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A general class of mean field games are considered where the governing dynamics 
are controlled diffusions in Rd. The optimization criterion is the long time average of 
a running cost function. Under various sets of hypotheses, we establish the existence 
of mean field game solutions. We also study the long time behavior of the mean field 
game solutions associated with the finite horizon problem, and under the assumption 
of geometric ergodicity for the dynamics, we show that these converge to the ergodic 
mean field game solution as the horizon tends to infinity. Lastly, we study the 
associated N -player games, show existence of Nash equilibria, and establish the 
convergence of the solutions associated to Nash equilibria of the game to a mean 
field game solution as N → ∞.
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r é s u m é

Nous considérons une classe générale de jeux en champ moyen où la dynamique 
est gouvernrnée par des diffusions contrôlées dans Rd. Le critère d’optimisation 
est la moyenne à long terme d’une fonction de coût de fonctionnement. Sous 
divers ensembles d’hypothèses, on établit l’existence des solutions des jeux à champ 
moyen. On étudie aussi le comportement en temps long des solutions des jeux à 
champ moyen associées au problème d’horizon fini, et si l’on suppose l’ergodicité 
géométrique des dynamiques, on montre que ces solutions convergent vers la solution 
du jeu ergodique à champ moyen, lorsque l’horizon tend vers l’infini. Enfin, on étudie 
les jeux correspondants avec N -joueurs, on montre l’existence d’équilibres de Nash, 
et l’on établit la convergence des solutions associées aux équilibres de Nash du jeu 
vers une solution du jeu à champ moyen, lorsque N → ∞.
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1. Introduction

Mean field games (MFG) were introduced by J.M. Lasry and P.L. Lions [38–40], and independently, 
by Huang, Malhamé and Caines [31]. Mean field games are the limiting models for symmetric, non-zero 
sum, non-cooperative N -player games with the interaction between the players being of mean field type. 
In view of the theory of McKean–Vlasov limits and propagation of chaos for uncontrolled weakly interacting 
particle systems [44], one may expect to obtain convergence result for N -player game Nash equilibria, at 
least under some symmetry conditions. With this heuristic in mind, Lasry and Lions introduced the field of 
mean field games. Recently, rigorous results have been established for finite horizon control problems [20,36], 
for mean field games with ergodic cost [18], and for discrete time Markov processes with ergodic cost [8]. On 
the other hand, it is also known that one can construct ε-Nash equilibria for N -player games from mean field 
game solutions. See for example [15,16,31,34,35]. Mean field games have seen a wide variety of applications, 
and have been studied extensively during the last decade using both analytic and probabilistic techniques. 
We refer to the surveys in [6,11,23,28] for recent developments in the area of mean field games.

In this paper, we model the controlled dynamics of the ith player, i = 1, . . . , N , by the Itô equation

dXi
t = b(Xi

t , U
i
t ) dt + σ(Xi

t) dW i
t ,

where {W i}{1≤i≤N} is a collection of independent Wiener processes in Rd and U i is an admissible control, 
taking values in a compact metric space U, adapted to the filtration generated by W i. Thus the players do 
not have access to the full state vector for purposes of control. Such strategies are referred to as narrow 
strategies [20]. The running cost is given by a continuous function r : Rd × U × P(Rd) → R+. The goal of 
the i-th player is to minimize the (ergodic) criterion

J i(U) := lim sup
T→∞

1
T

E

[ T∫
0

r(Xi
t , U

i
t , μ

N
t ) dt

]
, with μN

t := 1
N

N∑
j=1

δXj
t
,

and U = (U1, . . . , UN ). We note that the running cost function r may depend upon the empirical distribution 
μN of the private states of the players. Since each player’s objective depend on the action of others we 
naturally look for Nash equilibria.

If the number of players N is very large, the contribution of the i-th player in the empirical distribution 
μN is negligible, and therefore μN may as well be treated fixed for player i. This heuristic argument leads 
to the mean field game formulation which can be described as follows:

(a) For a fixed element η ∈ C([0, ∞), P(Rd)) solve the optimal control problem,

minimize lim sup
T→∞

1
T

E

[ T∫
0

r(Xt, Ut, ηt) dt
]
,

subject to dXt = b(Xt, Ut) dt + σ(Xt) dWt , law of X0 = η(0) .

(1.1)

(b) Find an optimal control U∗ for the above control problem, and let η∗ denote the law of the state 
dynamics under the optimal control U∗.

(c) Find a fixed point of the map η �→ η∗.

The above model can be interpreted as follows: there is a single representative agent whose reward function 
is effected by an environment distribution (coming from the large number of agents), and the state process of 
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the representative can not influence the environment while solving its own optimization problem. Moreover, 
since all agents have identical dynamics and the same objective function, the distribution of the state 
process of the representative agent should agree with the environment distribution. We observe that the 
above problem is not a typical optimal control problem. The cost function here is not being optimized over 
all possible pairs (X, η) where Xt has distribution ηt and X satisfies the dynamics in (1.1). This later class 
of problems are known as mean field type control problems [6].

There are three major issues of interest in mean field games, (1) existence and uniqueness of solutions of 
MFG, (2) long time behavior of the finite horizon MFG, and (3) establishing rigorous connection of N -player 
games with MFG. The topic in (3) can also be divided in two parts: (3a) convergence of a N -player game 
Nash equilibria to a MFG solution, and (3b) construction of ε-Nash equilibria for the N -player game from 
a MFG solution. The main goal of this paper is to answer the questions in (1), (2) and (3a) for the class of 
models we consider.

During the last decade many papers have been devoted to the study of the topics above. Existence of 
mean field game solutions with ergodic cost for a compact state space is studied in [18,40]. For existence 
of mean field game solutions for finite horizon control problems we refer the reader to [7,14–16,36]. These 
papers also allow the drift to depend on the environment distribution η. The existence problem for finite 
state processes is addressed in [24,25,27], and a more general class of discrete time Markov processes to 
study the existence result when the cost is ergodic is considered in [8]. Analytical results on the existence 
of solution for the stationary mean field games can found in [26,42]. Linear-Quadratic mean field games 
with ergodic costs are considered in [5], and existence results are established. However there is not much 
improvement as far as uniqueness in concerned. A L2 type monotonicity condition (or a variant of it) is 
generally used to claim uniqueness of the mean field game solution (see [11,40]).

In Section 2 we study the existence of MFG solutions. We show that existence of MFG solutions is 
related to the existence of (V, �̃, μ) ∈ C2(Rd) × R+ × P(Rd) satisfying the following coupled equations (see 
Theorems 2.1 and 3.2)

min
u∈U

[
LuV (x) + r(x, u, μ)

]
= Lv V + r

(
x, v(x), μ

)
= �̃ a.e. x ∈ R

d , (1.2)∫
Rd

Lvf(x)μ(dx) = 0 ∀ f ∈ C2
c (Rd). (1.3)

Here Lu (see (2.3)) denotes the controlled extended generator of the controlled diffusion in (1.1). As well 
known, (1.2) is the Hamilton–Jacobi–Bellman (HJB) equation for an optimal ergodic control problem with 
running cost function (x, u) �→ r(x, u, μ), whereas (1.3) characterizes μ as the invariant probability measure 
corresponding to an optimal (stationary) Markov control v of (1.2). We use convex analytic tools (see 
Section 3) and the Kakutani–Fan–Glicksberg fixed point theorem to establish existence of a solution to 
(1.2)–(1.3).

One may also consider the finite horizon problem (say, with time horizon T ) for the mean field model. 
In this situation the solution is again determined by two coupled equations, where one equation depicts 
the evolution of transition density (or transition probability) and the other one is the HJB for the finite 
horizon optimal control problem. For a model with a compact state space, it is shown in [12,13] that, as 
T → ∞, the solution of the finite horizon control problem tends to the solution of (1.2)–(1.3) under suitable 
normalization. Similar long time behavior are also studied in [19,24,25] for finite state space processes. In 
Section 4 we study the analogous problem for our model. We compensate for the non-compactness of the 
state space by imposing a Lyapunov stability hypothesis to control behavior at infinity. We show that as 
the horizon T → ∞, the law of the process for the finite horizon MFG tends to a stationary law with 
marginals μ (see (1.3)), and the value function of the finite horizon problem, suitably normalized, tends to 
V in (1.2), uniformly over compact sets (see Theorems 4.3 and 4.4 for details).
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Next we discuss topic (3). As stated earlier there are several papers in which construction of approximate 
Nash equilibria is done using a MFG solution. In fact, a similar construction is also possible in our set up as 
well. However, the opposite direction is probably more natural and interesting [11, Remark 3.9]. Existence 
of Nash equilibria for N -player games with ergodic cost, and convergence to them is studied in [18], for 
a model with compact state space and a running cost function that has a special separable structure. 
Recently, [14,20,35] have addressed the same question (assuming existence of approximate Nash equilibria) 
for a general class of finite horizon control problems where the drift b and the diffusion matrix σ may also 
depend on μN . The approach in these papers uses the martingale formulation, and the method of weak 
convergence. Under suitable conditions, and for finite horizon control problems, it is established in [20,35]
that a certain type of averages of approximate Nash equilibria are tight and their subsequential limits are a 
solution for the MFG problem. The results in Section 5 are quite similar to that of [18] (compare Theorem 5.2
with [18, Theorem 2]). Since the state space is not compact, we work under the assumption of geometric 
stability. Also we impose fairly general hypotheses on the running cost function, which are satisfied by a 
large class of functions (Assumption 5.3). For the analysis, we have borrowed several results from [3]. The 
representation formula of the ergodic value function is shown to be quite useful in proving Theorem 5.2. 
Let us also mention that the convergence results for Nash equilibria we present are somewhat stronger than 
those obtained in [20,35]. In fact, we show that the maximum distance between the invariant measures in 
the Nash equilibrium tuple tends to 0 as the number of players increases to infinity (see Theorem 5.2(b)).

Summarizing our contributions in this paper, we

– establish the existence of MFG solutions for a large class of mean field games;
– prove the convergence of the finite horizon MFG solution to the stationary one, under the assumption 

of geometric stability;
– study the existence of Nash equilibria for N -player games and prove that they converge to a MFG 

solution.

The organization of the paper is as follows: In Section 2 we introduce the model and the basic assumptions, 
and state the main result (Theorem 2.1) on the existence of MFG solutions. Various convex analytic results 
are in Section 3, where we also prove the main results. In Section 4 we study the long time behavior of the 
finite horizon problem. Finally, in Section 5 we show existence of Nash equilibria for the N -player games 
and study their convergence to MFG solutions.

1.1. Notation

The standard Euclidean norm in Rd is denoted by | · |. The set of nonnegative real numbers is denoted 
by R+, N stands for the set of natural numbers, and 1 denotes the indicator function. The interior, closure, 
the boundary and the complement of a set A ⊂ R

d are denoted by Ao, A, ∂A and Ac, respectively. The open 
ball of radius R around 0 is denoted by BR. Given two real numbers a and b, the minimum (maximum) is 
denoted by a ∧ b (a ∨ b), respectively. By δx we denote the Dirac mass at x.

For a continuous function g : Rd → [1, ∞) we let O(g) denote the space of Borel measurable functions 
f : Rd → R satisfying ess supx∈Rd

|f(x)|
g(x) < ∞, and by o(g) those functions satisfying

lim sup
R→∞

ess sup
x∈Bc

R

|f(x)|
g(x) = 0 .

We also let Cg(Rd) denote the Banach space of continuous functions under the norm

‖f‖g := sup |f(x)|
.

x∈Rd g(x)
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For two nonnegative functions f and g, we use the notation f ∼ g to indicate that f ∈ O(1 + g) and 
g ∈ O(1 + f).

We denote by Lp
loc(Rd), p ≥ 1, the set of real-valued functions that are locally p-integrable and by 

W
k,p
loc (Rd) the set of functions in Lp

loc(Rd) whose i-th weak derivatives, i = 1, . . . , k, are in Lp
loc(Rd). The 

set of all bounded continuous functions is denoted by Cb(Rd). By Ck,α
loc (Rd) we denote the set of functions 

that are k-times continuously differentiable and whose k-th derivatives are locally Hölder continuous with 
exponent α. We define Ck

b (Rd), k ≥ 0, as the set of functions whose i-th derivatives, i = 1, . . . , k, are 
continuous and bounded in Rd and denote by Ck

c (Rd) the subset of Ck
b (Rd) with compact support.

Given any Polish space X , we denote by B(X ) its Borel σ-field, by P(X ) the set of probability measures on 
B(X ), and by M(X ) the set of all bounded signed measures on B(X ). For ν ∈ P(X ) and a Borel measurable 
map f : X → R, we often use the abbreviated notation ν(f) :=

∫
X f dν . The space of all continuous maps 

from [0, ∞) to X is denoted by C([0, ∞), X ). The law of a random variable X is denoted by L(X). For 
presentation purposes the time variable appears as a subscript for the diffusion process X. Also κ1, κ2, . . .
and C1, C2, . . . are used as generic constants whose values might vary from place to place.

2. Existence of solutions to MFG

2.1. Controlled diffusions

The dynamics are modeled by a controlled diffusion process X = {Xt, t ≥ 0} taking values in the 
d-dimensional Euclidean space Rd, and governed by the Itô stochastic differential equation

dXt = b(Xt, Ut) dt + σ(Xt) dWt . (2.1)

All random processes in (2.1) live in a complete probability space (Ω, F, P). The process W is a d-dimensional 
standard Wiener process independent of the initial condition X0. The control process U takes values in a 
compact metric space (U, dU), and Ut(ω) is jointly measurable in (t, ω) ∈ [0, ∞) × Ω. Moreover, it is 
non-anticipative: for s < t, Wt −Ws is independent of

Fs := the completion of σ{X0, Ur,Wr, r ≤ s} relative to (F,P) .

Such a process U is called an admissible control, and we let U denote the set of all admissible controls.
We impose the following standard assumptions on the drift b and the diffusion matrix σ to guarantee 

existence and uniqueness of solutions to (2.1).

(A1) Local Lipschitz continuity: The functions

b =
[
b1, . . . , bd

]T : Rd × U → R
d and σ =

[
σij
]
: Rd → R

d×d

are locally Lipschitz in x with a Lipschitz constant CR > 0 depending on R > 0. In other words, for 
all x, y ∈ BR and u ∈ U,

|b(x, u) − b(y, u)| + ‖σ(x) − σ(y)‖ ≤ CR |x− y| ∀x, y ∈ BR .

We also assume that b is continuous in (x, u).
(A2) Affine growth condition: b and σ satisfy a global growth condition of the form

|b(x, u)|2 + ‖σ(x)‖2 ≤ C1
(
1 + |x|2

)
∀ (x, u) ∈ R

d × U ,

where ‖σ‖2 := trace
(
σσT).
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(A3) Local nondegeneracy: For each R > 0, it holds that

d∑
i,j=1

aij(x)ξiξj ≥ C−1
R |ξ|2 ∀x ∈ BR ,

for all ξ = (ξ1, . . . , ξd)T ∈ R
d, where a := 1

2σσT.

In integral form, (2.1) is written as

Xt = X0 +
t∫

0

b(Xs, Us) ds +
t∫

0

σ(Xs) dWs . (2.2)

The third term on the right hand side of (2.2) is an Itô stochastic integral. We say that a process X = {Xt(ω)}
is a solution of (2.1), if it is Ft-adapted, continuous in t, defined for all ω ∈ Ω and t ∈ [0, ∞), and satisfies 
(2.2) for all t ∈ [0, ∞) a.s. It is well known that under (A1)–(A3), for any admissible control there exists a 
unique solution of (2.1) [3, Theorem 2.2.4].

We define the family of operators Lu : C2(Rd) → C(Rd), where u ∈ U plays the role of a parameter, by

Luf(x) := aij(x) ∂ijf(x) + b(x, u) · ∇f(x) , (x, u) ∈ R
d × U . (2.3)

We refer to Lu as the controlled extended generator of the diffusion. In (2.3) and elsewhere in this paper we 
have adopted the notation ∂t := ∂

∂t , ∂i := ∂
∂xi

, and ∂ij := ∂2

∂xi∂xj
. We also use the standard summation rule 

that repeated subscripts and superscripts are summed from 1 through d. In other words, the right hand 
side of (2.3) stands for

d∑
i,j=1

aij(x) ∂2f

∂xi∂xj
(x) +

d∑
i=1

bi(x, u) ∂f

∂xi
(x) .

Of fundamental importance in the study of functionals of X is Itô’s formula. For f ∈ C2(Rd) and with Lu

as defined in (2.3), it holds that

f(Xt) = f(X0) +
t∫

0

LUsf(Xs) ds + Mt , a.s.,

where

Mt :=
t∫

0

〈
∇f(Xs), σ(Xs) dWs

〉
is a local martingale.

