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Abstract. This is an overview of the work of the authors and their collaborators on the charac-
terization of risk sensitive costs and rewards in terms of an abstract Collatz–Wielandt formula and
in case of rewards, also a controlled version of the Donsker–Varadhan formula. For the finite state
and action case, this leads to useful linear and dynamic programming formulations in the reducible
case.

1. Introduction

This short article is an overview of the work of authors and their collaborators on a somewhat
novel perspective of the risk-sensitive control problem on infinite time horizon that aims to optimize
the asymptotic growth rate of a mean exponentiated total reward, resp., cost. The viewpoint taken
here is based on the fact that the dynamic programming principle for this problem essentially
reduces it to an eigenvalue problem seeking the principal eigenvalue and eigenvector for a monotone
positively 1-homogeneous operator. This allows us to exploit the existing generalized Perron–
Frobenius (or Krein–Rutman) theory which leads to some explicit expressions for the optimal
growth rate. The first is the abstract Collatz–Wielandt formula which can be shown to hold for
both cost minimization and reward maximization problems, though we have not exhausted all the
cases in our work. The second is a variational formula for the principal eigenvalue that generalizes
the Donsker–Varadhan formula for the same in the linear case. This seems workable only for the
reward maximization problem.

We first consider the discrete time case based on the results of [1] in the next two sections,
followed by those for reflected diffusions in a bounded domain, based on [6], in section 4. We then
sketch, in section 5, the very recent and highly nontrivial extensions to diffusions on the whole
space developed in [2] and [3]. Finally, we recall in section 6 some developments in the simple finite
state-action set up from [9], where the aforementioned development allows us to derive the dynamic
programming equations for risk-sensitive reward process in the reducible case. Section 7 concludes
by highlighting some future directions.

2. Discrete time problems

The celebrated Courant–Fisher formula for the principal eigenvalue of a positive definite sym-
metric matrix A ∈ Rd×d is

λ = max
06=x∈Rd

xTAx

xTx
.
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Consider an irreducible nonnegative matrix Q ∈ Rd×d. The Perron–Frobenius theorem guarantees
a positive principal eigenvalue with an associated positive eigenvector for Q. Is there a counterpart
of the Courant–Fisher formula for this eigenvalue?

The answer is a resounding ‘YES’ ! It is the Collatz-Wielandt formula for the principal eigenvalue
of an irreducible nonnegative matrix Q = [q(i, j)] ∈ Rd×d, stated as (see [16] Chapter 8):

λ = sup
x=[x1,··· ,xd]T, xi≥0 ∀i

min
i : xi>0

(
(Qx)i
xi

)

= inf
x=[x1,··· ,xd]T, xi>0 ∀i

max
i : xi>0

(
(Qx)i
xi

)
.

An alternative characterization can be given as follows. Write

Q = ΓP ,

where

Γ := diag(κ1, . . . , κd) , κi > 0 ,

p(i, j) := q(i,j)/κi , 1 ≤ i, j ≤ d ,
P := [p(j | i)] ,

with P a stochastic matrix. In other words, we have pulled out the row sums {κi} of Q into a
diagonal matrix Γ so that what is left is a stochastic matrix P . Also define

G0 :=
{

(π, P̃ ) : π is a stationary probability for the stochastic matrix P̃ = [p̃(j|i)]
}
.

Then the following representation holds [12]:

log λ = sup
(π,P̃ )∈G0

(∑
i

π(i)
[
κi −D

(
p̃(· | i)‖ p(· | i)

)])
,

where D(· ‖ ·) denotes the Kullback–Leibler divergence or relative entropy. This is the finite state
counterpart of the Donsker–Varadhan formula [13] for the principal eigenvalue of a nonnegative
matrix.

As is well known, the infinite dimensional generalization of the Perron–Frobenius theorem is
given by the Krein–Rutman theorem [11,15]. There are also nonlinear variants of it. Let

(1) B be a Banach space with a ‘positive cone’ K such that K −K is dense in B,
(2) T : B 7→ B be a compact order preserving (i.e., f ≥ g =⇒ Tf ≥ Tg), strictly increasing (i.e.,

f > g =⇒ Tf > Tg), strongly positive (i.e., maps nonzero elements of K to its interior),
positively 1-homogeneous (i.e., T (af) = aTf for all a > 0) operator.

