
2s−θ ;D. (3.7)

Next consider two points x, y ∈ D. If |x−y| ≥ 4dxy, then (3.7) provides a suitable estimate.

Indeed, if x, y ∈ D are such 4dxy ≤ |x − y|, then, for any r, we have

d2s−r−θ
xy d

β
xy

|H[v](x)− H[v](y)|

|x − y|β
≤

1

4β
d2s−r−θ
xy |H[v](x)− H[v](y)|

≤
1

4β
d2s−r−θ
x |H[v](x)| +

1

4β
d2s−r−θ
y |H[v](y)|

≤
2M0

4β
||v||

(−r)
2s−θ ;D.

So it su�ces to consider the case |x − y| < 4dxy. Therefore, we may suppose that x is as

above and that y ∈ BR(x). Then dxy ≤ 4R. With π̃(x, z) := k̃(x,z)
|z|d+2s , we write

F(x, y; z) := dv(x; z) π̃(x, z)− dv(y; z) π̃(y, z)

= F1(x, y; z)+ F2(x, y; z),
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with

F1(x, y; z) :=
(
dv(x; z)+ dv(y; z)

) π̃(x, z)− π̃(y, z)

2
,

F2(x, y; z) :=
(
dv(x; z)− dv(y; z)

) π̃(x, z)+ π̃(y, z)

2
.

We modify the estimate in (3.5), and write

∣∣dv(x; z)+ dv(y; z)
∣∣ ≤ 2 |z|γ0 Rr−γ0 [[v]]

(−r)
γ0;D

, if z ∈ BR,

with γ0 = (2s + β − θ) ∧ (s + 1), and

∣∣dv(x; z)+ dv(y; z)
∣∣ ≤ 2

(
|z|r [[v]]

(−r)
r;D + |z|Rr−1 [[v]]

(−r)
1;D

)
1{|z|≤1} + 4‖v‖C(D) 1{|z|>1},

if z ∈ BcR. We use the Hölder continuity of x 7→ k̃(x, · ) to obtain
∫

Rd
F1(x, y; z) dz ≤ c2 R

r−2s |x − y|β ||v||
(−r)
γ0;D

for some constant c2. We write this as

R2s−r−θ Rβ
∫
Rd F1(x, y; z) dz

|x − y|β
≤ R2s−r−β Rβ

∫
Rd F1(x, y; z) dz

|x − y|β

≤ c2 ||v||
(−r)
γ0;D

. (3.8)

For F2, we use

dv(x; z) = z ·

∫ 1

0

(
∇v(x + tz)− ∇v(x)

)
dt,

combined with the following fact: If ϕ ∈ Cγ (B) for γ ∈ (0, 1] and x, y, x+ z, y+ z are points

in B and δ ∈ (0, γ ), then adopting the notation 1ϕx(z) := ϕ(x + z) − ϕ(x), we obtain by

Young’s inequality, that

|1ϕx(z)−1ϕy(z)|

|z|γ−δ|x − y|δ
≤
γ − δ

γ

1ϕx(z)| + |1ϕy(z)|

|z|γ
+
δ

γ

|1ϕx+z(y − x)| + |1ϕx(y − x)|

|x − y|γ

≤ 2[f ]γ ;B.

The same inequality also holds for γ ∈ (1, 2) and δ ∈ (γ − 1, 1). For this, we use

|1ϕx(z)−1ϕy(z)|

|z|γ−δ|x − y|δ

≤
1 − δ

2 − γ

|z|
∣∣∣
∫ 1
0

(
∇ϕ(x + tz)− ∇ϕ(y + tz)

)
dt

∣∣∣
|x − y|γ−1 |z|

+
1 + δ − γ

2 − γ

|x − y|
∣∣∣
∫ 1
0

(
∇ϕ(y + z + t(x − y))− ∇ϕ(y + t(x − y))

)
dt

∣∣∣
|z|γ−1 |x − y|

Therefore, in either of the cases (i) or (ii), we obtain
∣∣∇v(x + tz)− ∇v(x)− ∇v(y + tz)+ ∇v(y)

∣∣ ≤ 2|tz|2s−θ−1|x − y|β [∇v]2s−θ−1+β ;B2R(x)
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for t ∈ [0, 1] and

∣∣dv(x; z)− dv(y; z)
∣∣ ≤

2

2s − θ
|z|2s−θ |x − y|β Rr+θ−β−2s [[v]]

(−r)
2s+β−θ ;D ∀ z ∈ BR. (3.9)

Concerning the integration on BcR, we use

∣∣v(x)− v(y)− z ·
(
∇v(x)− ∇v(y)

)
1{|z|≤1}

∣∣

≤ |x − y|β∨r d
r−β∨r
xy [[v]]

(−r)
β∨r;D +

(
|z| ∧ 1

)
|x − y|β d

r−β−1
xy [[v]]

(−r)
1+β ;D

≤ c3
(
|z| ∧ 1

)2s−θ
|x − y|β Rr+θ−β−2s ||v||

(−r)
1+β ;D ∀ z ∈ BcR, (3.10)

for some constant c3, and

|v(x + z)− v(y + z)| ≤ |x − y|β∨r (dx+z ∧ dy+z)
r−β∨r [[v]]

(−r)
β∨r;D ∀ z ∈ BcR. (3.11)

Integrating the terms on the right-hand side of (3.9)–(3.10) is straightforward. Doing so, and

using the fact that 1 + β < 2s + β − θ , one obtains the desired estimate.

Concerning the integral of |v(x + z)− v(y + z)| on BcR, we distinguish between the cases

(i) and (ii). Let π̃(z) :=
|π̃(x,z)+π̃ (y,z)|

2 . In case (i), we have
∫

BcR

|v(x + z)− v(y + z)| π̃(z) dz

≤ |x − y|r [[v]]
(−r)
r;D

∫

BcR

π̃(z) dz

≤ |x − y|β Rr−β Rθ−2s [[v]]
(−r)
r;D

∫

Rd

(
|z| ∧ diam(D)

)2s−θ
π̃(z) dz, (3.12)

where we use the fact that |z| > R on BcR. In case (ii), the integral is estimated over disjoint

sets. We de�ne

Zxy(a) := {z ∈ R
d : dx+z ∧ dy+z < a} for a ∈ (0,R).

Since dx+z ∧ dy+z ∈ [R, diam(D)] for x ∈ Zc
xy(R), integration is straightforward, a�er

replacing (dx+z ∧ dy+z)
r−β in (3.11) with Rr−β . Thus, similarly to (3.12), we obtain

∫

BcR ∩Z
c
xy(R)

|v(x + z)− v(y + z)| π̃(z) dz

≤ |x − y|β Rr−β [[v]]
(−r)
β ;D

∫

BcR ∩Z
c
xy(R)

π̃(z) dz

≤ |x − y|β Rr+θ−β−2s [[v]]
(−r)
β ;D

∫

Rd

(
|z| ∧ diam(D)

)2s−θ
π̃(z) dz. (3.13)

Since Zxy(R) ⊂ BcR, it remains to compute the integral on Zxy(R). For ε > 0, we denote by

Dε the ε-neighborhood of D, i.e.,

Dε := {z ∈ R
d : dist(z,D) < ε}. (3.14)

We also de�ne

D̃(ε) := {z ∈ D : dist(z, ∂D) ≥ ε}.
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In other words, D̃(ε) = (Dc)cε . We will make use of the following simple fact: There exists a

constant C0, such that for all x ∈ D and positive constants R and ε which satisfy 0 < ε ≤ R

and dx ≥ 3R, it holds that
∫

x+z ∈Dε\D̃(ε)

dz

|z|d
≤

C0 ε

R
. (3.15)

Observe that the support of |v(x + z)− v(y + z)| inZxy(R) is contained in the disjoint union

of the sets

Z̃xy(R) :=
{
z ∈ Zxy(R) : dx+z ∧ dy+z > 0

}
,

and

Ẑxy :=
{
z ∈ R

d : x + z ∈ D|x−y| \ D or y + z ∈ D|x−y| \ D
}
.

We also have the bound |v(x + z)− v(y + z)| ≤ |x−y|r[[v]]
(−r)
r;D for z ∈ Ẑxy. Therefore, using

(3.15), we obtain
∫

Ẑxy

|v(x + z)− v(y + z)| π̃(z) dz ≤ |x − y|r[[v]]
(−r)
r;D Rθ−2s

∫

Ẑxy

|z|2s−θ π̃(z) dz

≤ |x − y|r[[v]]
(−r)
r;D Rθ−2s

∫

Ẑxy

dz

|z|d

≤ 2 λ̃D C0 |x − y|r+1[[v]]
(−r)
r;D Rθ−2s R−1

≤ 2 λ̃D C0 |x − y|β Rr+θ−β−2s [[v]]
(−r)
r;D . (3.16)

To evaluate the integral over Z̃xy(R), we de�ne

G(z) :=
|v(x + z)− v(y + z)|

|x − y|β [[v]]
(−r)
β ;D

.

By (3.11), we have

{
z ∈ Z̃xy(R) : G(z) > h

}
⊂

{
z ∈ R

d : x + z ∈ D̃c
(
h

−1
β−r

)}
∪

{
z ∈ R

d : y + z ∈ D̃c
(
h

−1
β−r

)}
.

Therefore, by (3.15), we obtain

π̃
({
z ∈ Z̃xy(R) : G(z) > h

})
≤ 2Rθ−2s

∫

Ẑxy

|z|2s−θ π̃(z) dz

≤ 2 λ̃D C0 R
θ−2s−1h

−1
β−r .