Recall that a control is called Markov if Ut = v(t, Xt) for a measurable map v : R+ × R
d → U, and it is 

called stationary Markov if v does not depend on t, i.e., v : Rd → U. Correspondingly (2.1) is said to have 
a strong solution if given a Wiener process (Wt, Ft) on a complete probability space (Ω, F, P), there exists 
a process X on (Ω, F, P), with X0 as specified by the initial condition, which is continuous, Ft-adapted, 
and satisfies (2.2) for all t a.s. A strong solution is called unique, if any two such solutions X and X ′

agree P-a.s., when viewed as elements of C
(
[0, ∞), Rd

)
. It is well known that under Assumptions (A1)–(A3), 

for any Markov control v, (2.1) has a unique strong solution [29].
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Let USM denote the set of stationary Markov controls. Under v ∈ USM, the process X is strong Markov, 
and we denote its transition function by P v

t (x, · ). It also follows from the work of [9,43] that under v ∈ USM, 
the transition probabilities of X have densities which are locally Hölder continuous. Thus Lv defined by

Lvf(x) := aij(x) ∂ijf(x) + bi
(
x, v(x)

)
∂if(x) , v ∈ USM ,

for f ∈ C2(Rd), is the generator of a strongly-continuous semigroup on Cb(Rd), which is strong Feller. We let 
P
v
x denote the probability measure and Ev

x the expectation operator on the canonical space of the process 
under the control v ∈ USM, conditioned on the process X starting from x ∈ R

d at t = 0. The expectation 
operator EU

x is of course also well defined for U ∈ U.
Recall that a control v ∈ USM is called stable if the associated diffusion is positive recurrent. We denote 

the set of such controls by USSM, and let μv denote the unique invariant probability measure on Rd for 
the diffusion under the control v ∈ USSM. It is well known that v ∈ USSM if and only if there exists an 
inf-compact function V ∈ C2(Rd), a bounded domain D ⊂ R

d, and a constant ε > 0 satisfying

LvV(x) ≤ −ε ∀x ∈ Dc .

We denote by τ(A) the first exit time of a process {Xt , t ∈ R+} from a set A ⊂ R
d, defined by

τ(A) := inf {t > 0 : Xt �∈ A} .

The open ball of radius R in Rd, centered at the origin, is denoted by BR, and we let τR := τ(BR), and 
τ̆R := τ(Bc

R).

2.2. Topologies on P(Rd)

We endow the space P(Rd) with the Prokhorov metric dP that renders P(Rd) the topology of weak 
convergence. As is well known this is defined by

dP(μ1, μ2) := inf
{
ε > 0 : μ1(F ) ≤ μ2(F ε) + ε for all Borel F ⊂ R

d
}
. (2.4)

It is well known that (P(Rd), dP) is a Polish space and dP(μn, μ) → 0 as n → ∞ if and only if, for every 
f ∈ Cb(Rd), we have μn(f) → μ(f) as n → ∞. By Pp(Rd), p ≥ 1, we denote the subset of P(Rd) containing 
all probability measures μ with the property that 

∫
Rd |x|pμ(dx) < ∞. The Wasserstein metric on Pp(Rd) is 

defined as follows:

Wp(μ1, μ2) := inf
{( ∫

Rd×Rd

|x− y|pν(dx,dy)
)1/p

: ν ∈ P(Rd × R
d) has marginals μ1, μ2

}
. (2.5)

It is well known that (Pp(Rd), Wp), p ≥ 1, is a Polish space. The topology generated by Wp on Pp(Rd) is 
finer than the one induced by dP. In fact, we have the following assertion [45, Theorem 7.12].

Proposition 2.1. Let {μn}n∈N be a sequence of probability measures in Pp(Rd), and let μ ∈ P(Rd). Then, 
the following statements are equivalent:

1. Wp(μn, μ) → 0, as n → ∞.
2. dP(μn, μ) → 0 as n → ∞, and ∫

Rd

|x|pμn(dx) −−−−→
n→∞

∫
Rd

|x|pμ(dx) .
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3. dP(μn, μ) → 0 as n → ∞, and {μn} satisfies the following condition:

lim
R→∞

lim sup
n→∞

∫
Bc

R(0)

|x|p dμn = 0 .

Therefore, a set K which is compact in (Pp(Rd), Wp) is also compact in (Pp(Rd), dP). In the rest of 
the paper Pp(Rd) and P(Rd) are always meant to be metric spaces endowed with the metrics Wp and dP, 
respectively, unless mentioned otherwise.

2.3. The ergodic control problem

In this paper we consider dynamics as in (2.1) and associated running cost functions belonging to one 
of the three classes described in Assumption 2.1 below. We use the notation rμ(x, u) := r(x, u, μ). Also we 
write rμ ∈ o(h) for h : Rd × U → R+, provided that

lim sup
|x|→∞

sup
u∈U

|rμ(x, u)|
1 + h(x, u) = 0 .

Assumption 2.1. One of the following conditions holds:

(C1) The running cost r : Rd × U × P(Rd) → R+ is continuous, and for each μ ∈ P(Rd), rμ(· , ·) is locally 
Lipschitz in its first argument uniformly with respect to the second. Moreover, for any compact subset 
K of P(Rd) there exists θ > 0 such that

lim inf
|x|→∞

inf
u∈U

r(x, u, μ)
r(x, u, μ′) > θ ∀μ, μ′ ∈ K , (2.6)

and

inf
(u,μ) ∈ U×K

r(x, u, μ) −−−−−→
|x|→∞

∞ . (2.7)

(C2) The running cost takes the form rμ(x, u) = r̊(x, u) + F (x, μ), where F : Rd × Pp(Rd) → R+ is a 
continuous function, satisfying

F (x, μ) ≤ κ0

(
1 + |x|p +

∫
Rd

|x|p μ(dx)
)

∀ (x, μ) ∈ R
d × Pp(Rd) ,

for some constant κ0 and p ≥ 1. Also, ̊r : Rd×U → R+ is continuous and locally Lipschitz in x uniformly 
in u ∈ U, and satisfies

min
u∈U

r̊(x, u)
1 + |x|p −−−−−→

|x|→∞
∞ .

(C3) The running cost r : Rd × U × P(Rd) → R+ is continuous, and x �→ r(x, u, μ) is locally Lipschitz 
uniformly in u ∈ U and μ in compact subsets of P(Rd). Also
(C3a) There exist inf-compact functions V ∈ C2(Rd) and h ∈ C(Rd × U) such that for some positive 

constants c1 and c2 we have

LuV(x) ≤ c1 − c2h(x, u) ∀ (x, u) ∈ R
d × U , (2.8)
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(C3b) For any compact K ⊂ P(Rd) it holds that

sup
μ∈K

rμ ∈ o(h) .

A typical example of F in (C2) is F (x, μ) =
∫
|x − y|p μ(dy). Also r(x, u, μ) = r1(x) + r2(x, u, μ), 

with r2 ∈ Cb
(
R

d × U × P(Rd)
)
, r1 ∈ C0,1

loc (Rd), and lim|x|→∞ r1(x) = +∞ is an example of running cost 
satisfying (C1).

The running costs in (C1) and (C2) satisfy the condition of near monotonicity [3], while (2.8) implies 
that the controlled diffusion is uniformly stable. In [18,40] cost functions satisfying (C2) on a compact state 
space are considered. But in the current scenario the state space is Rd which is not compact. The cost 
functions in (C3) are allowed to take more general forms. Since V and h are bounded from below (being 
inf-compact), without loss of generality we assume that V ≥ 1, and h ≥ 0.

In general, U may not be a convex set. It is therefore often useful to enlarge the control set to P(U). 
To do so, for v ∈ P(U) we replace the drift and the running cost with

b̄(x, v) :=
∫
U

b(x, u) v(du) , and r̄(x, v, μ) :=
∫
U

r(x, u, μ) v(du) . (2.9)

It is easy to see that ̄b satisfies (A1)–(A2), while and running cost r̄ inherits the properties in Assumption 2.1
from r. In what follows we assume that all the controls take values in P(U). These controls are generally 
referred to as relaxed controls. We endow the set of relaxed stationary Markov controls with the following 
topology: vn → v in USM if and only if∫

Rd

f(x)
∫
U

g(x, u)vn(du |x) dx −−−−→
n→∞

∫
Rd

f(x)
∫
U

g(x, u)v(du |x) dx

for all f ∈ L1(Rd) ∩ L2(Rd) and g ∈ Cb(Rd × U). Then USM is a compact metric space under this topol-
ogy [3, Section 2.4]. We refer to this topology as the topology of Markov controls. A control is said to be 
precise/strict if it takes values in U. It is easy to see that any precise control Ut can also be understood as 
a relaxed control by Ut(du) = δUt

. Abusing the notation we denote the drift and running cost by b and r, 
respectively, and the action of a relaxed control on them is understood as in (2.9).

Now we introduce the control problem. Let η ∈ C
(
[0, ∞), P(Rd)

)
. We define the ergodic cost as follows:

Jx(U, η) := lim sup
T→∞

1
T

E
U
x

[ T∫
0

r(Xt, Ut, ηt) dt
]
, U ∈ U , x ∈ R

d . (2.10)

Let

�η(x) := inf
U∈U

Jx(U, η) .

Definition 2.1. η ∈ C([0, ∞), P(Rd)) is said to be a Mean Field Game (MFG) solution starting at x ∈ R
d if 

there exists an admissible control v such that

dXt = b(Xt, vt) dt + σ(Xt) dWt ,

with L(Xt) = ηt , X0 = x ,

and Jx(U, η) ≥ Jx(v, η) for all admissible U . We say the MFG solution is relaxed (strict) if the control v is 
a stationary Markov control taking values in P(U) (U, respectively).
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One of our main goals in this paper is to establish the existence of MFG solutions. First we review some 
basic facts about ergodic occupation measures and invariant probability measures for a controlled diffusion 
as in (2.1). The set of all ergodic occupation measures is defined as

G :=
{

π ∈ P(Rd × U) :
∫

Rd×U

Luf(x) π(dx,du) = 0 ∀ f ∈ C2
c (Rd)

}
. (2.11)

By [3, Lemma 3.2.3] G is a closed and convex subset on P(Rd × U). Disintegrating an ergodic occupation 
measure π we write π(dx, du) = μv(dx)v(du | x) for some μv ∈ P(Rd) and some measurable kernel v : Rd →
P(U). We use the notation π = μv � v to denote this disintegration. It straightforward to verify that μv

satisfies ∫
Rd

Lvf(x)μv(dx) = 0 for all f ∈ C2
c (Rd) ,

and is therefore an invariant probability measure for the diffusion controlled by v. It follows that v ∈ USSM. 
Conversely, if v ∈ USSM, then there exists a unique invariant probability measure for the diffusion under the 
control v ∈ USSM, and πv := μv � v is an ergodic occupation measure.

Thus, the set of all invariant probability measures may be defined as

H :=
{
ν ∈ P(Rd) : ν � v ∈ G for some v ∈ USM

}
. (2.12)

This is a convex subset of P(Rd). We refer to πv (μv) as the ergodic occupation measure (invariant proba-
bility measure) associated with v ∈ USSM.

The sets G and H play a key role in the analysis of the ergodic control problem. In fact, we are going to 
exhibit MFG solutions associated with v ∈ USSM and π ∈ G that satisfy the following

π = μv � v, min
u∈U

[
LuVμv

(x) + rμv
(x, u)

]
= �μv

, (2.13)

for some function Vμv
∈ C2(Rd). Existence results of solutions to (2.13) are in Section 3. Such existence 

results are generally shown using fixed point arguments [40]. Compactness of invariant measures plays an 
important role in this. When the state space is compact, then of course H is also compact. But this is not 
true in general for non-compact state spaces. We adopt the following notation. For any G ⊂ G we let H[G]
denote the corresponding set of invariant measures, i.e.,

H[G] := {μ ∈ H : μ � v ∈ G for some v ∈ USSM} .

Consider the following assumption.

Assumption 2.2. The following hold:

(i) There exist μ0 ∈ H and π0 ∈ G such that π0(rμ0) < ∞.
(ii) For models satisfying Assumption 2.1(C1), there exists a nonempty compact set K ⊂ G such that

π(rμ) > �̃μ ∀π ∈ G ∩Kc ,

and for all μ ∈ H where �̃μ = infπ∈G π(rμ).
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Remark 2.1. Assumption 2.2(i) is rather standard in ergodic control—if it is violated, the problem is vacuous. 
Note that Assumption 2.2(i) always holds for the model in (C3) of Assumption 2.1. Also, Assumption 2.2(i) 
implies that for running costs satisfying (C1)–(C2) of Assumption 2.1 it holds that π0(rμ) < ∞ for all 
μ ∈ H.

Define h(p, x, u, μ) := p · b(x, u) + r(x, u, μ), p ∈ R
d. Our main result of this section is the following.

Theorem 2.1. Let Assumptions 2.1 and 2.2 hold. Then, for any x ∈ R
d, there exists a relaxed MFG solution 

starting at x in the sense of Definition 2.1. Moreover, if U is convex and u �→ h(p, x, u, μ) is strictly convex 
for all x, p ∈ R

d, and μ ∈ P(Rd), then there exists a strict MFG solution.

3. MFG solutions for HJB

In this section we investigate the existence of MFG solutions for the associated Hamilton–Jacobi–Bellman 
(HJB) equation given by (2.13).

Recall the notation rμ(x, u) = r(x, u, μ). Consider the ergodic control problem

�∗μ := inf
U∈U

lim sup
T→∞

1
T

E
U
x

[ T∫
0

rμ(Xt, Ut) dt
]

for fixed μ ∈ P(Rd). Also recall the abbreviated notation π(r) =
∫
Rd×U

r dπ. We need the following 
definition:

Definition 3.1. Let f : Rd × U → R+. We say that π̄ ∈ G is optimal relative to f (for the ergodic cost 
criterion) if π̄(f) = infπ∈G π(f). For μ ∈ H, we let A(μ) ⊂ G denote the set of optimal ergodic occupation 
measures relative to rμ, and A∗(μ) ⊂ H denote the corresponding set of invariant probability measures. 
We also let �̃μ := infπ∈G π(rμ).

There are two general models for which there exists an optimal ergodic occupation relative to rμ for 
μ ∈ P(Rd), and optimality can be characterized by the HJB equation:

(H1) The running cost rμ satisfies lim inf |x|→∞ infu∈U rμ(x, u) > �̃μ, and �̃μ < ∞.
(H2) The set H is compact, and rμ is uniformly integrable with respect to H.

For models in (H1)–(H2) we assume that r : Rd × U × P(Rd) → R+ is continuous. Hypothesis (H2) is 
equivalent to (C3a) of Assumption 2.1, with h satisfying rμ ∈ o(h) by [3, Theorem 3.7.2].

We quote the following result which is contained in Theorems 3.6.10 and Theorem 3.7.12 of [3].

Theorem 3.1. If (H1) holds, then there exists a unique Vμ ∈ C2(Rd) which is bounded below in Rd and 
satisfies

min
u∈U

[
LuVμ(x) + rμ(x, u)

]
= �̃μ , Vμ(0) = 0 . (3.1)

Under (H2), there exists a unique Vμ ∈ C2(Rd) ∩ o(V) satisfying (3.1) (see [3, Theorem 3.7.12]). In either 
case, �̃μ = �∗μ, and v ∈ USM is optimal for the ergodic control problem if and only if it satisfies

min
u∈U

[
LuVμ(x) + rμ(x, u)

]
= LvVμ(x) + rμ

(
x, v(x)

)
almost everywhere in R

d . (3.2)
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It follows by Theorem 3.1 that if (H1) or (H2) hold, then the set valued maps A and A∗ can be charac-
terized by

A(μ) =
{
π ∈ G : π = πv , where v ∈ USSM satisfy (3.2)} ,

A∗(μ) = {ν ∈ H : ν � v ∈ A(μ) for some v ∈ USSM} .

This motivates the definition of the following notion of an MFG solution.

Definition 3.2. An invariant probability measure μ ∈ H is said to be a MFG solution if μ ∈ A∗(μ) and there 
exists Vμ ∈ C2(Rd) and v ∈ USSM such that

min
u∈U

[
LuVμ(x) + rμ(x, u)

]
= Lv Vμ + rμ

(
x, v(x)

)
= �̃μ a.e. x ∈ R

d , (3.3)∫
Rd

Lvf(x)μ(dx) = 0 ∀ f ∈ C2
c (Rd) . (3.4)

We retain the notion of a relaxed, or strict solution form Definition 2.1.

Equation (3.3) is the HJB equation corresponding to the ergodic control problem with running cost rμ, 
while (3.4) asserts that μ = μv is the invariant probability measure associated with the optimal Markov 
control v.

Remark 3.1. The reader should have noticed the relation between Definitions 2.1 and 3.2. It should observed 
that the initial distribution in Definition 2.1 is a Dirac mass at x. In fact, one may consider any nice
distribution as initial condition in Definition 2.1. For example, if we fix the initial condition to be μ satisfying 
(3.4), then a solution μ ∈ P according to Definition 3.2 gives rise to a solution according to Definition 2.1
due to stationarity.

We start with the following lemma:

Lemma 3.1. Suppose that either (H1) or (H2) hold. Then the set A∗(μ) is non-empty, convex and compact 
in P(Rd) under the total variation norm topology.

Proof. It is well known that G is convex (see [3, Lemma 3.2.3]). The convexity of A(μ) follows by the 
linearity of the map π →

∫
Rd×U

rμ(x, u)π(dx, du). It then follows that A∗(μ) is convex by the linearity of 
the projection.

