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1. Proofs of Lemma 1.3 and Theorem 1.4. We start with the proof
of Lemma 1.3.

Proof of Lemma 1.3. The proof is standard. Let U be given, and de-
fine Mt := E

[∫ t
0 |Us|

2 ds
]
, t ∈ R+. For T > 0, let H2

T denote the space of
{Ft}-adapted processes Y defined on [0, T ], having continuous sample paths,
and satisfying E

[
sup0≤t≤T |Yt|2

]
<∞. The space H2

T (more precisely the set
of equivalence classes in H2

T ) is a Banach space under the norm

‖Y ‖H2
T

:=

(
E
[

sup
0≤t≤T

|Yt|2
])1/2

.

It is standard to show, for example following the proof of (Arapostathis,
Borkar and Ghosh, 2012, Theorem 2.2.2), that any solution X of

(1) Xt = X0 +

∫ t

0

(
m(Xs) + εUs

)
ds+ ενWt , t ≥ 0 ,

satisfies

(2) ‖X −X0‖2H2
t
≤ κ0t(1 + t)

(
1 +Mt + E

[
|X0|2

])
eκ1t ∀ t ≥ 0 ,

for some constants κ0 and κ1 that depend only on m. The existence of a
pathwise unique solution then follows by applying the contraction mapping
theorem as in (Arapostathis, Borkar and Ghosh, 2012, Theorem 2.2.4).

The rest of this section is devoted to the proof of Theorem 1.4. Without
loss of generality we fix ε = 1, and suppress the dependence on ε in all the
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2 A. ARAPOSTATHIS, A. BISWAS, AND V. S. BORKAR

variables. Also, throughout the rest of this section, without loss of generality
we assume that ` ≥ 0.

We proceed by establishing two key lemmas, followed by the proof of
Theorem 1.4. Recall that the running cost R is defined by

R(x, u) := `(x) +
1

2
|u|2 ,

and that since ` is Lipschitz, there exists a constant c̄` independent of ε such
that

(3)

∫
`dηε0 ≤ c̄` .

For x ∈ Rd, and α > 0, we define the subset Uαx of admissible controls by

(4) Uαx :=

{
U ∈ U : EUx

[∫ ∞
0

e−αsR(Xs, Us) ds

]
< ∞

}
,

where EUx denotes the expectation under the law of (X,U) which solves the
Itô equation

(5) Xt = x+

∫ t

0
m(Xs) ds+

∫ t

0
Us ds+Wt , t ≥ 0 ,

with X0 = x.

Lemma 1. The equation

(6) 1
2 ∆Vα + 〈m,∇Vα〉 − 1

2 |∇Vα|
2 + ` = αVα

has a solution in C2(Rd) for all α ∈ (0, 1). Moreover, for all α ∈ (0, 1), we
have the following.

(i) For some constant c0 > 0, not depending on α, it holds that

(7) |∇Vα(x)| ≤ c0

√
1 + |x| , and |αVα(x)| ≤ `(x) + c0

α

for all x ∈ Rd.
(ii) The function Vα satisfies

(8) Vα(x) ≤ inf
U∈Uαx

EUx
[∫ ∞

0
e−αsR(Xs, Us) ds

]
, ∀x ∈ Rd .

(iii) With c̄` the constant in (3), we have

inf
{x : `(x)≤ c̄`}

αVα = inf
Rd

αVα ≤ c̄` .
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Proof. In (Bensoussan and Frehse, 2002, Theorem 4.18, p. 177) it is
proved that (6) has a solution in C2(Rd), and it is also shown in the proof
of this theorem that there exists a constant κ0 > 0 which does not depend
on α such that

(9) αVα(x) ≥ −κ0 ∀x ∈ Rd .

By (Ichihara, 2012, Theorem B.1) there exists a constant C not depending
on R > 0 such that

(10) sup
BR

|∇Vα| ≤ C
(

1 + sup
BR+1

√
(αVα)− + sup

BR+1

√
`+ + sup

BR+1

|∇`|1/3
)
,

from which gradient estimate in (7) follows. The following structural hypoth-
esis on the Hamiltonian h(x, p) is assumed in (Ichihara, 2012, Theorem B.1):
p 7→ h(x, p) is strictly convex for all x ∈ Rd, and there exists some constant
k0 > 0 such that

(11) k0 |p|2 ≤ h(x, p) ≤ k−1
0 |p|

2 , |∇xh(x, p)| ≤ k−1
0

(
1 + |p|2

)
,

for (x, p) ∈ R2d. This Hamiltonian corresponds to h(x, p) = 1
2 |p|

2 − 〈m, p〉
for the equation in (6), and the first bound in (11) is not satisfied. However,
replacing this bound with

k0

(
|p|2 − k1

)
≤ h(x, p) ≤ k−1

0

(
|p|2 + k1

)
,

for some constant k1 ≥ 0, the proof of (Ichihara, 2012, Theorem B.1) goes
through unmodified.