It follows that ∫

Z̃xy(R)
G(z) π̃(z) dz =

∫ ∞

0
π̃

({
z ∈ Z̃xy(R) : G(z) > h

})
dh

≤ 2 λ̃D C0 R
θ−2s−1

∫ ∞

Rr−β
h

−1
β−r dh

≤
2 (β − r)

1 + r − β
λ̃D C0 R

θ−2s−1 R1+r−β . (3.17)
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Thus, combining (3.9)–(3.10) with (3.12) in case (i), or with (3.13), (3.16), and (3.17) in

case (ii), and using the Hölder interpolation inequalities, we obtain

R2s−r−θ Rβ
∫
Rd F2(x, y; z) dz

|x − y|β
≤ c4 [[v]]

(−r)
2s+β−θ ;D (3.18)

for some constant c4.

Therefore, by (3.7), (3.8), and (3.18), we obtain (3.4), and the proof is complete.

Remark 3.2. It is evident from the proof of Lemma 3.1 that the assumption in (3.3) may be

replaced by the following: There exists a constant MD, such that for all x ∈ D and positive

constants R and ε which satisfy 0 < ε ≤ R and dx ≥ 3R, it holds that

∫

x+z ∈Dε\D̃(ε)

k̃(x, z)

|z|d−θ
dz ≤ MD

ε

R
.

The same applies to Theorems 3.1 and 3.2 which appear later in this section.

Recall that the fractional Laplacian (−1)s is de�ned by

(−1)su(x) = c(d, 2s) PV

∫

Rd

u(x)− u(z)

|z|d+2s
dz

where PV denotes the Cauchy principal value. To proceed, we need certain properties of

solutions of (−1)su = f in a bounded domain D, and u = 0 on Dc, with f not necessarily in

L∞(D). We start by exhibiting a suitable supersolution.

Lemma 3.2 (Supersolution). For any q ∈
(
s − 1/2, s

)
, there exists a constant c0 > 0 and a

radial continuous function ϕ such that




(−1)sϕ(x) ≥ d
q−2s
x , in B4 \SB1,

ϕ = 0 inSB1,

0 ≤ ϕ ≤ c0(|x| − 1)q in B4 \ B1,

1 ≤ ϕ ≤ c0 in R
d \ B4,

where dx = dist(x, ∂B1).

Proof. In view of the Kelvin transform [34, Proposition A.1], it is enough to prove the

following: for q ∈
(
s − 1/2, s

)
, and with ψ(x) := [(1 − |x|)+]q, we have

(−1)sψ(x) ≥ c1 (1 − |x|)q−2s, for all x ∈ B1, (3.19)

for some positive constant c1. To prove (3.19), let x0 ∈ B1. Due to the rotational symmetry,

we may assume x0 = re1 for some r ∈ (0, 1). Let ̟1 denotes the projection onto the �rst

coordinate in R
d, i.e.,̟1(z1, . . . , zd) = (z1, 0, . . . , 0). Then, using the fact that (1 − |z|)+ ≤
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(1 − |̟1(z)|)
+, we obtain

−(−1)sψ(x0) = c(d, 2s) PV

∫

Rd

(
ψ(x0 + z)− ψ(x0)

) 1

|z|d+2s
dz

= c(d, 2s) PV

∫

Rd

([(
1 − |re1 + z|

)+]q
− (1 − r)q

) 1

|z|d+2s
dz

≤ c(d, 2s) PV

∫

Rd

([(
1 − |re1 +̟1(z)|

)+]q
− (1 − r)q

) 1

|z|d+2s
dz.

Note that for y ∈ R, y 6= 0, we have∫

Rd−1

dz̃
(
y2 + |z̃|2

) d+2s
2

=
1

|y|1+2s

∫

Rd−1

dz̃
(
1 + |z̃|2

) d+2s
2

by a straightforward change of variables. Therefore, integrating with respect to (z2, . . . , zd),

we obtain, for some positive constant c2, that

−(−1)sψ(x0) ≤ c2 PV

∫

R

([
(1 − |r + y|)+

]q
− (1 − r)q

) 1

|y|1+2s
dy

≤ c2 PV

∫

R

([
(1 − r − y)+

]q
− (1 − r)q

) 1

|y|1+2s
dy

= c2(1 − r)q−2s PV

∫

R

([
(1 − ỹ)+

]q
− 1

) 1

|ỹ|1+2s
dỹ.

In the inequality above, we have used 1 − |y| ≤ 1 − y, and in the last equality, the change of

variables y = (1 − r)ỹ. De�ne

A(q) := PV

∫

R

(
[(1 − y)+]q − 1

) 1

|y|1+2s
dy = PV

∫ ∞

0

yq − 1

|1 − y|1+2s
dy −

∫ 0

−∞

1

|1 − y|1+2s
dy,

B(q) := PV

∫ ∞

0

yq − 1

|1 − y|1+2s
dy.

We need to show thatA(q) < 0 for q close to s. It is known thatA(s) = 0 [34, Proposition 3.1].

Therefore, it is enough to show that B(q) is strictly increasing for q ∈
(
s − 1/2, s

)
. We have

B(q) = lim
ǫց0

[ ∫ 1−ǫ

0

yq − 1

|1 − y|1+2s
dy +

∫ ∞

1+ǫ

yq − 1

|1 − y|1+2s
dy

]
. (3.20)

It is straightforward to show that

lim
ǫց0

∫ 1
1+ǫ

1−ǫ

yq − 1

|1 − y|1+2s
dy = 0.

and using this, we can combine the integrals in (3.20) to write

B(q) = lim
ǫց0

∫ 1
1+ǫ

0

(yq − 1)(1 − y2s−1−q)

|1 − y|1+2s
dy =

∫ 1

0

(yq − 1)(1 − y2s−1−q)

|1 − y|1+2s
dy.

Since |2s − 1 − q| ≤ 1, it follows that B(q) is �nite. Direct di�erentiation then shows that,

provided q > 2s − 1 − q, we have

d

dq

[
(yq − 1)(1 − y2s−1−q)

]
= (yq − y2s−1−q) log y > 0 ∀y ∈ (0, 1),

and hence B(q) is strictly increasing on q ∈
(
s − 1/2, s

)
. This completes the proof.
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In the lemma that follows dx = dist(x, ∂D), as de�ned in Section 1.1.

Lemma 3.3. Let D be a C2 bounded domain in R
d, and f : D → R be a continuous map

satisfying supx∈D |f (x)| dδx < ∞ for some δ < s. Then there exists a viscosity solution u ∈

C(Rd) to

(−1)su = −f in D,
(3.21)

u = 0 in Dc.

Also, for every q < s, we have

|u(x)| ≤ C1

[[
f
]](δ)
0;D

d
q
x ∀ x ∈ SD, (3.22a)

‖u‖Cq(SD) ≤ C1

[[
f
]](δ)
0;D

(3.22b)

for some constant C1 that depends only on s, δ, q and the domain D. Moreover, since u = 0 on

Dc, it follows that ‖u‖Cq(Rd) < ∞ for all q < s.

Proof. By Corollary 4 in [36] for each f ∈ C2(Rd), there exists a viscosity solution u ∈ C(Rd)

to (3.21). Therefore, the same is the case for f ∈ C(D) ∩ L∞(D) by [34, Remark 2.11]. Given

f as in the statement of the lemma, let fn := (f ∧ n) ∨ (−n), for n ∈ N, and un be the

corresponding viscosity solution to (3.21).

Comparing un (and −un) to the supersolution in Lemma 3.2, we deduce that there exists

a compact set K1 ⊂ D such that

|un(x)| ≤ κ1

(
sup
x∈K1

|un(x)| +
[[
fn

]](δ)
0;D

)
d
q
x ∀ x ∈ Kc

1, ∀ n ∈ N, (3.23)

where the constant κ1 depends only on K1 and D. Also, using the same argument as in

Lemma 2.2, we can show that for any compact K2 ⊂ D, there exists a constant κ2, depending

on D, and satisfying

sup
x∈K2

|un(x)| ≤ κ2

(
sup
x∈K2

|fn(x)| + sup
x∈D\K2

|un(x)|

)
∀ n ∈ N. (3.24)

We choose K2 and K1 ⊂ K2 such that supx∈Kc
2∩D

|d
q
x| <

1
2κ1κ2

. Then from (3.23)–(3.24), we

obtain

sup
x∈K2

|un(x)| ≤ κ3
[[
fn

]](δ)
0;D

∀ n ∈ N, (3.25)

for some constant κ3. Combining (3.23) and (3.25), we obtain

|un(x)| ≤ C1

[[
fn

]](δ)
0;D

d
q
x ∀ x ∈ SD ∀ n ∈ N. (3.26)

Also, by following the argument in the proof of [34, Proposition 1.1], we obtain

‖un‖Cq(SD) ≤ C1 sup
x∈D

dδx |fn(x)| ∀ n ∈ N. (3.27)

Since the right-hand side of (3.27) is bounded uniformly in n ∈ N, we may select a

subsequence, also denoted as n, along which un converges to some function u ∈ Cq(SD) for

any q < s. Taking limits as n → ∞ in (3.26) and (3.27), we obtain (3.22a) and (3.22b),
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respectively. The stability property of viscosity solutions [18, Lemma 4.5] implies that u is a

viscosity solution. This completes the proof.

Our main result in this section is the following.

Theorem 3.1. Let I ∈ I2s(β , θ , λ), f be locally Hölder continuous in R
d with exponent β, and

D be a bounded domain with a C2 boundary. We assume that neither β nor 2s+ β are integers

and that either β < s or that β ≥ s and

|k(x, z)− k(x, 0)| ≤ λ̃D |z|θ ∀x ∈ D, ∀z ∈ R
d,

for some positive constant λ̃D. Then the Dirichlet problem in (3.2) has a unique solution in

C
2s+β
loc (D) ∩ C(SD). Moreover, for any r < s, we have the estimate

||u||
(−r)
2s+β ;D ≤ C0 ‖f ‖Cβ (SD)

for some constant C0 that depends only on d, β, r, s, and the domain D.