Compactness of A∗(μ) is obvious under (H2). So suppose (H1) holds. To prove compactness, let {νn} be 
a sequence in A∗(μ), and {πn} be a corresponding sequence in A(μ) i.e., πn = νn � vn for some vn ∈ USSM
that satisfies (3.3). Let (Rd ×U) ∪ {∞} be the one point compactification of (Rd ×U). If {πn} is not tight 
in P(Rd × U) then there exist a constant ε > 0, and a subsequence, also denoted by {πn}, such that πn

converges to a probability measure of the form π′ on (Rd × U) ∪ {∞} such that π′(∞) ≥ ε. It is evident 
from the near monotone condition in (H1) that π′(Rd ×U) > 0. It is also standard to show that π′

1−π′(∞) is 
an ergodic occupation measure on Rd × U which implies by optimality that

π′(rμ)
1 − π′(∞) ≥ �̃μ . (3.5)

However, the lower semicontinuity of the map π �→ π(rμ) and (H1) imply that π′(rμ) <
(
1 − π′(∞)

)
�̃μ, 

which contradicts (3.5). Therefore {πn} must be tight in P(Rd×U) which implies that {νn} is tight. On the 
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other hand, under (H2), {νn} is trivially tight. Consider any subsequence such that νn → ν in P(Rd) and 
vn → v in USM under the topology of Markov controls, and let πn := νn �vn. It follows by [3, Lemma 3.2.6]
that πn → π := ν � v ∈ G as n → ∞. By the lower semicontinuity of the map π �→ π(rμ) we have

�̃μ = lim inf
n→∞

πn(rμ) ≥ π(rμ) ≥ �̃μ ,

which implies that A(μ) is closed and therefore compact. It then follows that A∗(μ) is compact in P(Rd)
under the total variation norm topology [3, Lemma 3.2.5]. �
Remark 3.2. It follows by Proposition 2.1, that for a running cost satisfying (C2), A∗(μ) is compact in 
Pp(Rd) for all μ ∈ Pp(Rd) such that �̃μ < ∞.

The following theorem asserts the existence of MFG solutions in the sense of Definition 3.2.

Theorem 3.2. Suppose that Assumptions 2.1–2.2 hold. Then there exists a relaxed MFG solution in the sense 
of Definition 3.2. Moreover, if U is convex and u �→ h(p, x, u, μ) is strictly convex for all x, p ∈ R

d, and 
μ ∈ P(Rd), then there exists a strict MFG solution.

The rest of this section is devoted in proving the above result. The proof is an application of the Kakutani–
Fan–Glicksberg fixed point theorem. A similar fixed point theorem has been applied in [36] to obtain MFG 
solutions for finite horizon control problems. Readers may consult [1, Chapter 17] for some basic properties 
of set-valued maps used in the proofs below.

We recall the definition of hemicontinuity [1, Section 17.3].

Definition 3.3. The map μ �→ A∗(μ) is said to be upper hemicontinuous if whenever μn → μ as n → ∞, and 
νn ∈ A∗(μn) for all n, then the sequence {νn} has a limit point in A∗(μ). The map μ �→ A∗(μ) is said to 
be lower hemicontinuous if whenever μn → μ as n → ∞ and ν ∈ A∗(μ), then there exists a subsequence 
{νnk

} such that νnk
∈ A∗(μnk

) and νnk
→ ν as nk → ∞. The map μ �→ A∗(μ) is said to be continuous if it 

is both upper and lower hemicontinuous.

We have the following general lemma:

Lemma 3.2. Suppose that

(a) r : Rd × U × P(Rd) → R+ is continuous;
(b) μ �→ �̃μ is upper semicontinuous;
(c) whenever μn → μ, then A∗(μn) is tight along some subsequence.

Then μ �→ A∗(μ) is upper hemicontinuous, and μ �→ �̃μ is continuous.

Proof. Since USM is compact under the topology of Markov controls, and (c) holds, it is enough to show 
that μ �→ A(μ) is upper hemicontinuous. So suppose μn → μ as n → ∞ and πn ∈ A(μn). Let π̂ be the limit 
of πn along some subsequence also denoted as {πn}. Then,

lim inf
n→∞

�̃μn
= lim inf

n→∞
πn(rμn

)

≥ π̂(rμ)

≥ �̃μ . (3.6)
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Since by hypothesis lim supn→∞ �̃μn
≤ �̃μ, equality follows in (3.6). Since π̂ ∈ G and π̂(rμ) = �̃μ, we have 

that π̂ ∈ A(μ), and upper hemicontinuity of μ �→ A(μ) follows. Moreover, it follows by (3.6) and (b) that 
μ �→ �̃μ is necessarily continuous. �

Consider the model in (H1). Note that Assumption 2.1(C2) implies (2.6) and (2.7).

Lemma 3.3. Suppose that Assumptions 2.1(C1) and 2.2(i) hold. Then μ �→ A∗(μ) is upper hemicontinuous 
on H.

Proof. It is evident that since �̃μ is finite for some μ ∈ H, then (2.6) implies that it is finite for all μ ∈ H. It 
then follows by (2.6) that ∪μ∈KA∗(μ) is tight, and it is routine to show that this together with (2.6) imply 
that μ �→ �̃μ is continuous on H. The result then follows by Lemma 3.2. �

Next we turn to the model in (H2). By [3, Theorem 3.7.2], Assumption 2.1(C3) is equivalent to

sup
π∈G

∫
Bc

R×U

sup
μ∈H

rμ(x, u) π(dx,du) −−−−→
R→∞

0 .

We work under a weaker hypothesis.

Lemma 3.4. Let (H2) hold and suppose that

sup
π∈G

sup
μ∈H

∫
Bc

R×U

rμ(x, u) π(dx,du) −−−−→
R→∞

0 .

Then μ �→ A∗(μ) is upper hemicontinuous on H.

Proof. If μn → μ and π̄μ ∈ G is optimal relative to rμ, then by uniform integrability we have

lim sup
n→∞

�̃μn
≤ lim sup

n→∞
π̄μ(rμn

) = �̃μ ,

which implies that μ �→ �̃μ is continuous. The result then follows by Lemma 3.2. �
Lemmas 3.3 and 3.4 imply the following.

Corollary 3.1. Let Assumptions 2.1–2.2 hold. Then μ �→ A∗(μ) is upper hemicontinuous on H.

In order to apply the fixed point theorem it remains to show that there exists some nonempty, convex 
and compact set K ⊂ H such that A∗(μ) ⊂ K for all μ ∈ K. For the models satisfying (H2) we can select 
K ≡ H.

We have the following lemma:

Lemma 3.5. Let Assumptions 2.1 and 2.2 hold. There exists a non-empty, convex and compact set K ⊂ P(Rd)
such that for μ ∈ K we have A∗(μ) ⊂ K.

Proof. Under Assumption 2.1(C3) we choose K = H.
Suppose that Assumption 2.1(C1) holds and let K be as in Assumption 2.2. Then H

[
K
]

is compact under 
the total variation norm topology [3, Lemma 3.2.5]. Therefore it follows that convH

[
K
]

is also compact in 
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the total variation norm topology [1, Theorem 5.35]. Defining K = convH
[
K
]

we see that K is a convex, 
compact subset of P(Rd). Again by Assumption 2.2(ii) it easy to see that K has required property.

Next, consider Assumption 2.1(C2), and let π0 = ν0 � v0 be as in Assumption 2.2(i). For R > 0, let 
MR, NR ⊂ H be defined by

MR :=
{
μ ∈ H : κ0

(
1 +
∫
Rd

|x|p ν0(dx) +
∫
Rd

|x|p μ(dx)
)

≤ R

}
,

NR :=
{
μ ∈ H :

∫
Rd

(
min
u∈U

r̊(x, u)
)
ν(dx) ≤ π0(̊r) + R

}
.

By Assumption 2.1(C2), there exists R0 > 0 such that MR0 ⊃ NR0 . It is evident that NR0 is convex and 
compact in Pp(Rd). Let μ ∈ NR0 ⊂ MR0 . If π = ν � v ∈ G, and ν ∈ N c

R0
, then

π(̊r) +
∫
Rd

F (x, μ) ν(dx) > π0(̊r) + R0

≥ π0(̊r) + κ0

(
1 +
∫
Rd

|x|p ν0(dx) +
∫
Rd

|x|p μ(dx)
)

≥ π0(̊r) + F (ν0, μ) ,

where the first inequality follows since ν ∈ N c
R0

, while the second follows from the hypothesis that μ ∈
NR0 ⊂ MR0 . This of course implies that π /∈ A(μ). Therefore A∗(μ) ∈ NR0 for all μ ∈ NR0 . This completes 
the proof. �

Next we prove Theorem 3.2.

Proof of Theorem 3.2. Consider the map μ ∈ K �→ A∗(μ) ∈ 2K where K is chosen from Lemma 3.5. We 
note that K is a non-empty, convex and compact subset of M(Rd) which is a locally convex Hausdorff 
space under the weak topology. By Lemma 3.1 A∗(μ) is non-empty, convex and compact. From Lemma 3.1, 
Corollary 3.1 and [1, Theorem 17.10] we conclude that the map μ �→ A∗(μ) has closed graph. Therefore 
applying the Kakutani–Fan–Glicksberg fixed point theorem (see [1, Corollary 17.55]) there exists μ ∈ K
satisfying μ ∈ A∗(μ). This proves the existence of a relaxed MFG solution in the sense of Definition 3.2.

Suppose now that U is convex and u �→ h(p, x, u, μ) is strictly convex for all x, p ∈ R
d, μ ∈ P(Rd). Then 

we can find a unique continuous, strict Markov control v : Rd → U such that

min
u∈U

[
LuVμ(x) + rμ(x, u)

]
= LvVμ(x) + rμ

(
x, v(x)

)
∀x ∈ R

d .

Note that in this case A∗(μ) is a singleton, and μ �→ A∗(μ) is continuous in P(Rd). Hence, an application 
of the Schauder–Tychonoff fixed point theorem suffices to assert existence of a strict MFG solution. �
Remark 3.3. It is possible to allow the drift b to depend on the measure μ. In case (C3) we can even 
consider a continuous b : Rd × U × P(Rd) → R

d such that b(· , u, μ) is locally Lipschitz uniformly with 
respect to u ∈ U for all μ ∈ P(Rd). The argument in the proof of Theorem 3.2 holds in this case if (2.8)
is satisfied. In particular, consider b(x, u, μ) ≡ b(x, u) + e(μ) for some bounded continuous vector valued 
map e : P(Rd) → R

d where b satisfies the following: there exists V, h satisfying (2.8) when the operator L is 
defined using the drift b(x, u) and |∇V | ∈ o(h). Then it is easy to see that (2.8) holds for the original drift 
b(x, u, μ) with the same functions V and h.
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Proof of Theorem 2.1. Consider a MFG solution μ in the sense of Definition 3.2 and take a relaxed/strict 
control v ∈ USSM associated to it in A(μ). The existence of such a v is assured by Theorem 3.2. We know 
that there exists a unique strong Markov process corresponding to v satisfying (2.1) i.e.,

dXt = b(Xt, v(Xt)) dt + σ(Xt) dWt , X0 = x .

By definition, μ is the unique invariant probability measure of the process X under the control v. Let η ∈
C([0, ∞), P(Rd)) be the path of transition probabilities of this process. It suffices to show that Jx(v, η) = �̃μ
for all x ∈ R

d, and that for any admissible control U ∈ U we have

Jx(U, η) ≥ �̃μ ∀U ∈ U , ∀x ∈ R
d , (3.7)

where J is defined by (2.10). We divide the proof in three cases.
Case 1. Consider models satisfying (C3). Applying [32, Proposition 2.6] it follows that there exists a compact 
set G ∈ P(Rd) such that ηt ∈ G for all t ≥ 0. Therefore

rηt
≤ sup

ν∈G
rν ∈ o(h) ∀ t ≥ 0 . (3.8)

Also by (2.8), it follows that

lim sup
T→∞

1
T

E
U
x

[ T∫
0

h(Xt, Ut) dt
]
≤ 1

c2

(
c1 − V(x)

)
∀U ∈ U .

This shows that

lim sup
T→∞

1
T

E
U
x

[ T∫
0

1Bc
R
(Xt) sup

ν∈G
rν(Xt, Ut) dt

]
−−−−→
R→∞

0 ∀U ∈ U . (3.9)

Therefore since r is continuous and ηt → μ in P(Rd) as t → ∞, we obtain by (3.8) and (3.9) that

lim sup
T→∞

1
T

E
v
x

[ T∫
0

r(Xt, v(Xt), ηt) dt
]

= lim sup
T→∞

1
T

E
v
x

[ T∫
0

r(Xt, v(Xt), μ) dt
]

= �̃μ . (3.10)

It remains to show that

lim sup
T→∞

1
T

E
U
x

[ T∫
0

r(Xt, Ut, ηt) dt
]

≥ �̃μ ∀U ∈ U . (3.11)

For this purpose, we consider a smooth cut-off function φR that equals 1 on BR and vanishes outside BR+1. 
By ω we denote the local modulus of continuity of r, defined by

ω(R,G, ε) := sup
{
|r(x, u, μ− r(x̄, ū, μ̄)| : |x− x̄| + dU(u, ū) + dP(μ, μ̄) ≤ ε,

x, x̄ ∈ B̄R, μ, μ̄ ∈ G , u, ū ∈ U
}
.

Since the mean empirical measures of the process (Xt, Ut) are tight, applying Theorem 3.4.7 in [3], we 
obtain
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lim inf
T→∞

1
T

E
U
x

[ T∫
0

φR(Xt) r(Xt, Ut, μ) dt
]

≥ inf
π∈G

∫
Rd×U

φR(x)rμ(x, u) π(dx,du) .

Thus, using the inequality

r(Xt, Ut, ηt) ≥ φR(Xt) r(Xt, Ut, ηt)

≥ φR(Xt) r(Xt, Ut, μ) − φR(Xt) ω
(
R + 1, G, dP(ηt, μ)

)
,

and the fact that dP(ηt, μ) → 0 as t → ∞, we obtain

lim inf
T→∞

1
T

E
U
x

[ T∫
0

r(Xt, Ut, ηt) dt
]

≥ inf
π∈G

∫
Rd×U

φR(x)rμ(x, u) π(dx,du) .

Letting R → ∞, and using the fact �̃μ is the optimal value, we obtain (3.11).
Case 2. We consider running costs satisfying (C1). From the HJB equation we have

LvVμ(x) + rμ(x, v(x)) = �̃μ ,

with μ ∈ A∗(μ). Hence, by [3, Lemma 3.7.2], there exist nonnegative, inf-compact functions V ∈ C2(Rd)
and h ∈ C(Rd) such that rμ(·, v(·)) ∈ o(h), and satisfy

LvV(x) ≤ c0 − h(x) (3.12)

for some constant c0. It follows by (3.12) that ηt ∈ G for all t ≥ 0, where G is a compact subset of P(Rd). 
By (2.6) we have

sup
ν∈G

rν(·, v(·)) ∈ o(h) .

Repeating the argument used in Case 1, we obtain (3.10). Also (3.11) follows as in Case 1 by using the 
near-monotone property of rμ.
Case 3. We consider (C2). To show (3.7) in this case, it is enough to show that F (x, ηt) → F (x, μ) as 
t → ∞ uniformly in x on compact subsets of Rd. Since F is continuous in Rd × Pp(Rd), we need to show 
that Wp(ηt, μ) → 0 as t → ∞. Since 

∫
Rd r̊(x, v(x))μ(dx) ≤ �̃μ, it follows that for any continuous φ with 

φ ∈ O(̊r) we have 
∫
φ dμ < ∞. Then by [32, Proposition 2.6] we have 

∫
φ dηt →

∫
φ dμ as t → ∞ for every 

initial condition x. Combining this fact with Proposition 2.1 we obtain that Wp(ηt, μ) → 0 as t → ∞. This 
shows (3.7). It is also easy to see that �η = �̃μ. �
Remark 3.4. We note that for models satisfying (C3) we can strengthen the assumption on r depending on 
the growth rate of h. For example, if h ∼ |x|p for p ≥ 1, then one may a consider continuous r defined on 
R

d × U × Pp(Rd) that is locally Lipschitz in first and third arguments uniformly in u ∈ U, and with the 
property that supμ∈K rμ ∈ o(h) for any compact K ⊂ Pp(Rd). The results of Theorem 2.1 continue to hold 
in this case.

4. Long time behavior and the relative value iteration

In this section we study the long time behavior of the finite horizon mean field game equations. The prob-
lem is as follows. We are given a running cost function r(x, u, μ), a horizon T > 0, a ‘terminal cost function’ 
ϕ0 ∈ C2(Rd), and an initial distribution η ∈ P(Rd). For U ∈ U and {μt ∈ P(Rd) , t ∈ [0, T ]} we define
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J (U, μ; η) := E
U
η

[ T∫
0

r(Xt, Ut, μt) dt + VT (XT )
]
,

where Xt is governed by (2.1) with L(X0) = η. Let LU
η (Xt) denote the law of the process Xt governed by 

(2.1) under a control U with L(X0) = η. Then {μ∗
t ∈ P(Rd) , t ∈ [0, T ]} is called an MFG solution for the 

problem on [0, T ] if there exists an admissible control U∗ such that LU∗
η (Xt) = μ∗

t for all t ∈ [0, T ]

J (U, μ∗; η) ≥ J (U∗, μ∗; η) ∀U ∈ U .