Recall that the class of controls Û is defined by

Û :=

{
U ∈ U : E

[∫ t

0
|Us|2 ds

]
<∞ for all t ≥ 0

}
.

Writing (6) in HJB form, and applying Itô’s formula, we obtain

(12) Vα(x)− e−αt EUx
[
Vα(Xt)

]
≤ EUx

[∫ t

0
e−αsR(Xs, Us) ds

]
∀ t > 0 ,

and all U ∈ Û. Since m is bounded, it is standard to show using (5) that

(13) EUx
[

sup
0≤s≤t

|X(s)− x|
]
≤ ‖m‖∞ t+

√
t+ EUx

[∫ t

0
|Us|ds

]
< ∞

for all U ∈ Û and t > 0. Also, if E0
x denotes the expectation EUx with U = 0,

then by (5), we have the estimate

(14) E0
x

[
|Xt|2

]
≤ κ2

(
1 + t2 + |x|2

)
< ∞ ∀ t > 0 ,
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for some constant κ2. As shown in the proof of (Bensoussan and Frehse, 2002,
Theorem 4.18, p. 177), α 7→ αVα(0) is bounded on (0, 1), which together with
the gradient estimate in (7) we have already established, provides us with
a liberal bound of Vα of the form |Vα(x)| ≤ C

(
1 + |x|2) for some constant

C. This combined with (14) implies that e−αt E0
x

[
Vα(Xt)

]
→ 0 as t → ∞.

Therefore, using (13), and the Lipschitz constant C` of `, we obtain by (12)
that

αVα(x) ≤ E0
x

[∫ ∞
0

α e−αs `(Xs) ds

]
≤ `(x) + C`

∫ ∞
0

α e−αs
(
‖m‖∞ s+ 2

√
s
)

ds ∀x ∈ Rd ,

which results in the estimate given in (7), where without loss of generality
we use a common constant c0 for the two inequalities. This completes the
proof of part (i).

Let g(x, t) := |x|+ ‖m‖∞ t+ 2
√
t. Multiplying both sides of (13) by e−αt,

then strengthening the inequality, and applying the Hölder inequality, we
obtain

e−αt EUx
[
|Xt|

]
≤ g(x, t) e−αt + e−

α
2
t EUx

[∫ t

0
e−

α
2
s |Us|ds

]
(15)

≤ g(x, t) e−αt +
√
te−

α
4
t

(
EUx
[∫ t

0
e−αs |Us|2 ds

])1/2

−−−→
t→∞

0 ∀U ∈ Uαx ,

with Uαx as defined in (4). Taking limits as t → ∞ in (12), and using (15),
and the bound of Vα in (7) together with the inequality |`(x)| ≤ Cl|x|+|`(0)|,
we obtain (8).

We now turn to part (iii). Let

χ(x) :=
1√
3

(
min

y ∈B1(x)

[
`(y)− (d+ 1 + 2

√
d ‖m‖∞)2

])1/2

,

and

ψ(x) := Vα(x) + 2κ0
α − χ(x0)

(
1− |x− x0|2

)
, x ∈ B1(x0) ,
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where κ0 > 0 is the constant in (9). With φ(x) := |x− x0|2, we have

−1
2 ∆ψ − 〈m−∇Vα,∇ψ〉+ αψ

=
(
−1

2 ∆Vα − 〈m,∇Vα〉+ 1
2 |∇Vα|

2 + αVα

)
+ 1

2

∣∣∇Vα − χ(x0)∇φ
∣∣2 − 2χ2(x0)φ+ 2κ0

− χ(x0)
(

1
2 ∆φ+ 〈m,∇φ〉+ α(1− φ)

)
≥ `− 2χ2(x0) + 2κ0 −

(
d+ 2

√
d ‖m‖∞ + 1

)
χ(x0)

≥ `− 3χ2(x0)−
(
d+ 1 + 2

√
d ‖m‖∞

)2
in B1(x0) ,

for all α ∈ (0, 1), where we use (6) and the fact that κ0 ≥ 0. Since ψ > 0 on
∂B1(x0) by (9), an application of the strong maximum principle shows that
ψ ≥ 0 in B1(x0), which implies that

αVα(x) ≥ αχ(x) + κ0 ∀ x ∈ Rd .

Since ` is inf-compact, and the same is true for χ by its definition, this shows
that αVα is inf-compact. In particular, it attains its infimum in Rd. With η0

denoting the invariant probability measure of the diffusion in (5) under the
control U = 0, using (8), we obtain

(16) inf
Rd

Vα ≤
∫
Vα dη0 ≤

∫
Rd

Ex
[∫ ∞

0
e−αs`(Xs) ds

]
η0(dx) ≤ c̄`

α
,

where the last inequality follows by (3). One more application of the max-
imum principle implies that if Vα attains its infimum at x̂ ∈ Rd then
`(x̂) ≤ αVα(x̂). This together with (16) implies part (iii).

