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A CORRECTION TO “A RELATIVE VALUE ITERATION
ALGORITHM FOR NONDEGENERATE CONTROLLED

DIFFUSIONS”∗

ARI ARAPOSTATHIS† AND VIVEK S. BORKAR‡

Abstract. In A Relative Value Iteration Algorithm for Nondegenerate Controlled Diffusions,
[SIAM J. Control Optim., 50 (2012), pp. 1886–1902], convergence of the relative value iteration for
the ergodic control problem for a nondegenerate diffusion controlled through its drift was established,
under the assumption of geometric ergodicity, using two methods: (a) the theory of monotone
dynamical systems and (b) the theory of reverse martingales. However, in the proof using (a) it
is wrongly claimed that the semiflow is strong order preserving. In this note, we provide a simple
generic proof and also comment on how to relax the uniform geometric ergodicity hypothesis.
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1. Introduction. The study in [1] concerns the value iteration (VI), and relative
VI, for a controlled diffusion process X = {Xt, t ≥ 0} in Rd, governed by the Itô
stochastic differential equation

(1) dXt = b(Xt, Ut) dt+ σ(Xt) dWt .

All random processes in (1) live in a complete probability space (Ω,F,P). The process
W is a d-dimensional standard Wiener process independent of the initial condition
X0. The control process U takes values in a compact, metrizable set U, and Ut(ω) is
jointly measurable in (t, ω) ∈ [0,∞) × Ω. Moreover, it is nonanticipative: for s < t,
Wt −Ws is independent of

Fs , the completion of σ{X0, Ur,Wr, r ≤ s} relative to (F,P) .

As is customary, such a process U is called an admissible control, and we let U denote
the set of all admissible controls. Standard assumptions are imposed on b and σ to
guarantee existence and uniqueness of solutions to (1); see (A1)–(A3) in [1].

For u ∈ U, we define Lu : C2(Rd) 7→ C(Rd) by

Luf(x) ,
∑
i,j

aij(x)
∂2f

∂xi∂xj
(x) +

∑
i

bi(x, u)
∂f

∂xi
(x) , u ∈ U ,
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and extend its definition to admissible controls or stationary Markov controls, denoted
as USM, as in [1].

The running cost function r : Rd×U→ R+ is continuous and locally Lipschitz in
its first argument uniformly in u ∈ U.

The following uniform geometric ergodicity assumption is considered in [1].

Assumption 1.1. There exists a nonnegative, inf-compact V : Rd → R and positive
constants c0, c1, and c2 satisfying

LuV(x) ≤ c0 − c1V(x) ∀u ∈ U ,(2)

sup
u∈U

r(x, u) ≤ c2V(x)

for all x ∈ Rd. Without loss of generality we assume V ≥ 1.

We let µv denote the unique invariant probability measure on Rd for the diffusion
under the control v ∈ USM. We let CV(Rd) denote the Banach space of functions in

C(Rd) with norm ‖f‖V , supx∈Rd

∣∣ f(x)
V(x)

∣∣. It is well known (see [2, 3]) that (2) implies

that

(3) EUx
[
V(Xt)

]
≤ c0

c1
+ V(x)e−c1t ∀x ∈ Rd , ∀U ∈ U .

Also, there exist constants C0 and γ such that

(4)

∣∣∣∣Evx[h(Xt)
]
−
∫
Rd

h(x)µv(dx)

∣∣∣∣ ≤ C0e−γt
∥∥h∥∥VV(x) , t ≥ 0 , x ∈ Rd ,

for all h ∈ CV(Rd).