We assume that r(x, u, μ) has the separable form r̊(x, u) + F (x, μ), so that the Hamiltonian H(x, p) is 
given by

H(x, p) = min
u

{b(x, u) · p + r̊(x, u)} . (4.1)

Denoting by χ(t, · ) the density of μT−t = L(XT−t), the dynamic programming formulation amounts to 
solving

∂tV = aij∂ijV + H(x,∇V ) + F (x, μT−t) ,

V (0, x) = ϕ0(x) ∀x ∈ R
d ,

(4.2a)

−∂tχ = ∂i
(
aij∂jχ + (∂jaij)χ

)
− div

(
∂H
∂p (x,∇V )χ

)
,

χ(T, · ) is the density of η .
(4.2b)

Equation (4.2b) is the Kolmogorov equation for the density χ(t, · ), running in backward time. Therefore, 
if (V, χ) is a solution of (4.2a)–(4.2b), then μ∗

t (dx) = χ(T − t, x) dx for t ∈ [0, T ] is a MFG solution in 
the sense of the above definition. It also follows by the dynamic programming principle that the solution 
VT (t, x), where the T in the subscript denotes the dependence of the solution on the horizon [0, T ], has the 
stochastic representation

VT (t, x) = inf
U∈U

E
U
x

[ T−t∫
0

r
(
Xs, Us, μ

∗
T−t+s

)
dt + h(XT−t)

]
∀ (t, x) ∈ [0, T ] × R

d ,

where the process X is governed by (2.1).
Lasry and Lions have examined thoroughly the case where b(x, u) = −u, σ is the identity matrix, 

r(x, u) = 1/2|u|2, and F (x, μ) takes the form F (x, χ(x)), where χ is the density of μ. Moreover, they 
assume that F (x, t) ∈ R

d × R is C1, is strictly increasing in t, and is Zd-periodic in x. As a result the 
state space is a d-dimensional torus T. Under the assumption that the density η is Hölder continuous and 
has finite second moments, they have shown the existence and uniqueness of a solution to (4.2a)–(4.2b)
for this problem [40]. They also consider a general class of F that includes non-local interactions, and 
present a detailed analysis of the stationary ergodic problem, proving the existence and uniqueness of a 
stationary solution. The behavior over a long horizon for this model has been studied, with both local and 
non-local interactions in [12,13]. In the case of non-local interactions, they establish convergence in the 
average sense, i.e., limT→∞

1
T V (γT ) = (1 −γ)�̄, for γ ∈ (0, 1), where �̄ is the value of the associated ergodic 

problem (see (4.8) below), and also convergence in L2(T) uniformly over compact intervals of time. Also, 
they show that the density χT converges to the density of the stationary solution in L2(T) uniformly over 
compact intervals of time. Under stronger assumptions on F they show that convergence is exponential 
in T .
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For the problem on Rd we are dealing with, in order to avoid restrictive assumptions on F , we have to 
compensate for the non-compactness of the state space by imposing a uniform stability hypothesis on the 
dynamics in (2.1). We describe these assumptions in the next section.

4.1. Assumptions and basic properties

Existence and uniqueness of solutions to (4.2a)–(4.2b) under general vector fields requires strong regular-
ity of the data. We refer the reader to [31,33,34]. We note here that the results in this paper can be extended 
to include a drift b, a diffusion matrix σ and running cost r that all depend on μ, albeit necessitating various 
assumptions on the smoothness of the data.

In this paper we are not interested in the regularity of the Fokker–Planck equation (4.2b). If a MFG 
solution μt is provided, then F (x, μt) is a given function of (t, x) ∈ [0, T ] × R

d, and the Hamiltonian does 
not depend on μt. If F (x, μt) is Hölder in x and continuous in t, and ϕ0 is smooth enough, then (4.2b) has 
almost classical solutions. Therefore we concentrate on a set of assumptions that guarantee the existence 
and uniqueness of a MFG solution, and at the same time maintain sufficient regularity for the solutions of 
(4.2b).

For η ∈ P(Rd) we let Mη([0, T ]) denote the set of all trajectories 
{
μt = LU

η (Xt) , U ∈ U , t ∈ [0, T ]
}
, and 

we define

P(η) :=
{
LU

η (Xt) ∈ P(Rd) : U ∈ U , t ≥ 0
}
.

Assumption 4.1. The following hold:

(i) Assumptions (A1)–(A3) on the data hold, and r̊ : Rd × U → R+ is continuous and locally Lipschitz in 
x uniformly in u ∈ U.

(ii) The function F is defined on Rd×P̃, where P̃ is some subset of P(Rd) which contains P(η), and satisfies

F(μ, μ′) :=
∫
Rd

(
F (x, μ) − F (x, μ′)

)(
μ(dx) − μ′(dx)

)
≥ 0 ∀μ, μ′ ∈ P̃ . (4.3)

Moreover, F (x, μ) is locally Lipschitz in x uniformly on compact subsets of P̃, and μ �→ F (· , μ) is a 
continuous map from P̃ to C(Rd) under the topology of uniform convergence on compact sets.

(iii) The terminal cost ϕ0 is in C2(Rd) and the density of the initial distribution η is Hölder continuous, 
and has a finite second moment.

(iv) There exists a unique u∗ that minimizes the Hamiltonian in (4.1).

Under Assumption 4.1, existence of an MFG solution is asserted in [36, Theorem 2.1]. In fact, this can 
be obtained applying a fixed point argument same as above. The (non-strict) monotonicity hypothesis 
(4.3) together with the fact that A∗(μ) is a singleton implied by Assumption 4.1(iv), is enough to guaran-
tee uniqueness of the MFG solution for the ergodic problem. The monotonicity hypothesis has become a 
standard assumption in the literature [13,40].

Recall the definition of the weighted Banach space CV(Rd) from Section 1.1. The following assumption 
is a strengthening of the stability hypothesis in (C3).

Assumption 4.2. A number p ≥ 1 is specified as a parameter. There exists a nonnegative, inf-compact 
V ∈ C2(Rd), and positive constants c0 and c1 satisfying

LuV(x) ≤ c0 − c1V(x) ∀ (x, u) ∈ R
d × U . (4.4)
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Without loss of generality we assume V ≥ 1. Also

(i) It holds that

‖σ(x)‖2 + |x|p + supu∈U r̊(x , u)
V(x) −−−−−→

|x|→∞
0 .

(ii) For any compact K ⊂ Pp(Rd) and R > 0, there exists a constant Mp(R) > 0 such that such that∣∣F (x, μ) − F (x′, μ)
∣∣ ≤ Mp(R)|x− x′| ∀x, x′ ∈ BR , ∀μ ∈ K .

(iii) The map μ → F (· , μ) from Pp(Rd) to CV(Rd) is continuous.

It is well known (see [3,22]) that (4.4) implies that

E
U
x [V(Xt)] ≤ c0

c1
+ V(x)e−c1t ∀x ∈ R

d , ∀U ∈ U . (4.5)

It follows by (4.5) that all stationary Markov controls USM are stable and that∫
Rd

V(x)μv(dx) ≤ c0
c1

,

where, as usual, μv denotes the unique invariant probability measure of the diffusion controlled under v. 
Therefore, μv ∈ Pp(Rd) for all v ∈ USM.

It also follows that for any v ∈ USM the controlled process under v is V-geometrically ergodic (see [17,21]), 
or in other words, that there exist constants M0 and γ > 0 such that, if h : Rd → R is Borel measurable 
and h ∈ O(V), then ∣∣∣∣∣∣Ev

x

[
h(Xt)

]
−
∫
Rd

h(x)μv(dx)

∣∣∣∣∣∣ ≤ M0e−γt
∥∥h∥∥V(1 + V(x)

)
(4.6)

for all t ≥ 0 and x ∈ R
d.

We have the following simple assertion.

Lemma 4.1. Under Assumption 4.2, here exists a constant M̃p which depends only on p ≥ 1 and L(X0) ∈
Pp(Rd) such that

Wp

(
L(Xt),L(Xs)

)
≤ M̃p

√
|t− s| ∀ s, t ∈ R+ , |s− t| < 1 , under any U ∈ U .

Proof. By the Burkholder–Davis–Gundy inequality, for some constant κp > 0, we obtain

E

[
sup

s≤r≤t
|Xr −Xs|p

]
≤ 2p−1(t− s)p−1

E

[ t∫
s

|b(Xr, Ur)|p dr
]

+ 2p−1κpE

[( t∫
s

‖σ(Xr)‖2 dr
)p/2
]
. (4.7)

The expectation in the second term on the right hand side of (4.7) is bounded by 
(∫ t

s
E
[
‖σ(Xr)‖2]dr)p/2

when p ∈ [1, 2]. On the other hand, if p > 2, using the Hölder inequality, we bound this term by
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(t− s)
p−2
2

t∫
s

E
[
‖σ(Xr)‖p

]
dr .

Therefore, since supu∈U |b(·, u)|p ∈ O(V) and ‖σ(· )‖2∨p ∈ O(V) by (A2) and Assumption 4.2(i), the result 
follows by (4.5) and (4.7). �

Let

M0 :=

⎧⎨⎩μ ∈ P(Rd) :
∫
Rd

V(x)μ(dx) ≤ c0
c1

⎫⎬⎭ .

The set M0 is compact in Pp(Rd) and H ⊂ M0 by Assumption 4.2. We have not assumed that F is 
nonnegative. Nevertheless, Assumption 4.2 implies that infμ,μ′∈H

∫
F (x, μ) μ′(dx) < −∞, and therefore, 

the ergodic cost problem is well posed. Combining the preceding discussion with the results in Section 2, 
we have the following:

Theorem 4.1. Let Assumptions 4.1–4.2 hold. Then there exists a unique MFG solution μ̄ ∈ H to the ergodic 
control problem. Associated with that, we obtain a unique V̄ ∈ C2(Rd) ∩ CV(Rd), satisfying V̄ ∈ o(V) and 
V̄ (0) = 0, which solves

aij(x)∂ij V̄ (x) + H(x,∇V̄ ) + F (x, μ̄) = �̄ (4.8)

with �̄ = �μ̄.

For the rest of this section we let v̄ denote some Markov control associated with the stationary solution 
in (4.8), i.e., a measurable selector from the minimizer of the Hamiltonian H(x, ∇V̄ ). By uniqueness of the 
solutions we have μv̄ = μ̄.

4.2. The relative value iteration

Note that the Markov control associated with (4.2a) is computed ‘backward’ in time. We need the 
following definition:

Definition 4.1. Let v̂ = {v̂t , t ∈ [0, T ]} denote a measurable selector from the minimizer of the Hamiltonian 
in (4.2a). For each T > 0 we define the (nonstationary) Markov control

v̂T :=
{
v̂Ts = v̂T−s , s ∈ [0, T ]

}
.

We also let η̂Ts denote the law of Xs, s ∈ [0, T ] under the control v̂T . As remarked earlier η̂Ts (·) = Lv̂
η(Xs)

for s ∈ [0, T ], and thus, η̂T0 agrees with the initial law η, which we also denote by η̂0.

We modify (4.2a) by normalizing it as follows:

∂tϕ(t, x) = aij(x)∂ijϕ(t, x) + H(x,∇ϕ(t, x)) + F (x, η̂TT−t) − �̄ , ϕ(0, x) = ϕ0(x) , (4.9)

where ϕ0 ∈ C2(Rd) ∩o(V) denotes the terminal cost. It is evident the solution ϕ depends also on the horizon 
[0, T ] and to distinguish among these solutions we adopt the notation ϕT (t, x), or ϕT

t (x).
For existence and uniqueness of solutions to (4.9) in cylinders we refer the reader to [37, Theorem 6.1, 

p. 452] and to p. 492 of the same reference for the Cauchy problem. See also [2,4] for the Cauchy problem 



226 A. Arapostathis et al. / J. Math. Pures Appl. 107 (2017) 205–251
in (4.9) as well as (4.11) below. We need to mention though that Theorem 6.1 in [37] concerns solutions 
in Hölder spaces, and in order to satisfy the assumptions of this theorem t �→ F (x, η̂TT−t) has to be Hölder 
continuous. However under our assumptions it is only continuous, which means that the time derivative 
of the solution ϕ(t, x) is not necessarily Hölder continuous. In general then, (4.9) has to be solved in the 
parabolic Sobolev space W1,2,q

loc ((0, ∞) ×R
d) (see [37, Section IV.9]). We don’t require more regularity than 

that in this paper.
We are concerned here only with the solution ϕT which agrees with the stochastic representation

ϕT
t (x) = inf

U
E
U
x

⎡⎣ t∫
0

rη̂T
T−t+s

(Xs, Us) ds + ϕ0(Xt)

⎤⎦− �̄ t

= E
v̂T

x

⎡⎣ t∫
0

rη̂T
T−t+s

(
Xs, v̂

T
T−t+s(Xs)

)
ds + ϕ0(Xt)

⎤⎦− �̄ t ∀ t ∈ [0, T ] , (4.10)

and in general, for any [t1, t2] ∈ [0, T ],

ϕT
t2(x) = E

v̂T

x

⎡⎣ t2−t1∫
0

rη̂T
T−t2+s

(
Xs, v̂

T
T−t2+s(Xs)

)
ds + ϕT

t1(Xt2−t1)

⎤⎦− �̄ (t2 − t1) .

We also consider the following variation of (4.9):

∂tψ
T
t (x) = aij(x)∂ijψT

t (x) + H(x,∇ψT
t (x)) + F (x, η̂TT−t) − ψT

t (0) , ψT
0 (x) = ϕ0(x) . (4.11)

It is straightforward to show that v̂t is also a measurable selector from the minimizer of the Hamiltonian 
in (4.11), and that ϕT and ψT are related by

ϕT
t (x) = ψT

t (x) − �̄ t +
t∫

0

ψT
s (0) ds , (t, x) ∈ [0, T ] × R

d .

We have in particular that

ϕT
t (x) − ϕT

t (0) = ψT
t (x) − ψT

t (0) , (t, x) ∈ [0, T ] × R
d . (4.12)

Conversely, if ϕT is a solution of (4.9), then one obtains a corresponding solution of (4.11) that takes the 
form [2, Lemma 4.4]:

ψT
t (x) = ϕT

t (x) −
t∫

0

es−t ϕT
s (0) ds + �̄ (1 − e−t) , (t, x) ∈ [0, T ] × R

d . (4.13)

We refer to (4.9), and (4.11) as the value iteration (VI), and relative value iteration (RVI) equations, 
respectively.

The following technique is rather standard. For η ∈ P(Rd) and v ∈ USM we define

F̄ (η, μ) :=
∫

F (x, μ) η(dx) , and ¯̊r(η, v) :=
∫

r̊
(
x, v(x)

)
η(dx)
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for η ∈ P(Rd). We consider X in (2.1) under the following Markov controls: v̂t which a measurable selector 
from the minimizer in (4.9), and the stationary control v̄ which corresponds to (4.8). Applying (4.10) and 
integrating with respect to η̂T0 and μ̄, respectively, we obtain

η̂T0 (ϕT
T ) =

T∫
0

(¯̊r(η̂Tt , v̂t) + F̄ (η̂Tt , η̂Tt ) − �̄
)
dt + η̂TT (ϕ0) , (4.14)

μ̄(ϕT
T ) ≤

T∫
0

(¯̊r(μ̄, v̄) + F̄ (μ̄, η̂Tt ) − �̄
)
dt + μ̄(ϕ0) . (4.15)

Repeating this with terminal cost V̄ , and using (4.8), we obtain

μ̄(V̄ ) =
T∫

0

(¯̊r(μ̄, v̄) + F̄ (μ̄, μ̄) − �̄
)
dt + μ̄(V̄ ) , (4.16)

η̂T0 (V̄ ) ≤
T∫

0

(¯̊r(η̂Tt , v̂t) + F̄ (η̂Tt , μ̄) − �̄
)
dt + η̂TT (V̄ ) . (4.17)

Adding together (4.14)–(4.16) and subtracting (4.15)–(4.17) we obtain

T∫
0

F(η̂Tt , μ̄) dt ≤ (η̂T0 − μ̄)(ϕT
T − V̄ ) − (η̂TT − μ̄)(ϕ0 − V̄ ) . (4.18)

Define

ΓT (t) :=
(
η̂TT−t − μ̄

)(
ϕT
t − V̄

)
, t ∈ [0, T ] .

In complete analogy to (4.18) we have

t2∫
t1

F(η̂TT−s, μ̄) ds ≤ ΓT (t2) − ΓT (t1) , t1 ≤ t2 . (4.19)

Remark 4.1. We often use in the proofs the following fact: if ft, ht : Rd → R and g : Rd → R are such
that supt≥0 ‖ft‖V < ∞, ‖g‖V < ∞, and ht(x) = E

v̄
x

[∫ t

0 fs(Xs) ds + g(Xt)
]
, then it holds that

supt>0 ‖ht(x) − ht(0)‖V < ∞. Indeed, by (4.6) we have

∣∣∣∣ht(x) −
t∫

0

μ̄(fs) ds− μ̄(g)
∣∣∣∣ ≤

(
1 + V(x))

( t∫
0

M0 e−γs‖fs‖V ds + ‖g‖V
)
,

so that

|ht(x) − ht(0)| ≤
(
2 + V(x) + V(0))

( t∫
0

M0 e−γs‖fs‖V ds + e−γt ‖g‖V
)

≤
(
2 + V(x) + V(0))

(
M0

γ
sup
s≥0

‖fs‖V + e−γt ‖g‖V
)
.
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We start with the following result:

Theorem 4.2. Let Assumptions 4.1–4.2 hold. Then, for all λ ∈ [0, 1), we have

1
(1 − λ)T

T∫
λT

η̂Tt dt −−−−→
T→∞

μ̄ in P(Rd) .