Proof. Consider the case β ≥ s. We write (3.2) as

(−1)su(x) = T [u](x) :=
c(d, 2s)

k(x, 0)

(
− f (x)+ b(x) · ∇u(x)

)
+ H[u](x) in D,

(3.28)
u = 0 in Dc,

and we apply the Leray–Schauder �xed point theorem. Also, without loss of generality, we

assume θ < 2s − 1. We choose any r ∈ (0, s) which satis�es

r >
(
s −

θ

2

)
∨

(
1 − s +

θ

2

)
,

and let v ∈ C
(−r)
2s+β−θ (D). Then H[v] ∈ C

(2s−r−θ)
β (D) by Lemma 3.1. Since ∇v ∈

C
(1−r)
2s+β−θ−1(D) and (1 − r) ∧ (2s − r − θ) < s by hypothesis, then applying Lemma 3.3,

we conclude that there exists a solution u to (−1)su = T [v] on D, with u = 0 on Dc, such

that u ∈ C
(−q)
0 (D) for any q < s.

Next we obtain some estimates that are needed to apply the Leray–Schauder �xed point

theorem. By Lemma 3.1, we obtain

∣∣∣∣H[v]
∣∣∣∣(2s−r−θ/2)

0;D
=

∣∣∣∣H[v]
∣∣∣∣(2s−(r−θ/2)−θ)
0;D

≤ κ1 ||v||
(−r+θ/2)
2s−θ ;D ,

and similarly,
∣∣∣∣H[v]

∣∣∣∣(2s−r−θ/2)

β ;D
≤ κ1 ||v||

(−r+θ/2)
2s+β−θ ;D, (3.29)

for some constant κ1 which does not depend on θ or r. Thus, since by hypothesis 2s− r− θ/2

< s and 1 − r + θ/2 < s, we obtain by Lemma 3.3 that

‖u‖Cr(Rd) ≤ κ ′
1

(
‖f ‖C(SD) + ||∇v||

(1−r+θ/2)
0;D + ||v||

(−r+θ/2)
2s−θ ;D

)
(3.30)
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for some constant κ ′
1. Also, by Lemma 2.10 in [34], there exists a constant κ2, depending only

on β , s, r, and d, such that

||u||
(−r)
2s+β ;D ≤ κ2

(
‖u‖Cr(Rd) +

∣∣∣∣T [v]
∣∣∣∣(2s−r)

β ;D

)
. (3.31)

It follows by (3.30)–(3.31) that v 7→ u is a continuous map from C
(−r)
2s+β−θ to itself. Moreover,

since C
(−r)
2s+β(D) is precompact in C

(−r)
2s+β−θ (D), it follows that v 7→ u is compact.

Next we obtain a bound for ||u||
(−r)
2s+β ;D. By (3.29), we have

∣∣∣∣H[v]
∣∣∣∣(2s−r)

β ;D
≤

(
diam(D)

)θ/2∣∣∣∣H[v]
∣∣∣∣(2s−r−θ/2)

β ;D

≤ κ1
(
diam(D)

)θ/2
||v||

(−r+θ/2)
2s+β−θ ;D

)
.

Therefore, since also 2s − r > 1 − r + θ/2, we obtain
∣∣∣∣T [v]

∣∣∣∣(2s−r)

β ;D
≤ κ3

(
‖f ‖Cβ (SD) + [[v]]

(−r+θ/2)
1;D + ||v||

(−r+θ/2)
2s+β−θ ;D

)
(3.32)

for some constant κ3. By the Hölder interpolation inequalities, for any ε > 0, there exists

C̃(ε) > 0 such that

[[v]]
(−r+θ/2)
1;D + ||v||

(−r+θ/2)
2s+β−θ ;D ≤ C̃(ε) [[v]]

(−r+θ/2)
0;D + ε ||v||

(−r+θ/2)
2s+β ;D . (3.33)

Combining (3.30), (3.31), and (3.32), and then using (3.33) and the inequality

[[v]]
(−r+θ/2)
2s+β ;D ≤

(
diam(D)

)θ/2
||v||

(−r)
2s+β ;D

we obtain

||u||
(−r)
2s+β ;D ≤ κ4(ε)

(
‖f ‖Cβ (SD) + ||v||

(−r+θ/2)
0;D

)
+ ε ||v||

(−r)
2s+β ;D. (3.34)

To apply the Leray–Schauder �xed point theorem, it su�ces to show that the set of solutions

u ∈ C
(−r)
2s+β(D) of (−1)

su(x) = ξ T [u](x), for ξ ∈ [0, 1], with u = 0 on Dc, is bounded

in C
(−r)
2s+β(D). However, from the above calculations, any such solution u satis�es (3.34) with

v ≡ u. Moreover by Lemma 2.2,

sup
x∈D

|u(x)| ≤ κ5 sup
x∈D

|f (x)| (3.35)

for some constant κ5. We also have that

||u||
(−r+θ/2)
0;D ≤ ε−r+θ/2 sup

x∈D, dx≥ε

|u(x)| + εθ/2 sup
x∈D, dx<ε

d−r
x |u(x)|

≤ ε−r+θ/2 sup
x∈D

|u(x)| + εθ/2 ||u||
(−r)
0;D . (3.36)

Choosing ε > 0 small enough, and using (3.35)–(3.36) on the right-hand side of (3.34) with

v ≡ u, we obtain

||u||
(−r)
2s+β ;D ≤ κ6 ‖f ‖Cβ (SD) (3.37)

for some constant κ6. Hence by the Leray–Schauder �xed point theorem, the map v 7→ u

given by (3.28) has a �xed point u ∈ C
(−r)
2s+β(D), i.e.,

(−1)su(x) = T [u](x).
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Hence, this is a solution to (3.2). Uniqueness is obvious as u is a classical solution. The bound

in (3.37) then applies and the proof is complete. The proof in the case β < s is completely

analogous.

Optimal regularity up to the boundary can be obtained under additional hypotheses. The

following result is a modest extension of the results in [34, Proposition 1.1].

Corollary 3.1. Let I ∈ I2s(β , θ , λ) with θ > s, f be locally Hölder continuous with exponent

β, and D be a bounded domain with a C2 boundary. Suppose in addition that b = 0 and that

k is symmetric, i.e., k(x, z) = k(x,−z). Then the solution of the Dirichlet problem in (3.2) is in

Cs(Rd). Moreover, for any β < s, we have u ∈ C
(−s)
2s+β(D).

Proof. By Theorem 3.1, the Dirichlet problem in (3.2) has a unique solution in C
2s+ρ
loc (D) ∩

C(SD), for any ρ < β ∧ s. Moreover, for any r < s, we have the estimate

||u||
(−r)
2s+ρ;D ≤ C0 ‖f ‖Cβ (SD).

Fix r = 2s − θ . Then
∫

R<|z|<1
|z|r

k̃(x, z)

|z|d+2s
dz =

∫

R<|z|<1
|z|2s−θ

k̃(x, z)

|z|d+2s
dz ≤ λD.

By (3.6) and the symmetry of the kernel, it follows that
∣∣∣∣
∫

R<|z|
du(x; z)

k̃(x, z)

|z|d+2s
dz

∣∣∣∣ ≤ κ1

(
[[u]]

(−r)
r;D + ‖u‖C(SD

)
∀x ∈ D,

for some constant κ1. Combining this with the estimate in Lemma 3.1 we obtain

[[H[u]]]
(0)
0;D ≤ M0 ||u||

(−r)
r;D < ∞,

implying that H[u] ∈ L∞(D). It then follows by [34, Proposition 1.1] that u ∈ Cs(Rd), and

that for some constant C depending only on s, we have

‖u‖Cs(Rd) ≤ C ‖T [u]‖L∞(D)

≤ C λ−1
D c(d, 2s)

(
‖f ‖L∞(D) + ‖H[u]‖L∞(D)

)

≤ C λ−1
D c(d, 2s)

(
‖f ‖L∞(D) + M0 ||u||

(−r)
r;D

)
.

Using the Hölder interpolation inequalities, we obtain from the preceding estimate that

‖u‖Cs(Rd) ≤ C̃ ‖f ‖L∞(D)

for some constant C̃ depending only on s, θ , and λD.

Applying Lemma 3.1 once more, we conclude that H[u] ∈ C
(s)
β ′ (D) for any β

′ ≤ r, and

that
∣∣∣∣H[u]

∣∣∣∣(s)
β ′;D

≤ M1 ||u||
(−r)
2s+β ′−θ ;D.

Hence, applying [34, Proposition 1.4], we obtain

||u||
(−s)
2s+β ′;D ≤ C1

(
‖u‖Cs(Rd) +

∣∣∣∣T [u]
∣∣∣∣(s)
β ′;D

)
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for some constant C1, and we can repeat this procedure to reach u ∈ C
(−s)
2s+β(D).

Concerning the stochastic representation of the solutions to the Dirichlet problem in (3.2),

we have the following.

Theorem3.2. Let I ∈ I2s(β , θ , λ), D be a bounded domain with C2 boundary, and f ∈ Cβ(SD).

We assume that neither β nor 2s + β are integers and that either β < s or that β ≥ s and

|k(x, z)− k(x, 0)| ≤ λ̃D |z|θ ∀x ∈ D, ∀z ∈ R
d,

for some positive constant λ̃D. Let Ex denotes the expectation operator corresponding to the

Markov process X with generator given by I . Then u(x) := Ex

[ ∫ τ(D)
0 f (Xt) dt

]
is the unique

solution in C2s+β(D) ∩ C(SD) to (3.2).

Proof. Recall the de�nition of Dε in (3.14). Note that for ε small enough, Dε has a C2

boundary. Let

f̃ (x) := inf
y∈D

(
f (y)+ ‖f ‖Cβ (SD) |x − y|β

)
, x ∈ SDε ,

i.e., f̃ is a β-Hölder extension of f . Then by Theorem 3.1, there exists uε ∈ C2s+β(Dε)∩C(SDε)

satisfying

Iuε = −f̃ in Dε ,

uε = 0 in Dc
ε .