A nonlinear variant of the Krein–Rutman theorem [17] then asserts that under some technical
hypotheses, a unique positive principal eigenvalue and a corresponding unique (up to a scalar
multiple) positive eigenvector for T exist.

Our interest is in the following nonlinear scenario arising in risk-sensitive control: Consider

• a controlled Markov chain {Xn} on a compact metric state space S;
• an associated control process {Zn} in a compact metric control space U ;
• a per stage reward function r : S × U × S 7→ R such that r ∈ C(S × U × S);
• a controlled transition kernel p(dy |x, u) with full support, such that for all Borel A ⊂ S,

P (Xn+1 ∈ A |Xm, Zm,m ≤ n) = P (Xn+1 ∈ A |Xn, Zn)

= p(A |Xn, Zn) .
(1)
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This is called the controlled Markov property and the controls for which this holds are said
to be admissible. The maps

(x, u) 7→
∫
f(y)p(dy |x, u), f ∈ C(S), ‖f‖ ≤ 1,

are assumed to be equicontinuous.

The control problem is to maximize the asymptotic growth rate of the exponential reward:

λ := sup
x∈S

sup
{Zm}

lim inf
N↑∞

1

N
log E

[
e
∑N−1
m=0 r(Xm,Zm,Xm+1)

∣∣∣ X0 = x
]
.

The second supremum in this definition is over all admissible controls. We allow relaxed (i.e.,
probability measure valued) controls {µn} taking values in P(S), in which case (1) gets replaced
by

P (Xn+1 ∈ A |Xm, µm, m ≤ n) = P (Xn+1 ∈ A |Xn, µn)

=

∫
p(A |Xn, z)µn(dz), n ≥ 0 .

Define

Tf(x) := sup
φ:S 7→P(U) measurable

∫∫
p(dy |x, u)φ(du |x)er(x,u,y)f(y) .

This is a compact, order preserving, strictly increasing, strongly positive, positively 1-homogeneous
operator.

Using the nonlinear variant of the Krein–Rutman theorem stated above, this leads to an abstract
Collatz-Wielandt formula [1]:

Theorem 1. There exist ρ > 0, ψ ∈ int(C+(S)) such that Tψ = ρψ and

ρ = inf
f ∈ int(C+(S))

sup
M+(S)

∫
Tfdµ∫
fdµ

= sup
f ∈ int(C+(S))

inf
M+(S)

∫
Tfdµ∫
fdµ

.

Also, log ρ is the optimal reward for the risk-sensitive control problem.

3. Variational Formula

We now state a variational formula for the principal eigenvalue [1]. Let G denote the set of
probability measures

η(dx,du,dy) ∈ P(S × U × S)

which disintegrate as
η(dx,du,dy) = η0(dx)η1(du |x)η2(dy |x, u) ,

such that η0 is invariant under the transition kernel∫
U
η2(dy |x, u)η1(du |x) .

These are the so called ‘ergodic occupation measures’ for discrete time control problems.

Theorem 2. Under the above hypotheses,

log ρ = sup
η∈G

(∫∫
η0(dx)η1(du |x)

[∫
r(x, u, y)η2(dy |x, u)− D

(
η2(dy |x, u)‖ p(dy |x, u)

)])
.

This can be viewed as a controlled version of the Donsker–Varadhan formula. The hypotheses
above can be relaxed to:
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(1) Range(r) = [−∞,∞) with er ∈ C(S × U × S);
(2) p(dy |x, u) need not have full support.

The formula then is the same as before, the difference is that under the previous, stronger set of
conditions, the supremum over x ∈ S in the definition of λ was redundant, it is no longer so. The
extension proceeds via an approximation argument that approximates the given transition kernel
by a sequence of transition kernels for which our original hypotheses hold.

We thus have an equivalent concave maximization problem, in fact a linear program, as opposed
to a ‘team’ problem one would obtain from the usual ‘log transformation’ as in, e.g., [14]. Further-
more, if ρ(ϕ) denotes the asymptotic growth rate for a randomized Markov control ϕ, then it can
be shown that ρ = maxϕ ρ(ϕ), implying the sufficiency of randomized Markov controls.