Moreover,

sup
T>0

T∫
0

F(η̂Tt , μ̄) dt < ∞ .

Proof. Let

ĝTt (x) := E
v̂T

x

[ t∫
0

rμ̄
(
Xs, v̂

T
T−t+s(Xs)

)
ds + V̄ (Xt)

]
− �̄ t ,

ḡTt (x) := E
v̄
x

[ t∫
0

rη̂T
T−t+s

(
Xs, v̄(Xs)

)
ds + ϕ0(Xt)

]
− �̄ t .

Since

ḡTt (x) − V̄ (x) = E
v̄
x

[ t∫
0

(
F (Xs, η̂

T
T−t+s) − F (Xs, μ̄)

)
ds + ϕ0(Xt) − V̄ (Xt)

]
,

it follows by (4.6) and Remark 4.1 that

sup
T>0

sup
t ∈ [0,T ]

∥∥ḡTt (x) − V̄ (x) − ḡTt (0) − V̄ (0)
∥∥
V < ∞ .

Therefore, for some constant C, we have |(η̂TT−t − μ̄)(ḡTt − V̄ )| < C for all t ∈ [0, T ] and T > 0. Hence, 
by (4.3), we have

η̂TT−t(ϕT
t ) ≥ η̂TT−t(ĝTt ) + μ̄(ḡTt − V̄ ) + (η̂TT − μ̄)(ϕ0 − V̄ )

≥ η̂TT−t(ĝTt ) + η̂TT−t(ḡTt − V̄ ) − C + (η̂TT − μ̄)(ϕ0 − V̄ )

for all t ∈ [0, T ] and T > 0. By suboptimality ĝTt ≥ V̄ and ḡTt ≥ ϕT
t . Also

|(η̂TT − μ̄)(ϕ0 − V̄ )| ≤ 2c0
c1

+ ‖ϕ0 − V̄ ‖V
(
η̂0(V) + μ̄(V)

)
.

Hence, for some constant C ′ we obtain

0 ≤ η̂TT−t(ĝTt − V̄ ) ≤ C ′ ,

0 ≤ η̂T (ḡT − ϕT ) ≤ C ′
(4.20)
T−t t t
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for all t ∈ [0, T ] and T > 0. By the first equation in (4.20), and since η̂TT (V̄ ), η̂TT (ϕ0), and 
∫ T

0
(
F̄ (Lv̄

η̂0
(Xt), μ̄) −

F̄ (μ̄, μ̄)
)
dt are bounded uniformly in T > 0, using a triangle inequality we obtain

sup
T>0

∣∣∣∣
T∫

0

(
F̄ (η̂Tt , μ̄) − F̄ (μ̄, μ̄)

)
dt
∣∣∣∣ < C ′′

for some constant C ′′. Similarly from the second equation, using the same constant C ′′, without loss of 
generality, we have

sup
T>0

∣∣∣∣
T∫

0

(
F̄ (μ̄, η̂Tt ) − F̄ (η̂Tt , η̂Tt )

)
dt
∣∣∣∣ < C ′′ .

The second assertion of the theorem follows from these bounds.
From the first inequality in (4.20) we obtain 0 ≤ η̂T(1−λ)T (ĝTλT − V̄ ) ≤ C for all λ ∈ [0, 1]. Therefore, we 

have

1
λT

η̂T(1−λ)T (ĝTλT ) −−−−→
T→∞

0 ∀λ ∈ (0, 1] . (4.21)

Let

π̆T
λ (dx,du) := 1

λT

λT∫
0

η̂T(1−λ)T+s(dx) � v̂T(1−λ)T+s(du | x) ds , λ ∈ (0, 1] ,

and π̄ := μ̄ � v̄. Since π̄(rμ̄) = �̄, and write (4.21) as

0 ≥
∫

Rd×U

(
π̆T
λ (dx,du) − π̄(dx,du)

)
rμ̄(x, u) −−−−→

T→∞
0 .

Since {π̆T
λ , T > 0} is tight, any limit point of π̆T

λ as T → ∞ is an element of G [3, Lemma 3.4.6]. Let 
{Tn} be any sequence, and select a subsequence also denoted as {Tn} along which π̆Tn

λ → π̆∗ ∈ G. Then 
π̆∗(rμ̄) = π̄(rμ̄), and since by Assumption 4.1(iv) the set A(μ̄) is a singleton it follows that π̆∗ = π̄ which, 
in turn, implies the first assertion in the theorem. �

We also have the following simple lemma concerning the growth of ϕT
t (0) in t.

Lemma 4.2. Let Assumptions 4.1–4.2 hold. Then there exists a constant C̄0 > 0 which depends only on ϕ0

and L(X0), such that∣∣ϕT
t (0) − ϕT

t−τ (0)
∣∣ ≤ C̄0(1 + τ) for all t ∈ [0, T ] , τ ∈ [0, t] , and T > 0 .

Proof. By Assumptions 4.1 and 4.2, there is a constant C̄ depending only on ϕ0 and L(X0), such that

E
U
0
∣∣rη̂T

T−t
(Xs, Us)

∣∣ ≤ C̄

for all t ∈ [0, T ], s ≥ 0, U ∈ U, and T > 0. Therefore, we have
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∣∣ϕT
t−τ (0) − ϕT

t (0)
∣∣ =

∣∣∣∣inf
U

E
U
0

[ t−τ∫
0

rη̂T
T−t+τ+s

(Xs, Us) ds + ϕ0(Xt−τ )
]

− inf
U

E
U
0

[ t∫
0

rη̂T
T−t+s

(Xs, Us) ds + ϕ0(Xt)
]∣∣∣∣

≤ sup
U

E
U
0

[ t∫
t−τ

|rη̂T
T−t+s

(Xs, Us)|ds +
∣∣ϕ0(Xt−τ ) − ϕ0(Xt)

∣∣]
≤ C̄τ + 2‖ϕ0‖V

(
c0
c1

+ e−c1tV(0)
)
. �

4.3. Convergence of the RVI

Theorem 4.2 shows that η̂T converges to μ̄ in a time average sense. We wish to show that ψT
λT converges 

to V̄ − �̄ as T → ∞. It is evident by (4.12) that this cannot happen unless ϕT
λT − ϕT

λT (0) is at least locally 
bounded, uniformly in T > 0. We state this necessary condition for convergence as a property.

Property 4.1. Define ϕT
t := ϕT

t − ϕT
t (0). Suppose that η̂0(V) ≤ κ1 and ‖ϕ0‖V ≤ κ2, where V is as in 

Assumption 4.2. Then there exists a constant C̃1 = C̃1(κ1, κ2) such that

sup
T>0

sup
t ∈ [0,T ]

∥∥ϕT
t

∥∥
V < C̃1 .

It is unclear if Assumption 4.2 suffices to establish Property 4.1. Instead of imposing additional assump-
tions on F , we choose instead to show that this property is satisfied for a large class of controlled diffusions, 
and then assume only Property 4.1 in the statement of the main results.

We introduce the following notation: for x, z in Rd define

Δzb(x, u) := b(x + z, u) − b(x, u) ,

Δzσ(x) := σ(x + z) − σ(x) ,

ã(x; z) := Δzσ(x)Δzσ
T(x) .

Definition 4.2. We say that the controlled diffusion in (2.1) is asymptotically flat if the following hold:

(a) The diffusion matrix σ is Lipschitz continuous.
(b) There exist a symmetric positive definite matrix Q and a constant r > 0 such that for x, z ∈ R

d, with 
z �= 0, and u ∈ U, it holds that

2Δzb
T(x, u)Qz − |Δzσ

T(x)Qz|2
zTQz

+ trace
(
ã(x; z)Q

)
≤ −r|z|2 .

A standard model of asymptotically flat diffusions is given by U = [0, 1]d, b(x, u) = Bx +Du, where B, D
are constant d ×d matrices and B is Hurwitz (i.e., its eigenvalues have negative real parts). Note also that if 
σ is constant, then asymptotic flatness amounts to the requirement that 〈b(x + z, u) − b(x, u), Qz〉 ≤ −r|z|2. 
Nevertheless, the class of asymptotically flat diffusions is significantly richer than models with stable linear 
drifts. Asymptotically flat diffusions satisfy an “incremental stability” property. For recent work along similar 
directions see [10,41].

We quote the following result [3, Lemmas 7.3.4 and 7.3.6].
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Lemma 4.3. Suppose that the diffusion in (2.1) is asymptotically flat, and let Xx
t be the solution with initial 

condition X0 = x, corresponding to an admissible relaxed control U . Then there exist constants ĉ0 > 0 and 
ĉ1 > 0, which do not depend on U , such that

E
U
∣∣Xx

t −Xy
t

∣∣ ≤ ĉ0 e−ĉ1t|x− y| ∀x, y ∈ R
d . (4.22)

Moreover there exists a nonnegative, inf-compact V ∈ C2(Rd) satisfying (4.4), and such that

V(x)
1 + |x|p0

−−−−−→
|x|→∞

∞ (4.23)

for some p0 > 1.

Let Lip(f) denote a Lipschitz constant for a function f , which is assumed Lipschitz. We often use the fact 
that for an asymptotically flat diffusion, if gt(x) = E

U
x [f(Xt], then Lip(gt) ≤ ĉ0e−ĉ1t Lip(f) for all U ∈ U.

We have the following lemma:

Lemma 4.4. Let Assumptions 4.1 and 4.2 hold, and suppose that the diffusion is asymptotically flat, 
η̂0(V) < ∞, and ϕ0 ∈ C2(Rd) is Lipschitz. We also assume that r̊(· , u) is Lipschitz uniformly in u ∈ U, 
and that Assumption 4.2(ii) holds for a constant M1 which is independent of R. Then there exists a con-
stant C̃ ′

1 which depends only on η̂0(V) and Lip(ϕ0) such that

Lip
(
ϕT
t ) ≤ C̃ ′

1 ∀ t ∈ [0, T ] , ∀T > 0 .

In particular,

sup
T>0

sup
t∈[0,T ]

∥∥ϕT
t

∥∥
V ≤ C̃ ′

1 ,

and thus Property 4.1 holds.

Proof. We fix some compact set K0 ⊂ P1(Rd) of initial distributions that contains μ̄, and satisfies 
supμ∈K0

μ(V) < ∞. The initial distribution η̂0 is assumed to lie in the set K0. The corresponding col-
lection P(K0) := {LU

μ (Xt) : μ ∈ K0 , U ∈ U , t > 0} is compact in P1(Rd) by (4.4) and (4.23). Therefore, 
for some constant C̃0, it holds that Lip(F (·, μ)) ≤ C̃0 and |F (x, μ)| ≤ C̃0(1 + |x|) for all μ ∈ K0. It is 
straightforward to show that, under asymptotic flatness, V̄ is Lipschitz. Without loss of generality, we let 
C̃0 be also a Lipschitz constant for ϕ0, V̄ , and r̊(·, u) as well.

By Lemma 4.3, we have

∣∣ϕT
t (x) − ϕT

t (y)
∣∣ =

∣∣∣∣inf
U

E
U
x

[ t∫
0

rη̂T
T−t+s

(Xs, Us) ds + ϕ0(Xt)
]

− inf
U

E
U
y

[ t∫
0

rη̂T
T−t+s

(Xs, Us) ds + ϕ0(Xt)
]∣∣∣∣

≤ sup
U

E
U

[ t∫
0

∣∣rη̂T
T−t+s

(Xx
s , Us) − rη̂T

T−t+s
(Xy

s , Us)
∣∣ ds]

+ sup E
U
[∣∣ϕ0(Xx

t ) − ϕ0(Xy
t )
∣∣]
U
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≤ 2C̃0
ĉ0
ĉ1

|x− y| + ĉ0|x− y| for all x, y ∈ R
d , t ∈ [0, T ] , and T > 0 .

This completes the proof. �
Remark 4.2. Even though r̊ and F have been assumed Lipschitz in x, running costs with higher growth in 
x can be treated, depending on the diffusion matrix. In particular, if the diffusion matrix is constant, then 
(4.22) can be replaced by

E
U
∣∣Xx

t −Xy
t

∣∣2 ≤ ĉ0e−ĉ1t|x− y|2 ∀x, y ∈ R
d .

Thus, in this case, the results of Lemma 4.4 can be extended to include running costs with up to quadratic 
growth.

As mentioned earlier, Property 4.1, which is implied by asymptotic flatness, together with Assumption 4.2
are sufficient to prove convergence. So in the statement of the main results we use Property 4.1 in lieu of 
asymptotic flatness.

Since (η̂T0 − μ̄)(ϕT
T − V̄ ) = (η̂T0 − μ̄)(ϕT

T − V̄ ), it is evident that if Property 4.1 holds, then the right hand 
side of (4.18) is bounded uniformly in T > 0. Therefore, by (4.19), we have the following.

Corollary 4.1. Let Assumptions 4.1–4.2 and Property 4.1 hold, and suppose that ϕ0 ∈ C2(Rd) ∩ CV(Rd) and 
η̂0(V) < ∞. Then there exists a constant C0 such that

t2∫
t1

F(η̂TT−s, μ̄) ds ≤ ΓT (t2) − ΓT (t1) ≤ C0 , t1 ≤ t2 .

In particular, t �→ ΓT (t) is nondecreasing and bounded on t ∈ [0, T ] uniformly in T > 0.

We are now ready to state the main results.

Theorem 4.3. Let Assumptions 4.1–4.2 and Property 4.1 hold. Also suppose that η̂0(V) < ∞ and ϕ0 ∈
C2(Rd) ∩ CV(Rd). Then for any λ ∈ (0, 1), and t0 > 0 we have

sup
t∈[0,t0]

W1(η̂TλT−t, μ̄) −−−−→
T→∞

0 . (4.24)

Moreover,

sup
t∈[0,t0]

∥∥ϕT
λT−t − ϕT

λT−t(0) − V̄
∥∥
V −−−−→

T→∞
0 , (4.25)

and

sup
t∈[0,t0]

∣∣ϕT
λT (0) − ϕT

λT−t(0)
∣∣ −−−−→

T→∞
0 . (4.26)

Proof. Let ε ∈
(
0, 12 min(λ, 1 − λ)

)
, and τ > 0. Consider the interval [(1 − ε)T − τ, T ] and let IT be the 

collection of consecutive closed intervals [(1 −ε)T, (1 −ε)T +2τ ], [(1 −ε)T +2τ, (1 −ε)T +4τ ], . . . contained 
in it. Let Tn → ∞ be any sequence. By Corollary 4.1 there exists a sequence [tn− τ, tn + τ ] ∈ ITn

such that 
ΓTn

(tn + τ) − ΓTn
(tn − τ) → 0 as n → ∞.

Property 4.1 together with Lemma 4.2 imply that (s, x) �→ ϕT
t+s(x) − ϕT

t (0) is bounded on compact sets 
of R+ × R

d uniformly in T > 0 and t ∈ [0, T ]. By well known interior estimates of parabolic equations, 
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this means that the maps (s, x) �→ ϕT
t+s(x) − ϕT

t (0) are locally Hölder equicontinuous on compact sets of 
(1, ∞) × R

d. Therefore, (t, x) �→ ϕTn
t (x) − ϕTn

tn (0) is equicontinuous on [tn − τ, tn + τ ]. At the same time, 
by Lemma 4.1, the laws {η̂Tn

Tn−tn+s , s ∈ [−τ, τ ]} are precompact in [−τ, τ ] × P1(Rd). Passing to the limit 
along a subsequence, also denoted as {Tn}, we define

ϕ∗
t := lim

n→∞

(
ϕTn
tn−τ+t − ϕTn

tn (0)
)
, and η̂∗t := lim

n→∞
η̂Tn

Tn−tn−τ+t , t ∈ [0, 2τ ] . (4.27)

Let ϕ∗
t := ϕ∗

t − ϕ∗
t (0). By Property 4.1 and Lemma 4.2 we have

sup
t ∈ [0,2τ ]

‖ϕ∗
t ‖V < C̃1 + C̄0(1 + τ) , and sup

t ∈ [0,2τ ]
‖ϕ∗

t ‖V < C̃1 . (4.28)

It is evident that {η̂∗t , t ∈ [0, 2τ ]} is a MFG solution for the finite horizon problem on [0, 2τ ] with initial 
law η̂∗0 and terminal cost ϕ∗

0. Therefore,

ϕ∗
t (x) = inf

U∈U
E
U
x

[ t∫
0

rη̂∗
s

(
Xs, Us

)
ds + ϕ∗

0(Xt)
]
− �̄ t .