We also have the estimate (recall the de�nition of || · ||
(r)
β ;D in Section 1.1)

||uε ||
(−r)
2s+β ;Dε

≤ C0 ‖f̃ ‖Cβ (SDε),

with r some �xed constant in
(
0, s

)
. As can be seen from the Lemma 2.2 and the proof of

Theorem 3.1, we may select a constant C0, that does not depend on ε, for ε small enough.

Since uε = 0 in Dc
ε , it follows that

‖uε‖Cr(Rd) ≤ c1 ||uε ||
(−r)
2s+β ;Dε

for some constant c1, independent of ε, for all small enough ε. Hence uε → u as ε → 0, along

some subsequence, and u ∈ C2s+β(D) ∩ C(SD) by Theorem 3.1. By Itô’s formula, we obtain

uε(x) = Ex

[
uε(Xτ(D))

]
+ Ex

[ ∫ τ(D)

0
f (Xt) dt

]
.

Letting ε ց 0, we obtain the result. Uniqueness follows from Theorem 3.1.

Theorem 3.2 can be extended to account for nonzero boundary conditions, provided the

boundary data are regular enough, say in C3(Rd) ∩ Cb(R
d).

4. The Harnack property for operators containing a drift term

In this section, we prove aHarnack inequality for harmonic functions. Throughout Sections 4

and 5, we use the parameter α = 2s. The classes of operators considered are summarized in

the following de�nition.



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 1493

De�nition 4.1. With λ as in De�nition 3.1, let Lα(λ) denotes the class of operators I ∈ Lα

satisfying

|b(x)| ≤ λD, and λ−1
D ≤ k(x, z) ≤ λD ∀ x ∈ D, z ∈ R

d,

for a bounded domain D. As in De�nition 2.2, the subclass of Lα(λ) consisting of those I

satisfying k(x, z) = k(x,−z) is denoted by L
sym
α (λ). Also by Lα,θ (λ), we denote the subset of

Lα(λ) satisfying
∫

Rd

(
|z|α−θ ∧ 1

) |k(x, z)− k(x, 0)|

|z|d+α
dz ≤ λD ∀x ∈ D,

for any bounded domain D.

A measurable function h : Rd → R is said to be harmonic with respect to I in a domain

D if for any bounded subdomain G ⊂ D, it satis�es

h(x) = Ex[h(Xτ(G))] ∀ x ∈ G,

where (X,Px) is a strong Markov process associated with I .

Theorem 4.1. Let D be a bounded domain of Rd and K ⊂ D be compact. Then there exists a

constant CH depending on K, D, and λ, such that any bounded, non-negative function which is

harmonic in D with respect to an operator I ∈ L
sym
α (λ) ∪ Lα,θ (λ), θ ∈ (0, 1), satis�es

h(x) ≤ CH h(y) for all x, y ∈ K.

We prove Theorem 4.1 by verifying the conditions in [38] where a Harnack inequality is

established for a general class ofMarkov processes.We accomplish this through Lemmas 4.1–

4.4 which follow. Let us also mention that some of the proof techniques are standard, but we

still add them for clarity. In fact, the Harnack property with nonsymmetric kernel is also

discussed in [38] under some regularity condition on k(·, ·) and under the assumption of the

existence of a harmonic measure. The proof of Lemma 4.2 (b) below holds under very general

conditions and does not rely on the existence of a harmonic measure.

The following lemma is a careful modi�cation of [39, Lemma 2.1] (for the proof see

Lemma 3.5 and Remark 3.2 in [3]).

Lemma 4.1. Let (X,Px) be a strong Markov process associated with I ∈ Lα , and D be a given

bounded domain. There exits a constant κ1 > 0 such that for any x ∈ D and r ∈ (0, 1) it holds

that

Px

(
sup
0≤s≤t

|Xs − x| > r

)
≤ κ1t r

−α ∀ x ∈ D,

where X0 = x.

In Lemmas 4.2–4.4 which follow, (X,Px) is a strong Markov process associated with I ∈

L
sym
α (λ) ∪ Lα,θ (λ), and D is a bounded domain.

Lemma 4.2. Let D be a bounded domain. There exist positive constants κ2 and r0 such that for

any x ∈ D and r ∈ (0, r0),
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(a) infz∈B r
2
(x) Ez[τ(Br(x))] ≥ κ−1

2 rα ,

(b) supz∈Br(x) Ez[τ(Br(x))] ≤ κ2 r
α .

Proof. By Lemma 4.1 there exists a constant κ1 such that

Px(τ (Br(x)) ≤ t) ≤ κ1tr
−α , (4.1)

for all t ≥ 0, and all x ∈ D2 := {y : dist(y,D) < 2}. We choose t = rα

2κ1
. Then for z ∈ B r

2
(x),

we obtain by (4.1) that

Ez[τ(Br(x))] ≥ Ez[τ(B r
2
(z))]

≥
rα

2κ1
Pz

(
τ(B r

2
(z)) >

rα

2κ1

)

≥
rα

4κ1
.

This proves the part (a).

To prove part (b), we consider a radially nondecreasing function ϕ ∈ C2
b(R

d), which is

convex in B4 and satis�es

ϕ(x + z)− ϕ(x)− z · ∇ϕ(x) ≥ c1|z|
2 for |x| ≤ 1, |z| ≤ 3,

for some positive constant c1. For an arbitrary point x0 ∈ D, de�ne gr(x) := ϕ( x−x0
r ). Then

for x ∈ Br(x0) and I ∈ L
sym
α (λ), we have

∫

Rd
dgr(x; z)

k(x, z)

|z|α+d
dz =

∫

|z|≤3r

(
gr(x + z)− gr(x)− z · ∇gr(x)

)k(x, z)
|z|α+d

dz

+

∫

|z|>3r

(
gr(x + z)− gr(x)

)k(x, z)
|z|α+d

dz

≥
c1

r2
λ−1
D

∫

|z|≤3r
|z|2−d−α dz

= c2
32−α

2 − α
λ−1
D r−α

for some constant c2 > 0, where in the �rst equality, we use the fact that k(x, z) = k(x,−z),

and for the second inequality, we use the property that g(x+ z) ≥ g(x) for |z| ≥ 3r. It follows

that we may choose r0 small enough such that

Igr(x) ≥ c3r
−α for all r ∈ (0, r0), x ∈ Br(x0), and x0 ∈ D,

with c3 :=
c2
2

32−α

2−α λ
−1
D .

To obtain a similar estimate for I ∈ Lα,θ (λ), we �x some θ1 ∈ (0, θ ∧ (α − 1)). Let

k̂(x, z) := k(x, z)− k(x, 0). We have
∫

Rd
dgr(x; z)

k(x, z)

|z|α+d
dz =

∫

|z|≤3r
dgr(x; z)

k(x, z)

|z|α+d
dz −

∫

3r<|z|<1
z · ∇gr(x)

k(x, z)− k(x, 0)

|z|d+α
dz

+

∫

|z|>3r

(
gr(x + z)− gr(x)

)k(x, z)
|z|α+d

dz
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≥
c1

λD r2

∫

|z|≤3r
|z|2−d−α dz −

‖∇ϕ‖∞

r

∫

3r<|z|<1
|z|

|k̂(x, z)|

|z|d+α
dz

≥ c2
32−α

(2 − α) λD rα
−

‖∇ϕ‖∞

r

∫

3r<|z|<1
|z|α−θ1(3r)−α+θ1+1 |k̂(x, z)|

|z|d+α
dz

≥ c2
32−α

(2 − α) λD rα
−

‖∇ϕ‖∞

r

∫

3r<|z|<1
|z|α−θ (3r)−α+θ1+1 |k̂(x, z)|

|z|d+α
dz

≥ c2
32−α

(2 − α) λD rα
− κ(d)3α−θ1+1r−α+θ1 λD ‖∇ϕ‖∞

≥ c4 r
−α ∀ x ∈ Br(x0),

for some constant c4 > 0 and r small, where in the third inequality, we used the fact that

θ1 < α − 1. Thus by Itô’s formula we obtain

Ex

[
τ(Br(x0))

]
≤ c−1

4 rα‖ϕ‖∞ ∀ x ∈ Br(x0).

This completes the proof.

Lemma 4.3. There exists a constant κ3 > 0 such that for any r ∈ (0, 1), x ∈ D, and A ⊂ Br(x)

we have

Pz

(
τ(Ac) < τ(B3r(x))

)
≥ κ3

|A|

|Br(x)|
∀ z ∈ B2r(x).

Proof. Let τ̂ := τ(B3r(x)). Suppose Pz(τ (A
c) < τ̂ ) < 1/4 for some z ∈ B2r(x). Otherwise

there is nothing to prove as |A|
|Br(x)|

≤ 1. By Lemma 4.1, there exists t > 0 such that Py(τ̂ ≤

trα) ≤ 1/4 for all y ∈ B2r(x). Hence using the Lévy-system formula, we obtain

Py(τ (A
c) < τ̂ ) ≥ Ey

[ ∑

s≤τ(Ac)∧τ̂∧trα

1{Xs− 6=Xs,Xs∈A}

]

= Ey

[ ∫ τ(Ac)∧τ̂∧trα

0

∫

A

k(Xs, z − Xs)

|z − Xs|d+α
dz ds

]

≥ Ey

[ ∫ τ(Ac)∧τ̂∧trα

0

∫

A

λ−1
D

(4r)d+α
dz ds

]

≥ κ ′
3 r

−α |A|

|Br(x)|
Ey[τ(A

c) ∧ τ̂ ∧ trα] (4.2)

for some constant κ ′
3 > 0, where in the third inequality, we use the fact that |Xs − z| ≤ 4r for

s < τ̂ , z ∈ A. On the other hand, we have

Ey[τ(A
c) ∧ τ̂ ∧ trα] ≥ t rα Py(τ (A

c) ≥ τ̂ ≥ trα)

= t rα
[
1 − Py(τ (A

c) < τ̂ )− Py(τ̂ < trα)
]

≥
t

2
rα . (4.3)

Therefore combining (4.2)–(4.3), we obtain Pz(τ (A
c) < τ̂ ) ≥

tκ ′
3
2

|A|
|Br(x)|

.
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Lemma 4.4. There exists positive constants κi, i = 4, 5, such that if x ∈ D, r ∈ (0, 1), z ∈ Br(x),

and H is a bounded non-negative function with support in Bc2r(x), then

Ez

[
H(Xτ(Br(x))

]
≤ κ4 Ez

[
τ(Br(x)

] ∫

Rd
H(y)

k(x, y − x)

|y − x|d+α
dy,

and

Ez

[
H(Xτ(Br(x))

]
≥ κ5 Ez

[
τ(Br(x)

] ∫

Rd
H(y)

k(x, y − x)

|y − x|d+α
dy.