Remark 2. We should mention, even though we do not need it for the
proof of the main theorem, that (8) holds with equality, and thus Vα is indeed
the value of the infinite horizon discounted control problem. The proof of
this assertion goes as follows. Since ∇Vα has at most linear growth, the
diffusion in (5) under the Markov control vα = −∇Vα has a unique strong
solution. It is also clear by (7) that for any α > 0 we can select a constant
κ1(α) such that |∇Vα(x)| ≤ κ1(α) + α

16x. Thus using a standard estimate
(Arapostathis, Borkar and Ghosh, 2012, Theorem 2.2.2) we obtain

(17) Evαx
[

sup
0≤s≤t

|X(s)|2
]
≤ κ2(α)(1 + t2)(1 + |x|2)e

α
2
t
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for some constant κ2(α) > 0. With τR denoting the first exit time from BR,
applying Dynkin’s formula we obtain

Vα(x) = Evαx
[∫ t∧τR

0
e−αsR(Xs, vα(Xs)) ds

]
+ Evαx

[
e−α(t∧ τR) Vα(Xt∧τR)

]
.

We write

Evαx
[
e−α(t∧τR) Vα(Xt∧τR)

]
= A1(t, R) +A2(t, R) ,

with

A1(t, R) := Evαx
[
e−αt Vα(Xt∧τR)1{t≤τR}

]
,

A2(t, R) := Evαx
[
e−ατR Vα(Xt∧τR)1{τR<t}

]
.

Since Vα has at most linear growth in x by (7), it follows by (17) that

lim
t→∞

lim sup
R→∞

|A1(t, R)| = 0 .

We also have lim supR→∞ |A2(t, R)| = 0 by dominated convergence, since
Pvαx
(
τR < t

)
→ 0 as R →∞. Thus, taking limits first as R →∞, and then

as t→∞ in (17), we obtain

Vα(x) ≥ Evαx
[∫ ∞

0
e−αsR(Xs, vα(Xs)) ds

]
.

Thus the converse inequality to (8) also holds.

Define the class of controls Ux by

Ux :=

{
U ∈ U : lim sup

T→∞

1

T
EUx
[∫ T

0
R(Xs, Us) ds

]
< ∞

}
.

Lemma 3. There exists an inf-compact V ∈ C2(Rd) which satisfies

(18) A[V ](x) := 1
2 ∆V + 〈m,∇V 〉 − 1

2 |∇V |
2 + ` = β ,

with

β = β∗ := inf
U∈Ux

lim sup
T→∞

1

T
EUx
[∫ T

0
R(Xs, Us) ds

]
,

and

(19) |∇V (x)| ≤ c0

√
1 + |x| ∀x ∈ Rd ,

and for some positive constant c0. In addition, under the Markov control
Ut = v∗(Xt), with v∗ = −∇V , the diffusion in (5) is positive recurrent,
and β∗ =

∫
Rd R[v∗](x) dη∗, where η∗ is the invariant probability measure

corresponding to the control v∗.
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Proof. The existence of a solution to (18) is established as a limit of
Vα(·)− Vα(0), along some sequence αn ↘ 0, where Vα is the solution of (6)
in Lemma 1 (Bensoussan and Frehse, 2002, p. 175). That V is inf-compact
follows by (Bensoussan and Frehse, 2002, Theorem 4.21). It also follows
from the proof of this convergence result that β ≤ lim supα↘0 αVα(x) for all

x ∈ Rd.
We first show that β ≤ β∗. For this, we employ the following assertion

which is a special case of the Hardy–Littlewood theorem Sznajder and Filar
(1992). For any sequence {an} of non-negative real numbers, it holds that

(20) lim sup
θ↗1

(1− θ)
∞∑
n=1

θnan ≤ lim sup
N→∞

1

N

N∑
n=1

an .

Concerning this assertion, note that if the right hand side of (20) is finite,
then the set {ann } is bounded. Therefore,

∑∞
n=1 θ

nan is finite for every θ < 1.
Hence, we can apply (Sznajder and Filar, 1992, Theorem 2.2) to obtain (20).

Fix x ∈ Rd, and U ∈ Ux. Define

an := EUx
[∫ n

n−1
R(Xs, Us) ds

]
, n ≥ 1 ,

and let θ = e−α. Applying (20), with N running over the set of natural
numbers, we obtain

lim sup
N→∞

1

N
EUx
[∫ N

0
R(Xs, Us) ds

]
(21)

≥ lim sup
θ↗1

(1− θ)
∞∑
n=1

θnan

≥ lim sup
α↘0

(1− e−α)

∞∑
n=1

EUx
[∫ n

n−1
e−αsR(Xs, Us)

)
ds

]

≥ lim sup
α↘0

(1− e−α)EUx
[∫ ∞

0
e−αsR(Xs, Us) ds

]
≥ β .