Some applications worth noting are [1]:

(1) Growth rate of the number of directed paths in a graph. This requires −∞ as a possible
reward to account for the absence of edges.

(2) Portfolio optimization in the framework of [7].
(3) Problem of minimizing the exit rate from a domain.

4. Reflected diffusions

Analogous results hold for reflected diffusions in a compact domain with smooth boundary. These
are described by the stochastic differential equation

dX(t) = b
(
Xt, Ut

)
dt+ σ

(
Xt

)
dWt − γ(Xt) dξt ,

dξ(t) = 1{Xt ∈ ∂Q} dξt ,
(2)

for t ≥ 0. Here:

(1) Q is an open connected and bounded set with C3 boundary ∂Q;
(2) {Wt}t≥0 is a standard d-dimensional Wiener process;
(3) the control {Ut}t≥0 lives in a metrizable compact action space U and is non-anticipative,

i.e., for t > s, W (t)−W (s) is independent of X0;Wy, Uy, y ≤ s;
(4) b is continuous, and x 7→ b(x, u) is Lipschitz uniformly in u;
(5) σ is C1,β0 and uniformly non-degenerate;
(6) γi(x) = σ(x)σ(x)Tη(x) where η(x) is the unit outward normal on ∂Q.

In contrast to the preceding section, we first consider the cost minimization problem to highlight
the differences with the reward maximization problem. Unlike the classical cost/reward criteria
such as discounted and average cost/reward, the risk-sensitive cost and reward problems are not
rendered equivalent by a mere sign flip, and the differences are stark. For cost minimization, the
control problem is to minimize

lim
t↑∞

1

t
log E

[
e
∫ t
0 r(Xs,Us) ds

]
,

where r is continuous.
The corresponding ‘Nisio semigroup’ is defined as follows. For t ≥ 0, let

Stf(x) := inf
{Ut}t≥0

Ex

[
e
∫ t
0 r(Xs,Us) dsf(Xt)

]
.

Then St : C(Q̄) 7→ C(Q̄) is a semigroup of strongly continuous, bounded Lipschitz, monotone,
superadditive, positively 1-homogeneous, strongly positive operators with infinitesimal generator G
defined by

Gf(x) :=
1

2
tr
(
σ(x)σT(x)∇2f(x)

)
+ min

u∈U

[
〈b(x, u) ,∇f(x)〉+ r(x, u)f(x)

]
. (3)

Let
C2
γ,+(Q̄) :=

{
f : Q̄ 7→ [0,∞) : f ∈ C2(Q̄), 〈∇f(x), γ(x)〉 = 0 for x ∈ ∂Q

}
.
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As in the discrete case, the nonlinear Krein–Rutman theorem then leads to: There exists a unique
pair (ρ, ϕ) ∈ R× C2

γ,+(Q̄) satisfying ‖ϕ‖0,Q̄ = 1 such that

Stϕ = eρtϕ .

This solves
Gϕ(x) = ρϕ(x) , x ∈ Q, and 〈∇ϕ(x), γ(x)〉 = 0 , x ∈ ∂Q .

The abstract Collatz-Wielandt formula for this problem is

ρ = inf
f∈C2

γ,+(Q̄),f>0
sup

ν∈P(Q̄)

∫
Q̄

Gf
f

dν

= sup
f∈C2

γ,+(Q̄),f>0

inf
ν∈P(Q̄)

∫
Q̄

Gf
f

dν .

In the uncontrolled case, the first formula above is the convex dual of the Donsker–Varadhan
formula for the principal eigenvalue of G:

ρ = sup
ν∈P(Q̄)

(∫
Q̄
r(x)ν(dx)− I(ν)

)
,

where

I(ν) := inf
f∈C2

γ,+(Q̄),f>0

∫
Q̄

(
Gf
f

)
dν .