The proof follows using the same argument as in [38, Lemma 3.5].

Proof of Theorem 4.1. By Lemmas 4.2, 4.3, and 4.4, the hypotheses (A1)–(A3) in [38] are

satis�ed. Hence the proof follows from [38, Theorem 2.4].

5. Positive recurrence and invariant probability measures

In this section, we study the recurrence properties for a Markov process with generator I ∈

Lα (De�nitions 2.2 and 4.1). Many of the results of this section are based on the assumption

of the existence of a Lyapunov function.

De�nition 5.1. We say that the operator I of the form (2.4) satis�es the Lyapunov stability

condition if there exists a V ∈ C2(Rd) such that infx∈Rd V(x) > −∞, and for some compact

setK ⊂ R
d and ε > 0, we have

I V(x) ≤ −ε ∀ x ∈ K
c. (5.1)

It is straightforward to verify that if V satis�es (5.1) for I ∈ Lα , then
∫

|z|≥1
|V(z)|

1

|z|d+α
dz < ∞. (5.2)

Proposition 5.1. If there exists a constant γ ∈ (1,α) such that

b(x) · x

|x|2−γ supz∈Rd k(x, z) ∨ 1
−−−−→
|x|→∞

−∞,

then the operator I satis�es the Lyapunov stability condition.

Proof. Consider a non-negative function ϕ ∈ C2(Rd) such that ϕ(x) = |x|γ for |x| ≥ 1, and

letSk(x) := supz∈Rd k(x, z). Since the second derivatives of ϕ are bounded in R
d, and k is also

bounded, it follows that
∣∣∣∣
∫

|z|≤1
dϕ(x; z)

k(x, z)

|z|d+α
dz

∣∣∣∣ ≤ κ1Sk(x)

for some constant κ1 which depends on the bound of the trace of the Hessian of ϕ. Following

the same steps as in the proof of (2.6), and using the fact that k is bounded in R
d × R

d, we

obtain ∣∣∣∣
∫

|z|>1
(|x + z|γ − |x|γ )

k(x, z)

|z|d+α
dz

∣∣∣∣ ≤ κ2Sk(x) (1 + |x|γ−α) if |x| > 1, (5.3)
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for some constant κ2 > 0. Since also,
∣∣∣∣
∫

Rd
1B1(x + z)

k(x, z)

|z|d+α
dz

∣∣∣∣ ≤ κ3Sk(x) (|x| − 1)−α for |x| > 2, (5.4)

for some constant κ3, it follows by the above that
∣∣∣∣
∫

Rd
dϕ(x; z)

k(x, z)

|z|d+α
dz

∣∣∣∣ ≤ κ4Sk(x) (1 + |x|γ−α) ∀x ∈ R
d, (5.5)

for some constant κ4. Therefore by the hypothesis and (5.5), it follows that Iϕ(x) → −∞ as

|x| → ∞.

Lemma 5.1. Let X be the Markov process associated with a generator I ∈ Lα(λ), and suppose

that I satis�es the Lyapunov stability hypothesis (5.1) and the growth condition in (2.5). Then

for any x ∈ Kc, we have

Ex[τ(K
c)] ≤

2

ε

(
V(x)+ (inf V)−

)
.

Proof. Let R0 > 0 be such that K ⊂ BR0 . We choose a cut-o� function χ which equals 1 on

BR1 , with R1 > 2R0, vanishes outside of BR1+1, and ‖χ‖∞ = 1. Then ϕ := χV is in C2
b(R

d).

Clearly if |x| ≤ R0 and |x + z| ≥ R1, then |z| > R0, and thus |x + z| ≤ 2|z|. Therefore, for

large enough R1, we obtain
∣∣∣∣
∫

Rd

(
ϕ(x + z)− V(x + z)

)k(x, z)
|z|d+α

dz

∣∣∣∣ ≤ 2

∫

{|x+z|≥R1}
|V(x + z)|

k(x, z)

|z|d+α
dz

≤ 2d+α+1λBR0

∫

{|x+z|≥R1}
|V(x + z)|

1

|x + z|d+α
dz

≤
ε

2
∀ x ∈ BR0 .

Hence, for all R1 large enough, we have

Iϕ(x) ≤ −
ε

2
∀x ∈ BR0 \ K.

Let τ̃R = τ(Kc) ∧ τ(BR). Then applying Itô’s formula, we obtain

Ex

[
V(Xτ̃R0 )

]
− V(x) ≤ −

ε

2
Ex [̃τR0] ∀ x ∈ BR0 \ K,

implying that

Ex [̃τR0] ≤
2

ε

(
V(x)+ (inf V)−

)
. (5.6)

By the growth condition and Lemma 2.3, τ(BR) → ∞ as R → ∞ with probability 1. Hence

the result follows by applying Fatou’s lemma to (5.6).

5.1. Existence of invariant probabilitymeasures

Recall that a Markov process is said be to positive (Harris) recurrent if for any compact set G

with positive Lebesgue measure it holds that Ex[τ(G
c)] < ∞ for any x ∈ R

d.
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We recall the Lévy-system formula, the proof of which is a straightforward adaptation

of the proof for a purely nonlocal operator and can be found in [13, Proposition 2.3 and

Remark 2.4] [21, 24].

Proposition 5.2. If A and B are disjoint Borel sets in B(Rd), then for any x ∈ R
d,

∑

s≤t

1{Xs−∈A,Xs∈B} −

∫ t

0

∫

B
1{Xs∈A}

k(Xs, z − Xs)

|Xs − z|d+α
dz ds

is a Px-martingale.

We have the following theorem.

Theorem 5.1. If I ∈ Lα(λ) satis�es the Lyapunov stability hypothesis, and the growth

condition in (2.5), then the associated Markov process is positive recurrent.

Proof. First we note that if the Lyapunov condition is satis�ed for some compact setK, then it

is also satis�ed for any compact set containingK. Hence wemay assume thatK is a closed ball

centered at origin. Let D be an open ball with center at origin and containingK. We de�ne

τ̂1 := inf {t ≥ 0 : Xt /∈ D}, τ̂2 := inf {t > τ : Xt ∈ K}.

Therefore forX0 = x ∈ K, τ̂2 denotes the �rst return time toK a�er hittingDc. First we prove

that

sup
x∈K

Ex[τ̂2] < ∞. (5.7)

By Lemma 5.1, we have Ex[τ(K
c)] ≤ 2

ε
[V(x)+ (inf V)−] for x ∈ Kc. By Lemma 2.1, we have

supx∈K Ex[τ̂1] < ∞. LetPτ̂1(x, · ) denotes the exit distribution of the processX starting from

x ∈ K. To prove (5.7), it su�ces to show that

sup
x∈K

∫

Dc

(
V(y)+ (inf V)−

)
Pτ̂1(x, dy) < ∞,

and since V is locally bounded, it is enough that

sup
x∈K

∫

BcR

(
V(y)+ (inf V)−

)
Pτ̂1(x, dy) < ∞ (5.8)

for some ball BR. To accomplish this, we choose R large enough, so that

|x − z|

|z|
>

1

2
for |z| ≥ R, x ∈ D.

Then, for any Borel set A ⊂ BcR, by Proposition 5.2, we have that

Px(Xτ̂1∧t ∈ A) = Ex

[ ∑

s≤τ̂1∧t

1{Xs−∈D,Xs∈A}

]

= Ex

[ ∫ τ̂1∧t

0
1{Xs∈D}

∫

A

k(Xs, z − Xs)

|Xs − z|d+α
dz ds

]
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≤ 2d+αλD Ex

[ ∫ τ̂1∧t

0

∫

A

1

|z|d+α
dz ds

]

= 2d+αλD Ex[τ̂1 ∧ t]µ(A),

where µ is the σ -�nite measure on R
d
∗ with density 1

|z|d+α
. Thus letting t → ∞, we obtain

Pτ̂1(x,A) ≤ 2d+αλD

(
sup
x∈K

Ex[τ̂1]

)
µ(A).

Therefore, using a standard approximation argument, we deduce that for any non-negative

function g, it holds that
∫

BcR

g(y)Pτ̂1(x, dy) ≤ κ̃

∫

BcR

g(y)µ(dy)

for some constant κ̃ . This proves (5.8) since V is integrable on BcR with respect to µ and

µ(BcR) < ∞.

Next we prove that the Markov process is positive recurrent. We need to show that for any

compact set G with positive Lebesgue measure, Ex[τ(G
c)] < ∞ for any x ∈ R

d. Given a

compact G and x ∈ Gc, we choose a closed ball K, which satis�es the Lyapunov condition

relative to V , and such that G ∪ {x} ⊂ K. Let D be an open ball containing K. We de�ne a

sequence of stopping times {τ̂k, k = 0, 1, . . . } as follows:

τ̂0 = 0

τ̂2n+1 = inf{t > τ̂2n : Xt /∈ D},

τ̂2n+2 = inf{t > τ̂2n+1 : Xt ∈ K}, n = 0, 1, . . . .