Let v̂∗ be a Markov control that realizes this infimum, i.e., v̂∗ is the a.e. unique minimizer from the Hamil-
tonian of the associated HJB. By suboptimality we have

ϕ∗
t (x) ≤ E

v̄
x

[ t∫
0

rη̂∗
s

(
Xs, v̄(Xs)

)
ds + ϕ∗

0(Xt)
]
− �̄ t , (4.29a)

V̄ (x) ≤ E
v̂∗

x

[ t∫
0

rμ̄
(
Xs, v̂

∗
s (Xs)

)
ds + V̄ (Xt)

]
− �̄ t (4.29b)

for t ∈ [0, τ ]. Since ΓTn
(tn + τ) − ΓTn

(tn − τ) → 0 as n → ∞ along the subsequence, taking limits we have

(η̂∗0 − μ̄)(ϕ∗
2τ − V̄ ) − (η̂∗2τ − μ̄)(ϕ∗

0 − V̄ ) = 0 . (4.30)

Thus

2τ∫
0

F(η̂∗s , μ̄) ds = 0 (4.31)

by (4.18). However, since μ̄ and η̂∗0 have strictly positive density, then (4.30)–(4.31) imply that (4.29a) and 
(4.29b) must hold with equality. By a.e. uniqueness of the minimizer in the Hamiltonian, we must have 
v̂∗ = v̄ a.e. in [0, 2τ ] × R

d. Recall that P v̄
t (x, · ) denotes the transition probability of the process X in (2.1)

under the control v̄. Thus, by (4.6) we have

η̂∗t (·) =
∫
Rd

η̂∗0(dy)P v̄
t (y, · ) , t ∈ [0, 2τ ] ,

and using (4.6) and (4.28) we obtain∣∣(η̂∗t − μ̄)(ϕ∗
0 − V̄ )

∣∣ ≤ M0 e−γt
∥∥ϕ∗

0 − V̄
∥∥
V
(
1 + η̂∗0(V)

)
≤ M0

(
C̃1 + ‖V̄ ‖V

) (
1 + c0

c1
+ η̂0(V)

)
e−γt , t ∈ [0, 2τ ] . (4.32)
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Note also that by the Kantorovich duality theorem, we have the estimate

W1(η̂∗t , μ̄) ≤ M0 e−γt
(
1 + η̂∗0(V)

)
sup
x∈Rd

|x|
V(x) , t ∈ [0, 2τ ] . (4.33)

We claim that v̂∗ = v̄ a.e. in [0, 2τ ] × R
d also implies that

sup
t ∈
[
τ
4 ,

3τ
2
] ∥∥ϕ∗

t − V̄
∥∥
V −−−−→

τ→∞
0 , (4.34)

and

sup
t ∈
[
τ
2 ,

3τ
2
] ∣∣ϕ∗

t (0) − ϕ∗
τ (0)

∣∣ −−−−→
τ→∞

0 . (4.35)

To prove the claim, we estimate ϕ∗
t by

ϕ∗
t (x) − ϕ∗

0(0) = E
v̄
x

[ t∫
0

rη̂∗
2τ−t+s

(
Xs, v̄(Xs)

)
ds + ϕ∗

0(Xt)
]
− �̄ t

= E
v̄
x

[ t∫
0

rμ̄
(
Xs, v̄(Xs)

)
ds + V̄ (Xt) − �̄ t

]

+ E
v̄
x

[ t∫
0

(
F
(
Xs, η̂

∗
2τ−t+s

)
− F

(
Xs, μ̄

))
ds + ϕ∗

0(Xt) − V̄ (Xt)
]
. (4.36)

The first term in (4.36) equals V̄ (x). We use the estimate∣∣Ev̄
x

[
ϕ∗

0(Xt) − V̄ (Xt)
]
− μ̄
(
ϕ∗

0 − V̄
)∣∣ ≤ M0e−γt

∥∥ϕ∗
0 − V̄

∥∥
V
(
1 + V(x)

)
, (4.37)

which holds by (4.6). Similarly, with F̃μ(x) := F (x, μ) − F (x, μ̄), we have

∣∣∣∣Ev̄
x

[ t∫
0

F̃η̂∗
2τ−t+s

(Xs) ds
]
−

t∫
0

μ̄
(
F̃η̂∗

2τ−t+s

)
ds
∣∣∣∣ ≤ M0

(
1 + V(x)

) t∫
0

e−γs
∥∥F̃η̂∗

2τ−t+s

∥∥
V ds . (4.38)

Let

ζ(t) := μ̄
(
ϕ∗

0 − V̄
)

+
t∫

0

μ̄
(
F̃η̂∗

2τ−t+s

)
ds .

We evaluate ϕ∗
t (x) −ϕ∗

0(0) in (4.36) first at x and then at x = 0, using also (4.37)–(4.38) to form a triangle 
inequality, as well as the fact that V̄ (0) = 0, to obtain∣∣ϕ∗

t (x) − V̄ (x)
∣∣ ≤

∣∣ϕ∗
t (x) − ϕ∗

0(0) − V̄ (x) − ζ(t)
∣∣+ ∣∣ϕ∗

t (0) − ϕ∗
0(0) − V̄ (0) − ζ(t)

∣∣
≤ M0

(
2 + V(x) + V(0)

)(
e−γt

∥∥ϕ∗
0 − V̄

∥∥
V +

t∫
0

e−γs
∥∥F̃η̂∗

2τ−t+s

∥∥
V ds

)
. (4.39)

By Assumption 4.2(iii), which holds with p = 1, and (4.33) we have
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sup
t ∈ [τ/2,2τ ]

∥∥F̃η̂∗
t

∥∥
V −−−−→

τ→∞
0 . (4.40)

Therefore (4.34) follows by (4.39)–(4.40). Using (4.36) once more, we obtain

∣∣ϕ∗
t (0) − ϕ∗

τ/4(0)
∣∣ ≤ μ̄

(
ϕ∗

τ/4 − V̄
)

+
t−τ/4∫
0

μ̄
(
F̃η̂∗

2τ−t+s

)
ds

+ M0
(
1 + V(0)

)(
e−γ(t−τ/4)∥∥ϕ∗

τ/4 − V̄
∥∥
V +

t−τ/4∫
0

e−γs
∥∥F̃η̂∗

2τ−t+s

∥∥
V ds

)
(4.41)

for t ≥ τ/4. The first term in (4.41) vanishes as τ → ∞ by (4.34), and the same holds for the integrals 
by (4.40). This proves (4.35).

Repeating the same argument on the interval [0, εT ], we obtain the analogous to (4.32). Combining the 
two, and using the fact that ΓT ((1 − ε)T ) − ΓT (εT ) → 0 as T → ∞, and ΓT (t) − ΓT (t′) ≥ 0 for t ≥ t′, we 
deduce that

sup
λ ∈ [ε,1−ε]

ΓT (λT ) −−−−→
T→∞

0 . (4.42)

Let ε̃ > 0 be given. By (4.32) and (4.39)–(4.40) we can select τ0 such that, if τ > τ0 then any limits ϕ∗

and η̂∗ as defined in (4.27) satisfy

sup
t ∈
[
τ
2 ,

3τ
2
] max

(
W1(η̂∗t , μ̄),

∣∣ϕ∗
t (0) − ϕ∗

τ (0)
∣∣, ∥∥ϕ∗

t − V̄
∥∥
V

)
≤ ε̃

4 . (4.43)

Next, we select any interval of the form [λT − τ, λT + τ ] ⊂ [εT, (1 − ε)T ], τ > τ0. Given any sequence 
Tn → 0, we can take limits along some subsequence Tn → ∞ by (4.42), as done earlier, and define

ϕ∗
t := lim

n→∞

(
ϕTn

λTn−τ+t − ϕTn

λTn
(0)
)
, η̂∗t = lim

n→∞
η̂Tn

(1−λ)Tn−τ+t , t ∈ [0, 2τ ] .

Therefore, ϕ∗
t = limn→∞ ϕTn

λTn−τ+t. Since convergence is uniform on [0, 2τ ], there exists n0 ∈ N, such that

sup
t ∈ [0,2τ ]

max
(
W1
(
η̂∗t , η̂

Tn

(1−λ)Tn−τ+t

)
,
∥∥ϕ∗

t − ϕTn

λTn−τ+t

∥∥
V

)
≤ ε̃

2 ∀n ≥ n0 . (4.44)

Since

ϕ∗
t (0) − ϕ∗

τ (0) = lim
n→∞

(
ϕTn

λTn−τ+t(0) − ϕTn

λTn
(0)
)
,

the result clearly follows by (4.43)–(4.44), and a standard triangle inequality. �
Convergence of the (RVI) is asserted in the following theorem:

Theorem 4.4. Under the assumptions of Theorem 4.3, it holds that∥∥ψT
λT (x) − V̄ (x) + �̄

∥∥
V −−−−→

T→∞
0 (4.45)

for all λ ∈ (0, 1).
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Proof. We write (4.13) as

ψT
λT (x) = ϕT

λT (x) −
λT∫
0

es−λT
(
ϕT
s (0) − ϕT

λT (0)
)
ds + e−λTϕT

λT (0) + �̄ (1 − e−λT ) (4.46)

for (t, x) ∈ [0, T ] × R
d. We expand the integral as

λT−t0∫
0

es−λT
(
ϕT
s (0) − ϕT

λT (0)
)
ds +

λT∫
λT−t0

es−λT
(
ϕT
s (0) − ϕT

λT (0)
)
ds

for t0 > 0. The first integral has a bound κe−t0 for some constant κ by Lemma 4.2, while second integral 
vanishes as T → ∞ by (4.26). Since t0 > 0 is arbitrary, (4.45) follows by (4.25) and (4.46). �
Remark 4.3. The result of Theorem 4.4 can be improved to assert that convergence is uniform on
[εT, (1 − ε)T ], or in other words that for any ε ∈ (0, 1/2) we have

sup
λ ∈ [ε,(1−ε)]

∥∥ψT
λT (x) − V̄ (x) + �̄

∥∥
V −−−−→

T→∞
0 .

The same applies to the convergence in (4.24)–(4.26). To establish this one may follow the argument in the 
proof of Theorem 4.3. First, under the hypotheses, the map

T : Pp(Rd) ×
(
C2(Rd) ∩ CV(Rd)

)
→ C

(
[0, 2τ ],Pp(Rd)

)
which determines the MFG solution for the finite horizon problem on an interval [0, 2τ ] from an initial 
distribution η ∈ Pp(Rd) and a terminal cost g ∈ C2(Rd) ∩ CV(Rd) is continuous in η and g − g(0). Since 
η̂Tt lives in some compact set K of Pp(Rd) and ϕT

t lives in some compact set G of C2(Rd) ∩ CV(Rd) for all 
t ∈ [0, T ] and T > 0, then by the uniform continuity of the map T on K ×G, it is evident from the proof of 
Theorem 4.3 that the convergence in (4.24)–(4.26) is uniform in λ ∈ [εT, (1 − ε)T ].

Remark 4.4. As shown in [13], under the hypothesis ‖F (x, μ) −F (x, μ′)‖C1+α ≤ C‖μ −μ′‖H−1
0

, convergence 
is exponential in T for the problem on the d-dimensional torus T. For the model addressed in this paper, 
it would be interesting to investigate whether strengthening Assumption 4.2(ii) and (iii) to |F (x, μ) −
F (x′, μ′)| ≤ C

(
|x − x′| + Wp(μ, μ′)

)
is sufficient to guarantee exponential convergence.

5. Limits of N -player games

In this section we consider certain classes of N player games, and show that as N → ∞, the limiting value 
function and invariant probability measure solve mean field games. As earlier, we consider a probability space 
(Ω, F, P) on which we are given N independent d-dimensional standard Brownian motions {W 1, . . . , WN}
with respect to a complete filtration {FN

t }. The initial conditions {Xi
0} are assumed to be independent of 

these Brownian motions. The control for the ith player lives in a compact, metrizable control set Ui. The 
set of all admissible controls is denoted by UN and contains paths (U1, . . . , UN ), satisfying the following: 
{U i

t (ω), 1 ≤ i ≤ N}, is jointly measurable in (t, ω) ∈ [0, ∞) × Ω, takes values in U1 × · · · × U
N , and 

U i is adapted to the Brownian motion W i for 1 ≤ i ≤ N . Therefore the game under consideration is 
non-cooperative. We note that the controls in UN satisfy the non-anticipativity condition. We consider the 
collection of controlled diffusions
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dXi
t = bi(Xi

t , U
i
t ) dt + σi(Xi

t) dW i
t , 1 ≤ i ≤ N. (5.1)

We assume that bi, σi, 1 ≤ i ≤ N , satisfy conditions (A1)–(A3) possibly for different constants C1, CR. 
Therefore, for any admissible control UN = (U1, . . . , UN ) ∈ U

N , (5.1) has a unique strong solution for 
every deterministic initial condition. It might be convenient to think of this system of diffusions as a single 
controlled diffusion with state space RNd. The cost functions

ri : Rd × U× P(Rd) → R+ ,

are assumed to be continuous and for all μ, r is locally Lipschitz in the variable x uniformly in u ∈ U. 
We extend the action space to the relaxed control framework, and assume that the admissible control takes 
values in P(U1) × · · · × P(UN ). Let USM = U1

SM × · · · × UN
SM, where Ui

SM denotes the set of measurable 
maps vi : Rd → P(Ui). We endow USM with the product topology; therefore USM forms a compact space. 
By USSM we denote the set of all stable stationary Markov controls in USM. The cost function for the i-th 
player is given by

J i(UN ) := lim sup
T→∞

1
T

Ex

[ T∫
0

ri
(
Xi

t , U
i
t ,

1
N − 1

∑
j 
=i

δXj
t

)
dt
]
. (5.2)

From (2.4) it is easy to see that for all xj , yj ∈ R
d, 1 ≤ j ≤ N − 1, we have

dP

(
1

N − 1

N−1∑
j=1

δxj ,
1

N − 1

N−1∑
j=1

δyj

)
≤

N−1∑
j=1

|xj − yj | .

Therefore, defining r̆i : RNd × U
i → R+ by

r̆i(x1, . . . , xN , ui) := ri
(
xi, ui,

1
N − 1

∑
j 
=i

δxj

)
,

it follows that r̆i is continuous in RNd uniformly in ui ∈ U
i. Hence we can redefine the ergodic criterion in 

(5.2) as

J i(UN ) := lim sup
T→∞

1
T

Ex

[ T∫
0

r̆i(X1
t , . . . , X

N
t , U i

t ) dt
]
.

By Ui, 1 ≤ i ≤ N , we denote the set of all jointly measurable functions U i : [0, ∞) × Ω → U
i that are 

adapted to W i.

5.1. Existence of Nash equilibria

Definition 5.1. A strategy U = (U1, . . . , UN ) ∈ U
N is called a Nash equilibrium for the N -player game if 

for every i ∈ {1, . . . , N} and Ũ i ∈ Ui, we have

J i(U) ≤ J i(U1, . . . , U i−1, Ũ i, U i+1, . . . , UN ) for almost for all initial points x .

Remark 5.1. The above definition of Nash equilibrium is the one used in [5,18,40]. In [20] such equilibria 
are referred to as local Nash equilibria. In the terminology of [20], UN is the set of all narrow strategies.
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Let ai(x) := 1
2σi(x)σi(x)T. We define the family of operators Lu

i : C2(Rd) → C(Rd), where u ∈ U
i plays 

the role of a parameter, by

Lu
i f(x) := trace

(
ai(x)∇2f(x)

)
+ bi(x, u) · ∇f(x) , u ∈ U

i .

Therefore, Lu
i is the controlled extended generator of the i-th process in (5.1). We define Gi and Hi similar 

to (2.11) and (2.12) relative to the operator Lu
i . We assume the following.

Assumption 5.1.

(i) For 1 ≤ i ≤ N , there exist an inf-compact Vi ∈ C2(Rd), an inf-compact, locally Lipschitz hi, such that 
for some positive constants γi

3, and γi
4 we have

Lu
i Vi(x) ≤ γi

4 − γi
3h

i(x) for all u ∈ U
i. (5.3)

Moreover, for any compact K ⊂ P(Rd) with respect to the metric dP, we have

sup
u∈Ui, ν∈K

ri(·, u, ν) ∈ o(hi) .

(ii) There exist non-negative locally Lipschitz functions gi ∈ o(hi), 1 ≤ i ≤ N , and g0 ∈ o(mini h
i), 

satisfying

r̆i(x1, . . . , xN , ui) ≤ g0(xi) + 1
N − 1

∑
j 
=i

gj(xj) for all ui ∈ U
i .

There are quite a few cost functions considered in the literature that satisfy Assumption 5.1(ii).

Example 5.1. Consider g0 : Rd×U
i → R+, g1 : Rd → R+, such that supu∈Ui g0(·, u) and g1 are in o(mini h

i), 
and define

ri(x, u, μ) := g0(x, u) +
∫

g1 dμ .

Note that these running cost functions satisfy Assumption 5.1(ii).

We first show that, under Assumption 5.1, there exists a Nash equilibrium in the sense of Definition (5.1). 
First, we need to introduce some additional notation. Let

GN := G1 × · · · × GN , and HN := H1 × · · · ×HN .