For the last inequality in (21), we use the fact that lim supα↘0 αVα(x) ≥ β.

Since U ∈ Ux is arbitrary, (21) together with the definition of β∗ imply that
β ≤ β∗. Note also that (21) implies that Uαx ⊂ Ux for all α ∈ (0, 1).

Next, we prove the converse inequality. It is clear that (19) follows from
(7). Therefore, since the Markov control v∗ := −∇V (x) has at most linear
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growth, there exists a unique strong solution to (7) under the control v∗.
Applying Itô’s formula to (18), and using the notation

R[v](x) := R
(
x, v(x)

)
= `(x) +

1

2
|v(x)|2 ,

we obtain

Ev∗x
[
V (XT∧τR)

]
− V (x) + Ex

[∫ T∧τR

0
R[v∗](Xs) ds

]
= β Ex

[
T ∧ τR

]
,

where τR denotes the exit time from the ball of radius R > 0 centered at 0.
Since V is bounded from below and τR →∞ a.s., as R→∞, by first using
Fatou’s lemma for the integral term in the above display, and then dividing
by T and taking limits as T →∞, we obtain

lim sup
T→∞

1

T
Ev∗x
[∫ T

0
R[v∗](Xs) ds

]
≤ β .

Thus β = β∗. Since ` is inf-compact, this also implies that the diffusion
under the control v∗ is positive recurrent, and by Birkhoff’s ergodic theorem
we obtain β∗ =

∫
Rd R[v∗](x) dη∗. This completes the proof.

Let L : C2(Rd)→ C(Rd × Rd), and Lv denote the operators defined by

L[f ](x, u) :=
1

2
∆f(x) +

〈
m(x) + u,∇f(x)

〉
,

and

Lvf(x) :=
1

2
∆f(x) +

〈
m(x) + v(x),∇f(x)

〉
, f ∈ C2(Rd) ,

respectively. Also, let P denote the set of infinitesimal ergodic occupation
measures, i.e., the set of probability measures π ∈ P(Rd×Rd) which satisfy

(22)

∫
Rd×Rd

L[f ](x, u)π(dx,du) = 0 ∀ f ∈ C∞c (Rd) ,

where C∞c (Rd) denotes the class of real-valued smooth functions with com-
pact support. Note that if π = ηv ~ v ∈ P then (22) can be written as∫
Rd Lvf(x) ηv(dx) = 0.

Let v̂(x) =
∫
v(du |x). Since

(23)

∫
Rd×Rd

|u|2ηv(dx) v(du |x) ≥
∫
Rd
|v̂(x)|2ηv(dx) ,
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and since ηv ~ v̂ is also an infinitesimal ergodic occupation measure, it is
evident that as far as the proof of strong duality is concerned we may restrict
our attention to the subset of P that corresponds to precise controls, which
we denote as P◦.

We have the following lemma.

Lemma 4. If π = ηv ~ v ∈ P◦ is such that

(24)

∫
Rd×Rd

R[v](x) ηv(dx) < ∞ ,

then

(25)

∫
Rd

R[v](x) ηv(dx) = β∗ +
1

2

∫
Rd

∣∣v(x) +∇V (x)
∣∣2 ηv(dx) .

In addition the measure ηv has a density %v ∈ Ld/(d−1)(Rd).

Proof. Let χ be a concave C2(Rd) function such that χ(x) = x for x ≤ 0,
and χ(x) = 1 for x ≥ 1. Then χ′ and −χ′′ are nonnegative on (0, 1). Define
χR(x) := R + χ(x − R) for R > 0. Using (18), and completing the square,
we obtain

LvV − 1
2 |v +∇V |2 + R[v]− β∗ = 0 .

Applying Lv to the function χR(V ), results in

(26) LvχR(V )− 1
2χ
′′
R(V ) |∇V |2 − 1

2χ
′
R(V ) |v +∇V |2

+ χ′R(V )R[v]− χ′R(V )β∗ = 0 .

Observe that χR(V )−R−1 is compactly supported by construction. Thus∫
Rd LvχR(V (x))ηv(dx) = 0 for all R > 0. Since

∫
Rd `(x)ηv(dx) <∞ by (24),

the bound in (10) shows that

(27)

∫
Rd
|∇V (x)|2 ηv(dx) < ∞ .

Integrating (26) with respect to ηv, using (27), and passing to the limit as
R→∞, we obtain (25). We have thus shown that∫

Rd
|m(x) + v(x)|2 ηv(dx) < ∞ .

By Theorem 1.1 in Bogachev, Krylov and Röckner (1996), this implies that
the measure ηv has a density in Ld/(d−1)(Rd). This completes the proof.



