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1. Introduction

Stochastic differential equations (SDEs) with jumps have received wide attention in stochastic
analysis as well as in the theory of differential equations. Unlike continuous diffusion pro-
cesses, SDEs with jumps have long range interactions and therefore the generators of such
processes are nonlocal in nature. These processes arise in various applications, for instance, in
mathematical finance and control [23, 37] and image processing [26]. There have been various
studies on such processes from a stochastic analysis viewpoint concentrating on existence,
uniqueness, and stability properties of the solution of the SDE [1, 9, 21, 22, 31, 33] as well
as from a differential equation viewpoint focusing on the existence and regularity of viscosity
solutions [6, 7, 18]. One of our objectives in this paper is to establish stochastic representations
of solutions of SDEs with jumps through the associated integro-differential operator.

Let us consider a Markov process X in R? with generator Z. Let D be a smooth bounded
domain in R?. We denote the first exit time of the process X from D by 7(D) = inf{t > 0 :
X; ¢ D}. One can formally say that
(D)

u(x) == ]Ex[ f(Xs) ds:| (1.1)

0
satisfies the equation

Zu=—f inD, u=0 1inD" (1.2)
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where E, denotes the expectation operator on the canonical space of the process starting at x
when ¢ = 0. An important question is when can we actually identify the solution of (1.2) as
the right-hand side of (1.1). WhenZ = A +b, i.e., X is a drifted Brownian notion, one can use
the regularity of the solution and It6’s formula to establish (1.1). Clearly, one standard method
to obtain a representation of the mean first exit time from D is to find a classical solution of
(1.2) for nonlocal operators. This is related to the work in [10] where estimates of classical
solutions for stable-like operators are obtained when D = R?. A future research direction
mentioned in [10] concerns the existence and regularity of solutions to the Dirichlet problem
for stable-like operators. We provide an answer to some of these questions in Theorems 3.1
and 3.2.

One of the main results of this paper is the existence of a classical solution of (1.2) for a
fairly large class of nonlocal operators. We study operators of the form

Tu(x) = b(x) - Vu(x) + /d Vu(x; z) m(x, z) dz, (1.3)
R

where
ou(x;z) == u(x +2) — u(x) — ljz<}Vux) - z, (1.4)

with 14 denoting the indicator function of a set A. Throughout the paper, we use the symbol

7 to denote the “kernel” of the operator. We primarily focus on operators for which 7 takes
k(x,2)
‘Z‘d+rx 4

B, and k(x,-) — k(x,0) satisfies the integrability condition in (3.1). This class of operators,
without the drift term, is essentially the one considered by Bass in [10], and he referred to them
as stable-like, a term which we adopt. Some of the future research directions mentioned in
[10] concern the existence and regularity of solutions to the Dirichlet problem for stable-like
operators. We provide an answer to some of these questions in Theorem 3.1, Corollary 3.1 and
Theorem 3.2. We show in Theorem 3.2 that u defined by (1.1) is the unique solution of (1.2)
in Cl2 (f:”g (D) N C(R%). This result can be extended to include nonzero boundary conditions
provided that the boundary data are regular enough. The proof is based on various regularity
results concerning the Dirichlet problem, including optimal regularity up to the boundary,
which comprise Section 3. We also wish to bring to the attention of the reader two recent
papers [27, 35] which are closely related to our work.

To help the reader, we summarize here the different classes of operators used in the paper.
The most general class considered denoted by £, consists of operators as in (1.3) with
7(x,z) = l’;(l’jfg, @ € (1,2),and with b : R > Réandk : RY x R? — (0,00)
Borel measurable and locally bounded. The subclass of £, with symmetric kernels, i.e.,
k(x,z) = k(x, —z) is denoted by £9™ (Definition 2.2). Results concerning these classes are
in Lemma 2.3. A subclass of these denoted by £, (%), where X is a parameter that controls
the growth of b and k, is studied in Sections 4 and 5.1 (Definition 4.1). The main results of
the paper in Section 3 hold over the class of stable-like operators mentioned earlier, which is
denoted by J,(B,6,1). Here B, 0, and A are parameters (Definition 3.1). This class is then
studied further in Section 5.3. The kernels in this class are not assumed to be symmetric.

Recall that a function / is said to be harmonic with respect to X in D if h(Xiar(D))
is a martingale. One of the important properties of non-negative harmonic functions for
nondegenerate continuous diffusions is the Harnack inequality, which plays a crucial role
in various regularity and stability estimates. The work in [13] proves the Harnack inequality

the form 7 (x,z) = with o € (1,2), and b and k are locally Holder in x with exponent
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for a class of pure jump processes, and this is further generalized in [11] for nonsymmetric
kernels that may have variable order. A parabolic Harnack inequality is obtained in [8] for
symmetric jump processes associated with the Dirichlet form, with a symmetric kernel.
Sufficient conditions on Markov processes to satisfy the Harnack inequality are identified [38].
The Harnack property is also established for jump processes with a nondegenerate diffusion
part in [5, 24, 39]. A Harnack-type estimate for harmonic functions that are not necessarily
non-negative in all of R? is established in [29]. Nevertheless, the Harnack property is quite
delicate for nonlocal operators, and important counterexamples can be found in [17, 28].

In this paper, we prove a Harnack inequality for harmonic functions relative to the operator
7 in (1.3) when k and b are locally bounded and measurable, and either k(x, z) = k(x, —z), or
k satisfies (3.1) (Theorem 4.1). The proof is based on verifying the sufficient conditions [38],
through a series of lemmas. So, even though in a sense it lacks novelty, we include the proof
in the paper since we use the Harnack property in Section 5. Let us also mention that the
estimates obtained in Section 4 may also be used to establish Holder continuity for harmonic
functions by following a similar method as in [12]. However, we do not pursue this here.

In Section 5, we study the ergodic properties of the Markov process such as positive
(Harris) recurrence, invariant probability measures, etc. We provide a sufficient condition
for positive recurrence and the existence of an invariant probability measure (Theorems 5.1
and 5.2). This is done through imposing a Lyapunov stability condition on the genera-
tor. Following Hasminskii’s method, we establish the existence of an invariant probability
measure for a fairly large class of processes. We also show that one may obtain a positive
recurrent process using a nonsymmetric kernel and no drift (Theorem 5.3). In this case, the
nonsymmetric part of the kernel plays the role of the drift. Let us mention here that in [41] the
author provides sufficient conditions for positive recurrence of a class of jump diffusions and
this is accomplished by constructing suitable Lyapunov-type functions. However, the class
of kernels considered in [41] satisfies a different set of hypotheses than those assumed in this
paper and in a certain way lies in the complement of the class of Lévy kernels that we consider.
Stability of one-dimensional processes is discussed in [40] under the assumption of Lebesgue-
irreducibility. Last, we want to point out one of the interesting results of this paper, and this is
the characterization of the mean hitting time of a bounded domain as a viscosity solution of
an exterior Dirichlet problem (Theorem 5.4). This is established for the class of operators in
Definition 3.1 and can be viewed as a partial converse to Theorem 5.1. Therefore, provided
that the drift b(x) and the numerator k(x, z) of the kernel have at most affine growth in x (2.5),
Theorems 5.1 and 5.4 imply that a Markov process with generator in the class of stable-like
operators studied in Section 3 is positive recurrent if and only if the Lyapunov criterion in
Definition 5.1 holds. For nondegenerate diffusions, this is of course a well-known result due
to Has'minskii.

The organization of the paper is as follows. In Section 1.1, we introduce the notation used
in the paper. In Section 2, we introduce the model and derive some basic results. Section 3
is devoted to the regularity of solutions to the Dirichlet problem. In Section 4, we establish
the Harnack property as mentioned earlier. Section 5 establishes connections between the
recurrence properties of the process and the solutions of the nonlocal equations.

1.1. Notation

The standard norm in the d-dimensional Euclidean space R? is denoted by | - |, and let R? :=
R\ {0}. The set of nonnegative real numbers is denoted by R, N stands for the set of natural
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numbers, and 14 denotes the indicator function of a set A. For vectors a, b € R, we denote
the scalar product by a - b. We denote the maximum (minimum) of two real numbers a and
bbyavb(anb).Letat :=av0anda := (—a) Vv 0. By |a] ([a]), we denote the largest
(least) integer less than (greater than) or equal to the real number a. For x € R and r > 0,
we denote by B,(x) the open ball of radius r around x in R¥, while B, without an argument
denotes the ball of radius r around the origin. Also in the interest of simplifying the notation,
we use B = By, i.e., the unit ball centered at 0.

Given a metric space S, we denote by B(S) and B,(S) the Borel o -algebra of S and the
set of bounded Borel measurable functions on S, respectively. The set of Borel probability
measures on S is denoted by P(S), || - ||[Tv denotes the total variation norm on P(S), and §,
the Dirac mass at x. For any functiong : S — R4, we define Iglloo :=sup,cg 180

The closure and the boundary of a set A C R? are denoted by A and 94, respectively, and
|A| denotes the Lebesgue measure of A. We also define

T(A) :=inf {s > 0: X; ¢ A}.

Therefore, T(A) denotes the first exit time of the process X from A. For R > 0, we often use
the abbreviated notation tg := 7(BR).

We introduce the following notation for spaces of real-valued functions on a set A ¢ R
The space LP(A), p € [1, 00), stands for the Banach space of (equivalence classes) measurable
functions g satisfying [, |g(x)|P dx < 00, and L*(A) is the Banach space of functions that are
essentially bounded in A. For an integer k > 0, the space Ck(A) (C®(A)) refers to the class of
all functions whose partial derivatives up to order k (of any order) exist and are continuous,
C’C< (A) is the space of functions in Ck(A) with compact support, and C]g (A) is the subspace of
Cck(A) consisting of those functions whose derivatives up to order k are bounded. Also, the
space Ch"(A), r € (0,1], is the class of all functions whose partial derivatives up to order k
are Holder continuous of order r. For simplicity, we write C%(A) = C'(A). For any y > 0,
C" (A) denotes the space C Lrly=Lrl(A), under the convention Ck°(A) = Ck(A).

In general, if X' is a space of real-valued functions on a domain D, X, consists of all
functions g such that gg € X for every ¢ € C°(D).

For a non-negative multiindex 8 = (B1,...,B4), let |B| := p1 + --- + Bgand D? :=
8{31 ---agd,where 9; = 3%_.