By (5.3) the sets Gi, Hi, 1 ≤ i ≤ N , are compact, and as a result, GN and HN are convex and compact. 
For μ = (μ1, . . . , μN ) ∈ HN we define

r̆iμ(x, u) :=
∫

Rd×···×Rd

r̆i(x1, . . . , xi−1, x, xi+1, . . . , xN , u)
∏
j 
=i

μj(dxj) , 1 ≤ i ≤ N. (5.4)

Using Assumption 5.1 and the dominated convergence theorem, we deduce that r̆iμ : Rd × U
i → R+, is a 

continuous function.
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Assumption 5.2. For all i ∈ {1, . . . , N} and μ ∈ HN , the function r̆iμ is locally Lipschitz in the variable x
uniformly with respect to u ∈ U

i and μ ∈ HN .

Example 5.2. Let F : P(Rd) → R+ be a bounded, locally Lipschitz function (with respect to the metric dP). 
Consider maps ri : Rd × U → R, i = 1, 2, having the property that ri is locally Lipschitz in first variable 
uniformly with respect to the second. Define

r(x, u, μ) := r1(x, u) + r2(x, u)F (μ) .

It is easy to see that for this running cost, Assumption 5.2 is met.

Example 5.3. Let ϕ, ϕ1 : Rd → R be symmetric, locally Lipschitz functions with the property that

|ϕ(x) − ϕ(y)| ≤ |ϕ1(x) + ϕ1(y)| |x− y| for all x, y ∈ R
d ,

and ϕ, ϕ1 ∈ o(h). Define

r(x, u, μ) =
∫
Rd

ϕ(x− y)μ(dy) .

Assumption 5.2 is met for this running cost.

By Assumption 5.1(ii), we have supui∈Ui r̆iμ(·, μ) ∈ o(hi) for all i ∈ {1, . . . , N}, and all μ ∈ HN . Since 
supμ∈Hi

∫
hi dμi < ∞ for all i by (5.3), we obtain that

sup
μ∈HN

sup
ui∈Ui

r̆iμ(·, μ) ∈ o(hi) for all i ∈ {1, . . . , N} . (5.5)

Next we treat r̆iμ as a running cost, and define the ergodic control problem for μ ∈ HN as

�̃iμ := inf
Ui∈Ui

lim sup
T→∞

1
T
E

[ T∫
0

r̆iμ(Xi
t , U

i
t ) dt

]
, 1 ≤ i ≤ N. (5.6)

For every μ ∈ HN , there exists a unique V i
μ ∈ C2(Rd), 1 ≤ i ≤ N , satisfying (see [3, Theorem 3.7.12])

min
u∈Ui

[
Lu
i V

i
μ(x) + r̆iμ(x, u)

]
= �̃iμ , V i

μ(0) = 0 , V i
μ ∈ o(Vi) . (5.7)

As we have discussed earlier in (3.2), any measurable selector of (5.7) is an optimal Markov control for (5.6)
and vice-versa. We define

A(μ) :=
{
π = (π1, . . . ,πN ) ∈ GN : πi = μi

vi � vi , and vi ∈ Ui
SSM

is a measurable selector satisfying (5.7) for all i
}
,

A∗(μ) :=
{
ν = (ν1, . . . , νN ) ∈ HN : (ν1 � v1, . . . , νN � vN ) ∈ A(μ)

for some v = (v1, . . . , vN ) ∈ USSM
}
.

It is easy to find the analogy of the above maps with A and A∗ defined in Section 3. The following theorem 
establishes the existence of a Nash equilibrium for the N -person game.
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Theorem 5.1. Let Assumptions 5.1 and 5.2 hold. Then there exists μ ∈ HN satisfying

μ ∈ A∗(μ) . (5.8)

In particular, there exists a stable Markov control v = (v1, . . . , vN ) ∈ USSM such that, for all i ∈ {1, . . . , N}, 
we have

�̃iμ = J i(v) ≤ J i(v1, . . . , vi−1, Ũ i, vi+1, . . . , vN ) for all Ũ i ∈ Ui . (5.9)

Proof. The main idea of the proof is to use the Kakutani–Fan–Glicksberg fixed point theorem as we have 
done in the proof of Theorem 3.2. Consider the convex, compact set HN . Since the product of Hausdorff 
locally convex spaces is again a Hausdorff locally convex space, it follows that HN is a non-empty, convex, 
compact subset of M(Rd) × · · · × M(Rd). Following an argument similar to Lemma 3.1 we deduce that 
A∗(μ) is non-empty, convex and compact for all μ ∈ HN . Let μn → μ as n → ∞. Using the non-degeneracy 
of ai, 1 ≤ i ≤ N , we can improve this to convergence under the total variation norm ([3, Lemma 3.2.5]). 
Therefore using (5.5) together with an argument similar to the proofs of Lemmas 3.2–3.4 we obtain that 
μ �→ A∗(μ) is upper-hemicontinuous. Hence we can apply the Kakutani–Fan–Glicksberg fixed point theorem 
[3, Corollary 17.55] to obtain a μ ∈ HN satisfying μ ∈ A∗(μ). This proves (5.8).

By the definition of an ergodic occupation measure, we can find v = (v1, . . . , vN ) ∈ USSM such that for 
μ = (μ1, . . . , μN ) we have

(μ1 � v1, . . . , μN � vN ) ∈ A(μ) . (5.10)

In particular, μi the unique invariant probability measure of (5.1) associated to the stationary Markov 
control vi. Without loss of generality we fix i = 1. To show (5.9) we consider Ũ1 ∈ Ui. Define the occupation 
measure ξT on Rd × U

1 × R
(N−1)d as follows:

ξT (A×B × C) := 1
T
E

[ T∫
0

1A×B×C(X1
t , U

1
t , X̂

2
t , . . . , X̂

N
t ) dt

]
, T > 0 , (5.11)

for A ∈ B(Rd), B ∈ B(U1), C ∈ B(R(N−1)d), where (X1, U1) solves (5.1) for i = 1, and Xj , j > 1, are 
the solutions to (5.1) under the Markov control vj. Using Assumption 5.1, we deduce that {ξT , T > 0}
is a tight family of probability measures. By weak convergence, we have E[f(X̂i(T ))] → μi(f), i ≥ 2, 
as T → ∞, for any bounded continuous function f : Rd → R. Hence using the independence property of (
(X1, U1), X̂2, . . . , X̂N

)
and the definition in (5.11), we can easily show that as T → ∞, the limit points of 

ξT as T → ∞ belong to the set

{π1 × μ2 × · · · × μN : π ∈ G1} .

For above to hold we also use the fact that the collection{
g(x1, u) · f2(x2) · · · fN (xN ) : g ∈ Cb(Rd × U), f i ∈ Cb(Rd)

}
determines the probability measures on Rd × U × (Rd)N−1. By lower-semicontinuity we have

J1(U1, v2, . . . , vN ) ≥
∫

Rd×U1

r̆1
μ(x, u) dπ1

for some π1 ∈ G1. Hence using (5.10) and [3, Theorem 3.7.12] we obtain
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J1(U1, v2, . . . , vN ) ≥
∫

Rd×U1

r̆1
μ(x, u) dπ1 ≥ �̃1

μ .

To complete the proof we observe that (X̂1, . . . , X̂N ) is a strong Markov process with invariant probability 
measure μ1 × · · · × μN . Therefore, by Birkhoff’s ergodic theorem, we have

J1(v1, . . . , vN ) = �̃1
μ = lim sup

T→∞

1
T

E

[ T∫
0

r̆1(X̂1
t , . . . , X̂

N
t , v1(X̂1)

)
dt
]
. �

5.2. Limits of symmetric Nash equilibria

We now let the number of players N tend to infinity, assuming that all the players are identical. Hence, 
for the rest of this section we assume that

U
i = U, bi = b, σi = σ, ri = r, Vi = V, hi = h for all i ∈ {1, . . . , N} .

A similar argument as in the proof of Theorem 5.1 provides us with a Nash equilibrium of the form 
v = (v, . . . , v) and μ = (μ, . . . , μ), where μ is the unique invariant probability measure corresponding to 
the Markov control v, and v is a measurable selector of (5.7) (compare this with [40, Theorem 2.2]). These 
equilibria are known as the symmetric Nash equilibria.

Remark 5.2. Any (Markovian) Nash equilibrium for the N -player game is related to a fixed point of the map 
A∗(·). To elaborate consider any tuple (v1, . . . , vN ) ∈ U

N
SSM that corresponds to a Nash equilibrium. Let 

μ = (μ1, . . . , μN ) be the corresponding invariant measures. Solve equations (5.6)–(5.7) with above choice 
of μ. Since (v1, . . . , vN ) is a Nash equilibrium, it follows that vi is an optimal Markov control in (5.6). Thus 
μ ∈ A∗(μ).

Remark 5.3. Assumption 5.2 is not very crucial for Theorem 5.1. If r̆iμ is only continuous, then the value 
function V i

μ is in W2,p
loc(Rd), p ≥ 1 instead of C2(Rd), but the conclusion of Theorem 5.1 still holds.

In the rest of this section we discuss the convergence of the N -person game as N tends to infinity. In 
what follows we work with Wasserstein metric instead of the metric of weak convergence. We also need some 
additional regularity assumptions on r, which are as follows.

Assumption 5.3. The following hold:

(i) There exists an inf-compact V ∈ C2(Rd), such that for some positive constants γ3, γ4,

LuV(x) ≤ γ4 − γ3 |x|q, for all u ∈ U, and q > 1, (5.12)

and for any compact K ⊂ P(Rd), with respect to the metric Wq̄, q̄ ∈ [1, q), we have

sup
u∈U,ν∈K

r(·, u, ν) ∈ o(|x|q) .

Moreover, there exists non-negative locally Lipschitz functions g0 ∈ o(|x|q) and g1 ∈ o(|x|q) satisfying

r

(
x, u,

1
N

N∑
δyj

)
≤ g0(x) + 1

N

N∑
g1(yj) for all u ∈ U, and N ≥ 1 . (5.13)
j=1 j=1
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Also

(x, u) �→ r̂Nμ (x, u) :=
∫

RNd

r

(
x, u,

1
N

N∑
j=1

δyj

) N∏
j=1

μj(dyj) (5.14)

is continuous, and locally Lipschitz in x (the Lipschitz constant might depend on N) uniformly in u, 
for all μ = (μ1, . . . , μN ) ∈ HN .

(ii) For some q̄ ∈ [1, q) we have

|r(x, u, ν) − r(x, u, ν̃)| ≤ κR

(
1 +
∫
Rd

|y|q̄ν(dy) +
∫
Rd

|y|q̄ ν̃(dy)
)1−1/q̄

Wq̄(ν, ν̃) (5.15)

for all |x| ≤ R, u ∈ U, and R > 0. For every (x, u) ∈ R
d × U and R > 0, there exists a constant κ′, 

depending on x, u, and R, such that

∣∣∣∣r(x, u, 1
N

N∑
j=1

δyj

)
− r

(
x, u,

1
N − 1

N−1∑
j=1

δyj

)∣∣∣∣ ≤ κ′ 1
N

∀ yj ∈ BR . (5.16)

(iii) U is a convex set and for all R > 0 the following holds: for any θ ∈ (0, 1) there exists κθ,R > 0, such 
that

b(x, θu + (1 − θ)u′) · p + r(x, θu + (1 − θ)u′, μ)

≤ θ[b(x, u) · p + r(x, u, μ)] + (1 − θ)[b(x, u′) · p + r(x, u′, μ)] − κθ,R

for all u, u′ ∈ U, μ ∈ P(Rd), and |x|, |p| ≤ R.

We note that (5.12) is the uniform stability condition we have used before, and (5.15) is a Lipschitz 
property of the function r in the variable μ. Note also that for q̄ ∈ [1, q), μ �→ r(x, u, μ) is locally Lipschitz 
uniformly with respect to (x, u) in compact subsets of Rd × U. Assumption 5.3(iii) is a strict convexity 
condition that we need in order to resolve the issue of non-uniqueness of the optimal control. Running costs 
considered in [5,18,40] do satisfy this condition.

Example 5.4. Let r(x, u, μ) = R(x, u, ζ(x, μ)) where R : Rd × U × R is a continuous function and for every 
compact K ⊂ R

d there exists constant γK satisfying

|R(x, u, z) −R(y, u, z1)| ≤ γK (|x− y| + |z − z1|) for all z, z1 ∈ R , and (x, y) ∈ K ×K. (5.17)

Also suppose that for some g0 ∈ o(|x|q) we have

R(x, u, z) ≤ g0(x) + κ|z| ∀x ∈ R
d, z ∈ R ,

for some constant κ > 0, and that for some q̄ ∈ [1, q) we have

ζ(x, μ) =
∫
Rd

|x− y|q̄ dμ .

Since aq̄ − bq̄ ≤ q̄ (aq̄−1 + bq̄−1)|a − b| for all a, b ≥ 0 and q̄ ≥ 1, then, for any γ ∈ P(Rd×R
d) with marginals 

ν, ̃ν, it holds that
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ζ(x, ν) − ζ(x, ν̃) ≤ q̄

∫
Rd×Rd

(|x|q̄−1 + |y|q̄−1)|x− y|γ(dx,dy)

≤ κ

( ∫
Rd×Rd

(1 + |x|q̄ + |y|q̄)γ(dx,dy)
) q̄−1

q̄
( ∫
Rd×Rd

|x− y|q̄γ(dx,dy)
) 1

q̄

.

Since γ is arbitrary, using (5.17), we deduce that r satisfies (5.15). One can also show that (5.14) and (5.16)
are also satisfied.

Similar to (5.4) we define for μ = (μ1
N , . . . , μN

N ) ∈ HN ,

r̆i,Nμ (x, u) :=
∫

Rd×···×Rd

r̆i(x1, . . . , xi−1, x, xi+1, . . . , xN )
∏
j 
=i

μj
N (dxj) , 1 ≤ i ≤ N.

Theorem 5.2. Let Assumption 5.3 hold. Let μ = (μ1
N , . . . , μN

N ) be such that for �̃iN ∈ R, V i
N ∈ C2(Rd), 

1 ≤ i ≤ N , we have

min
u∈U

[
LuV i

N (x) + r̆i,Nμ (x, u)
]

= Lvi
NV i

N (x) + r̆i,Nμ (x, viN ) = �̃iN , V i
N (0) = 0 , V i

N ∈ o(V) , (5.18)∫
Rd

Lvi
N f(x)μi

N (dx) = 0 for all f ∈ C2
c (Rd) , 1 ≤ i ≤ N. (5.19)

Then the following hold:

(a) {(�̃iN , V i
N , μi

N )}i,N is relatively compact in R ×W
2,p
loc(Rd) × (Pq̄(Rd), Wq̄) for any 1 ≤ p < ∞;

(b) supi,j

(
|�̃iN − �̃jN | + ‖V i

N −V j
N‖W2,p(K) +Wq̄(μi

N , μj
N )
)
→ 0 as N → ∞, for all compact subsets K ⊂ R

d;
(c) any limit point (�̃, V, μ) of {(�̃iN , V i

N , μi
N )}i,N solves

min
u∈U

[
LuV (x) + r(x, u, μ)

]
= LvV (x) + r(x, v, μ) = �̃ , V (0) = 0 , V ∈ o(V) , (5.20)∫

Rd

Lvf(x)μ(dx) = 0 for all f ∈ C2
c (Rd) . (5.21)

We see that (5.20)–(5.21) defines a MFG solution in the sense of Definition 3.2. Theorem 5.2 asserts that 
the limits of N -player games are solutions to mean field games. Similar results are also obtained in [18,40]
in the case of a compact state space. One of the key ideas to prove Theorem 5.2 is to use (5.12) to show 
that one can consider compact subsets of Rd to approximate integrals. This is done following the method 
in [11, Corollary 5.13]. To accomplish this we introduce the projection map

P(x) = PR(x) :=

⎧⎨⎩x if x ∈ B̄R(0) ,

0 otherwise.

Also define μ̃i
N (B) = μi

N (P−1(B)) for B ∈ B(Rd). Then we have the following result.