10 A. ARAPOSTATHIS, A. BISWAS, AND V. S. BORKAR

Proof of Theorem 1.4. Without loss of generality we assume ε = 1,
and we suppress the explicit dependence on ε in the notation used in the
theorem. The statement concerning existence of solutions and the behavior
above and below a critical value for β follows by the results in Ichihara
(2011). For this, we need to first verify a Foster–Lyapunov type hypothesis,
which is part of the assumptions. Note that the operator F in Ichihara (2011)
has a negative sign in the Laplacian so that A[ϕ] = −F [ϕ], where A is the
operator defined in (18). So, given that ` is inf-compact, ϕ0 = 0 is an obvious
choice to satisfy (A4) in Ichihara (2011). Then of course −A[ϕ0]→ −∞ as
|x| → ∞. Note that Theorem 2.2 in Ichihara (2011) then asserts that V is
bounded below in Rd.

Next, consider ϕ1 = −a1

√
V with a1 := infKc

|〈m,∇V〉|
√
V

|∇V|2 , where K is as

in Hypothesis 1.1 (3), and V is as in Lemma 2.3. Since V agrees with V̄
outside some compact set by Lemma 2.3, it follows by Hypothesis 1.1 (3)
that a1 > 0. Then we obtain

1
2∆ϕ1 + 〈m,∇ϕ1〉 − 1

2 |∇ϕ1|2 = a1
4
√
V ∆V − a1

2
√
V

(
〈m,∇V〉+ a1

√
V−1

4V |∇V|2
)

≥ a1
4
√
V

(
∆V − 〈m,∇V〉

)
on Kc .

Thus, since ∆V̄ is bounded by Hypothesis 1.1 (3b), we obtain −A[ϕ1]→ −∞
as |x| → ∞. It is also clear that φ0(x) − φ1(x) → ∞ as |x| → ∞. Thus,
Hypothesis (A.4)′ in Ichihara (2011) is also satisfied. Therefore, as shown in
(Ichihara, 2011, Theorem 2.1), there exists some critical value λ∗ such that
the HJB equation

1

2
∆V + min

u∈Rd

[
〈m+ u,∇V 〉+ `+ 1

2 |u|
2
]

= β

has no solution for β > λ∗. Also by Theorem 2.2 and Corollary 2.3 in Ichihara
(2011), if V is a solution for β < λ∗, then under the control v = −∇V , the
diffusion is transient. Moreover, for β = λ∗ there exists a unique solution
V = V∗ (up to an additive constant), and under the control v∗ = −∇V∗ the
diffusion

Xt = X0 +

∫ t

0

(
m(Xs) + v(Xs)

)
ds+Wt , t ≥ 0 ,

is positive recurrent. It is clear then that Lemma 3 implies that λ∗ = β∗.
We next turn to the proof of items (a)–(e). Part (a) follows directly by

(Metafune, Pallara and Rhandi, 2005, Lemma 5.1). Note that a sharper esti-
mate was established in the proof of Lemma 3 when β = β∗. The uniqueness
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of the solution for β = β∗ follows by the results in Ichihara (2011, 2012) dis-
cussed above, while the rest of the assertions in part (b) follow by Lemma 3.
Part (c) follows by Lemma 4.

We now turn to part (d). It is enough to show that for any sequence
{Un} ⊂ Û and a sequence of times {tn} diverging to ∞,

(28) lim inf
n→∞

1

tn
Ex
[∫ tn

0
R(Xn

s , U
n
s ) ds

]
≥ βε∗ ,

where Xn denotes the process controlled by Un. All the terms in (28) are

finite, since
∫ T

0 EUx [R(Xs, Us] ds < ∞ for any U ∈ Û, a fact which clearly
follows by (2). We include the dependence on the initial condition Xn

0 = x
explicitly in the notation, and thus we denote the corresponding sequence
of mean empirical measures by ΦUn

x,tn . Recall that this is defined by∫
Rd×Rd

f(x, u) ΦUn

x,tn(dx, du) = E
[∫ tn

0
f(Xn

s , U
n
s ) ds

∣∣∣ Xn
0 = x

]
for all f ∈ Cb(Rd × U).

Extract a subsequence of {tn} over which the terms on the left hand side
of (28) converge to the ‘lim inf’ and suppose without loss of generality that
this limit is finite. Then the corresponding subsequence of mean empirical
measures is tight. Let π ∈ P be any limit point of this subsequence. It
follows that the left hand side of (28) is lower bounded by π(R). However,
π(R) ≥ β∗ by (23) and Lemma 4. This completes the proof of part (d).

