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Abstract

We study infinite-horizon asymptotic average optimality for parallel server networks with mul-
tiple classes of jobs and multiple server pools in the Halfin–Whitt regime. Three control for-
mulations are considered: 1) minimizing the queueing and idleness cost, 2) minimizing the
queueing cost under a constraints on idleness at each server pool, and 3) fairly allocating the
idle servers among different server pools. For the third problem, we consider a class of bounded-
queue, bounded-state (BQBS) stable networks, in which any moment of the state is bounded
by that of the queue only (for both the limiting diffusion and diffusion-scaled state processes).
We show that the optimal values for the diffusion-scaled state processes converge to the corre-
sponding values of the ergodic control problems for the limiting diffusion. We present a family
of state-dependent Markov balanced saturation policies (BSPs) that stabilize the controlled
diffusion-scaled state processes. It is shown that under these policies, the diffusion-scaled state
process is exponentially ergodic, provided that at least one class of jobs has a positive abandon-
ment rate. We also establish useful moment bounds, and study the ergodic properties of the
diffusion-scaled state processes, which play a crucial role in proving the asymptotic optimality.

Keywords: multiclass multi-pool Markovian queues, Halfin–Whitt (QED) regime, ergodic
control (with constraints), fairness, exponential stability, balanced saturation policy (BSP),
bounded-queue bounded-state (BQBS) stable networks, asymptotic optimality
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1. Introduction

Large-scale parallel server networks are used to model various service, manufacturing and
telecommunications systems; see, e.g., [1–13]. We consider multiclass multi-pool networks op-
erating in the Halfin–Whitt (H–W) regime, where the demand of each class and the numbers
of servers in each pool get large simultaneously in an appropriate manner so that the system
becomes critically loaded while the service and abandonment rates are fixed. We study opti-
mal control problems of such networks under the infinite-horizon expected average (ergodic)
cost criteria, since steady-state performance measures are among the most important metrics
to understand the system dynamics. Specifically, we consider the following unconstrained and
constrained ergodic control problems (see Sections 3.1 and 4.2): (P1) minimizing the queueing
and idleness cost, (P2) minimizing the queueing cost while imposing a dynamic constraint on
the idleness of each server pool (e.g., requiring that the long-run average idleness does not
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exceed a given threshold), and (P3) minimizing the queueing cost while requiring fairness on
idleness (e.g., the average idleness of each server pool is a fixed proportion of the total average
idleness of all server pools). The scheduling policy determines the allocation of service capac-
ity to each class at each time. We consider only work conserving scheduling policies that are
non-anticipative and preemptive.

In [14] and [15], we have studied the corresponding ergodic control problems (P1′)–(P2′) for
the limiting diffusions arising from such networks (see Section 3.2). Problem (P1′) for multiclass
networks (“V” networks) was studied in [14], where a comprehensive study of the ergodic control
problem for a broader class of diffusions as well as asymptotic optimality results for the network
model were presented. In [15] we have shown that problem (P1′) and (P2′) are well-posed
for multiclass multi-pool networks, and presented a full characterization of optimality for the
limiting diffusion. We also provided important insights on the stabilizability1 of the controlled
diffusion by employing a leaf elimination algorithm, which is used to derive an explicit expression
for the drift. We addressed problem (P3) for the ‘N’ network model, where we studied its well-
posedness, characterized the optimal solutions, and established asymptotic optimality in [16].
For this particular network topology, the fairness constraint requires that the long-run average
idleness of the two server pools satisfies a fixed ratio condition.