Given a domain D with a C2 boundary, we define dy := dist(x, 3D) and dyy := min(dy, dy),
for x,y € D. For u € C(D) and r € R, we introduce the weighted norm

[[u]](()tl)) = sup dy. |u(x)l,
xeD

and, for k € Nand § € (0, 1], the seminorms

>

(dk+8+r [DPu(x) — Dﬂ“()’)|)
v |x — yl° '

[[u]],(g) = sup sup d§+r|Dﬂu(x)
|Bl=k x€D

[Iu]],(cg;D ‘= sup sup
|B1=k xyeD

Forr € Rand y > 0, with y 4 r > 0, we define the space

&V (D) := {u € C"(D) N C(RY) : u(x) = 0 forx € D", |ull]), < oo},
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where
0 %
r T T
lullysp = Y Tlip + 14011y 11y
k=0
; (rn _ (r) ; n ()
under the convention |ulyp, = [ully,. We also use the notation |ul, ., = llul, ., for

8 € (0,1]. It is straightforward to verify that ||u||§/r;)D is a norm, under which ‘5)@ (D) is a

Banach space.
If the distance functions d or dy, are not included in the above definitions, we denote the
corresponding seminorms by [ - J.p or [ - Jxs;p and define
k
||u||ck,5(1)) = Z[“](;D + [ulks;D-
£=0

Thus, ||ullcr (p) is well defined for any y > 0, by the identification C¥ (D) = C lrly=Llrl(A).
We recall the well-known interpolation inequalities [25, Lemma 6.32, p. 30]. Let u €
C%f (D). Then for any ¢ there exists a constant C = C(g, j, k, r) such that

0 0 0
[ullp < Clluleh + & Tull g

jysD — : ;
0 0 0 ]—0,1,2,0§l3a)/51,]+)/<k+/3
Il < Clullgh + & Tulihp

Throughout the paper s € (1/2,1) is a parameter, and o = 2s.

2. Preliminary results

Letb: R - R%and 7 : R? x RY — R, be two given measurable functions. We define the
nonlocal operator Z as follows:

Tu(x) := b(x) - Vu(x) —i—/ Vu(x; z) m(x, z) dz, (2.1)
R4
with du as in (1.4). We always assume that
/ (2P AD7m(x2)dz < o0 VxeR%
R4

Note that (2.1) is well defined for any u € Ci(Rd). Let @ = D([0, 00), RY) denotes the
space of all right-continuous functions mapping [0, co) to R%, having finite left limits (cadl4g).
Define X; = w(t) for w € Q and let {F;} be the right-continuous filtration generated by the
process {X;}. In this paper, we always assume that given any initial distribution vy, there exists

a strong Markov process (X, P,,) that satisfies the martingale problem corresponding to Z,
ie,Py,(Xo € A) =v(A) forall A € B(R?) and for any g € Ci(Rd),

t
g(Xy) — g(Xo) — /O Tg(X,)ds

is a martingale with respect to the filtration {F;}. We denote the law of the process by Py
when vy = §,. Sufficient conditions on b and 7 to ensure the existence of such processes
are available in the literature. Unfortunately, the available sufficient conditions do not cover a
wide class of operators Z. We refer the reader to [9] for the available results in this direction
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as well as to [2, 14, 21, 22, 31, 33]. When b = 0, well posedness of the martingale problem is
obtained under some regularity assumptions on 7 in [1].

Let us mention once more that our goal here is not to study the existence of a solution
to the martingale problem. Therefore, we do not assume any regularity conditions on the
coeflicients, unless otherwise stated.

We recall the definition of a viscosity solution [6, 18].

Definition 2.1. Let D be a domain with C? boundary. A function u : R? — R which is upper
(lower) semicontinuous on D is said to be a subsolution (supersolution) to

Zu=—f inD,
u=g inDS
where 7 is given by (2.1), if for any x € D and a function ¢ € C%(R?) such that ¢ (x) = u(x)
and ¢(2) > u(z) (go(z) < u(z)) on R4\ {x}, it holds that
To(x) = —f(x) (Te(x) < —f(x), ifxeD,
while, if x € dD, then
max (Zo(x) + f(x),g(x) — u(x)) = 0 (min (Ze(x) + f(x),g(x) — u(x)) < 0).
A function u is said to be a viscosity solution if it is both a sub and a supersolution.

In Definition 2.1, we may assume that ¢ is bounded, provided u is bounded. Otherwise, we
may modify the function ¢ by replacing it with u outside a small ball around x. It is evident
that every classical solution is also a viscosity solution.

2.1. Three lemmas concerning operators with measurable kernels

Lemma 2.1. Let D be a bounded domain. Suppose X is a strong Markov process associated with
T in (2.1), with b locally bounded, and that the integrability conditions
sup / lz| m(x,2)dz < 00, and inf / |27 (x,2) dz = 00 (2.2)
xeK J{lz|>1} xeK JRd
hold for any compact set K. Then sup,.p Ex[((D))™] < oo, for any positive integer m.

Proof. Without loss of generality, we assume that 0 € D. Otherwise we inflate the domain
to include 0. Let d = diam(D) and Mp = sup,.p |b(x)|. Recall that B denotes the ball of
radius R around the origin. We choose R > 1V 2(d V Mp), and large enough so as to satisfy
the inequality

inf lz)? 7 (x,2) dz > 1 + 2dMp + 2d sup / |z| T (x, 2) dz.
xeD /By xeD J{1<|z|<R)

Let ¢ € Ci(Rd) be a radially increasing function such that ¢(x) = |x|? for |x| < 2R and
@(x) = 8R? for |x| > 2R + 1. Then, for any x € D, we have

To(x) = bx) - Vo(x) + /d V¢ (x;2) m(x,z) dz
R
> —2dMp + / ((p(x 4+2) — @) — Vo(x) - z) w(x,z)dz
Br

+/ V(p(x)-zn(x,z)dz+/ ((p(x+z)—(p(x))71(x,z) dz.
{1<|z|<R} B

R
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Also, for any |z| > R, it holds that |x + z| > d > |x|. Therefore @(x 4+ z) > @(x). Hence

To(x) > —2dMp +/ (Vgo(x) ~z) 7w (x,z)dz
{1<|z|=R}

—I—/ ((p(x+ z) — p(x) — Vo(x) -z) w(x,2)dz
Br

A%

—2dMp — 2d |z| m(x,z) dz + lz|? 7 (x, z) dz
{1<|z|<R} Br
1.

v

Thus

T(D)At
IEx[(/)(Xr(D)/\t)] —ox) = Ex|:/-0 Lo(Xs) d5:|
> E[t(D)At] VYxeD.

Letting t — 00, we obtain E,[t(D)] < 8R2. Since x € D is arbitrary, this shows that
sup Ex[t(D)] < SR

xeD
We continue using the method of induction. We have proved the result for m = 1. Assume
that it is true for m, i.e., M, := sup,.p Ex[(7(D))™] < oo. Let h(x) = My,¢(x) where ¢ is
defined above. Then from the calculations above, we obtain

Ex[h(Xepya)] — h(x) > Ex[My(t(D) AH)] Vx € D. (2.3)
Denoting t (D) by 7, we have

B o0
Ey [t = E, / (m+1)(t = )" 1<y dt}
L JO

B o0
=FE, / (m+ DEx[(r — ™ Ljp<ry | Fine] dt}
L JO

- 00
=E, / (m+ 1)1{t/\r<r}]EXMr [t™] dti|
L JO

oo
f Sup ]Ex[‘[m] Ex[/ (m + l)l{t/\‘L’<‘C} dti|
xeD 0

< Mpu(m+ 1) Eyf7],

and in view of (2.3), the proof is complete. O

Boundedness of solutions to the Dirichlet problem on bounded domains and with zero
boundary data is asserted in the following lemma.

Lemma 2.2. Let b and f be locally bounded functions and D a bounded domain. Suppose w
satisfies (2.2). Then there exists a constant C, depending on diam(D), sup, ., |b(x)| and 7,
such that any viscosity solution u to the equation

Zu=f inD,
u=0 inD"

satisfies [[ulloo < C sup,ep [fX)].
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Proof. As shown in the proof of Lemma 2.1, there exists a non-negative, radially nondecreas-
ing function £ € Ci(Rd) satisfying Z&(x) > sup,p |f(x)| forall x € D.Let M > 0 be the
smallest number such that M — & touches u from above at least at one point. We claim that
M < ||&|lco. If not, then M — £(x) > O for all x € D°. Therefore M — & touches u in D
from above. Hence by the definition of a viscosity solution, we have Z(M — £(x)) > f(x),
or equivalently, Z&(x) < —f(x), where x € D is a point of contact from above. But this
contradicts the definition of £. Thus M < ||&||s0. Also by the definition of M, we have

sup u(x) <sup M —&(x)) <M =< [|§]lo.
xeD xeD

The result then follows by applying the same argument to —u. O

Definition 2.2. Let £, denotes the class of operators Z of the form

Zu(x) == b(x) - Vu(x) + / Vu(x; z) M dz, ue Ci(]Rd), (2.4)
R |z|d+

with b : RY - R%and k : R? x R? — (0, 00) Borel measurable and locally bounded, and
a € (1,2). We also assume that x > sup,pa kl(x, 2) is locally bounded. The subclass of
£y consisting of those 7 satisfying k(x, z) = k(x, —z) is denoted by eom.
Consider the following growth condition: There exists a constant Ky such that
x-b(x) V |x|k(x,2) < Ko (1+ |x|*) VxzeR (2.5)

It turns out that under (2.5), the Markov process associated with Z does not have finite
explosion time, as the following lemma shows.

Lemma2.3. Let T € £y and suppose that for some constant Ko > 0, the data satisfy the growth
condition in (2.5). Let X be a Markov process associated with Z. Then

IPx( sup | X <oo) =1 VT > 0.

se[0,T]

Proof. Letd € (0,0 —1)and ¢ € C2(R%) be a nondecreasing, radial function satisfying
o(x) = (1 + |x|‘3) for|x| > 1, and ¢(x)>1 for|x| <.

We claim that

k(x,z)
‘ \/l;d D(p(X;Z) W dz

for some constant k. To prove (2.6), first note that since the second partial derivatives of ¢

<k (14 %%  VxeRY, (2.6)

are bounded over RY, it follows that Jio1<1 09(x:2) Il;(lzf‘)” dz| is bounded by some constant. It

is easy to verify that, provided z # 0, then
|lx+2° = |xI°| < 2812 Ix°7!,  if x| > 2]z, o)
|lx +21° — |x°| < 8lz°, if|x| < 2[zl, '

for some constant «. By the hypothesis in (2.5), for some constant ¢, we have

k(x,z) <c(1+ |x]) VxeR% (2.8)
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Combining (2.7)-(2.8), we obtain, for |x| > 1,

1

|Z|d+a dz

k(x,z _
‘f 00(x;2) (d+j dz‘ < / 28¢(1+ |x]) 1x1° " 2|
lz|>1 |z| 1<|zj<

+/ 8c(1+ |x]) |z/° dz
‘Z|>|X|

Ix |Z|d+a
2

34+a—§

oa—34

< K<d>(az—fcl (L + Jx]) [P 4+ 2 Ca+ 12 |x|“—“)

for some constant « (d), thus establishing (2.6).
By (2.6) and the assumption on the growth of b in (2.5), we obtain

Zo(x)| < Ki p(x) VxeRY,

for some constant K;. Then, by Dynkin’s formula, we have,

tATy
Ex[(P(Xt/\rn)] = @(x) + Ex |:‘/0 Zo(Xs) d5i|
tATy
<o) + K Ey [/ 10.8) ds:|
0

t
< 90 + K /0 Ex [¢(Xoney)] ds,

where in the second inequality, we use the property that ¢ is radial and nondecreasing. Hence,
by the Gronwall inequality, we have

Ex[go(XtMn)] < p(x) Kt viso0, VneN. (2.9)
Since Ex[go(X,Mn)] > ¢(n) Py(t, < t), we obtain by (2.9) that

Px( sup |Xs| > ”) =Pu(t, <T)

s€[0,T]
< ﬂeKlT VT >0,VneN,
1+ nd
from which the conclusion of the lemma follows. O

3. The Dirichlet problem for a class of stable-like operators

The class of operators studied in this section is defined as follows.