It remains to prove part (e). Let π = ηv ~ v ∈ P◦ be any optimal ergodic
occupation measure, and π∗ := η∗ ~ v∗, with v∗ = −∇V . By Lemma 4, ηv
has density, which we denote by ρv. Let

ξv :=
ρv

ρv + ρ∗
, and ξ∗ :=

ρ∗
ρv + ρ∗

,

and also define v̄ := ξvv + ξ∗v∗ and η̄ := 1
2(ηv + η∗). Using the property

that the drift of (1) is an affine function of the control, together with (Ara-
postathis, Borkar and Ghosh, 2012, Lemma 3.2.3), it is straightforward to
verify that η̄ ~ v̄ ∈ P◦.
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By optimality, we have

0 ≤ 2

∫
Rd

R[v̄] dη̄ −
∫
Rd

R[v] dηv −
∫
Rd

R[v∗] dη∗(29)

=

∫
Rd
|ξv v + ξ∗ v∗|2 dη̄ − 1

2

∫
Rd
|v|2 dηv − 1

2

∫
Rd
|v∗|2 dη∗

=

∫
Rd

(
|ξv v + ξ∗ v∗|2 − ξv |v|2 − ξ∗ |v∗|2

)
dη̄

= −1

2

∫
Rd

ρv(x) ρ∗(x)

ρv(x) + ρ∗(x)
|v(x)− v∗(x)|2 dx .

Since ρ∗ is strictly positive, (29) implies that ρv |v − v∗| = 0 a.e. in Rd, and
thus v = v∗ on the support of ηv. It is clear that if v is modified outside
the support of ηv, then the modified ηv ~ v is also an infinitesimal ergodic
occupation measure. Therefore ηv~v∗ ∈ P◦. The uniqueness of the invariant
measure of the diffusion with generator Lv∗ then implies that ηv = η∗, which
in turn implies (since v = v∗ on the support of ηv) that v = −∇V a.e. in
Rd. This completes the proof of part (e), and also of the theorem.

2. Proofs of Lemma 1.17 and Theorem 1.19. We start with the
proof of Lemma 1.17.

Proof of Lemma 1.17. Suppose that M has a number q of eigenval-
ues on the open right half complex plane. Using a similarity transforma-
tion we can transform M to a matrix of the form diag(M1,−M2) where
M1 ∈ R(d−q)×(d−q) and M2 ∈ Rq×q are Hurwitz matrices. So without loss
of generality, we assume M has this form. Let S1 and S2 be the unique
symmetric positive definite matrices solving the Lyapunov equations

S1M1 +MT
1 S1 = −I , and S2M2 +MT

2 S2 = −I ,

respectively. Extend these to symmetric matrices in Rd×d by defining S̃1 =
diag(S1, 0) and S̃2 = diag(0, S2), and also define, for α > 0,

ϕ1(x) := e−α〈x,S̃1x〉 , ϕ2(x) := e−α〈x,S̃2x〉 , and ϕ := 1 + ϕ1 − ϕ2 .

Let T1 = diag(I(d−q)×(d−q), 0q×q), and T2 = diag(0(d−q)×(d−q), Iq×q). Then,
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with Lvf(x) := 1
2∆f(x) +

〈
Mx+ v(x),∇f(x)

〉
, we obtain

Lv
(
1− ϕ2(x)

)
= αϕ2(x)

(
trace(S̃2)− 2α

〈
x, S̃2

2x
〉

+ |T2x|2(30)

+ 2〈v(x), S̃2x〉
)

≥ αϕ2(x)
(

trace(S̃2) + |T2x|2 − 1
2 |T2x|2

− 2α‖S̃2‖2|T2x|2 − 2‖S̃2‖2|v(x)|2
)

= αϕ2(x)
(

trace(S2) +
(

1
2 − 2α‖S̃2‖2

)
|T2x|2

− 2‖S̃2‖2|v(x)|2
)
.

For the inequality in (30) we use

2
〈
v(x), S̃2x

〉
= 2

〈
S̃2v(x), T2x

〉
≥ −

∣∣T2x√
2

∣∣2 − |√2S̃2v(x)|2

≥ −1
2 |T2x|2 − 2‖S̃2‖2|v(x)|2 .

Using the analogous inequality for Lvϕ1(x) and combining the equations we
obtain

Lvϕ(x) ≥ αe−α〈x,S̃1x〉
(
− trace(S1) +

(
1
2 + 2α‖S̃1‖2

)
|T1x|2(31)

− 2‖S̃1‖2|T1v(x)|2
)

+ αe−α〈x,S̃2x〉
(

trace(S2) +
(

1
2 − 2α‖S̃2‖2

)
|T2x|2

− 2‖S̃2‖2|T2v(x)|2
)

≥ α
(
− trace(S1) + e−α〈x,Sx〉

(
1
2 − 2α‖S‖2

)
|x|2

− 2‖S‖2|v(x)|2
)
,

with S := diag(S1, S2).
Applying Itô’s formula to (31), dividing by α, and also using the fact that

ϕ ≥ 0 and ‖ϕ‖∞ = 2, we obtain

Ex
[∫ T

0

(
− trace(S1) + e−α〈Xt,SXt〉

(
1
2 − 2α‖S‖2

)
|Xt|2

− 2‖S‖2|v(Xt)|2
)

dt

]
≤ 2

α
.