Lemma 5.1. Let ε > 0 be given. Then for any compact set C ⊂ R
d, there exists R > 0, such that

sup
(x,u)∈C×U

∣∣r̂Nμ (x, u) − r̂Nμ̃ (x, u)
∣∣ ≤ ε ∀N ≥ 1 ,

where r̂Nμ is given by (5.14).
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Proof. We claim that for any xj , yj ∈ R
d, 1 ≤ j ≤ N , we have

Wq̄

(
1
N

∑N
j=1 δxj , 1

N

∑N
j=1 δyj

)
≤
(

1
N

∑N
i=1|xj − yj |q̄

)1/q̄

. (5.22)

Indeed, this can be obtained by choosing ν(dx, dy) := 1
N

∑N
j=1 δ(xj ,yj) in (2.5). Using (5.12) we can find a 

constant κ1 such that

sup
ν∈H

∫
Rd

|x|q ν(dx) ≤ κ1 . (5.23)

Then ∣∣r̂Nμ (x, u) − r̂Nμ̃ (x, u)
∣∣

=
∣∣∣∣ ∫
RNd

[
r

(
x, u,

1
N

N∑
j=1

δyj

)
− r

(
x, u,

1
N

N∑
j=1

δP(yj)

)] N∏
j=1

μj
N (dyj)

∣∣∣∣
≤ κC

∫
RNd

(
1 + 1

N

N∑
j=1

(
|yj |q̄ + |P(yj)|q̄

)) q̄−1
q̄

Wq̄

(
1
N

N∑
j=1

δyj ,
1
N

N∑
j=1

δP(yj)

) N∏
j=1

μj
N (dyj)

≤ κC

( ∫
RNd

(
1 + 1

N

N∑
j=1

(
|yj |q̄ + |P(yj)|q̄

)) N∏
j=1

μj
N (dyj)

) q̄−1
q̄

×
( ∫
RNd

[
Wq̄

(
1
N

N∑
j=1

δyj ,
1
N

N∑
j=1

δP(yj)

)]q̄ N∏
j=1

μj
N (dyj)

) 1
q̄

≤ κ2

( ∫
RNd

1
N

N∑
j=1

|yj −P(yj)|q̄
N∏
j=1

μj
N (dyj)

) 1
q̄

≤ κ2

(
1
N

N∑
i=1

∫
Bc

R(0)

|yj |q̄μj
N (dyj)

) 1
q̄

≤ κ3
1

Rq−q̄
∀ (x, u) ∈ C × U ,

for some constants κ2, κ3, where in the third line we use (5.15), in the fourth line we use the Hölder inequality, 
(5.22) is used in the fifth line, and in the last line we use (5.23). Choosing R large enough completes the 
proof. �
Proof of Theorem 5.2. Since (g0 ∨ g1)(x) ≤ κ2(1 + |x|q) we obtain from (5.13) that

r̆i,Nμ (x, u) ≤ g0(x) + κ2

N − 1

N−1∑
j=1

∫
Rd

(1 + |x|q) dμj
N ≤ g0(x) + κ2(1 + κ1) , (5.24)

where we also use (5.23). Recall that τ̆r denotes the hitting time to the ball Br(0) and τR is the exit time 
from the ball BR(0). From [3, Lemma 3.3.4] and (5.12) we know that supv∈USSM

Ex[τ̆r] < ∞ for r > 0. 
Therefore using Itô’s formula in (5.12) we obtain that for r > 0,
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lim sup
R→∞

sup
v∈USSM

E
v
x

[
V(Xτ̆r∧τR) + γ3

τ̆r∧τR∫
0

|Xt|qdt
]

≤ V(x) + κ3 (5.25)

for some constant κ3. Since V i
N ∈ o(V), for every ε > 0, there exists κε satisfying V i

N (x) ≤ κε + εV(x). 
Therefore, using (5.25) we obtain

lim sup
R→∞

sup
v∈USSM

Ex

[
1{τR<τ̆r}V

i
N (XτR)

]
≤ ε lim sup

R→∞
sup

v∈USSM

Ex

[
1{τR<τ̆r}V(XτR)

]
≤ ε(V(x) + γ4) .

Since ε is arbitrary, we have lim supR→∞ supv∈USSM
Ex

[
1{τR<τ̆r}V

i
N (XτR)

]
= 0. Thus applying Itô’s lemma 

to (5.18) we have

V i
N (x) = inf

v∈USSM
E
v
x

[ τ̆r∫
0

(
r̆i,Nμ (Xt, v(Xt)) − �̃iN

)
dt + V i

N (Xτ̆r)
]
, x ∈ Bc

r(0) , r > 0 . (5.26)

A similar argument as in (5.25) gives us

lim sup
T→∞

sup
v∈USSM

E
v
x

[
1
T
V(XT ) + γ3

T

T∫
0

|Xt|qdt
]

≤ γ4 . (5.27)

Therefore using (5.27) and the fact that V i
N ∈ o(V) we have limT→∞

1
T supv∈USSM

Ex[V i
N (XT )] = 0. Applying 

Dynkin’s theorem to (5.18), and using (5.24) and (5.27), we obtain

�̃iN = lim
T→∞

1
T
E
vi
N

x

[ T∫
0

r̆i,Nμ (Xt, v
i
N (Xt)) dt

]

≤ lim
T→∞

1
T
E
vi
N

x

[ T∫
0

g0(Xt) dt
]

+ κ2(1 + κ1)

≤ κ4

for some constant κ4, independent of i and N . This shows that {�̃iN}i,N is relatively compact. By (5.27) and 
Proposition 2.1 we see that {μi

N}i,N is relatively compact in (Pq̄(Rd), Wq̄). Next we prove the compactness 
of {V i

N}i,N . Define

V α
i,N (x) := inf

U∈U
E
U
x

[ ∞∫
0

e−αt r̆i,Nμ (Xt, Ut) dt
]
.

It is shown in [3, Theorem 3.7.12] that V α
i,N (x) − V α

i,N (0) are locally bounded in W2,p
loc(Rd) and converge 

to V i
N , as α → 0, in W2,p

loc(Rd), p ≥ 1. By (5.24) we have that r̆i,Nμ are locally bounded uniformly in N and 
i ∈ {1, . . . , N}. Thus applying [3, Lemma 3.6.3] we obtain that for any R > 0 there exists a constant �R, 
independent of i, N , such that∥∥V α

i,N (·) − V α
i,N (0)

∥∥
W2,p(BR(0)) ≤ �R

(
1 + α sup

BR

V i,N
α

)
. (5.28)

Since g0 ∈ o(h), using (5.27) and (5.12) it is easy to see that
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sup
x∈BR(0)

αV i,N
α (x) ≤ �̂R

for some constant �̂R. Thus using (5.28) we have ‖V α
i,N (·) − V α

i,N (0)‖W2,p(BR(0)) ≤ �R

(
1 + �̂R

)
, which 

gives

‖V i
N‖W2,p(BR(0)) ≤ �R

(
1 + �̂R

)
, (5.29)

with �R, �̂R do not depending on i, N . Since V i
N (0) = 0, we have

sup
B1(0)

|V i
N (x)| ≤ κ5

for some constant κ5. By [3, Lemma 3.7.2] we have

x �→ sup
v∈USSM

Ex

[ τ̆1∫
0

(1 + g0(Xt)) dt
]
∈ o(V) .

Thus from (5.24) and (5.26) we obtain that supx∈BR(0)|V i
N (x)| ≤ κR where κR is independent of i, N . 

Therefore using standard elliptic regularity theory in (5.18) we deduce that {V i
N} is bounded in W2,p

loc(Rd). 
This completes the proof of part (a).

Next we prove part (b). Recall the definition of r̂N from (5.14). Consider the unique solution WN ∈ C2(Rd)
of the equation

min
u∈U

[
LuWN (x) + r̂Nμ (x, u)

]
= λN , WN (0) = 0, WN ∈ o(V). (5.30)

For existence and uniqueness of WN we refer the reader to [3, Theorem 3.7.12]. From (5.18) and (5.30) we 
have the following characterizations:

�̃iN = min
π∈G

∫
Rd×U

r̆i,Nμ (x, u) π(dx,du) ,

λN = min
π∈G

∫
Rd×U

r̂Nμ (x, u) π(dx,du) .

It is easy to see that r̂N satisfies a similar estimate as (5.24) for all x and u. Using (5.23)–(5.24) we see 
that for any ε > 0, we can find R > 0 large enough satisfying

sup
π∈G

∫
Bc

R(0)×U

r̆i,Nμ (x, u) π(dx,du) + sup
π∈G

∫
Bc

R(0)×U

r̂Nμ (x, u) π(dx,du) ≤ ε . (5.31)

Recall the projection map P = PR and μ̃i
N = μi

N ◦P−1. By Lemma 5.1, for each ε > 0, there exists R1 > 0
such that

sup
(x,u)∈BR×U

∣∣r̂Nμ (x, u) − r̂Nμ̃ (x, u)
∣∣ ≤ ε ,

sup
(x,u)∈BR×U

∣∣r̆i,Nμ (x, u) − r̆i,Nμ̃ (x, u)
∣∣ ≤ ε .

(5.32)

It is also easy to see that for any {yj}j≥1 ⊂ B̄R1(0) we have
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Wq̄

(
1

N − 1
∑
j 
=i

δyj ,
1
N

N∑
j=1

δyj

)
≤
[
W1

(
1

N − 1
∑
j 
=i

δyj ,
1
N

N∑
j=1

δyj

)] 1
q̄

(2R)
q̄−1
q̄

≤ 4R
N 1/q̄

,

which gives, by (5.15), that

sup
x∈BR,u∈U

∣∣r̆i,Nμ̃ (x, u) − r̂Nμ̃ (x, u)
∣∣

= sup
x∈BR,u∈U

∣∣∣∣ ∫
RNd

[
r

(
x, u,

1
N − 1

∑
j 
=i

δyj

)
− r

(
x, u,

1
N

N∑
j=1

δyj

)] N∏
j=1

μ̃j(dyj)
∣∣∣∣

≤ κ1

N 1/q̄
(5.33)

for some constant κ1, which depends on R1 but not on N . Thus combining (5.33) with (5.31) and (5.32)
we obtain supi,j |�̃iN − λN | → 0 as N → ∞. An argument similar to (5.26) and (5.29) also gives

WN (x) = inf
v∈USSM

E
v
x

[ τ̆r∫
0

(
r̂Nμ (Xt, v(Xt)) − λN

)
dt + WN (Xτ̆r)

]
, r > 0 ,

‖WN‖W2,p(BR(0)) ≤ �1, p ∈ [1,∞),

(5.34)

for some constant �1 independent of N but might depend on p. Therefore, by (5.26), (5.29) and (5.34), for 
every ε > 0 we can find r > 0 small enough such that

|V i
N (x) −WN (x)| ≤ sup

v∈USSM

E
v
x

∣∣∣∣
τ̆r∫

0

(
r̆i,Nμ (Xt, v(Xt)) − r̂Nμ (Xt, v(Xt)) + λN − �̃iN

)
dt
∣∣∣∣+ ε . (5.35)

Equations (5.32)–(5.33) imply that |r̆i,Nμ (x, u) − r̂Nμ (x, u)| → 0 as N → ∞ uniformly on compact subsets of 
R

d × U. Since g0 ∈ o(|x|q), using (5.25) (together with Fatou’s lemma), we obtain

lim sup
R→∞

sup
v∈USSM

E
v
x

[ τ̆r∫
0

1Bc
R(0)(Xt)g0(Xt) dt

]
= 0

uniformly in x belonging to compact subsets of Rd. It follows by (5.35) that

sup
i

‖V i
N −WN‖L∞(BR) −−−−→

N→∞
0 .

As earlier, using (5.34) we can show that {WN} is bounded in W2,p
loc(Rd), p ≥ 1. Thus {V i

N−WN} is bounded 
in W2,p

loc(Rd), p ≥ 1, which implies the local compactness of {V i
N − V j

N} in W2,p
loc(Rd), p ≥ 1, and clearly 

V i
N − V j

N → 0 in W1,∞
loc (Rd) as N → ∞. Therefore from (5.18) and (5.30) we obtain

1
2 trace

(
a(x)∇2(V i

N −WN )(x)
)

= f i
N (x) ,

where f i
N → 0 in L∞

loc(Rd) uniformly in 1 ≤ i ≤ N . Thus using standard results of elliptic pde we get that 
{V i

N −WN} converges to 0 in W2,p
loc(Rd), p ≥ 1, uniformly in 1 ≤ i ≤ N . Hence {V i

N − V j
N} converges to 0

in W2,p
loc(Rd), p ≥ 1, uniformly in 1 ≤ i, j ≤ N .
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Next we show that supi,j Wp(μi
N , μj

N ) → 0 as N → ∞. Due to Proposition 2.1 and (5.23) it is enough 
to show that supi,j dP(μi

N , μj
N ) → 0 as N → ∞. Let wN be the continuous selector from the minimizer of 

(5.30), and μwN
be the corresponding invariant measure. We show that

sup
i∈{1,...,N}

dP(μi
N , μwN

) −−−−→
N→∞

0 . (5.36)

By Assumption 5.3 it follows that u �→ LuV i
N (x) + r̆i,Nμ (x, u) is a strictly convex function. Therefore there 

exists a unique continuous measurable selector viN : Rd → U from the minimizer in (5.18). Also, μi
N is the 

unique invariant probability measure corresponding to viN by (5.19). We claim that

(x, u) �→ r̆i,Nμ (x, u) is equicontinuous on compact subsets of R
d × U . (5.37)

To show (5.37) we use continuity of r on Rd×U ×Pq̄(Rd). We consider the set C×U where C is a compact 
subset of Rd. Let ε > 0 be given. Then using Lemma 5.1 we can find R > 0 and the projected measures μ̃i

N

such that

sup
(x,u)∈C×U

∣∣r̂Nμ (x, u) − r̂Nμ̃ (x, u)
∣∣ ≤ ε

4 ∀N ≥ 1 . (5.38)

Since P(B̄R(0)) is a compact set, using the continuity of r, we can find δ > 0 such that

|r(x, u, μ) − r(x̄, ū, μ)| ≤ ε

4 , whenever |x− x̄| + dU(u, ū) ≤ δ, and x, x̄ ∈ C . (5.39)

Thus using (5.39) we obtain

∣∣r̂Nμ̃ (x, u) − r̂Nμ̃ (x̄, ū)
∣∣ =

∣∣∣∣ ∫
B̄Nd

R

r

(
x, u,

1
N

N∑
j=1

δyj

) n∏
j=1

μ̃j
N (dyj) −

∫
B̄Nd

R

r

(
x̄, ū,

1
N

N∑
j=1

δyj

) n∏
j=1

μ̃j
N (dyj)

∣∣∣∣
≤ ε

4 ,

whenever |x − x̄| + dU(u, ̄u) ≤ δ and x, ̄x ∈ C. Combining this with (5.38) we establish (5.37). This also 
shows that

(x, u) �→ r̂Nμ (x, u) is equicontinuous on compact subsets of R
d × U .

Suppose that (5.36) is not true. Then for ε > 0 we can find a subsequence Nk and ik ∈ 1, . . . , Nk such that

dP(μik
Nk

, μwNk
) ≥ ε > 0 for all Nk . (5.40)

We can further chose a subsequence of {Nk, ik}, relabel it with the same indices, such that the following 
hold:

V ik
Nk

→ V , and WNk
→ V in W

2,p
loc(R

d) ,

r̆ikNk
μ → ϑ , and r̂Nk

μ → ϑ in Cloc(Rd) ,

�̃ikNk
→ � , and λNk

→ � ,

vikNk
→ v , and wNk

→ w in USSM .

(5.41)

The convergence in the first and third lines are justified by the compactness property and the unique-
ness of the limit which we established earlier. For the second line we use the Arzelà–Ascoli theorem and 
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(5.32)–(5.33), while the fourth line is a consequence of the compactness property of USM [3, Section 2.4]. 
We first show that v = w. From (5.18), (5.30) and (5.41) we obtain

min
u∈U

[
LuV (x) + ϑ(x, u)

]
= �, V (0) = 0, V ∈ o(V) . (5.42)

Using Assumption 5.3(iii) it is also easy to see that vikNk
→ v and wNk

→ w pointwise, as Nk → ∞ and

min
u∈U

[
LuV (x) + ϑ(x, u)

]
= LvV (x) + ϑ(x, v(x)) = LwV (x) + ϑ(x,w(x)) .

Thus using the strict convexity of the Hamiltonian we obtain v(x) = w(x) for all x. By [3, Lemma 3.2.6], 
there exists μ ∈ H, corresponding to v, such that

dP(μik
Nk

, μ) + dP(μwNk
, μ) −−−−−→

Nk→∞
0 .

But this contradicts (5.40) and thus (5.36) holds.
Next we prove part (c). In view of (5.42) we only need to show that ϑ(x, u) = r(x, u, μ), where μ is the 

invariant probability measure corresponding to the minimizing selector v. Without loss of generality, we 
assume that r̂Nμ (x, u) → �(x, u) as N → ∞. Fix (x, u) ∈ R

d ×U. Then ν �→ r(x, u, ν) is a continuous map. 
From part (b) we also have sup1≤j≤N dP(μj

N , μ) → 0 as N → ∞. Let ν̃R := ν ◦P−1
R . Then it easy to see 

that

ν̃R = ν|B̄R(0) + ν(Bc
R(0)) δ0 .

Since μi
N → μ in total variation (by [3, Lemma 3.2.5]), we deduce that (μ̃R)iN → μ̃R in total variation as 

well. Therefore using (5.16) and mimicking the arguments in [18, pp. 530] we can show that

∣∣∣∣ ∫
RNd

r

(
x, u,

1
N

N∑
i=1

δyj

) N∏
j=1

(μ̃R)jN (dyj) −
∫

RNd

r

(
x, u,

1
N

N∑
i=1

δyj

) N∏
j=1

μ̃R(dyj)
∣∣∣∣ −−−−→

N→∞
0 .

On the other hand (see [11,30])

∫
RNd

r

(
x, u,

1
N

N∑
i=1

δyj

) N∏
j=1

μ̃R(dyj) −−−−→
N→∞

r(x, u, μ̃R) .

To complete the proof we use Lemma 5.1 and the fact that r(x, u, μ̃R) → r(x, u, μ) as R → ∞. �
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