Using the strong Markov property and (5.8), we obtain Ex[τ̂n] < ∞ for all n ∈ N. From

Lemma 4.1, there exist positive constants t and r such that

sup
x∈K

Px(τ (D) < t) ≤ sup
x∈K

Px(τ (Br(x)) < t) ≤
1

4
.

Therefore, using a similar argument as in Lemma 4.3, we can �nd a constant δ > 0 such that

inf
x∈K

Px(τ (G
c) < τ(D)) > δ.

Hence

p := sup
x∈K

Px(τ (D) < τ(Gc)) ≤ 1 − δ < 1.

Thus by the strong Markov property, we obtain

Px(τ (G
c) > τ̂2n) ≤ pPx(τ (G

c) > τ̂2n−2) ≤ · · · ≤ pn ∀ x ∈ K.

This implies Px(τ (G
c) < ∞) = 1. Hence, for x ∈ K, we obtain

Ex[τ(G
c)] ≤

∞∑

n=1

Ex

[
τ̂2n1{τ̂2n−2<τ(Gc)≤τ̂2n}

]

=

∞∑

n=1

n∑

l=1

Ex

[
(τ̂2l − τ̂2l−2)1{τ̂2n−2<τ(Gc)≤τ̂2n}

]
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=

∞∑

l=1

∞∑

n=l

Ex

[
(τ̂2l − τ̂2l−2)1{τ̂2n−2<τ(Gc)≤τ̂2n}

]

=

∞∑

l=1

Ex

[
(τ̂2l − τ̂2l−2)1{τ̂2l−2<τ(Gc)}

]

≤

∞∑

l=1

pl−1 sup
x∈K

Ex[τ̂2]

=
1

1 − p
sup
x∈K

Ex[τ̂2] < ∞.

Since also Ex[τ(K
c)] < ∞ for all x ∈ R

d, this completes the proof.

Theorem 5.2. Let X be a Markov process associated with a generator I ∈ L
sym
α (λ) ∪ Lα,θ (λ),

and suppose that the Lyapunov stability hypothesis (5.1) and the growth condition in (2.5) hold.

Then X has an invariant probability measure.

Proof. The proof is based onHas′minskĭı’s construction. LetK,D, τ̂1, and τ̂2 be as in the proof

of Theorem 5.1. Let X̂ be a Markov process onK with transition kernel given by

P̂x(dy) = Px(Xτ̂2 ∈ dy).

Let ϕ be any bounded, non-negative measurable function onD. De�neQϕ(x) = Ex[ϕ(Xτ̂2)].

We claim that Qϕ is harmonic in D. Indeed if we de�ne ϕ̃(x) = Ex[ϕ(Xτ(Kc))] for x ∈ Dc,

then by the strong Markov property, we obtain Qϕ(x) = Ex[ϕ̃(Xτ̂1)], and the claim follows.

By Theorem 4.1, there exists a positive constant CH , independent of ϕ, satisfying

Qϕ(x) ≤ CHQf (y) ∀ x, y ∈ K. (5.9)

Wenote thatQ1K
≡ 1. LetQ(x,A) := Q1A(x), forA ⊂ K. For any pair of probabilitymeasures

µ and µ′ onK, we claim that
∥∥∥∥

∫

K

(
µ(dx)− µ′(dx)

)
Q(x, · )

∥∥∥∥
TV

≤
CH − 1

CH
‖µ− µ′‖TV. (5.10)

This implies that the map µ →
∫
K
Q(x, · )µ(dx) is a contraction, and hence it has a unique

�xed point µ̂ satisfying µ̂(A) =
∫
K
Q(x,A)µ̂(dx) for any Borel set A ⊂ K. In fact, µ̂ is the

invariant probability measure of the Markov chain X̂. Next we prove (5.10). Given any two

probability measure µ, µ′ onK, we can �nd subsets F and G ofK such that
∣∣∣∣
∫

K

(
µ(dx)− µ′(dx)

)
Q(x, · )

∣∣∣∣
TV

= 2

∫

K

(
µ(dx)− µ′(dx)

)
Q(x, F),

‖µ− µ′‖TV = 2(µ− µ′)(G).

In fact, the restriction of (µ − µ′) to G is a non-negative measure and its restriction to Gc is

nonpositive measure. By (5.9), we have

inf
x∈Gc

Q(x, F) ≥ sup
x∈G

Q(x, F) (5.11)
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Hence, using (5.11), we obtain
∣∣∣∣
∫

K

(
µ(dx)− µ′(dx)

)
Q(x, · )

∥∥∥∥
TV

= 2

∫

G

(
µ(dx)− µ′(dx)

)
Q(x, F)+ 2

∫

Gc

(
µ(dx)− µ′(dx)

)
Q(x, F)

≤ 2(µ− µ′)(G) sup
x∈G

Q(x, F)+ 2(µ− µ′)(Gc) inf
x∈Gc

Q(x, F)

≤ 2(µ− µ′)(G) sup
x∈G

Q(x, F)−
2

CH
(µ− µ′)(G) sup

x∈G
Q(x, F)

≤
(
1 − C−1

H

)
‖µ− µ′‖TV.

This proves (5.10).

We de�ne a probability measure ν on R
d as follows.

∫

Rd
ϕ(x) ν(dx) =

∫
K
Ex

[ ∫ τ̂2
0 ϕ(Xs) ds

]
µ̂(dx)∫

K
Ex[τ̂2]µ̂(dx)

, ϕ ∈ Cb(R
d).

It is straight forward to verify that ν is an invariant probability measure of X [4, Theo-

rem 2.6.9].

Remark 5.1. If k(·, ·) = 1 and the dri� b belongs to certain Kato class, in particular bounded,

[16] then the transition probability has a continuous density, and therefore any invariant

probability measure has a continuous density. Since any two distinct ergodic measures are

mutually singular, this implies the uniqueness of the invariant probability measure. As shown

later in Proposition 5.4, open sets have strictly positive mass under any invariant measure.

The following result is fairly standard.

Proposition 5.3. Let I ∈ Lα and V ∈ C2(Rd) be a non-negative function satisfying V(x) →

∞ as |x| → ∞, and I V ≤ 0 outside some compact set K. Let ν be an invariant probability

measure of the Markov process associated with the generator I . Then
∫

Rd
|I V(x)| ν(dx) ≤ 2

∫

K

|I V(x)| ν(dx).

Proof. Let ϕn : R+ → R+ be a smooth nondecreasing, concave, function such that

ϕn(x) =

{
x for x ≤ n,

n + 1/2 for x ≥ n + 1.

Due to concavity, we have ϕn(x) ≤ |x| for all x ∈ R+. Then Vn(x) := ϕn(V(x)) is in C2
b(R

d),

and it also follows that I Vn(x) → I V(x) as n → ∞. Since ν is an invariant probability

measure, it holds that
∫

Rd
I Vn(x) ν(dx) = 0. (5.12)
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By concavity, ϕn(y) ≤ ϕn(x)+ (y − x) · ϕ′
n(x) for all x, y ∈ R+. Hence

I Vn(x) =

∫

Rd
dVn(x; z)

k(x, z)

|z|d+α
dz + ϕ′

n(V(x)) b(x) · ∇V(x)

≤

∫

Rd
ϕ′
n(V(x)) dV(x; z)

k(x, z)

|z|d+α
dz + ϕ′

n(V(x)) b(x) · ∇V(x)

= ϕ′
n(V(x)) I V(x),

which is negative for x ∈ Kc. Therefore using (5.12) we obtain
∫

Rd
|I Vn(x)| ν(dx) =

∫

K

|I Vn(x)| ν(dx)−

∫

Kc
I Vn(x) ν(dx)

=

∫

K

|I Vn(x)| ν(dx)+

∫

K

I Vn(x) ν(dx)

≤ 2

∫

K

|I Vn(x)| ν(dx). (5.13)

On the other hand, with An := {y ∈ R
d : V(y) ≥ n}, and provided V(x) < n, we have

|I Vn(x)| ≤ |I V(x)| +

∫

x+z∈An

|V(x + z)− Vn(x + z)|
k(x, z)

|z|d+α
dz

≤ |I V(x)| +

∫

x+z∈An

|V(x + z)|
k(x, z)

|z|d+α
dz.

This together with (5.2) imply that there exists a constant κ such that

|I Vn(x)| ≤ κ + |I V(x)| ∀ x ∈ K,

and all large enough n. Therefore, letting n → ∞ and using Fatou’s lemma for the term

on the le�-hand side of (5.13), and the dominated convergence theorem for the term on the

right-hand side, we obtain the result.

5.2. A class of operators with variable order kernels

It is quite evident from Theorem 5.2 that the Harnack inequality plays a crucial role in the

analysis. Therefore, one might wish to establish positive recurrence for an operator with a

variable order kernel and deploy the Harnack inequality from [11] to prove a similar result as

in Theorem 5.2.

Theorem 5.3. Let π : Rd × R
d → R

d be a non-negative measurable function satisfying the

following properties, for 1 < α′ < α < 2:

(a) There exists a constant c1 > 0 such that 1{|z|>1}π(x, z) ≤ c1
|z|d+α

′ for all x ∈ R
d;

(b) For some constant c2 > 0, we have

π(x, z − x) ≤ c2 π(y, y − z), whenever |z − x| ∧ |z − y| ≥ 1, |x − y| ≤ 1 ;

(c) For each R > 0, there exists qR > 0 such that

q−1
R

|z|d+α
′ ≤ π(x, z) ≤

qR

|z|d+α
∀x ∈ R

d, ∀z ∈ BR;
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(d) For each R > 0, there exist constants R1 > 0, σ ∈ (1, 2), and κσ = κσ (R,R1) > 0 such

that

κ−1
σ

|z|d+σ
≤ π(x, z) ≤

κσ

|z|d+σ
∀x ∈ BR, ∀z ∈ BcR1 ;

(e) There exists V ∈ C2(Rd) that is bounded from below in R
d, a compact set K ⊂ R

d and a

constant ε > 0, satisfying
∫

Rd
dV(x; z) π(x, z) dz < −ε ∀x ∈ K

c.