14 A. ARAPOSTATHIS, A. BISWAS, AND V. S. BORKAR

Dividing by T , letting T ↗ ∞ and rearranging terms, we conclude that
e−α〈x,Sx〉|x|2 is integrable with respect to invariant probability measure µv
under the control v for any α < 1

4‖S‖2 , and the following bound holds∫
Rd

e−α〈x,Sx〉|x|2 µv(dx) ≤ trace(S1)
1
2 − 2α‖S‖2

+
2‖S‖2

1
2 − 2α‖S‖2

∫
Rd
|v(x)|2 µv(dx) .

Taking limits as α↘ 0, using monotone convergence, we obtain∫
Rd
|x|2 µv(dx) ≤ 2 trace(S1) + 4‖S‖2

∫
Rd
|v(x)|2 µv(dx) .

The proof is complete.

Proof Theorem 1.19. It is well known (Brockett, 1970, Theorem 3,
p. 150) that there exists at most one symmetric matrix Q satisfying

(32) MTQ+QM = Q2

and

(33) (M −Q)Σ + Σ(M −Q)T = −I .

For κ > 0, consider the ergodic control problem of minimizing

(34) Jκ(v) := lim sup
T→∞

1

T
E
[∫ T

0

(
κ |Xs|2 + 1

2 |v(Xs)|2
)

ds

]
,

over v ∈ USSM, subject to the linear controlled diffusion

(35) Xt = X0 +

∫ t

0

(
MXs + v(Xs)

)
ds+Wt , t ≥ 0 .

As is also well known, an optimal stationary Markov control for this prob-
lem takes the form v(x) = −Qκx, where Qκ is the unique positive definite
symmetric solution to the matrix Riccati equation

(36) Q2
κ −MTQκ −QκM = 2κI .

Moreover, Qκ has the following property. Consider a deterministic linear
control system ẋ(t) = Mx(t) + u(t), with x, u ∈ Rd, and initial condition

x(0) = x0. Let U denote the space of controls u satisfying
∫ T

0 |u(t)|2 dt <∞
for all T > 0, and φut (x0) denote the solution of the differential equation
under a control u ∈ U . Then

(37)
〈
x0, Qκx0

〉
= min

u∈U

∫ ∞
0

(
|u(t)|2 + 2κ|φut (x0)|2

)
dt .
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For these assertions, see (Brockett, 1970, Theorem 1, p. 147, and Theorem
5, p. 151).

On the other hand, Ψκ(x) = 1
2

〈
x,Qκx

〉
is a solution of the associated

HJB equation

(38) 1
2∆Ψκ(x)+ min

u∈Rd

[〈
Mx+u,∇Ψκ(x)

〉
+ 1

2 |u|
2
]

+κ |x|2 = 1
2 trace(Qκ) .

The HJB equation (38) characterizes the optimal cost, i.e.,

inf
v∈USSM

Jκ(v) = 1
2 trace(Qκ) .

Let G(M), M ∈ Rd×d, denote the collection of all matrices G ∈ Rd×d such
that M − G is Hurwitz. Also, for G ∈ G(M), let ΣG denote the (unique)
symmetric solution of the Lyapunov equation

(39) (M −G) ΣG + ΣG (M −G)T = −I ,

and define

JG(M) :=
1

2
trace

(
GΣGG

T
)
,

J∗(M) := inf
G∈G(M)

JG(M) .
(40)

Since the stationary probability distribution of (35) under the control v(x) =
−Qκx is Gaussian, it follows by (34) that G = Qκ minimizes

J̃G;κ(M) := κ trace
(
ΣG

)
+ 1

2 trace
(
GΣGG

T
)

over all matrices G ∈ G(M), where ΣG is as in (39) (note that J̃G;0(M) =
JG(M) which is the right hand side of (40)). Combining this with (38), we
obtain

(41) inf
G∈G(M)

J̃G;κ(M) = J̃Qκ;κ(M) = 1
2 trace(Qκ) .

By Lemma 1.17, we have

trace(ΣQκ) ≤ C̃0

(
1 + J̃Qκ;κ(M)

)
(42)

= C̃0

(
1 + 1

2 trace(Qκ)
)
.

It also follows by (37) that Qκ′ − Qκ is nonnegative definite if κ′ ≥ κ.
Therefore Qκ has a unique limit Q as κ ↘ 0. It is evident that Q is non-
negative semidefinite, and (36) shows that it satisfies (32). Since trace(ΣQκ)
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is bounded by (42), it follows that ΣQκ converges along some subsequence
κn ↘ 0 to a symmetric positive semidefinite matrix Σ. Thus (33) holds.
However, (33) implies that Σ is invertible, and therefore, it is positive defi-
nite. In turn, (33) implies that M −Q is Hurwitz.

Since vG(x) = −Gx, G ∈ G(M), is in general suboptimal for the criterion
Jκ(v), applying Lemma 1.17 once more, we obtain

JQκ(M) ≤ J̃Qκ;κ(M) ≤ κ C̃0

(
1 + JG(M)

)
+ JG(M) ∀G ∈ G(M) .