For the risk-sensitive reward problem, the same abstract Collatz-Wielandt formula holds, except
that the definition of the operator G now has a ‘max’ in place of the ‘min’. But as in the discrete
time case, one can go a step further and have a variational formulation. Let

R(x, u, w) := r(x, u)− 1

2
|σT(x)w|2 , (x, u, w) ∈ Q̄× U× Rd ,

and

M :=

{
µ ∈ P(Q̄× U × Rd) :

∫
Q̄×U×Rd

Af(x, u, w)µ(dx,du,dw) = 0 ∀ f ∈ C2(Q) ∩ Cγ(Q̄)

}
,

with

Af(x, u, w) :=
1

2
tr
(
σ(x)σT(x)∇2f(x)

)
+
〈
b(x, u) + σ(x)σT(x)w,∇f(x)

〉
(4)

for f ∈ C2(Q)∩C(Q̄). Recall the definition of an ‘ergodic occupation measure’ [5]. For a stochastic
differential equation as in (2), but with the drift b replaced with b(x, u) + σ(x)σT(x)w, and w
taking values in some compact metrizable space, it is the time-t marginal of a stationary state-
control process

(
Xt, v(Xt), w(Xt)

)
, perforce independent of t. Thus, in the case the parameter w

lives in a compact space, by a standard characterization of ergodic occupation measures (ibid.),
M is precisely the set thereof for controlled diffusions whose (controlled) extended generator is
A. This however is not necessarily the case if w lives in Rd. An example to keep in mind is the
one-dimensional stochastic differential equation

dXt =
(
e
X2
t/2 −Xt

)
dt+

√
2 dWt .

It is straightforward to verify that the standard Gaussian density satisfies the Fokker–Planck equa-
tion. However, the diffusion is not even regular, so it does not have an invariant probability measure.
Therefore, we refer to M as the set of infinitesimal ergodic occupation measures. The variational
formula for this model is

ρ = sup
µ∈M

∫
Q̄×U×Rd

R(x, u, w)µ(dx,du,dw) .

This result is from [3].
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An analogous abstract Collatz–Wielandt formula for the risk-sensitive cost minimization problem
was derived in [6]. We have not derived a corresponding variational formula. Even if one were to
do so, it is clear that it will be a ‘sup-inf / inf-sup’ formula rather than a pure maximization
problem. This is already known through a different route: it forms the basis of the approach
initiated by [14] and followed by many, in which the the Hamilton–Jacobi–Bellman equation for
the risk-sensitive cost minimization problem is converted to an Isaacs equation for an ergodic
payoff zero sum stochastic differential game. The aforementioned expression then is simply the
value of this game. Going by pure analogy, for the reward maximization problem, one would
expect this route to yield a stochastic team problem wherein the two agents seek to maximize a
common payoff, but non-cooperatively, i.e., without either of them having knowledge of the other
person’s decision. What this translates into is that under the corresponding ergodic occupation
measure, the two control actions are conditionally independent given the state. The set of such
measures is non-convex. What we have achieved instead is a single concave programming problem,
which is a significant simplification from the point of view of developing computational schemes
for the problem. This also brings to the fore the difference between reward maximization and cost
minimization in risk-sensitive control.

5. Diffusions on the whole space

Here we consider a controlled diffusion in Rd of the form

dXt = b(Xt, Ut) dt+ σ(Xt) dWt ,

where

(1) W is a standard d-dimensional Brownian motion;
(2) the control Ut lives in a metrizable compact action space U and is non-anticipative, i.e., for

t > s, W (t)−W (s) is independent of X0;Wy, Uy, y ≤ s;
(3) b(x, u) is continuous and locally Lipschitz continuous in x uniformly in u ∈ U;
(4) σ is locally Lipschitz continuous and locally nondegenerate;
(5) b and σ have at most affine growth in x.

Without loss of generality, we may take Ut to be adapted to the increasing σ-fields generated by
{Xt, t ≥ 0}. Then these hypotheses guarantee the existence of a unique weak solution for any
admissible control {Ut}t≥0 ([5], Chapter 2).