Then theMarkov process associated with the above kernel has an invariant probability measure.

The �rst three assumptions guarantee the Harnack property for associated harmonic

functions [11]. Then the conclusion of Theorem 5.3 follows using an argument similar to

the one used in the proof of Theorem 5.2.

Next we present an example of a kernel π that satis�es the conditions in Theorem 5.3. We

accomplish this by adding a nonsymmetric bump function to a symmetric kernel.

Example 5.1. Let ϕ : Rd → [0, 1] be a smooth function such that

ϕ(x) =




1 for |x| ≤

1

2
,

0 for |x| ≥ 1.

De�ne for 1 < α′ < β ′ < α < 2,

γ (x, z) := ϕ

(
2
x + z

1 + |x|

)
(1 − ϕ(4x))(α′ − β ′),

and let

π̃(x, z) :=
1

|z|d+β
′+γ (x,z)

,

π(x, z) :=
1

|z|d+α
+ π̃(x, z).

We prove that π satis�es the conditions of Theorem 5.3. Let us also mention that there exists

a unique solution to the martingale problem corresponding to the kernel π [30, 31]. We only

show that conditions (b) and (e) hold. It is straightforward to verify (a), (c), and (d).

Note that α′ − β ′ ≤ γ (x, z) ≤ 0 for all x, z. Let x, y, z ∈ R
d such that |x− z| ∧ |y− z| ≥ 1

and |x − y| ≤ 1. Then |z − y| ≤ 1 + |z − x|. By a simple calculation, we obtain

π̃(x, z − x) ≤

(
1 +

1

|z − x|

)d+β ′+γ (x,z−x) 1

|z − y|d+β
′+γ (x,z−x)

≤ 2d+β
′ 1

|z − y|d+β
′+γ (y,z−y)

|z − y|−β
′(x,z−x)+γ (y,z−y).

Hence it is enough to show that

|z − y|−γ (x,z−x)+γ (y,z−y) < ̺ (5.14)
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for some constant ̺ which does not depend on x, y, and z. Note that if |x| ≤ 2, which implies

that |y| ≤ 3, then for |z| ≥ 4 we have γ (x, z − x) = 0 = γ (y, z − y). Therefore, for |x| ≤ 2, it

holds that

|z − y|−γ (x,z−x)+γ (y,z−y) ≤ 7β
′−α′

. (5.15)

Suppose that |x| ≥ 2, then |y| ≥ 1. Sincewe only need to consider the casewhere γ (x, z−x) 6=

γ (y, z − y), we restrict our attention to z ∈ R
d such that |z| ≤ 2(1 + |x|). We obtain

log(|z − y|)(−γ (x, z − x)+ γ (y, z − y)) ≤ log
(
3(1 + |x|)

)
‖ϕ′‖∞

2|z|(β ′ − α′)

(1 + |x|)(1 + |y|)

≤ log
(
3(1 + |x|)

)
‖ϕ′‖∞

4(1 + |x|)(β ′ − α′)

(1 + |x|)|x|
.

(5.16)

Since the term on the right-hand side of (5.16) is bounded inR
d, the bound in (5.14) follows

by (5.15)–(5.16).

Next we prove the Lyapunov property. We �x a constant η ∈ (α′,β ′), and choose some

function V ∈ C2(Rd) such that V(x) = |x|η for |x| > 1. Since π̃(x, z) ≤ 1

|z|d+α
′ for all x ∈ R

d

and z ∈ R
d
∗, it follows that

x 7→

∣∣∣∣
∫

|z|≤1
dV(x; z) π̃(x, z) dz

∣∣∣∣

is bounded by some constant on R
d. By (5.5),

∣∣∣∣
∫

Rd
dV(x; z) π(x, z) dz

∣∣∣∣ ≤ c0 (1 + |x|η−α) ∀x ∈ R
d,

for some constant c0. Therefore, in view of (5.4), it is enough to show that, for |x| ≥ 4, there

exist positive constants c1 and c2 such that
∫

|z|>1

(
|x + z|η − |x|η

)
π̃(x, z) dz ≤ c1 − c2|x|

η−α′
. (5.17)

By the de�nition of, γ it holds that

π̃(x, z) =
1

|z|d+β
′ , if |x + z| ≥

3

4
|x|, and |x| ≥ 2, (5.18)

while

π̃(x, z) =
1

|z|d+α
′ , if |x + z| ≤

|x|

4
. (5.19)

Suppose that |x| > 2. Since |x + z| ≤ |x|
4 implies that 3

4 |x| ≤ |z| ≤ 5
4 |x|, we obtain by (5.19)

that∫

|x+z|≤ |x|
4 , |z|>1

(
|x + z|η − |x|η

)
π̃(x, z) dz ≤ −

∫

|x+z|≤ |x|
4

(
1 − 1

4η

)
|x|η

(
4
5

)d+α′ 1

|x|d+α
′ dz

≤ −
(
1 − 1

4η

) (
4
5

)d+α′

|x|η−α
′
∫

|x+z|≤ |x|
4

dz

|x|d

≤ −m1 |x|η−α
′
, if |x| > 2, (5.20)
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for some constantm1 > 0, where we use the fact that the integral in the second inequality is

independent of x due to rotational invariance. Also, |x + z| ≤ 3
4 |x| implies 1

4 |x| ≤ |z| ≤ 7
4 |x|,

and in a similar manner, using (5.18), we obtain

∫

|x+z|≤ 3|x|
4 , |z|>1

(
|x + z|η − |x|η

) 1

|x|d+β
′ dz ≥ −

∫

1
4 |x|≤|z|≤ 7

4 |x|
|x|η 4d+β

′ 1

|x|d+β
′ dz

≥ −m2 |x|η−β
′
, if |x| > 2, (5.21)

for some constantm2 > 0. LetA1 :=
{
z : 1

4 |x| ≤ |x + z| ≤ 3
4 |x|

}
. Since η is positive, we have

∫

{|z|≥1}∩A1

(
|x + z|η − |x|η

)
π̃(x, z) dz ≤ 0.

Thus, combining this observation with (5.3) and (5.21), we obtain

∫

|x+z|> |x|
4 , |z|>1

(
|x + z|η − |x|η

)
π̃(x, z) dz ≤

∫

|x+z|> 3
4 |x|, |z|>1

(
|x + z|η − |x|η

) 1

|z|d+β
′ dz

=

∫

|z|>1

(
|x + z|η − |x|η

) 1

|z|d+β
′ dz

−

∫

|x+z|≤ 3|x|
4 , |z|>1

(
|x + z|η − |x|η

) 1

|x|d+β
′ dz

≤ m3 (1 + |x|η−β
′
) (5.22)

for some constantm3 > 0. Combining (5.20) and (5.22), we obtain

∫

|z|>1

(
|x + z|η − |x|η

)
π̃(x, z) dz ≤ m3 (1 + |x|η−β

′
)− m1 |x|η−α

′
, if |x| > 2. (5.23)

Therefore, (5.17) follows by (5.23), and the Lyapunov property holds.

Proposition 5.4. Let D be any bounded open set in R
d and X be a Markov process associated

with either I ∈ Lα , or a generator with kernel π as in Theorem 5.3. Suppose that for any

compact set K and any open set G, it holds that supx∈KPx(τ (G
c) > T) → 0 as T → ∞. Then

for any invariant probability measure ν of X, we have ν(D) > 0.

Proof. We argue by contradiction. Suppose ν(D) = 0. Let x0 ∈ D and r ∈ (0, 1) be such that

B2r(x0) ⊂ D. By Lemma 4.1 [11, Proposition 3.1], we have

sup
x∈Br(x0)

Px

(
τ(Br(x)) ≤ t

)
≤ κ t, t > 0,

for some constant κ which depends on r. Therefore, there exists t0 > 0 such that

inf
x∈Br(x0)

Px

(
τ(Br(x)) ≥ t0

)
≥

1

2
.
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Let K be a compact set satisfying ν(K) > 1
2 . By the hypothesis there exists T0 > 0 such that

supx∈K Px(τ (B
c
r(x0) > T) ≤ 1/2 for all T ≥ T0. Hence

0 = ν(D) ≥
1

T0 + t0

∫ T0+t0

0

∫

Rd
ν(dx)P(t, x;B2r(x0)) dt

=
1

T0 + t0

∫

Rd
ν(dx)Ex

[ ∫ T0+t0

0
1{B2r(x0)}(Xs) dt

]

≥
1

T0 + t0

∫

K
ν(dx)Ex

[
1{τ(Bcr(x0))≤T0}EXτ(Bcr(x0))

[
1{τ(B2r(x0))≥t0}

∫ T0+t0

τ(Bcr(x0))
1{B2r(x0)}(Xs) dt

]]

≥
1

T0 + t0
ν(K) inf

x∈K
Px

(
τ(Bcr(x0)) ≤ T0

)
inf

x∈Br(x0)
Px

(
τ(B2r(x0)) ≥ t0

)
t0

≥
1

T0 + t0

ν(K)

2
inf

x∈Br(x0)
Px

(
τ(B2r(x)) ≥ t0

)
t0

≥
t0

4(T0 + t0)
> 0.

But this is a contradiction. Hence ν(D) > 0.