Definition 3.1. Let A : [0,00) — (0, 00) be a nondecreasing function that plays the role of
a parameter. For a bounded domain D define Ap := sup {A(R) : D C Br41}. Let 34 (8,6, 1),
where 8 € (0,1], 0 € (0,1), denotes the class of operators Z as in (2.4) that satisfy, on each
bounded domain D, the following properties:

(a) @ € (1,2).

(b) b is locally Holder continuous with exponent 8 and satisfies

Ib(x)] <ip and |b(x) —b()| < Aplx—yl’ Vx yeD.
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(c) The map k(x, z) is continuous in x and measurable in z and satisfies
lk(x,2) —k(3,2)| <Aplx—y|?  Vx,yeD, VzeR?
Ap! <k(x,z) <ip VxeD, ¥zeR‘

(d) For any x € D, we have

/d (121"~ A1) kCo2) — kx5Ol (3.1)
R

|z|d+a

Remark 3.1. It is evident that if |k(x, z) — k(x,0)| < ):Dlzl‘g/ for some 6" > 6, then property
(d) of Definition 3.1 is satisfied.

We study the Dirichlet problem

Zu=f inD,
(3.2)
u=20 inD",
where Z € J, (8,6, 1), f is Holder continuous with exponent 8, and D is a bounded open set
with a C? boundary.
In this section, it is convenient to use s = % as the parameter reflecting the order of the
kernel. Throughout this section, we assume s > 1/2.
We may view Z as the sum of the operator Z, defined by

k(x, 0)

| |d+25 dz,

To u(x) := b(x) - Vu(x) + / Ww(x; z) ——

which is uniformly elliptic on every bounded domain, and a perturbation that takes the form

~ i ' k(x,z) — k(x,0)
Tu(x) := /l‘%d u(x; 2) —|z|d+25 dz.

We are not assuming that the numerator k is symmetric, as in the approximation techniques
in [15, 19, 32]. Moreover, these operators are not addressed in [20] due to the presence of the
drift term.

Recall the definition of weighted Holder norms in Section 1.1. We start with the following
lemma.

Lemma 3.1. Let D be a C? bounded domain in R? and r € (0,s]. Suppose k : R x R? - R
and the constants B € (0,1), 0 € (O, 2s—1 A ,3), and Ap > 0 satisfy parts (c) and (d) of

Definition 3.1. We define
~ i k(x,2) B
k(x, z) :== c(d, 2s) (k( 0 1),

HIv](x) :=/ ov(x Z)|(|d+zz)s dz,

where c(d, 2s) = c(d, ) is the normalization constant of the fractional Laplacian.
Suppose that either of the following assumptions hold:

i B=r
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(i) B e(r,1)and kl(;l"f) is bounded on (x,z) € D x R%, or, equivalently, it satisfies

|k(x,2) — k(x,0)| < Aplel’ V¥xeD, ¥z e RS, (3.3)
for some positive constant AD.
Then, ifv € CK( ) o (D), we have
2 0 -
[HIGy " < Mo VIS ). s

and if v € (Hrf)} o (D), it holds that H[v] € %(zs_r_e)(D), and

|(25 r— 0)

[Hiv| <My VIS s o (3.4)

for some constants My and My which depend only on d, s, B, r, and D.
Moreover, over a set of parameters of the form {(r, B) : r € (¢,1), B € (0, 1)}, constants My
and M, can be selected which do not depend on B or r, but only on ¢ > 0.

Proof. Let x € D and define R = %. We suppose that R < 1. It is clear that k satisfies (3.1),
and that it is Holder continuous. Abusing the notation, we will use the same symbol Ap as a
constant in the estimates. We have,

v 2)| < 12X O RHO= ]S, VzeB (3.5)

Also, since |z| > R on B, we obtain
. < ( T’) Rf*l (—T) 1 2 1
[ov(x;2)| < (l2I" [V],.p + Izl [(vl1.p' ) Lyai<1y + 2 Ivllem) Ljz=1
25—
< (12 A 1)* R + 1)) + 2 1vlew L=y (36)

for all z € Bj. Integrating, using (3.1), and (3.5)-(3.6), as well as the Hélder interpolation
inequalities, we obtain

HIVI)] < 1 @d)™ 072 v]5,7), , VxeD,
for some constant c;. Therefore, for some constant My, we have
2 0 _
IR < Mo 1vIS . (37)

Next consider two points x, y € D.If |[x— y| > 4d,,, then (3.7) provides a suitable estimate.
Indeed, if x, y € D are such 4dxy < |x — y|, then, for any r, we have

v b, PN = PO o= o) — Hivio|
|x — yIP
1
gﬂﬁ’ﬂmmm+ﬁﬁH*mmw
2M, ;
< 25 Ws b

So it suffices to consider the case |x — y| < 4d,y. Therefore, we may suppose that x is as

above and that y € Br(x). Then dy, < 4R. With 7 (x,2) := lk?;‘fgs , We write

F(x,y;2) = 0v(x;2) T (x,2) — 0v(y;2) T (3, 2)
= Fi(x%,y32) + F2(x, 33 2),
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with
T(x,2) — T (9, 2)
Fi(x,y;2) == <0V(x; z) + Dv(y;z)) —
F(x,y32) = (DV(X; z) — ov(y; z)) w

We modify the estimate in (3.5), and write
|Ov(x; z) + ov(y; z)| <2|z|Yo R"TY0 [[v]]g,;g, ifz € Bg,

with o = 2s+ B8 —60) A (s+ 1), and
[ovs2) + ov(2)| =2 (12 VD) + 12 R 19D ) Ly + 41lca) Va1,
if z € B;. We use the Holder continuity of x > k(x, -) to obtain

[ Fpnde < ar -yt )
R4
for some constant c;. We write this as
R2s—T— 0 Bf]RdFl(x’y’Z)dz R25 r—pB ﬁfRdFl(x’y’Z)dz
x — 1P |x — 1P

<alvlSD. (3.8)

For F,, we use
1
mW(xz) =z / (Vv(x + tz) — Vv(x)) dt,
0

combined with the following fact: If ¢ € C¥(B) for y € (0, 1] and x, y, x + z, y + z are points
in Band § € (0,y), then adopting the notation Agx(z) := ¢(x + z) — ¢(x), we obtain by
Young’s inequality, that
|Agpx(2) — Agy(2)] _v=-3$ Apx(@D)| + [Agy(2)] | 8 [Agxiz(y — 0| + [Apx(y — X)]
27l —yl® Ty |z|¥ 1% lx — yI¥
<2[flys-
The same inequality also holds for y € (1,2) and § € (y — 1, 1). For this, we use

|Apx(2) — Agy(2)]

217 =T = P
L= s 12| (Vo + 12) = Voo + 12) dif
Sy x —yI" 1 Iz
o=y | (Vo0r+ 24 10— ) = Vo + tx — ) &
2—y |z[7 =1 |x —

Therefore, in either of the cases (i) or (ii), we obtain

|Vv(x + t2) — Vv(x) — Vv(y + t2) + Vv | < 2182277 x — y1P [VVlsg—148; Baro)
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fort € [0,1] and

2 _ e _
[ov(s2) —ov(2)| = S 12 fx — yIf RO V5t s g0 YZ€Br (39)

-6

Concerning the integration on B, we use

[v(x) = v(y) — 2+ (Vv(x) — Vv() 17121
< =y 1PV P I + (12 A1) = 1P diy T

<6 (12l A1) e =y RHOTPE ) Yz e B, (3.10)

for some constant c3, and
V(x+2) — vy + 2| < 1x— 9P ez A dy ) PG, VzeBy  (B11)

Integrating the terms on the right-hand side of (3.9)-(3.10) is straightforward. Doing so, and
using the fact that 1 + 8 < 2s + B — 6, one obtains the desired estimate.
Concerning the integral of |v(x + z) — v(y + z)| on B, we distinguish between the cases

(i) and (ii). Let 7 (2) := w In case (i), we have

/ V(x +2) —v(y +2)| T (2) dz
By

< lx =y (V1) /B 7 (2)dz

R

S |x _y|ﬂ Rf—/g R@—ZS niv]]i;)r) \/l;d (|Z| A diam(D))ZS_e ~

7 (2) dz, (3.12)
where we use the fact that |z| > R on Bj. In case (ii), the integral is estimated over disjoint
sets. We define

Zyy(a) == {z € RY . dxtz N dyy, < a} forae (O,R).

Since dy; A dyt, € [R,diam(D)] for x € Zjﬁy(R), integration is straightforward, after
replacing (dy4; A d},+z)r_‘3 in (3.11) with R"—#. Thus, similarly to (3.12), we obtain

/ V(x+2) —v(y +2)| T (2) dz
BS, N Z5,(R)
< =yl R ] / 7(2) dz
BN Z5,(R)

25—0 ~

< lx— yP R0 / (el A diam(D)* " F@) de.  (3.13)
T UR

Since Z,y(R) C B, it remains to compute the integral on Z,,(R). For ¢ > 0, we denote by
D, the e-neighborhood of D, i.e.,

D, := {z € R?: dist(z,D) < ). (3.14)
We also define
D(¢) :={z € D : dist(z, dD) > s}.
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In other words, IND(S) = (D). We will make use of the following simple fact: There exists a
constant Cy, such that for all x € D and positive constants R and ¢ which satisfy 0 < ¢ < R

and d, > 3R, it holds that
d C
/ B —Zd < 08 (3.15)
x+zeD:\D(e) 12l R

Observe that the support of [v(x + z) — v(y + 2)| in Z,,(R) is contained in the disjoint union
of the sets

Zy((R) = {2 € Zy(R) : dysz A dyiz > 0},
and
é\xy = {Z € RY . X+ze€ D|x_),| \Dory+z¢€ Dlx—y\ \D}

We also have the bound |[v(x +2) — v(y + 2)| < [x—y|" [[v]]( D forz e gxy. Therefore, using
(3.15), we obtain

/ V(x4 2) —v(y + 2)| F(2)dz < |x — y|" [[v]]( r) Ri—2s /A 121>~ % (2) dz
Z.