As before, we let r(x, u) be a continuous running reward function, which is locally Lipschitz in
x uniformly in u, and is also bounded from above in Rd. We define the optimal risk-sensitive value
J∗ by

J∗ := sup
{Ut}t≥0

lim inf
T→∞

1

T
log E

[
e
∫ T
0 r(Xt,Ut) dt

]
,

where the supremum is over all admissible controls.
Consider the extremal operator

Ĝf(x) :=
1

2
trace

(
a(x)∇2f(x)

)
+ max

u∈U

[〈
b(x, u),∇f(x)

〉
+ r(x, u)f(x)

]
for f ∈ C2(Rd). The generalized principal eigenvalue of Ĝ is defined by

λ∗(Ĝ) := inf
{
λ ∈ R : ∃φ ∈W

2,d
loc(Rd), ϕ > 0, Ĝφ− λφ ≤ 0 a.e. in Rd

}
, (5)

where W
2,d
loc(Rd) denotes the local Sobolev space of functions on Rd whose generalized derivatives

up to order 2 are in Ldloc(Rd), equipped with its natural semi-norms. We assume that r − λ∗ is
negative and bounded from above away from zero on the complement of some compact set. This is
always satisfied if −r is an inf-compact function, that is the sublevel sets {−r ≤ c} are compact (or
empty) in Rd ×U for each c ∈ R, or if r is a positive function vanishing at infinity and the process
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{Xt}t≥0 is recurrent under some stationary Markov control. Then there exists a unique positive

Φ∗ ∈ C2(Rd) normalized as Φ∗(0) = 1 which solves ĜΦ∗ = λ∗Φ∗. In other words, the eigenvalue

λ∗ = λ∗(Ĝ) is simple. Let ϕ∗ := log Φ∗. As shown in [3], the function

H(x) :=
1

2

∣∣σT(x)∇ϕ∗(x)
∣∣2 , x ∈ Rd

is an infinitesimal relative entropy rate.
We let Z := Rd × U × Rd, and use the single variable z = (x, u, w) ∈ Z. Let P(Z) denote the

set of probability measures on the Borel σ-algebra of Z, and MA denote the set of infinitesimal
ergodic occupation measures for the operator A in (4) defined for f ∈ C2(Rd), which here can be
written as

MA :=

{
µ ∈ P(Z) :

∫
Z
Af(z)µ(dz) = 0 ∀ f ∈ C2

c (Rd)
}
,

where C2
c (Rd) is the class of functions in C2(Rd) which have compact support. Recall the definition

R(x, u, w) := r(x, u)− 1
2 |σ

T(x)w|2 in Section 4. We also define

P∗(Z) :=

{
µ ∈ P(Z) :

∫
Z
H(x)µ(dx,du,dw) <∞

}
,

P◦(Z) :=

{
µ ∈ P(Z) :

∫
Z
R(z)µ(dz) > −∞

}
.

The following is a summary of the main results in [3, Section 4].

Theorem 3. We have

J∗ = λ∗(Ĝ) = sup
µ∈P∗(Z)

inf
g∈C2

c (Rd)

∫
Z

(
Ag(z) +R(z)

)
µ(dz)

= max
µ∈MÃ∩P∗(Z)

∫
Z
R(z)µ(dz) .

Suppose that the diffusion matrix a is bounded and uniformly elliptic, and either −r is inf-compact,

or 〈b, x〉− has subquadratic growth, or |b|2
1+|r| is bounded. Then MA ∩ P◦(Z) ⊂ P∗(Z), and P∗(Z)

may be replaced by P(Z) in the variational formula above. If, in addition, H
1+|ϕ∗|

is bounded, then

J∗ = λ∗(Ĝ) = inf
g∈C2

c (Rd)
sup

µ∈P(Z)

∫
Z

(
Ag(z) +R(z)

)
µ(dz) .

We continue with the Collatz–Wielandt formula in Rd for the risk-sensitive cost minimization
problem. This is studied in [2]. Here, we have a running cost r(x, u) which is bounded from below
in Rd × U, and is locally Lipschitz in x uniformly in u. The assumptions on b and σ are as stated
in the beginning of the section, except that we may replace the affine growth assumption with the
more general condition

sup
u∈U
〈b(x, u), x〉+ + ‖σ(x)‖2 ≤ C0

(
1 + |x|2

)
∀x ∈ Rd ,

for some constant C0 > 0. The risk-sensitive optimal value Λ∗ is defined by

Λ∗ := inf
{Ut}t≥0

lim sup
T→∞

1

T
log E

[
e
∫ T
0 r(Xs,Us) ds

]
.