In this paper we establish the asymptotic optimality for the ergodic control problems (P1)–
(P3). In other words, we show that the optimal values for the diffusion-scaled state processes
converge to the corresponding values for the limiting diffusion. The main challenge lies in
understanding the recurrence properties of the diffusion-scaled state processes for multiclass
multi-pool networks in the H–W regime. Despite the recent studies on stability of multi-
class multi-pool networks under certain scheduling policies [17–19], the existing results are not
sufficient for our purpose. The difficulty is particularly related to the so-called “joint work con-
servation” (JWC) condition, which requires that no servers are idling unless all the queues are
empty, and which plays a key role in the derivation of the limiting diffusion, and the study of
discounted control problems in [20, 21]; see Section 2.2 for a detailed discussion. For the limiting
diffusion, the JWC condition holds over the entire state space; however, for the diffusion-scaled
state process in the nth system (n is the scaling parameter), it holds only in a bounded subset
of the state space. As a consequence, a stabilizing control2 for the limiting diffusion cannot be
directly translated to a scheduling policy for the nth system which stabilizes the diffusion-scaled
state process in the H–W regime.

Our first main contribution addresses the above mentioned critical issue of stabilizability
of the diffusion-scaled state processes. We have identified a family of stabilizing policies for
multiclass multi-pool networks, which we refer to as the “Balanced Saturation Policies” (BSPs)
(see Definition 5.1). Such a policy strives to keep the state process for each class ‘close’ to
the corresponding steady state quantity, which is state-dependent and dynamic. The specific
stabilizing policy for the ‘N’ network presented in [16] belongs to this family of BSPs. We show
that if the abandonment parameter is positive for at least one class, then the diffusion-scaled
state processes are exponentially stable under any BSP (see Proposition 5.1).

In addition to the ergodicity properties, moment bounds are also essential to prove asymp-
totic optimality. An important implication of the exponential ergodicity property proved in
[15, Theorem 4.2] is that the controlled diffusion satisfies a very useful moment bound, see
(2.29), namely, that any moment (higher than first order) of the state is controlled by the
corresponding moments of the queue and idleness. This moment bound is also shown for the
nth system (Proposition 6.1). In studying the moment bounds, we have identified an impor-
tant class of multiclass multi-pool networks, which we refer to as bounded-queue, bounded-state
(BQBS) stable networks (Section 4). The limiting diffusion of this class of networks has the

1We say that a control (policy) is stabilizing, if it results in a finite value for the optimization criterion.
2To avoid confusion, ‘control’ always refers to a control strategy for the limiting diffusion, while ‘policy’ refers

to a scheduling strategy for the pre-limit model.
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following important property. Any moment (higher than first order) of the state is controlled by
the corresponding moment of the queue alone (see Proposition 6.2). The class of BQBS stable
networks contains many interesting examples, including networks with a single dominant class
(see Figure 1), and networks with certain parameter constraints, e.g., service rates that are only
pool-dependent. It is worth noting that the ergodic control problem with fairness constraints for
the general multiclass multi-pool networks may not be well-posed. However, the problems (P3)
and (P3′) are well-posed for the BQBS stable networks. In addition, the problems (P1) and
(P1′) which only penalize the queueing cost are also well-posed for the BQBS stable networks.

The proof of asymptotic optimality involves the convergence of the value functions, specifi-
cally, establishing the lower and upper bounds (see Theorems 3.1, 3.2 and 4.2). In establishing
the lower bound, the arguments are analogous to those for the ‘N’ network in [16] and the
‘V’ network in [14]. This involves proving the tightness of the mean empirical measures of
the diffusion-scaled state process, controlled under some eventually JWC scheduling policy
(see Definition 2.2), and also showing that any limit of these empirical measures is an ergodic
occupation measure for the limiting diffusion model (see Lemma 6.1).

The proof of the upper bound is the most challenging. We utilize the following important
property which arises from a spatial truncation technique for all three problems (P1′)–(P3′):
there exists a continuous precise stationary Markov control v̄ε which is ε-optimal for the lim-
iting diffusion control problem, and under which the diffusion is exponentially ergodic (see
Lemma 7.1, Corollary 7.1, and [14, Theorem 4.2]). For the nth system, we construct a concate-
nated admissible policy in the following manner. In the JWC conservation region, we apply a
scheduling policy constructed canonically from the Markov control v̄ε (see Definition 6.1), while
outside the JWC region, we apply a fixed BSP. We also show that that under this concatenated
policy the diffusion-scaled state process is exponentially ergodic, and its mean empirical mea-
sures converge to the ergodic occupation measure of the limiting diffusion associated with the
control v̄ε.