Xy Z Xy

dz
< |x }/| [[V]]( V)RQ 2s /A —
z, lzl

<23p Colx =y vl RO R
< 2ip Colx — ylf R[] ). (3.16)
To evaluate the integral over gxy (R), we define
lv(x +2) —v(y + 2)|
e =718 [Vl

G(z) :=

By (3.11), we have
lz€ Z4(R): G(z) = h} C {z e R : x+z € D (h77)} U {z e R : y+ z € D (h77)}.
Therefore, by (3.15), we obtain

7({z € Zy((R) : G(z) > h}) < 2R~ /A 21*7% 7 (2) dz

2
. -1
<2ipCy RO2—1p5=r,

It follows that

/~ G(z) 7 (2)dz = /Ooy?({z € Zy(R) : G(z) > h})dh
Zy(R) 0

<2ApCoR'™7 / hB-r dh
—p

2B =D 5 CoREI R, (3.17)
1+r—/3
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Thus, combining (3.9)-(3.10) with (3.12) in case (i), or with (3.13), (3.16), and (3.17) in
case (ii), and using the Holder interpolation inequalities, we obtain

F>(x, y;2) dz _
R0 Rb Jre < (=) 3.18
|x _ y|l3 =04 [[V]]25+/3*(9;D ( )
for some constant cy.

Therefore, by (3.7), (3.8), and (3.18), we obtain (3.4), and the proof is complete. O

Remark 3.2. It is evident from the proof of Lemma 3.1 that the assumption in (3.3) may be
replaced by the following: There exists a constant Mp, such that for all x € D and positive
constants R and ¢ which satisfy 0 < ¢ < R and dy > 3R, it holds that

[ Rmag g

+zeD D) 121970 R

The same applies to Theorems 3.1 and 3.2 which appear later in this section.

Recall that the fractional Laplacian (—A)* is defined by

(=A)’u(x) = c(d, 29) PV / u) — u(z)

Rd |Z|d+25

where PV denotes the Cauchy principal value. To proceed, we need certain properties of
solutions of (—A)*u = f in a bounded domain D, and u = 0 on D, with f not necessarily in
L°° (D). We start by exhibiting a suitable supersolution.

Lemma 3.2 (Supersolution). For any q € (s —1/2, s), there exists a constant ¢o > 0and a
radial continuous function ¢ such that

(—AY(x) > dT™>, inBy\ By,

=0 inEl,
0<¢ <co(lx| —1)9 inBy\ By,
1<¢<c in R\ By,

where d,, = dist(x, 9B7).

Proof. In view of the Kelvin transform [34, Proposition A.1], it is enough to prove the
following: for q € (s — 1/2,5), and with ¥ (x) := [(1 — |x|)"]4, we have

(=AY (x) >c; (1— |x97%, forallx € By, (3.19)

for some positive constant c;. To prove (3.19), let xy € B;. Due to the rotational symmetry,
we may assume xy = rej for some r € (0,1). Let e} denotes the projection onto the first
coordinate in RY, i.e., w1 (z1,. . .,24) = (z1,0,...,0). Then, using the fact that (1 — |z|)T <
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(1 — |1 (2)|) T, we obtain

—(=A)'¥(x0) = c(d, 25) PV/Rd (¥ (x0 +2) — 1ﬂ(xo))| |d+23 dz
1
= c(d25) PV/Rd<[(1 —lre+2) -1 —n) )| i &2

< ¢(d, 2s) PV/Rd<[(1 - |re1+w1(z)|) *=a-n )| T dz

Note that for y € R, y # 0, we have

/ € _ / dz
B 24 R) e D Jrer ()
by a straightforward change of variables. Therefore, integrating with respect to (22, . .., za),

we obtain, for some positive constant c,, that

(=AY xo) < & PV/R([U S )| |1+2§ dy

<o PV/R([a—r_yﬁ] — -7 )| |1+sty

=co(l—rT* PV/]R([(l -»*T- )| T8 dy.

In the inequality above, we have used 1 — |y| < 1 — y, and in the last equality, the change of
variables y = (1 — r)y. Define

1 e | 0 1
A(g) =PV| (11 - +q—1—d=Pv/ —d —/ ——dy,
@ /R (K »l )MHZS y T —ys Y

0 |1
o q_l
Y
B()::PV/ X 4.
q 0 |1_y|1+2s y

We need to show that A(q) < 0 for g close to s. It is known that A(s) = 0 [34, Proposition 3.1].
Therefore, it is enough to show that B(q) is strictly increasing for g € (s — 1/2,s). We have

1—e q_1 00 a_1
B(g) = lim - . 5
@ el\o |:/0 11—y dy—i—/ EVIESE d}’j| (3.20)

1+e |1
It is straightforward to show that

1
) e y1—1
hm/ ————dy=0.
0 S Ty

and using this, we can combine the integrals in (3.20) to write

1
e (1 — D1 —y* 179 B )
B(g) = li
(@ = 51{[}) |1_y|1+25 dy = A - |1+2s

Since |25 — 1 — g| < 1, it follows that B(q) is finite. Direct differentiation then shows that,
provided q > 2s — 1 — g, we have

d
d—q[(y‘f —DA—y* D] =1 -y Dlogy >0 Vye(0,1),

and hence B(q) is strictly increasing on g € (s — 1/2,s). This completes the proof. O
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In the lemma that follows d, = dist(x, D), as defined in Section 1.1.

Lemma 3.3. Let D be a C* bounded domain in RY, and f: D — R be a continuous map

satisfying sup,p |f(x)|dS < oo for some § < s. Then there exists a viscosity solution u €
C(RY) to

(—A)Y’u=—f inD,

3.21
u=0 inD". (3.21)
Also, for every q < s, we have
u| < G [fJO)d! vxeD, (3.22a)
8
lullcas, < €t [ TS0 (3.22b)

for some constant C, that depends only on s, 8, q and the domain D. Moreovet, since u = 0 on
DY, it follows that ||u| cqray < 00 forallq <.

Proof. By Corollary 4 in [36] for each f € C?(R¥), there exists a viscosity solution u € C(R%)
to (3.21). Therefore, the same is the case for f € C(D) N L°°(D) by [34, Remark 2.11]. Given
f as in the statement of the lemma, let f,, := (f A n) v (—n), for n € N, and u, be the
corresponding viscosity solution to (3.21).

Comparing u, (and —u,) to the supersolution in Lemma 3.2, we deduce that there exists
a compact set K; C D such that

U, (x)] < Iq( sup |un(x)| + [[fn (()(?1))) dl vxe K{,VneN, (3.23)

xeKy

where the constant «; depends only on K; and D. Also, using the same argument as in
Lemma 2.2, we can show that for any compact K, C D, there exists a constant 7, depending
on D, and satisfying

sup |uy(x)| < K2< sup |fu(x)| + sup Iun(x)|> VneNlN. (3.24)
x€Ky x€Ky xED\Kz

We choose K; and K; C K; such that SUP,ek:nD |dl| < ﬁ Then from (3.23)-(3.24), we
obtain
)
sup |un (0l < &3 [fulley ¥ eN, (3.25)

xEKz

for some constant x3. Combining (3.23) and (3.25), we obtain

ua@)| < C [fu] ) dl VxeDVneN. (3.26)

Also, by following the argument in the proof of [34, Proposition 1.1], we obtain
lunllcasy < Ci1 sup d [fu(x)] VneN. (327)
xeD
Since the right-hand side of (3.27) is bounded uniformly in # € N, we may select a

subsequence, also denoted as n, along which u, converges to some function u € C1(D) for
any g < s. Taking limits as n — oo in (3.26) and (3.27), we obtain (3.22a) and (3.22b),
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respectively. The stability property of viscosity solutions [18, Lemma 4.5] implies that u is a
viscosity solution. This completes the proof. O

Our main result in this section is the following.

Theorem 3.1. Let Z € J25(B,6, 1), f be locally Holder continuous in RY with exponent B, and
D be a bounded domain with a C* boundary. We assume that neither 8 nor 2s + f are integers
and that either B < s or that B > s and

lk(x,2) — k(x,0)| < Aplzl’ Vx e D, Vz e RY,

for some positive constant Ap. Then the Dirichlet problem in (3.2) has a unique solution in
25+/3
loc

(D) N C(D). Moreover, for any r < s, we have the estimate

Il s < Collf los )

for some constant Cy that depends only on d, B, 1, s, and the domain D.

Proof. Consider the case 8 > s. We write (3.2) as

c(d, 2s)
k(x,0)

(—A)'u(x) = Tlul(x) ==
u=0 inD",

(= f) + b(x) - Vu®)) + H[ul(x) inD,
(3.28)

and we apply the Leray-Schauder fixed point theorem. Also, without loss of generality, we
assume 0 < 2s — 1. We choose any r € (0, s) which satisfies

r> (s—%)\/(l—s—k%),

and let v € ‘52(;_%_6(D). Then H[v] € Cgﬂ(zs_r_e)(D) by Lemma 3.1. Since Vv €

ng(lerﬂr) g_1(D)and (1 —r) A (2s — r — 0) < s by hypothesis, then applying Lemma 3.3,
we conclude that there exists a solution u to (—A)*u = T[v] on D, with u = 0 on D¢, such
that u € ‘50(761) (D) forany g < s.

Next we obtain some estimates that are needed to apply the Leray-Schauder fixed point
theorem. By Lemma 3.1, we obtain

||H[ ]”(25 r— 9/2)_ ||H[ ]”(25 (r—0/2)— 0) 1"1/";5—_1’;-;%/2)’

and similarly,
2 0/2 —r+6/2
|7y "2 < kv (3.29)

for some constant x; which does not depend on 6 or . Thus, since by hypothesis 2s —r —6/2
<sand 1 —r+6/2 < s, we obtain by Lemma 3.3 that

(1—-r+6/2 +60/2
ey < (IF e + 1971557 + IS5 (3.30)
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for some constant K{. Also, by Lemma 2.10 in [34], there exists a constant 3, depending only
on 8, s, r, and d, such that

2
oo = K2 (Il oy + | T ). (3.31)

It follows by (3.30)-(3.31) that v > u is a continuous map from ‘52(;:;_9 to itself. Moreover,
since ‘52(51% (D) is precompact in % 2ot ﬂ _p(D), it follows that v > u is compact.