The operator G here is as in (3) but for f ∈ C2(Rd), and we let the generalized principal eigenvalue
λ∗(G) be defined as in (5).
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The running cost does not have any structural properties that penalize unstable behavior such
as near-monotonicity or inf-compactness, so uniform ergodicity for the controlled process needs to
be assumed. Let

Lf(x, u) :=
1

2
tr
(
σ(x)σT(x)∇2f(x)

)
+
〈
b(x, u),∇f(x)

〉
.

We consider the following hypothesis.

Assumption 1. The following hold.

(i) There exists an inf-compact function ` ∈ C(Rd), and a positive function V ∈ W
2,d
loc(Rd),

satisfying infRd V > 0, such that

sup
u∈U
LV(x, u) ≤ κ11K(x)− `(x)V(x) ∀x ∈ Rd , (6)

for some constant κ1 and a compact set K.
(ii) The function x 7→ β`(x)−maxu∈U r(x, u) is inf-compact for some β ∈ (0, 1).

As noted in [4], the Foster–Lyapunov equation in (6) cannot in general be satisfied for diffusions
with bounded a and b. Therefore, to treat this case, we consider an alternate set of conditions.

Assumption 2. The following hold.

(i) There exists a positive function V ∈ W
2,d
loc(Rd), satisfying infRd V > 0, constants κ1 and

γ > 0, and a compact set K such that

sup
u∈U
LV(x, u) ≤ κ11K(x)− γV(x) ∀x ∈ Rd .

(ii) ‖r−‖∞ + lim sup|x|→∞ maxu∈U r(x, u) < γ.

Let o(V) denote the class of continuous functions f that grow slower than V, that is, |f(x)|
V(x) → 0

as |x| → ∞. We quote the following result from [4].

Theorem 4. Grant either Assumption 1, or 2. Then

Λ∗ = λ∗(G) = sup
f∈C2,+(Rd)∩o(V)

inf
µ∈P(Rd)

∫
Rd

Gf
f

dµ

= inf
f∈C2,+(Rd)

sup
µ∈P(Rd)

∫
Rd

Gf
f

dµ ,

(7)

where C2,+(Rd) denotes the set of positive functions in C2(Rd).

We should remark here that the class of test functions f in the first representation formula in
(7) cannot, in general, be enlarged to C2,+(Rd).

It is also interesting to consider the substitution f = eψ. Then (7) transforms to

λ∗(G) = sup
ψ∈C2,+(Rd)∩o(logV)

inf
µ∈P(Rd)

∫
Rd
F [ψ](x)µ(dx)

= inf
ψ∈C2,+(Rd)

sup
µ∈P(Rd)

∫
Rd
F [ψ](x)µ(dx) ,

with

F [ψ](x) := inf
u∈U

sup
w∈Rd

[
Aψ(x, u, w) +R(x, u, w)

]
.

This underscores the discussion in the last paragraph of section 4.
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6. Finite state and action space

For discrete time problems with finite state and action spaces (i.e., |S|, |U | <∞ in sections 2-3),
one can go significantly further for the reward maximization problem. We recall below some results
in this context from [9].

Consider a controlled Markov chain {Yn} on S with state-dependent action space at state i given
by:

Ũi := ∪u∈U ({u} × Vi,u) ,

where

Vi,u :=

{
q(· | i, u) : q(· | i, u) ≥ 0,

∑
j

q(j | i, u) = 1

}
.

This is isomorphic to P(S). Let

K := ∪i∈S({i} × Ũi) .
The (controlled) transition probabilities of {Yn} are

p̃
(
j | i, (u, q(· | i, u))

)
:= q(j | i, u) .

Define the per stage reward r̃ : K × S 7→ R by:

r̃
(
i, (u, q(· | i, u)), j

)
:= r(i, u, j)−D

(
q(· | i, u)‖ p(· | i, u)

)
.

Let {(Zn, Qn), n ≥ 0} denote the ŨYn-valued control process. Consider the problem: Maximize the
long run average reward

lim inf
N↑∞

1

N

N−1∑
n=0

E [r̃ (Yn, (Zn, Qn), Yn+1)] .