Therefore, we have

J∗(M) ≤ J̃Qκ;κ(M) ≤ κ C̃0

(
1 + J∗(M)

)
+ J∗(M) ,

and taking limits as κ↘ 0, this implies by (41) that J∗(M) = 1
2 trace(Q).

It remains to show that Λ+(M) = 1
2 trace(Q). Let T be a unitary matrix

such that Q̃ := TQTT takes the form Q̃ = diag(0, Q̃2), with Q̃2 ∈ Rq×q a
positive definite matrix, for some 0 ≤ q ≤ d. Write the corresponding block
structure of TMTT as

M̃ := TMTT =

(
M̃11 M̃12

M̃21 M̃22

)
,

with M̃22 ∈ Rq×q. Since MTQ+QM = Q2, we obtain M̃TQ̃+Q̃M̃ = Q̃2, and
block multiplication shows that Q̃2M̃21 = 0, which implies that M̃21 = 0.
Since M −Q is similar to M̃ − Q̃, the latter must be Hurwitz, which implies
that M̃11 is Hurwitz. By block multiplication we have

(43) M̃T
22Q̃2 + Q̃2M̃22 = Q̃2

2 .

Since Q̃2 is positive definite, the matrix −M̃22 is Hurwitz by the Lyapunov
theorem. Thus Λ+(M) = trace(M̃22), since M̃11 is Hurwitz. Therefore, since
Q̃2 is invertible, and trace(Q) = trace(Q̃), we obtain by (43) that

trace(Q) = trace(Q̃2) = trace(M̃T
22 + M̃22)

= 2 trace(M̃22) = 2Λ+(M) .

This proves part (a).
Now let v̂ ∈ USSM be any control. Let V̄ (x) = 1

2〈x,Qx〉. Then V̄ satisfies
(38) with κ = 0. Since

min
u∈Rd

[〈
Mx+ u,∇V̄ (x)

〉
+ 1

2 |u|
2
]

=
〈
Mx,∇V̄ (x)

〉
− 1

2

∣∣Qx∣∣2
=
〈
Mx+ v̂(x),∇V̄ (x)

〉
+ 1

2 |v̂(x)|2

− 1
2

∣∣Qx+ v̂(x)
∣∣2 ,
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we obtain

(44) 1
2∆V̄ (x) +

〈
Mx+ v̂(x),∇V̄ (x)

〉
+ 1

2 |v̂(x)|2

= 1
2 trace(Q) + 1

2

∣∣Qx+ v̂(x)
∣∣2 .

Applying Itô’s formula to (44), and using the fact that µv̂ has finite second
moments as shown in Lemma 1.17, and V̄ is quadratic, a standard argument
gives

(45)

∫
Rd

(
1
2 |v̂(x)|2 − 1

2 |Qx+ v̂(x)|2
)
µv̂(dx) = 1

2 trace(Q) .

Thus
∫
Rd

1
2 |v̂(x)|2 µv̂(dx) ≥ 1

2 trace(Q) = J∗(M). Therefore, we have

(46) inf
v∈USSM

∫
Rd

1
2 |v(x)|2 µv(dx) = Λ+(M) .

Suppose v̂ is optimal, i.e., attains the infimum in (46). By (45), we obtain∫
Rd
|Qx+ v̂(x)|2 µv̂(dx) = 0 .

Therefore, since µv̂ has a positive density, it holds that v̂(x) = −Qx a.e. in
Rd. This completes the proof of part (b).

We have already shown that V̄ (x) = 1
2〈x,Qx〉 satisfies

1

2
∆V̄ (x) +

〈
Mx,∇V̄ (x)

〉
− |∇V̄ (x)|2

2
= Λ+(M) ,

and that the associated process is positive recurrent. Therefore, as in the
proof of Theorem 1.4 for a bounded m, part (c) follows by Theorems 2.1–2.2
and Corollary 2.3 in Ichihara (2011). Note that Hypothesis (A4) in Ichihara
(2011) is easily satisfied for the linear problem. Indeed, since M is exponen-
tially dichotomous, then as seen in the proof of Theorem 2.2, there exist sym-
metric matrices S and Ŝ, with Ŝ positive definite such that MTS+SM = Ŝ.
Consider the function ϕ0(x) := a 〈x, Sx〉, with a := 1

4

(
‖Ŝ−1‖‖S‖2

)−1
. Since

‖Ŝ−1‖ 〈x, Ŝx〉 ≥ |x|2 ≥ ‖S‖−2 |Sx|2 ,

we obtain

Ā[ϕ0](x) := 1
2 ∆ϕ0(x) + 〈Mx,∇ϕ0(x)〉 − 1

2 |∇ϕ0(x)|2

= a traceS + a 〈x, Ŝx〉 − 2a2 |Sx|2

> a
2

(
2 traceS+〈x, Ŝx〉

)
.

Thus Ā[ϕ0](x)→∞ as |x| → ∞. This completes the proof.
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