Next we obtain a bound for ||u ||§533;D, By (3.29), we have
2 . 0/2 2 0/2
[H0 g " < (diam(D)”| Aiv 7,
. 0/2 0/2
< k1 (diam(D)) " IS, )-
Therefore, since also 2s — r > 1 — r + 6/2, we obtain

2 0/2 0/2
|70l "< s (e ) + IS5 /2 + i 2% ) (3.32)

for some constant k3. By the Holder interpolation inequalities, for any ¢ > 0, there exists
C(g) > 0 such that

0/2 6/2 6/2 —r+6/2
s 2 + IS 5 < Ce Ilsp 72 + e 1vlser - (3.33)

Combining (3.30), (3.31), and (3.32), and then using (3.33) and the inequality

—r4+60/2 . 0/2 —
V55> < (diam(D))"Ivi

we obtain
+6/2 -
Il pp < Ka(e) (”f”cﬂ(p) +Ivlsy ’) +e IV s (3.34)

To apply the Leray-Schauder fixed point theorem, it suffices to show that the set of solutions

u e %(SJF% (D) of (—A)’u(x) = & Tlul(x), for & € [0,1], with u = 0 on D¢, is bounded

in ‘K(s J:g (D). However, from the above calculations, any such solution u satisfies (3.34) with
v = u. Moreover by Lemma 2.2,
sup |u(x)| < ks sup |f(x)| (3.35)

xeD xeD
for some constant k5. We also have that

lul§y P < &7 sup Ju)|+ %2 sup  dyT Ju(x)

x€D,dy>¢ xe€D,d,<e
< e ™2 sup |u@)| + &2 Jul ). (3.36)
xeD

Choosing ¢ > 0 small enough, and using (3.35)-(3.36) on the right-hand side of (3.34) with
v = u, we obtain

P A 7 ey (3.37)

for some constant x¢. Hence by the Leray-Schauder fixed point theorem, the map v — u

given by (3.28) has a fixed point u € CKZ(SJ:% (D), i.e.,

(—A)'u(x) = Tlul(x).
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Hence, this is a solution to (3.2). Uniqueness is obvious as u is a classical solution. The bound
in (3.37) then applies and the proof is complete. The proof in the case 8 < s is completely
analogous. O

Optimal regularity up to the boundary can be obtained under additional hypotheses. The
following result is a modest extension of the results in [34, Proposition 1.1].

Corollary 3.1. Let Z € J,(8,0, 1) with 8 > s, f be locally Holder continuous with exponent
B, and D be a bounded domain with a C*> boundary. Suppose in addition that b = 0 and that
k is symmetric, i.e., k(x,z) = k(x, —z). Then the solution of the Dirichlet problem in (3.2) is in

C*(R%). Moreover, for any B < s, we have u € CKZ(S :/)3 (D).

Proof. By Theorem 3.1, the Dirichlet problem in (3.2) has a unique solution in C12 052_'0 (D) N
C(D), for any p < B A s. Moreover, for any r < s, we have the estimate

lul$e i < Collf los -
Fixr = 2s — 6. Then

k(x, 2) _ k(x,2)
/ it / e s 42 < A
R<|z|<1 || R<|z|<1 |z

By (3.6) and the symmetry of the kernel, it follows that

k(x, z)
Vul(x;z) ———dz
‘ /R<|z| |Z|d+25

for some constant x1. Combining this with the estimate in Lemma 3.1 we obtain

< (11 + lulgp) Vxe D,

(ALl < Mo lull'y < oo,

implying that H[u] € L*°(D). It then follows by [34, Proposition 1.1] that u € C* (R%), and
that for some constant C depending only on s, we have

lull osmay < ClIT Tulllzo(p)
< Ca5" (@29 (If oy + 1Ml 1)
< Cip' (@ 29 (I Iy + Mo lul;5)).
Using the Holder interpolation inequalities, we obtain from the preceding estimate that
lll gy < CIf oy

for some constant C depending only on s, 6, and Ap.
Applying Lemma 3.1 once more, we conclude that H[u] € Cﬁﬂ(f) (D) for any B’ < r, and
that

”H[“]”,(;/)D— M ”u”;s—:)ﬂ’—&D‘

Hence, applying [34, Proposition 1.4], we obtain

(S) )

S = Cr (Il
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for some constant C;, and we can repeat this procedure to reach u € ‘52(;:/)3 (D). O

Concerning the stochastic representation of the solutions to the Dirichlet problem in (3.2),
we have the following.

Theorem 3.2. LetZ € J(8,0, A), D be a bounded domain with C* boundary, andf € CP(D).
We assume that neither B nor 2s + 8 are integers and that either B < s or that 8 > s and

lk(x,2) — k(x,0)| < Aplzl’ Vx e D, Vz e RY,

for some positive constant Ap. Let By denotes the expectation operator corresponding to the

Markov process X with generator given by . Then u(x) = E[ fOT(D) f(Xy) dt] is the unique
solution in C>1t8(D) N C(D) to (3.2).

Proof. Recall the definition of D, in (3.14). Note that for ¢ small enough, D, has a C?
boundary. Let

fe = inf (FO) + flory e — 917 ), x €D,

inf
yeD
i.e.,f isa -Holder extension of f. Then by Theorem 3.1, there exists u, € CEtP(D,)NC(D,)
satisfying
Iué‘ = —j in Dg,

u, =0 inD;.

We also have the estimate (recall the definition of | - ”/(3?1) in Section 1.1)

e 15 p, < Co Ifllcs o,

with r some fixed constant in (0,s). As can be seen from the Lemma 2.2 and the proof of
Theorem 3.1, we may select a constant Cp, that does not depend on ¢, for ¢ small enough.
Since u, = 0 in D, it follows that

ltte ll gy < 1 e st sip,
for some constant ¢1, independent of ¢, for all small enough €. Hence 4, — uase — 0, along
some subsequence, and u € C¥tB(D) N C(D) by Theorem 3.1. By It&’s formula, we obtain

(D)

Ug(x) = Ex[”s (Xr(D))] + IEx|: A fXp) dt]-

Letting ¢ N\, 0, we obtain the result. Uniqueness follows from Theorem 3.1. O

Theorem 3.2 can be extended to account for nonzero boundary conditions, provided the
boundary data are regular enough, say in C3(RY) N Cp(RD).

4. The Harnack property for operators containing a drift term

In this section, we prove a Harnack inequality for harmonic functions. Throughout Sections 4
and 5, we use the parameter & = 2s. The classes of operators considered are summarized in
the following definition.
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Definition 4.1. With A as in Definition 3.1, let £, () denotes the class of operators Z € £,
satisfying

lb(x)| <Ap, and Ap' <k(x,2) <Ap VxeD,zeR%

for a bounded domain D. As in Definition 2.2, the subclass of £, (X) consisting of those Z
satisfying k(x, z) = k(x, —z) is denoted by £YM (). Also by £40 (1), we denote the subset of
Lo (A) satisfying

k(x,2) — k(x,0
/d(|z|°‘—9A1) [k(x Z|)Z|d+a(x N4z <sp VxeD,
R

for any bounded domain D.

A measurable function # : R? — R is said to be harmonic with respect to Z in a domain
D if for any bounded subdomain G C D, it satisfies

h(x) = Ex[h(Xt(G))] Vx e G,

where (X, IPy) is a strong Markov process associated with 7.

Theorem 4.1. Let D be a bounded domain of R and K C D be compact. Then there exists a
constant Cy depending on K, D, and X, such that any bounded, non-negative function which is
harmonic in D with respect to an operator T & £IMyu Lapo(), 0 € (0,1), satisfies

h(x) < Cygh(y) forallx,y € K.

We prove Theorem 4.1 by verifying the conditions in [38] where a Harnack inequality is
established for a general class of Markov processes. We accomplish this through Lemmas 4.1-
4.4 which follow. Let us also mention that some of the proof techniques are standard, but we
still add them for clarity. In fact, the Harnack property with nonsymmetric kernel is also
discussed in [38] under some regularity condition on k(-, -) and under the assumption of the
existence of a harmonic measure. The proof of Lemma 4.2 (b) below holds under very general
conditions and does not rely on the existence of a harmonic measure.

The following lemma is a careful modification of [39, Lemma 2.1] (for the proof see
Lemma 3.5 and Remark 3.2 in [3]).

Lemma 4.1. Let (X, Py) be a strong Markov process associated with T € £y, and D be a given
bounded domain. There exits a constant k1 > 0 such that for any x € D and r € (0, 1) it holds
that

]P’x( sup | Xs — x| > r) <kitr % VxeD,

0<s<t

where Xy = x.

In Lemmas 4.2-4.4 which follow, (X, Py) is a strong Markov process associated with Z &
Sf;ym (X)) U £49(A), and D is a bounded domain.

Lemma 4.2. Let D be a bounded domain. There exist positive constants k, and ro such that for
anyx € Dandr € (0,19),
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(a) i1'1f:/:eB%(x) E.[t(B/(x)] > K{lra,
(b) SUP;eB, (x) E [t (B (x)] < k2 7*.

Proof. By Lemma 4.1 there exists a constant «; such that
Px(z(Br(x)) < 1) < srtr™, (4.1)

forallt > 0,and allx € D, := {y: dist(y, D) < 2}. We choose t = Then forz € Br (x)
we obtain by (4.1) that

E [z (Br(x))] = E.[t(B:(2))]

r"‘ o
> BBy > )

o4

A%

r
4k '
This proves the part (a).

To prove part (b), we consider a radially nondecreasing function ¢ € Ci (R%), which is
convex in By and satisfies

P(x+2) —p(x) —z-Vox) > alzl*>  for|x] <1, |z] <3,

for some positive constant c;. For an arbitrary point xo € D, define g,(x) := w(@). Then
for x € By(xp) and Z € £)™ (1), we have

k(x, 2) k(x,z)
/]1%’ 0g,(x; 2) oot dz = /{lew (gr(x+2) —g(x) —z- Vg (x )) 2o+ dz

k >
+[| . (gr(x+2) —gr(x))w(lj;—f; dz

> —ZAD / |z]2~9* dz
r |z|<3r

32—0{ o
2—a)\D r ¢

:Cz

for some constant ¢c; > 0, where in the first equality, we use the fact that k(x, z) = k(x, —z),
and for the second inequality, we use the property that g(x + z) > g(x) for |z| > 3r. It follows
that we may choose ry small enough such that

—a

Zgr(x) > car forall r € (0,79), x € B (x0), and xy € D,

with ¢z := C22 ; ::)L_
To obtain a similar estimate for Z € £40(X), we fix some 8; € (0,0 A (¢ — 1)). Let
k(x,z) :== k(x,z) — k(x,0). We have

k(x,z) k(x, z) k(x,z) — k(x,0)
0g,(x;2) ——= dz —/ 0g,(x;2) —— dz — / z-Vg(x)——————=dz
/Rd e T e T e T g T8 2+

k >
+[| . (gr(x+2) — gr(x))|(r;3 dz
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a 0 IVl lk(x, 2)|
> 2/ |z|2~4 @ gz — 1 Ploo |2l 7y dz
ADT |z|<3r r 3r<|z|<1 |z|4Fe

32« IVel PN lk(x,2)|
> o i / 2" @ry e
2—a)Apr r 3r<|zl<1 |z]
32—« \Y k X,z
> ¢ _|| §0||oo/ |z|“’9(3r)""+91+1| (d )|
2—a)Aipr® r 3r<|zl<1 ||+
32—0{

%) C_wipr K (d)3* T 0D Vel

car ¥ Vx e B (xp),

v

for some constant ¢4 > 0 and r small, where in the third inequality, we used the fact that
01 < a — 1. Thus by It6’s formula we obtain

Er(Brxo)] < ¢ 1% @llos ¥ x € By(xo).
This completes the proof. O

Lemma 4.3. There exists a constant k3 > 0 such that for any r € (0,1), x € D, and A C B,(x)
we have

|A

P,(z(A%) < T(B3(x))) = k3 B,0)]

Vze Bzr(x).