1.1. The VI. Under Assumption 1.1 there exists a unique solution V ∗ ∈ CV(Rd)∩
C2(Rd), satisfying V ∗(0) = 0, of the ergodic Hamilton–Jacobi–Bellman equation

(5) min
u∈U

[
LuV ∗(x) + r(x, u)

]
= β ,

where β is the optimal ergodic value (see equation (2.8) in [1]).
Let H , CV(Rd) ∩ C2(Rd). The VI equation introduced in [1] takes the form of

the Cauchy problem

(6) ∂tΦt[h](x) = min
u∈U

[
LuΦt[h](x) + r(x, u)

]
− β , Φ0(h)(x) = h(x) ,

with h ∈ H.
As shown in [1, Lemma 4.1], Φt[h] ∈ H for all t ≥ 0, and by (4.9)–(4.10) in [1] it

satisfies

(7) Ev̄x
[
h(Xt)− V ∗(Xt)

]
≤ Φt[h](x)− V ∗(x) ≤ Ev

∗

x

[
h(Xt)− V ∗(Xt)

]
,

where v∗ is any measurable selector from the minimizer in (5), i.e., an optimal
stationary Markov control, and v̄ is any measurable selector from the minimizer
in (6). It follows by (7) that the orbit of h under the semiflow Φt, defined by
O(h) , {Φt[h] : t ≥ 0}, is bounded in CV(Rd), and as argued in the proof of [1,
Theorem 4.5] it is relatively compact in H. It follows that the ω-limit set of h, which
is denoted by ω(h) and defined as ω(h) , ∩t>0 ∪s≥t Φt[h], is nonempty, compact,
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connected, and invariant and satisfies dist
(
ω(h),Φt[h]

)
→ 0 as t→∞ (see [5]), where

dist is a metric for H, for example, as given in the proof of [1, Theorem 4.5].
For h, h′ ∈ H we write h � h′ if h′(x) − h(x) ≥ 0 for all x ∈ Rd, and we use ≺

for � but 6=. We also write h ≺≺ h′ if h′ − h lies in the interior of the positive cone
of CV(Rd).

If h ≺ h′, then by (6) we obtain

(8) Ev
′

x

[
h′(Xt)− h(Xt)

]
≤ Φt[h

′](x)− Φt[h](x) ∀ t > 0 , ∀x ∈ Rd ,

where v′ is a Markov control associated with a measurable selector from the minimizer
in (6) corresponding to the solution starting at h′. Equation (8) has been used in the
proof of [1, Theorem 4.5] to erroneously argue that Φt is strongly monotone, which
means that h ≺ h′ implies that Φt[h] ≺≺ Φt[h

′] for all t > 0. This is incorrect. In the
next section we provide a simple proof of Theorem 4.5 in [1].

2. A simple proof of convergence of the VI. Convergence of the VI is
asserted in Theorem 4.5 in [1], which we quote as follows.

Theorem 2.1. For each h ∈ H, we have Φt[h](x) → V ∗(x) + c as t → ∞, for
some c ∈ R which depends on h.

Proof. By (3) and (7) we have

(9)
∣∣V ∗(x)− Φt[h](x)

∣∣ ≤ ∥∥V ∗ − h∥∥V(c0c1 + V(x)e−c1t
)

∀x ∈ Rd , ∀ t ≥ 0 .

Hence every g ∈ ω(h) satisfies

(10)
∥∥V ∗ − g∥∥∞ ≤ c0

c1

∥∥V ∗ − h∥∥V .
Applying Itô’s formula to (6) we obtain

Φt[h](x) ≤ Ev
∗

x

[∫ t−τ

0

r
(
Xs, v

∗(Xs)
)

ds− β(t− τ) + Φτ [h](Xt−τ )

]

= Ev
∗

x

[∫ t−τ

0

r
(
Xs, v

∗(Xs)
)

ds− β(t− τ) + V ∗(Xt−τ )

]
+ Ev

∗

x

[
Φτ [h](Xt−τ )− V ∗(Xt−τ )

]
= V ∗(x) + Ev

∗

x

[
Φτ [h](Xt−τ )− V ∗(Xt−τ )

]
∀ τ ∈ [0, t]

and all x ∈ Rd. Therefore, we have

(11) Φt[h](x)− V ∗(x) ≤ Ev
∗

x

[
Φτ [h](Xt−τ )− V ∗(Xt−τ )

]
∀ τ ∈ [0, t] ,

and since |Φt[h]−V ∗| is integrable with respect to µv∗ by (9), it follows by integrating
(11) with respect to µv∗ that the map

t 7→
∫
Rd

(
Φt[h](x)− V ∗(x)

)
µv∗(dx)

is nonincreasing. Since it is also bounded by (9), it follows that the map

G(g) ,
∫
Rd

(
g(x)− V ∗(x)

)
µv∗(dx) , g ∈ H ,
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must be constant on ω(h). Let Γh denote this constant. By the invariance of ω(h) we
have ∫

Rd

(
Φt[g](x)− V ∗(x)

)
µv∗(dx) = Γh ∀ g ∈ ω(h) , ∀ t ≥ 0 .(12)

For g ∈ ω(h) define

Cg , sup
Rd

(g − V ∗) .