5.3. Mean recurrence times

This section is devoted to the characterization of the mean hitting time of bounded open sets

for Markov processes with generators studied in Section 3. The results hold for any bounded

domain D with C2 boundary, but for simplicity, we state them for the unit ball centered at 0.

As introduced earlier, we use the notation B ≡ B1.

For nondegenerate continuous di�usions, it is well known that if some bounded domainD

is positive recurrent with respect to some point x ∈ SDc, then the process is positive recurrent

and its generator satis�es the Lyapunov stability hypothesis in (5.1) [4, Lemma 3.3.4]). In

Theorem 5.4, we show that the same property holds for the class of operators Iα(β , θ , λ).

Theorem 5.4. Let I ∈ Iα(β , θ , λ). We assume that I satis�es the growth condition in (2.5).

Moreover, we assume that Ex[τ(B
c)] < ∞ for some x in SBc. Then u(x) := Ex[τ(B

c)] is a

viscosity solution to

Iu = −1 inSBc,

u = 0 inSB.

To prove Theorem 5.4, we need the following two lemmas.

Lemma 5.2. Let I ∈ Iα(β , θ , λ) and G a bounded open set containing SB. Then there exist

positive constants r0 and M0 depending only on G such that
∫

SBc(x)
Ez[τ(B

c)]
1

|z|d+α
dz <

M0

rα
Ex[τ(B

c)]

for every r < dist(x,B) ∧ r0 and for all x ∈ G \SB, such that Ex[τ(B
c)] < ∞.
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Proof. Let τ̆ := τ(Bc) and τ̂r := τ
(
Br(x)

)
. We select r0 as in Lemma 4.2, and without loss of

generality, we assume r0 ≤ 1. We have

Ex

[
1{τ̂r<τ̆ }EXτ̂r

[τ̆ ]
]

≤ Ex[τ̆ ]. (5.24)

By De�nition 3.1, we have

k(y, z) ≥ λ−1
G > 0 ∀y ∈ Br0(x).

Let A ⊂ SBcr(x) ∩SBc be any Borel set. Using Proposition 5.2, we have

Px(Xτ̂r∧t ∈ A) = Ex


 ∑

s≤τ̂r∧t

1{Xs−∈Br(x),Xs∈A}




= Ex

[ ∫ τ̂r∧t

0
1{Xs∈Br(x)}

∫

A
π(Xs, z − Xs) dz ds

]

≥ λ−1
G Ex

[ ∫ τ̂r∧t

0

∫

A

1

|z|d+α
dz ds

]

≥ λ−1
G Ex[τ̂r ∧ t]

∫

A

1

|z|d+α
dz.

Letting t → ∞, we obtain

Px(Xτ̂r ∈ A) ≥ λ−1
G Ex[τ̂r]

∫

A

1

|z|d+α
dz. (5.25)

By Lemma 4.2, it holds that Ex[τ̂r] > κ1 r
α for some positive constant κ1 which depends on

G. Hence combining (5.24) and (5.25), we obtain

λ−1
G κ1 r

α

∫

SBc(x)
Ez[τ̆ ]

1

|z|d+α
dz ≤ Ex

[
1{Xτ̂r∈

SBc}EXτ̂r
[τ̆ ]

]

≤ Ex[τ̆ ],

where the �rst inequality follows by the standard approximation technique using step func-

tions. This completes the proof.

Lemma 5.2 of course implies that if Ex[τ(B
c)] < ∞ at some point x ∈ SBc, then Ex[τ(B

c)]

is �nite a.e.-x. We can express the bound in Lemma 5.2 without reference to Lemma 4.2 as
∫

SBc(x)
Ez[τ(B

c)]
1

|z|d+α
dz ≤ λG

Ex[τ(B
c)]

Ex[SBc]
.

Now let x′ be any point such that dist(x′, x) ∧ dist(x′,B) = 2r. We obtain

ω(r)

|2r|d+α
inf

z∈Br(x′)
Ez[τ(B

c)] ≤
M0

rα
Ex[τ(B

c)].

Therefore for some y ∈ Br(x
′), we haveEy[τ(B

c)] < C1 Ex[τ(B
c)]. Applying Lemma 5.2 once

more, we obtain
∫

Rd
Ex+z[τ(B

c)]
1

(1 + |z|)d+α
dz ≤ C0Ex[τ(B

c)],

with the constant C0 depending only on dist(x,B) and the parameter λ, i.e., the local bounds

on k. We introduce the following notation.
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De�nition 5.2. We say that v ∈ L1(Rd, s) if
∫

Rd

|v(z)|

(1 + |z|)d+α
dz < ∞.

Thus we have the following.

Corollary 5.1. If Ex0[τ(B
c)] < ∞ for some x0 ∈ SBc, then the function u(x) := Ex[τ(B

c)] is in

L1(Rd, s).

In what follows, without loss of generality, we assume that β < s. Then, by Theorem 3.2,

un(x) := Ex

[
τ(Bn ∩SBc)

]
is the unique solution in Cα+β(Bn \SB) ∩ C(SBn \ B) of

Iun = −1 in Bn ∩SBc,
(5.26)

un = 0 in Bcn ∪ B.

The following lemma provides a uniform barrier on the solutions un near B.

Lemma 5.3. Let I ∈ Iα(β , θ , λ), and

τ̃n := τ(Bn ∩SBc), n ∈ N.

Then, provided that supx∈F Ex[τ(B
c)] < ∞ for all compact sets F ⊂ SBc, there exists a

continuous, non-negative radial function ϕ that vanishes on B, and satis�es, for some η > 0,

Ex [̃τn] ≤ ϕ(x) ∀ x ∈ B1+η \ B, ∀ n > 1.

Proof. The proof relies on the construction of barrier. Let k̂(x, z) = k(x, z) − k(x, 0). By

Lemma 3.2, for q ∈ (α − 1/2,α/2), there exists a constant c0 > 0 such that for ϕq(x) :=

[(1 − |x|)+]q, we have

(−1)α/2ϕq(x) > c0 (1 − |x|)q−α ∀ x ∈ B.

We recall the Kelvin transform from [34]. De�ne ϕ̂(x) = |x|α−dϕq(x
∗) where x∗ := x

|x|2
.

Then by [34, Proposition A.1], there exists a positive constant c1 such that

(−1)α/2ϕ̂(x) > c1 (|x| − 1)q−α ∀ x ∈ B2 \SB.

We restrict ϕ̂ outside a large compact set, so that it is bounded on R
d. By Î , we denote the

operator

Îu(x) = b(x) · ∇u(x)+

∫

Rd
du(x; z)

k̂(x, z)

|z|d+α
dz.

It is clear that |∇ϕ̂(x)| ≤ c2(|x| − 1)q−1 for all |x| ∈ (1, 2), for some constant c2. Also, using

the fact that ϕ̂ is Hölder continuous of exponent q and (3.1), we obtain
∣∣∣∣
∫

Rd
dϕ̂(x; z)

k̂(x, z)

|z|d+α
dz

∣∣∣∣ ≤ c3(|x| − 1)q+θ−α ∀ x ∈ B2 \SB,

for some constant c3. Hence
∣∣Îϕ̂(x)

∣∣ ≤ c4
(
|x| − 1

)(q−1)∧(q+θ−α)
, for x ∈ B2 \SB,
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for some constant c4. Since θ > 0, α > 1, and I = Î − k(x, 0)(−1)α/2, it follows that we can

�nd η small enough such that

Iϕ̂(x) < −4, for x ∈ B1+η \SB.

Let K be a compact set containing B1+η. We de�ne

ϕ̃(x) = ϕ̂(x) 1K(x)+ Ex[τ(B
c)] 1Kc(x).

Since the hypotheses of Lemma 5.2 are met, we conclude that 1Kc(x)Ex[τ(B
c)] is integrable

with respect to the kernel π . For x ∈ B1+η \SB, we obtain

Iϕ̃(x) < −4 +

∫

Rd

(
Ex+z[τ(B

c)] − ϕ̂(x + z)
)
1Kc(x + z) π(x, z) dz

= −4 +

∫

Kc
Ez[τ(B

c)]
π(x, z − x)

π(x, z)
π(x, z) dz −

∫

Rd
ϕ̂(x + z) 1Kc(x + z) π(x, z) dz.

Since the kernel is comparable to |z|−d−α on any compact set, we may choose K large enough

and use Lemma 5.2 to obtain

Iϕ̃(x) < −2 ∀ x ∈ B1+η \SB.

Let

ψ(x) :=

(
1 ∨ sup

z∈K\B1+η

Ez[τ(B
c)]

)(
1 ∨ sup

z∈K\B1+η

1

ϕ̃(z)

)
ϕ̃(x).

Then, Iψ < −2 on B1+η \ SB, while ψ ≥ un on Bc1+η ∪ B. Therefore, by the comparison

principle, un ≤ ψ on B1+η \SB for all n ∈ N and the proof is complete.

Proof of Theorem 5.4. Consider the sequence of solutions {un} de�ned in (5.26). First we note

that un(x) ≤ Ex[τ(B
c)] for all x. Clearly un+1 − un is bounded, non-negative, and harmonic

in Bn \SB. By Theorem 4.1, the operator I has the Harnack property. Therefore

sup
x∈F

∑

n≥1

(
un+1(x)− un(x)

)
< ∞

for any compact subset F inSBc. Hence Lemma 2.3 combined with Fatou’s lemma implies that

supx∈F Ex[τ(B
c)] < ∞ for any compact set F ⊂ SBc.

We write

un = u1 +

n−1∑

m=1

(
um+1(x)− um(x)

)
,

and use the Harnack property once more to conclude that un ր u uniformly over compact

subsets of SBc. Since u ≤ ϕ in a neighborhood of ∂B by Lemma 5.3, and ϕ vanishes on ∂B,

it follows that u ∈ C(Rd). That u is a viscosity solution follows from the fact that un → u

uniformly over compacta as n → ∞ and Lemma 5.2.
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