Proof. Let T := t(Bs,(x)). Suppose P,(t(A) < 7) < 1/4 for some z € By, (x). Otherwise
there is nothing to prove as Bl = 1. By Lemma 4.1, there exists ¢ > 0 such that IP’y(f <
tr*) < 1/4for all y € By,(x). Hence using the Lévy-system formula, we obtain

Py(r(A) <©) 2 E, > l{Xs_;éXs,XseA}]

= S<T(AOAT ALY

e /I(AE)/\‘?/\tr“ / k(X,,z — X,) td :|
= ————— azds
Lo A lz— X |dt+e

I rT(AYATAY )L—l
> E, / f+dzds:|
L Jo A (4r)dte

—o Al .
> kyr @ |Br(x)llEy[r(Ac) AT A Y] (4.2)

for some constant Ké > 0, where in the third inequality, we use the fact that | X; — z| < 4r for
s < T,z € A. On the other hand, we have

Ey[t(A) AT Atr¥] = tr¥ Py(t(AY) > T > tr")
=11 [1 = Py(r(A9) < ) = Py(f < tr")]

t
> 49 4.3
z 57 (4.3)
Therefore combining (4.2)-(4.3), we obtain P,(t (A¢) < T) > %%. O
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Lemma 4.4. There exists positive constants ki, i = 4,5, such thatifx € D, r € (0,1), z € B.(x),
and H is a bounded non-negative function with support in BS (x), then

k LY —
E[H(Xe (5, 00)] < K4 B[ 7 (B,(x)] /R d H(y>|y(x_y7f) dy

o >

and
k(x,y — x)

E:[H(X:(8,00)] = k5 B[ 7(Br(x)] fRd HOY e

The proof follows using the same argument as in [38, Lemma 3.5].

Proof of Theorem 4.1. By Lemmas 4.2, 4.3, and 4.4, the hypotheses (A1)-(A3) in [38] are
satisfied. Hence the proof follows from [38, Theorem 2.4]. O

5. Positive recurrence and invariant probability measures

In this section, we study the recurrence properties for a Markov process with generator Z €
Lo (Definitions 2.2 and 4.1). Many of the results of this section are based on the assumption
of the existence of a Lyapunov function.

Definition 5.1. We say that the operator Z of the form (2.4) satisfies the Lyapunov stability
condition if there exists a V € C2(RY) such that inf <erd V(x) > —00, and for some compact
set K c R% and & > 0, we have

IV(x) <—¢ Vxek- (5.1)
It is straightforward to verify that if V satisfies (5.1) for Z € £, then

1
[ZPI |V(Z)||Z|W dz < o0. (52)

Proposition 5.1. If there exists a constant y € (1, «) such that
b(x) - x
X127 sup,cpa k(x,2) V1 |xl—>o0

then the operator T satisfies the Lyapunov stability condition.

Proof. Consider a non-negative function ¢ € C2(R9) such that @(x) = |x|¥ for |x|] > 1, and
let k(x) := sup,pa k(x, 2). Since the second derivatives of ¢ are bounded in R4, and k is also
bounded, it follows that

< i1 k(x)

k(x,z)
09 (x;2) dz
‘ /251 v |z dta

for some constant k1 which depends on the bound of the trace of the Hessian of ¢. Following
the same steps as in the proof of (2.6), and using the fact that k is bounded in RY x R9, we
obtain

k(x, z)

'/ (|x 4+ z]¥ — |x|¥) | r;:r dz| < ka k(%) (1 + |x]Y %) if |x] > 1, (5.3)
lz|>1 z[4Te
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for some constant x5 > 0. Since also,
‘ /Rd 1p,(x + 2) % dz‘ <i3k(x) (x| = 1)™% for x| > 2, (5.4)
for some constant «3, it follows by the above that

‘ k(x,z)
'/Rd 0p(x;2) o dz

for some constant «4. Therefore by the hypothesis and (5.5), it follows that Z¢(x) — —oo as
|x] — oo. O

<K k(x) (1+|x77%)  VxeRY, (5.5)

Lemma 5.1. Let X be the Markov process associated with a generator T € £4()), and suppose
that T satisfies the Lyapunov stability hypothesis (5.1) and the growth condition in (2.5). Then
forany x € K¢, we have

Ex[r(K)] <

™o

(V) + (inf V)7).

Proof. Let Ry > 0 be such that  C Bg,. We choose a cut-off function x which equals 1 on
Bg,, with Ry > 2Ry, vanishes outside of Br, +1, and || x|loc = 1. Then ¢ := xVisin Ci(Rd).
Clearly if |x| < Rg and |x + z| > Ry, then |[z| > Ry, and thus |x 4 z| < 2|z|. Therefore, for
large enough R;, we obtain

k(x, 2) k(x, z)
ox+2) —V(ix+2) dz‘ < 2/ V(x+ 2)| dz
~/Rd ( ) |Z|d+a {lx+z|>R;} |Z|d+a
< gttty / Vex+2)
0 Jixrzi=R) |x + z|d+e

< VxEBRO.

N | ™

Hence, for all R large enough, we have
To(x) < —% Vx € By, \ K.
Let Tp = 7(K) A 7(Bgr). Then applying Itd’s formula, we obtain
E[V(X,)] — V&) < —g E.l%x,] Vx € Bg \ K,
implying that
ETiy] < - (V0 + (nf 1)), (5.6)

By the growth condition and Lemma 2.3, 7(Br) — 00 as R — oo with probability 1. Hence
the result follows by applying Fatou’s lemma to (5.6). O

5.1. Existence of invariant probability measures

Recall that a Markov process is said be to positive (Harris) recurrent if for any compact set G
with positive Lebesgue measure it holds that E,[7(G)] < oo for any x € RY,
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We recall the Lévy-system formula, the proof of which is a straightforward adaptation
of the proof for a purely nonlocal operator and can be found in [13, Proposition 2.3 and
Remark 2.4] [21, 24].

Proposition 5.2. If A and B are disjoint Borel sets in B(R?), then for any x € RY,

k(Xs, z — X)
ZIXS—EA Xs€B} — / /I{XsGA} : |d+a dzds

s<t

is a Px-martingale.
We have the following theorem.

Theorem 5.1. If T € £4(A) satisfies the Lyapunov stability hypothesis, and the growth
condition in (2.5), then the associated Markov process is positive recurrent.

Proof. First we note that if the Lyapunov condition is satisfied for some compact set /C, then it
is also satisfied for any compact set containing K. Hence we may assume that K is a closed ball
centered at origin. Let D be an open ball with center at origin and containing K. We define

=inf{t>0:X,¢D}, T:=inf{t>1: X €K}

Therefore for Xy = x € K, 7, denotes the first return time to /C after hitting D¢. First we prove
that

sup E,[72] < oo. (5.7)
xekC

By Lemma 5.1, we have E, [t (K)] < %[V(x) + (inf V) "] for x € K. By Lemma 2.1, we have
sup,cxc Ex[T1] < 00. Let 223 (x, - ) denotes the exit distribution of the process X starting from
x € K. To prove (5.7), it suffices to show that

sup / (V(y) + (inf V)_) P: (x,dy) < o0,
xekC JDf
and since V is locally bounded, it is enough that
sup / (V) + (inf V)7) P (x,dy) < 00 (5.8)
xekC J By
for some ball Bg. To accomplish this, we choose R large enough, so that
|x — z| 1
> — for |z| > R, x € D.
|2l 2
Then, for any Borel set A C B%, by Proposition 5.2, we have that

Py(Xznt € A) = Ex[ > uxsea,xseA}]

S<TIAt

ant k(Xs,Z — Xs)
=K 1 — “ dzd
[/0 ”‘SGD}fA X, — zdte S}
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it TINAL 1
<27\ p E ——dzds
- [/() /A|z|d+a ]

= 2 L L[ A t] u(A),

where 1 is the o -finite measure on RY with density —1—. Thus letting t — 00, we obtain
|z| +o

Py (6, A) < 270 (sup Ex[fl]) J(A).
xekC

Therefore, using a standard approximation argument, we deduce that for any non-negative
function g, it holds that

/ &) P (x,dy) <k / g u(dy)
By By

for some constant k. This proves (5.8) since V is integrable on B} with respect to x and
w(Bg) < oo.

Next we prove that the Markov process is positive recurrent. We need to show that for any
compact set G with positive Lebesgue measure, E,[7(G)] < oo for any x € R?. Given a
compact G and x € G, we choose a closed ball K, which satisfies the Lyapunov condition
relative to V, and such that G U {x} C K . Let D be an open ball containing . We define a
sequence of stopping times {Ty, k = 0, 1,...} as follows:

Tp=0
Tong1 = inf{t > o, : X; ¢ D},
on—i—Z = inf{t > on—i—l : Xy € ,C}, n=0,1,....
Using the strong Markov property and (5.8), we obtain E,[7,] < oo for all n € N. From
Lemma 4.1, there exist positive constants ¢ and r such that

1
sup Py(t(D) < t) < sup Py(t(B,(x)) <t) < -—.
xelC xelC 4

Therefore, using a similar argument as in Lemma 4.3, we can find a constant § > 0 such that

inf Py(t(G°) < t(D)) > 6.
xekC
Hence

p:=sup Py(t(D) <1(G)) <1-48 <1
xell

Thus by the strong Markov property, we obtain
Pu(t(G) > T2n) S pPx(r(G) > Tu2) < -+~ =p" VxeKk.
This implies Py (7 (G°) < 0o) = 1. Hence, for x € ', we obtain

o
Ex[1(G)] < Y Ex[fanl(zy, 5 <2(G9)<tam)]

n=1

[o,0) n
= Z ZEx[(le - 'Ezlfz)l{fzn—2<T(GC)§f2n}]

n=1 |=1
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o0 o0
= Z ZEX[(le - fZl*Z)1{f2n72<T(GC)Sf2n}]

I=1 n=I

o
= ZEx[(le — T2 iy, <2(G9) ]
=1

Zpl_l sup Ey[73]

=1 xelC

IA

1
= sup E.[72] < oo.
—P xek

Since also E,[7(K)] < oo for all x € RY, this completes the proof. O

Theorem 5.2. Let X be a Markov process associated with a generator T € £y U Lapo ),
and suppose that the Lyapunov stability hypothesis (5.1) and the growth condition in (2.5) hold.
Then X has an invariant probability measure.