1.1. Literature review

There is an extensive literature on scheduling control of multiclass multi-pool networks in
the H–W regime. For the infinite-horizon discounted criterion, Atar [20, 21] first studied the
unconstrained scheduling control problem under a set of conditions on the network structure,
the system parameters, and the running cost function (Assumptions 2 and 3 in [21]). Atar et al.
[22] further investigated simplified models with service rates that either only class-dependent,
or pool-dependent. Gurvich and Whitt [23–25] studied queue-and-idleness-ratio controls for
multiclass multi-pool networks, by proving a state-space-collapse (SSC) property under suitable
conditions on the network structure and system parameters (Theorems 3.1 and 5.1 in [23]). For
finite-horizon cost criteria, Dai and Tezcan [26, 27] studied scheduling controls of multiclass
multi-pool networks, also by proving an SSC property under certain assumptions.

There has also been a lot of activity on ergodic control of multiclass multi-pool networks in
the H–W regime, in addition to [14–16] mentioned earlier. For the inverted ‘V’ model, Armony
[28] has shown that the fastest-server-first policy is asymptotically optimal for minimizing the
steady-state expected queue length and waiting time, and Armony and Ward [29] have shown
that a threshold policy is asymptotically optimal for minimizing the expected queue length
and waiting time subject to a “fairness” constraint on the workload division. For multiclass
multi-pool networks, Ward and Armony [30] have studied blind fair routing policies, and used
simulations to validate their performance, and compared them with non-blind policies derived
from the limiting diffusion control problem. Biswas [31] recently studied a specific multiclass
multi-pool network with “help” where each server pool has a dedicated stream of a customer
class, and can help with other customer classes only when it has idle servers. For this network
model, the control policies may not be work-conserving, and the associated controlled diffusion
has a uniform stability property, which is not satisfied for general multiclass multi-pool networks.
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This work contributes to the understanding of the stability of multiclass multi-pool networks
in the H-W regime. Gamarnik and Stolyar [32] studied the tightness of the stationary distri-
butions of the diffusion-scaled state processes under any work conserving scheduling policy for
the ‘V’ network, while ergodicity properties for the limiting diffusion under constant Markov
controls are established in [33, 34]. We refer the reader to [17–19] for the stability analysis of a
load balancing scheduling policy, “longest-queue freest-server” (LQFS-LB), and a leaf activity
priority policy, for multiclass multi-pool networks. For the ‘N’ network with no abandonment,
Stolyar [35] studied the stability of a static priority scheduling policy.

1.2. Organization of the paper

In the subsection which follows we summarize the notation used in the paper. In Section 2.1,
we describe the model and the scheduling control problems, and in Section 2.2, we discuss the
JWC condition. In Section 2.3, we state some basic properties of the diffusion-scaled processes
and the control parameterization, which leads to the diffusion limit. In Section 2.4, we review
some relevant properties of the limiting diffusion from [15]. We state the control objectives of
the problems (P1) and (P2) in Section 3.1, and the corresponding diffusion control problems
(P1′) and (P2′) in Section 3.2, and summarize the asymptotic optimality results in Section 3.3.
In Section 4 we describe the BQBS stable networks and study the fairness problems (P3) and
(P3′). In Section 5, we introduce the family of stabilizing BSPs, and show that under these
we have exponential stability. In Section 6, we focus on the ergodic properties of the nth

system, including the moment bounds, convergence of mean empirical measures and a stability
preserving property in the JWC region. In Section 7, we complete the proofs of the lower and
upper bounds of the three problems. We conclude in Section 8.

1.3. Notation

The symbolR denotes the field of real numbers, andR+ andN denote the sets of nonnegative
real numbers and natural numbers, respectively. The minimum (maximum) of two real numbers
a and b, is denoted by a∧ b (a∨ b). Define a+ := a∨ 0 and a− := −(a∧ 0). The integer part of
a real number a is denoted by bac. We also let e := (1, . . . , 1)T.