Define the corresponding ergodic occupation measure γ ∈ P(K × S) by

γ(i, (u,dq), j) := γ1(i)γ2(u,dq | i)γ3

(
j | i, (u, q)

)
,

where γ1 is an invariant probability distribution (not necessarily unique) under the transition kernel

γ̌(j | i) =
∑
u

∫
Vi,u

γ2(u,dq | i)γ3

(
j | i, (u, q)

)
.

Let E denote the set of such γ. The above average reward control problem is equivalent to the
linear program:

P0 Maximize ∑
i,j,u

∫
γ(i, (u,dq), j)r̃(i, (u, q), j)

over E .
Recall that E is specified by linear constraints and its extreme points correspond to station-

ary Markov policies ([8], Chapter V). The maximum will be attained at an extreme point of E
corresponding to a stationary Markov policy. This LP can be simplified as:

Maximize ∑
i,j

∫
γ′(i, u, j)

[
r(i, u, j)−D

(
q(· | i, u)‖ p(· | i, u)

)]
over

Ẽ :=

{
γ′ ∈ P(S × U × S) : γ′(i, u, j) = γ1(i)ϕ(u | i)q(j | i, u), where γ1(·) is invariant

under the transition kernel γ̆(j| i) :=
∑
u

ϕ(u | i)q(j | i, u)

}
.
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The dual LP is:

Minimize λ̆ subject to

λ̆ ≥ λ(i) ,

λ(i) + V (i) ≥
∑
j

q(j | i, u)
(
r̃(i, (u, q(· | i, u)), j) + V (j)

)
,

λ(i) ≥
∑
j

q(j | i, u)λ(j) ,

∀ i ∈ S, (u, q(· | i, u)) ∈ Ũi .

The proof goes through finite approximations. Note that the LP has infinitely many constraints.
However, it does pave the way for the corresponding dynamic programming principle. The dynamic
programming formulation equivalent to the above LP turns out to be as follows:

λ∗ = max
i
λ(i) ,

λ(i) + V (i) = max
u,q(· | i,u)

(∑
j

q(j | i, u)
(
V (j) + r̃(i, (u, q(· | i, u), j))

))
, (†)

λ(i) = max
(u,q(· | i,u))∈Bi

∑
j

q(j | i, u)λ(j) ,

for all i ∈ S, where Bi is the Argmax in (†). Once again, the proof goes through finite approxi-
mations. The maximization over q in (†) can be explicitly performed using the ‘Gibbs variational
principle’ from statistical mechanics. For fixed i, u, the maximum is attained at

q∗(j | i, u) :=
p(j | i, u)er(i,u,j)+V (j)∑
k p(k | i, u)er(i,u,k)+V (k)

.

Substitute back, setting

Φ(i) := eV (i), Λ(i) := eλ(i), i ∈ S ,
and exponentiate both sides of (†). This leads to the multiplicative dynamic programming equations
for infinite horizon risk-sensitive reward in the general degenerate case:

Λ(i)Φ(i) = max
u

∑
j

p(j | i, u)
(

er(i,u,j)Φ(j)
)
, (††)

Λ(i) = max
u∈Di

∑
j

(
p(j | i, u)er(i,u,j)Φ(j)∑
k p(k | i, u)er(i,u,k)Φ(k)

)
Λ(j) ,

for all i ∈ S, where Di is the Argmax in (††). This is the analog of the Howard–Kallenberg results
for ergodic or ‘average reward’ control ([18], Chapter 9). Observe the occurrence of the ‘twisted
kernel ’, which sets it apart from the average reward case.

7. Future directions

There are several directions left uncharted in this broad problem area. Some of them are listed
below.

(1) There are some in-between cases that need to be analyzed, e.g., controlled Markov chains
with countably infinite state space. Under the strong ‘Doeblin condition’, the abstract
Collatz-Wielandt formula has been derived for these in [10]. This needs to be extended to
more general cases.



‘CONTROLLED’ VERSIONS OF THE COLLATZ–WIELANDT AND DONSKER–VARADHAN FORMULAE 11

(2) The counterpart of the dynamic programming equations derived for reducible risk-sensitive
reward processes can also be expected to hold for risk-sensitive cost problems and is yet to
be established.

(3) Concrete computational schemes based on approximate concave maximization problems is
another direction worth pursuing.
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