Proof. The proofis based on Has'minskii’s construction. Let K, D, 7}, and 7, be as in the proof
of Theorem 5.1. Let X be a Markov process on K with transition kernel given by

P.(dy) = Pu(X;, € dy).

Let ¢ be any bounded, non-negative measurable function on D. Define Qg (x) = Ey[¢(X3,)].
We claim that Q, is harmonic in D. Indeed if we define ¢(x) = Ey[¢ (X (xcc))] for x € DS,
then by the strong Markov property, we obtain Q,(x) = Ex[¢ (X3, )], and the claim follows.
By Theorem 4.1, there exists a positive constant Cy, independent of ¢, satisfying

Qp(x) < CuQs(y) Vxyek. (5.9)

Wenote that Q. = 1.Let Q(x, A) := Qq, (x),for A C K. For any pair of probability measures
w and u’ on KC, we claim that

Cyg—1

<

== I — wllpy- (5.10)
TV H

H/IC(M(dx) — 1 (dx))Q(x, )

This implies that the map u — f i Q(x, - )iu(dx) is a contraction, and hence it has a unique
fixed point /i satisfying (A) = [, i Q(x, A)fi(dx) for any Borel set A C K. In fact, /i is the
invariant probability measure of the Markov chain X. Next we prove (5.10). Given any two
probability measure 1, 1’ on K, we can find subsets F and G of K such that

‘ fK (1(d) — /() Q. )

= 2/ (n(dx) — 1’ (dx)) Qx, F),
TV K

I — ity =2 — u)(G).

In fact, the restriction of (u — @) to G is a non-negative measure and its restriction to G° is
nonpositive measure. By (5.9), we have

inéc Q(x,F) = sup Q(x, F) (5.11)

xeG
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Hence, using (5.11), we obtain

'/IC(M(dx)—M’(dx))Q(x,-)

v
= Z/G(M(dX) — 1'(d0))Q(x, F) + Z/GC (1(dx) — 1 (dx)) Q(x, F)

<2(n — )G sup Q(x, F) +2(n — n)(G) xlélg Q(x, F)

xeG

2
<2(u— i1')(G) sup Q(x,F) — C—H(M — 1')(G) sup Q(x,F)

xeG x€G
< (1= — i liry-
This proves (5.10).
We define a probability measure v on R as follows.
f,c Ex[ 01’2 P(Xs) ds]ﬂ(dx)
f;c Ex[%Z]ll(dx) ’

It is straight forward to verify that v is an invariant probability measure of X [4, Theo-
rem 2.6.9]. 0

¢ € Cp(RY).

/ @(x) v(dx) =
R4

Remark 5.1. Ifk(-,-) = 1 and the drift b belongs to certain Kato class, in particular bounded,
[16] then the transition probability has a continuous density, and therefore any invariant
probability measure has a continuous density. Since any two distinct ergodic measures are
mutually singular, this implies the uniqueness of the invariant probability measure. As shown
later in Proposition 5.4, open sets have strictly positive mass under any invariant measure.

The following result is fairly standard.

Proposition 5.3. Let Z € £, and V € C*(R?) be a non-negative function satisfying V(x) —
00 as |x| — oo, and IV < 0 outside some compact set K. Let v be an invariant probability
measure of the Markov process associated with the generator Z. Then

/ TV v(dx) <2 / TV v(do).
R4 IC

Proof. Let ¢, : Ry — R4 be a smooth nondecreasing, concave, function such that

x forx <mn,

x) =
#nx) {n—l—1/2 forx > n+ 1.

Due to concavity, we have ¢, (x) < |x| for all x € R. Then V,(x) := ¢,(V(x)) is in Cé (RY),
and it also follows that ZV,(x) — ZV(x) as n — oo. Since v is an invariant probability
measure, it holds that

/ IV, (x)v(dx) = 0. (5.12)
R4
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By concavity, ¢, (y) < ¢n(x) + (y — x) - ¢;,(x) for all x, y € R . Hence

I = [ oVuts2) [0 det (V) bl - TV

< / (V@) 0V(x:2) |(|d+jd z+ gy (V) b(x) - VV(x)

= ¢,(V(x) IV(x),

which is negative for x € K. Therefore using (5.12) we obtain

/ IIVn(x)IV(dx)=f IIVn(x)IV(dx)—/ T Vn(x) v(dx)
R4 K Ke

=/ |IVn(x)|v(dx)+/ T Vy(x) v(dx)
< K

< 2/ |Z Vy(x)| v(dx). (5.13)
K
On the other hand, with A, := {y € R V(y) > n}, and provided V(x) < n, we have
z
IV V@4 [ ats Vool T d
x+z€A, | |

k(x, z)
|z |d+a

< IIV(X)H-/ Vx+2)| ——

x+z€A,
This together with (5.2) imply that there exists a constant « such that

IZV,(x)| <k +|ZV(x)| VxeK,

and all large enough n. Therefore, letting n — oo and using Fatou’s lemma for the term
on the left-hand side of (5.13), and the dominated convergence theorem for the term on the
right-hand side, we obtain the result. O

5.2. Aclass of operators with variable order kernels

It is quite evident from Theorem 5.2 that the Harnack inequality plays a crucial role in the
analysis. Therefore, one might wish to establish positive recurrence for an operator with a
variable order kernel and deploy the Harnack inequality from [11] to prove a similar result as
in Theorem 5.2.

Theorem 5.3. Let w : R x RY — RY be a non-negative measurable function satisfying the
following properties, for 1 < o’ <o < 2:
(a) There exists a constant ¢y > 0 such that 1{;j> 17 (x,2) < ||Wfor all x € RY;

(b) For some constant c; > 0, we have
w(x,z—x) <cam(y,y—2z), whenever |z—x|Alz—yl>1, [x—yl <1;

(c) Foreach R > 0, there exists qr > 0 such that

Vx € Rd, Vz € Bg;
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(d) For each R > 0, there exist constants Ry > 0, 0 € (1,2), and k; = ko (R,Ry) > 0 such
that
-1

< n(xz) < —2_  VWxeBgp VzeBS;
Jgldte =TT T e ’ o

() There exists V € C>(R?) that is bounded from below in RY, a compact set K € R? and a
constant & > 0, satisfying

/ W(g2)w(x,z)dz < —e Vx e K-
R4
Then the Markov process associated with the above kernel has an invariant probability measure.

The first three assumptions guarantee the Harnack property for associated harmonic
functions [11]. Then the conclusion of Theorem 5.3 follows using an argument similar to
the one used in the proof of Theorem 5.2.

Next we present an example of a kernel 7 that satisfies the conditions in Theorem 5.3. We
accomplish this by adding a nonsymmetric bump function to a symmetric kernel.

Example 5.1. Let ¢ : R4 — [0, 1] be a smooth function such that

1

1 for|x| < -,

p(x) = 2

0 for|x| > 1.
Defineforl <o’ < B8 <a < 2,

+z

Y (%,2) :=<o(2 z

T le)(1 —9x)(a" = B),

and let
1

JT(X, Z) = —lz|d+,3,+}/(xyz) 5

w(x,2) == + T (x,2).

| Z|d+a
We prove that 7 satisfies the conditions of Theorem 5.3. Let us also mention that there exists
a unique solution to the martingale problem corresponding to the kernel 7 [30, 31]. We only
show that conditions (b) and (e) hold. It is straightforward to verify (a), (c), and (d).

Note thata’ — B’ < y(x,2) < Oforall x,z. Letx, y, z € R such that |[x —z| A [y — 2| > 1
and |x — y| < 1. Then |z — y| < 1 + |z — x|. By a simple calculation, we obtain

)d+ﬂ/+y (x,2—x) 1

T(x,z—x) < (1 +

|z — x| |z — y|d+ﬂ’+y(x>z—x)

1

< 2dt# |z — y| B Oty 0z,

Hence it is enough to show that

|z _y|—y(x,z—x)+y(y,z—y) <o (5.14)
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for some constant ¢ which does not depend on x, y, and z. Note that if |x| < 2, which implies
that |y| < 3, then for |z| > 4 we have y(x,z — x) = 0 = y (¥, z — »). Therefore, for |x| < 2, it
holds that

|z — yl—}/(x,Z—X)-i'}’(,V’Z—}’) < 7/3’—05/. (5.15)

Suppose that |x| > 2, then [y| > 1. Since we only need to consider the case where y (x,z—x) #
y (y,z — y), we restrict our attention to z € R? such that |z| < 2(1 + |x|). We obtain

2lz|(B" — ')
(T + |xD@ + [yD
4(1 + |x)(B" — o)
(L4 |xDlxl
(5.16)

log(lz = yD(=y (6.2 =) + y (1.2 = ) = log (31 + [xD)) ¢/l oo

< log (3(1 + |xD) ll¢’lloo

Since the term on the right-hand side of (5.16) is bounded in R4, the bound in (5.14) follows
by (5.15)~(5.16).
Next we prove the Lyapunov property. We fix a constant € (&, 8), and choose some

function V € C2(R?) such that V(x) = |x|" for |x| > 1. Since 7 (x,2) < W forall x € RY

and z € RY, it follows that
X ‘/ WV(x;2) T(x,2)dz
lz|<1
is bounded by some constant on R?. By (5.5),

‘ / W2 m(x,z)dz| <co(1+ |x|T7%) Vxe RY,
R4

for some constant ¢g. Therefore, in view of (5.4), it is enough to show that, for |x| > 4, there
exist positive constants ¢; and ¢, such that

/ (|x+z|'7 — |x|’7) T(x,2)dz < ¢ — c2|x|”_°‘/. (5.17)
|z|>1
By the definition of, y it holds that
~ 1 . 3
T(x,2z) = |z|d—+/3/’ if |[x+z| > 1 |x|, and |x| > 2, (5.18)
while
F(0) = —— ifjxte < O (5.19)
T(xz) = ——, if|lx+2z] < —. .
|Z|d+a 4

Suppose that |x| > 2. Since |x + z| < 12 implies that %lxl < lz] < %le,we obtain by (5.19)

4
that

~ d+ao’ 1
[ bt eas s [ (- (e
x+z|<T |z>

x|
[xtz|<F

(- H @ [

el <t [

—my |x|’77“/, if |x| > 2, (5.20)

IA
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for some constant m; > 0, where we use the fact that the integral in the second inequality is

independent of x due to rotational invariance. Also, |x + z| < %le implies }llxl <lz| < %lxl,
and in a similar manner, using (5.18), we obtain

1 / 1
d+p
(Jx+2|" = |x|") —— dz > —/ |x| 4 dz
/x+zs3;‘,|z|>1 |x|4+F x| <lzl<Z Ix] Eikard

> —my |x|"F, if|x| > 2, (5.21)

for some constant m, > 0. Let A; := {z : }llxl <|lx+2z < %lxl}. Since 7 is positive, we have

/ (Ix + 2" — |x|")7 (x,2) dz < 0.
{lz|=1}NA;

Thus, combining this observation with (5.3) and (5.21), we obtain

1
n_ AR n_ n
/|x+z|>f:,|z|>1 (bt 21" = 1) o 2) d < / (bt 21" = l") o =

\x+z\>%|x|,|z|>1

1
= lx+z|" — |x|7) —— dz
/z|>1( ) |Z|d+l3

1
- Ix + 2" — |x|") —— dz
~/|‘x+zls3[f|,z>l ( |x|d+ﬂ/

< ms (1+ [x|"F) (5.22)

for some constant m3 > 0. Combining (5.20) and (5.22), we obtain
/ (I + 21" = 1xd") F (6, 2) dz < m3 (14 ") = my 1277, if [x] > 2. (5.23)
lz|>1
Therefore, (5.17) follows by (5.23), and the Lyapunov property holds.