For a set A ⊂ Rd, we use Ā, Ac, and 1A to denote the closure, the complement, and the
indicator function of A, respectively. A ball of radius r > 0 in Rd around a point x is denoted
by Br(x), or simply as Br if x = 0. The Euclidean norm on Rd is denoted by | · |, x · y denotes

the inner product of x, y ∈ Rd, and ‖x‖ :=
∑d
i=1|xi|.

We let C∞c (Rd) denote the set of smooth real-valued functions on Rd with compact support.
For a Polish space X , we denote by P(X ) the space of probability measures on the Borel subsets
of X under the Prokhorov topology. For ν ∈ P(X ) and a Borel measurable map f : X → R,
we often use the abbreviated notation ν(f) :=

∫
X f dν . The quadratic variation of a square

integrable martingale is denoted by 〈 · , · 〉. For any path X(·) of a càdlàg process, we use the
notation ∆X(t) to denote the jump at time t.

2. The Model

All random variables introduced below are defined on a complete probability space (Ω,F,P)
and E denotes the associated expectation operator.

2.1. The multiclass multi-pool network model

We consider a sequence of network systems with the associated variables, parameters and
processes indexed by n. Each of these, is a multiclass multi-pool Markovian network with
I classes of customers and J server pools, labeled as 1, . . . , I and 1, . . . , J , respectively. Let
I = {1, . . . , I} and J = {1, . . . , J}. Customers of each class form their own queue and are
served in the first-come-first-served (FCFS) service discipline. The buffers of all classes are
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assumed to have infinite capacity. Customers can abandon/renege while waiting in queue.
Each class of customers can be served by a subset of server pools, and each server pool can
serve a subset of customer classes. We let J (i) ⊂ J , denote the subset of server pools that
can serve class i customers, and I(j) ⊂ I the subset of customer classes that can be served
by server pool j. We form a bipartite graph G = (I ∪ J , E) with a set of edges defined by
E = {(i, j) ∈ I × J : j ∈ J (i)}, and use the notation i ∼ j, if (i, j) ∈ E , and i � j, otherwise.
We assume that the graph G is a tree.

For each j ∈ J , let Nn
j be the number of servers (statistically identical) in server pool j.

Set Nn = (Nn
j )j∈J . Customers of class i ∈ I arrive according to a Poisson process with rate

λni > 0, and have class-dependent exponential abandonment rates γni ≥ 0. These customers are
served at an exponential rate µnij > 0 at server pool j, if i ∼ j, and we set µnij = 0, if i � j. Thus,

the set of edges E can thus be written as E =
{

(i, j) ∈ I × J : µnij > 0
}

. We assume that the
customer arrival, service, and abandonment processes of all classes are mutually independent.
We define

RG+ :=
{
ξ = [ξij ] ∈ RI×J+ : ξij = 0 for i � j

}
,

and analogously define ZG+.

2.1.1. The Halfin–Whitt regime

We study these multiclass multi-pool networks in the Halfin–Whitt regime (or the Quality-
and-Efficiency-Driven (QED) regime), where the arrival rates of each class and the numbers
of servers of each server pool grow large as n → ∞ in such a manner that the system be-
comes critically loaded. Throughout the paper, the set of parameters is assumed to satisfy the
following.
Parameter Scaling. There exist positive constants λi and νj , nonnegative constants γi and µij ,

with µij > 0 for i ∼ j and µij = 0 for i � j, and constants λ̂i, µ̂ij and ν̂j , such that the
following limits exist as n→∞.

λni − nλi√
n

→ λ̂i ,
√
n (µnij − µij) → µ̂ij ,

Nn
j − nνj√

n
→ ν̂j , γni → γi . (2.1)

Fluid scale equilibrium. We assume that the linear program (LP) given by

Minimize max
j∈J

∑
i∈I

ξij , subject to
∑
j∈J

µijνjξij = λi , i ∈ I , and [ξij ] ∈ RG+ ,

has a unique solution ξ∗ = [ξ∗ij ] ∈ RG+ satisfying∑
i∈I

ξ∗ij = 1, ∀j ∈ J , and ξ∗ij > 0 for all i ∼ j . (2.2)

This assumption is referred to as the complete resource pooling condition [21, 36]. It implies
that the graph G is a tree [21, 36].