It follows by (10) that Cg is finite. By the definition of Cg we have V ∗ + Cg − g ≥ 0
and infRd (V ∗ + Cg − g) = 0.

We claim that V ∗+Cg−g = 0 for all g ∈ ω(h). If the claim is true, then Cg = Γh
by (12), and thus Φt[h](x)→ V ∗(x) + Γh, which proves the theorem.

We prove the claim by contradiction. Suppose that for some ĝ ∈ ω(h) we have
V ∗ + Cĝ − ĝ 6= 0. Let tn be an increasing sequence such that Φtn [h] → ĝ and
tn+1 − tn →∞ as n→∞. By (7), and the semigroup property of Φt, we have

(13) Ev
∗

x

[
V ∗(Xtn+1−tn) + Cĝ − Φtn [h](Xtn+1−tn)

]
≤ V ∗(x) + Cĝ − Φtn+1

[h](x) .

Since V ∗ + Cĝ − ĝ 	 0 and V ∗ + Cĝ − ĝ is bounded, then

Ev
∗

x

[
V ∗(Xtn+1−tn) + Cĝ − ĝ(Xtn+1−tn)

]
converges to some positive constant κ as n→∞ by (4). In addition, since

∥∥Φtn [h]−
ĝ
∥∥
V → 0 as n→∞ by (9), it follows that the left-hand side of (13) converges to the

same constant κ. Thus by (13) we obtain V ∗+Cĝ− ĝ ≥ κ > 0, which contradicts the
definition of Cĝ. This proves the claim and completes the proof of the theorem.

3. Convergence in the absence of geometric ergodicity. The key proper-
ties used in the proof of Theorem 2.1 is a bound of the form

(14) sup
x∈Rd

lim sup
t→∞

∣∣V ∗(x)− Φt[h](x)
∣∣ ≤ M ∀ t ≥ 0

for some constant M , which follows by (9), and the integrability of V ∗ under µv∗ .
We replace geometric ergodicity in Assumption 1.1 by the following stability hy-

pothesis.

Assumption 3.1. There exist nonnegative, inf-compact functions Vk : Rd → R,
k = 0, 1, and positive constants κ0, κ1 satisfying

LuV1(x) ≤ κ1 − κ0V0(x) ∀u ∈ U , ∀x ∈ Rd ,

and

1

V0(x)
sup
u∈U

r(x, u) −−−−→
|x|→∞

0 .

It is well known that under Assumption 3.1 there exists a unique solution V ∗ ∈
CV1

(Rd) ∩ C2(Rd) of (5) satisfying V ∗(0) = 0 [2, Theorem 3.7.11].
We have the following convergence result.

Corollary 3.2. Let Assumption 3.1 hold, and suppose that the function V1 is
integrable under µv∗ for some optimal control v∗ ∈ USM. Then for any h ∈ CV1

(Rd)∩
C2(Rd), such that infRd (h−V ∗) > −∞, it holds that Φt[h](x)→ V ∗(x)+c as t→∞,
for some c ∈ R which depends on h.
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Proof. Since V ∗ ∈ CV1
(Rd), the right-hand side of (7) converges to a constant as

t→∞ by [4, Theorem 4.12]. Also by the hypothesis of the corollary, we have

inf
x∈Rd

lim inf
t→∞

EUx
[
h(Xt)− V ∗(Xt)

]
> −∞ ∀U ∈ U .

Therefore, (14) follows by (7), and the proof follows by the argument used in the
proof of Theorem 2.1.
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