Proposition 5.4. Let D be any bounded open set in R* and X be a Markov process associated
with either T € £, or a generator with kernel 7 as in Theorem 5.3. Suppose that for any
compact set K and any open set G, it holds that sup,cxPx(t(G°) > T) — 0as T — oo. Then
for any invariant probability measure v of X, we have v(D) > 0.

Proof. We argue by contradiction. Suppose v(D) = 0. Let xop € D and r € (0, 1) be such that
By:(x9) C D.By Lemma 4.1 [11, Proposition 3.1], we have

sup Py(t(B/(x) <t) <kt t>0,

x€By(x0)

for some constant x which depends on r. Therefore, there exists o > 0 such that

inf I[Dx("/’(Br(x)) = tO) =

x€B,(x0)

N =
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Let K be a compact set satisfying v(K) > % By the hypothesis there exists Ty > 0 such that
sup,ex Px(t(Bi(xo) > T) < 1/2forall T > Ty. Hence

1
To + to

]- T0+t0
- dx) E 1 X,) dt
To + to /Rd v(dx) x|:/(; {Bar (x0)} (Xs) :|

Tot 1o /K v(dx) Ex[l{r(B$<x0>><To}EX,(B;<xO»[l{rwzf(xo))zto}

To+to
f 1, (x)} (Xs) dtﬂ
7 (BS(x0)

To ¥ tOV(K) ;fellf< Py (t(Bi(x0)) < To) xeg}(fxg) Py(t(Bar(x0)) = to) fo

1 v inf P (‘L’(B x) >t )t

To+ 1ty 2 xeBy(x) x 2r =0
fi

—0 > 0

4(Ty + to)

But this is a contradiction. Hence v(D) > 0. O

To+to
0=v(D) > / / v(dx)P(t, x; Bar(x0)) dt
0 R4

v

>

=

=

5.3. Mean recurrence times

This section is devoted to the characterization of the mean hitting time of bounded open sets
for Markov processes with generators studied in Section 3. The results hold for any bounded
domain D with C? boundary, but for simplicity, we state them for the unit ball centered at 0.
As introduced earlier, we use the notation B = B;.

For nondegenerate continuous diffusions, it is well known that if some bounded domain D
is positive recurrent with respect to some point x € D, then the process is positive recurrent
and its generator satisfies the Lyapunov stability hypothesis in (5.1) [4, Lemma 3.3.4]). In
Theorem 5.4, we show that the same property holds for the class of operators J, (8,6, A).

Theorem 5.4. Let T € J,(B,0,A). We assume that T satisfies the growth condition in (2.5).
Moreover, we assume that E,[t(B°)] < oo for some x in BS. Then u(x) := E,[t(B)] is a
viscosity solution to

Tu=—1 inB,

u =0 inB.
To prove Theorem 5.4, we need the following two lemmas.

Lemma 5.2. Let T € J4(B,0,1) and G a bounded open set containing B. Then there exist
positive constants ro and Mo depending only on G such that

/ E.lt(B)] —— dz < 29 [z (B)]
z < — Iy
Be(x) ‘ |z|d+e T ‘

for every r < dist(x, B) A ro and for all x € G \ B, such that E[t(B°)] < 0.



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 1507

Proof. Let? := (B and 7, := 7 (Br(x)). We select rg as in Lemma 4.2, and without loss of
generality, we assume rp < 1. We have

Ea| 15, <5, [7]] < Eal#]. (5.24)
By Definition 3.1, we have
k(y,2) > Ag' > 0 ¥y € By ().
Let A C B%(x) N B be any Borel set. Using Proposition 5.2, we have

Pe(Xsn €A) =By | D lix,_ecB(x,XcA)

S<TAL

T AL
= ]Ex[/ I{XseB,(x)}/ (X5, z — Xs) dzds]
0 A

> A E o ! dzd
—re 0 AWZS

1
> 35 Bt At /—dz.
- G x[ r ] N |Z|d+a
Letting t — 00, we obtain
_ “ 1
Pu(X;, € A) > A5 Ex[,] / P dz. (5.25)
A

By Lemma 4.2, it holds that E,[7,] > «; r* for some positive constant x; which depends on
G. Hence combining (5.24) and (5.25), we obtain

- o1 .
AGI k1 1r* / E,[7] e dz < Ex[l{XA eEc}EXf,[T]]
B (x) |z| r

S Ex[f])
where the first inequality follows by the standard approximation technique using step func-
tions. This completes the proof. O

Lemma 5.2 of course implies that if E,[7(B)] < oo at some point x € B, then Ey[7(B%)]
is finite a.e.-x. We can express the bound in Lemma 5.2 without reference to Lemma 4.2 as

1 E.[7(B%)]
E, B¢ dz < Ag —=.
/ch (BN 4 =26 g

Now let X’ be any point such that dist(x’, x) A dist(x’, B) = 2r. We obtain

(r) Moy
——— inf  E,[t(BY)] < — Ey[t(B)].
S BT() < 2 Bl (8)
Therefore for some y € B,(x"), we have Ey[t(B)] < Cy Ex[t(B)]. Applying Lemma 5.2 once
more, we obtain

/d Exyz[t(B)] dz < GoEy[z(B)],
R

(1 + |2+

with the constant C depending only on dist(x, B) and the parameter 1, i.e., the local bounds
on k. We introduce the following notation.
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Definition 5.2. We say that v € L! (RY, s) if

/ __v@l_ dz < o0
Rd (1 + |24t '
Thus we have the following.

Corollary 5.1. IfE, [t (B)] < oo for some xg € B, then the function u(x) := E,[t(B)] is in
LY(RY,5).
In what follows, without loss of generality, we assume that 8 < s. Then, by Theorem 3.2,
un(x) := Ex[1(B, N B)] is the unique solution in C**# (B, \ B) N C(B, \ B) of
Zu, = -1 in B,NB,
(5.26)
u, =0 in B UB.

The following lemma provides a uniform barrier on the solutions u, near B.

Lemma 5.3. LetZ € J,(B,6, 1), and
T, :=1(B,NB), neNl.

Then, provided that sup,.p Ex[t(B°)] < oo for all compact sets F C B, there exists a
continuous, non-negative radial function ¢ that vanishes on B, and satisfies, for some n > 0,

ExTh]l < o(x) VxeBiiy\B, Vn>1

Proof. The proof relies on the construction of barrier. Let IAc(x, z) = k(x,z) — k(x,0). By
Lemma 3.2, for ¢ € (¢ —1/2,a/2), there exists a constant ¢ > 0 such that for ¢4(x) :=
[(1 — |x)) 19, we have

(=) pa(x) > o (1 — |x)T* VxeB.
We recall the Kelvin transform from [34]. Define ¢(x) = |x|"‘*d<pq(x*) where x* := ﬁ
Then by [34, Proposition A.1], there exists a positive constant c; such that
(=) G(x) > ¢1 (Ix| — DT Vxe B, \B.
We restrict ¢ outside a large compact set, so that it is bounded on R¥. By 7, we denote the
operator

IAc(x, Z)

fu(x) = b(x) - Vu(x) +/ Vu(x; z) —— dz.
Rd |z|d+e

It is clear that [V (x)| < ca(|x| — 1)97! for all |x| € (1,2), for some constant c,. Also, using
the fact that ¢ is Holder continuous of exponent g and (3.1), we obtain

. k(x, 2)
‘/}Rd 00 (x; 2) 2] dz

for some constant c3. Hence

< (x| — 1) VxeBy\B,

|f¢(x)‘ <y (Ixl — 1)(4_1)A(q+9_a), for x € B, \ B,
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for some constant ¢4. Since @ > 0, > 1,andZ = 77— k(x,0)(—A)%/2 it follows that we can
find 1 small enough such that

T¢(x) < —4, forx € B4y \B.
Let K be a compact set containing By,. We define
P(x) = (%) 1k (x) + Ex[r(B)] 1ge (x).

Since the hypotheses of Lemma 5.2 are met, we conclude that 1xc(x)E,[7(B%)] is integrable
with respect to the kernel 7. For x € B4, \ B, we obtain

Tg(x) < —4+ /d (Ex4z[t(B)] — ¢(x + 2)) 1xe(x + 2) 7 (x,2) dz

R

T(x,z— X)

7 (x,z)

Since the kernel is comparable to |z| =9~ on any compact set, we may choose K large enough
and use Lemma 5.2 to obtain

= —4+f E.[t(B9)] 7 (x,z)dz — /dg?)(x+z) 1xe(x + 2) w(x, 2) dz.
K¢ R

Zg(x) < —2 Vx € By \B.
Let

1
Y(x) = <1 Vo osup EZ[T(BC)]) (1 Vo sup ~—> @(x).
2eK\By 4 2eK\By4, P(2)
Then, 7Yy < —2 on Biyy \_E, while ¥ > u, on B +n U B. Therefore, by the comparison
principle, u, < ¥ on Bi4, \ B forall n € N and the proof is complete. O

Proof of Theorem 5.4. Consider the sequence of solutions {u, } defined in (5.26). First we note
that ””(f) < Ex[t(B9] for all x. Clearly u,4+1 — u, is bounded, non-negative, and harmonic
in B, \ B. By Theorem 4.1, the operator Z has the Harnack property. Therefore

sup Z (Uns1(x) — up(x)) < 00

xeF n>1

for any compact subset F in B¢, Hence Lemma 2.3 combined with Fatou’s lemma implies that
sup, . Ex[7(B)] < oo for any compact set F C B.
We write
n—1
Uy = up + Z (um+1(x) - um(x)),

m=1
and use the Harnack property once more to conclude that u, /' u uniformly over compact
subsets of B. Since u < ¢ in a neighborhood of 3B by Lemma 5.3, and ¢ vanishes on 9B,
it follows that u € C(R?). That u is a viscosity solution follows from the fact that u, — u
uniformly over compacta as # — 0o and Lemma 5.2. 0
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