We define x∗ = (x∗i )i∈I ∈ RI+, and z∗ = [z∗ij ] ∈ RG+ by

x∗i =
∑
j∈J

ξ∗ijνj , z∗ij = ξ∗ijνj . (2.3)

The vector x∗ can be interpreted as the steady-state total number of customers in each class,
and the matrix z∗ as the steady-state number of customers in each class receiving service, in
the fluid scale. Note that the steady-state queue lengths are all zero in the fluid scale. The
quantity ξ∗ij can be interpreted as the steady-state fraction of service allocation of pool j to
class-i jobs in the fluid scale. It is evident that (2.2) and (2.3) imply that e · x∗ = e · ν, where
ν := (νj)j∈J .
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2.1.2. The state descriptors

For i ∈ I, let Xn
i = {Xn

i (t) : t ≥ 0} and Qni = {Qni (t) : t ≥ 0} be the number of class i
customers in the system and in the queue, respectively, and for j ∈ J , let Y nj = {Y nj (t) : t ≥ 0},
be the number of idle servers in pool j. We also let Znij = {Znij(t) : t ≥ 0} denote the number
of class i customers being served in server pool j. Set Xn = (Xn

i )i∈I , Y n = (Y nj )j∈J , Qn =
(Qni )i∈I , and Zn = (Znij)i∈I, j∈J . For each t ≥ 0, we have the fundamental balance equations

Xn
i (t) = Qni (t) +

∑
j∈J (i)

Znij(t) ∀ i ∈ I ,

Nn
j = Y nj (t) +

∑
i∈I(j)

Znij(t) ∀ j ∈ J .
(2.4)

2.1.3. Scheduling control

The control process is Zn. We only consider work conserving scheduling policies that are
non-anticipative and preemptive. Work conservation requires that the processes Qn and Y n

satisfy
Qni (t) ∧ Y nj (t) = 0 ∀i ∼ j , ∀ t ≥ 0 .

In other words, whenever there are customers waiting in queues, if a server becomes free and
can serve one of the customers, the server cannot idle and must decide which customer to serve
and start service immediately. Service preemption is allowed, that is, service of a customer can
be interrupted at any time to serve some other customer of another class and resumed at a
later time.

For (x, z) ∈ ZI+ ×ZG+, we define

qi(x, z) := xi −
∑
j∈J

zij , i ∈ I ,

ynj (z) := Nn
j −

∑
i∈J

zij , j ∈ J ,
(2.5)

and the action set Zn(x) by

Zn(x) :=
{
z ∈ ZG+ : qi(x, z) ∧ ynj (z) = 0 , qi(x, z) ≥ 0 , ynj (z) ≥ 0 ∀ (i, j) ∈ E

}
.

We denote yj(x, z) = ynj (x, z) whenever no confusion occurs.
Let Ani , Snij , and Rni , (i, j) ∈ E , be mutually independent rate-1 Poisson processes, and also

independent of the initial condition Xn
i (0). Define the σ-fields

Fnt := σ
{
Xn(0), Ãni (t), S̃nij(t), R̃

n
i (t) : i ∈ I, j ∈ J , 0 ≤ s ≤ t

}
∨N ,

Gnt := σ
{
δÃni (t, r), δS̃nij(t, r), δR̃

n
i (t, r) : i ∈ I, j ∈ J , r ≥ 0

}
,

where N is the collection of all P-null sets, and

Ãni (t) := Ani (λni t), δÃni (t, r) := Ãni (t+ r)− Ãni (t) ,

S̃nij(t) := Snij

(
µnij

∫ t

0

Znij(s) ds

)
, δS̃nij(t, r) := Snij

(
µnij

∫ t

0

Znij(s) ds+ µnijr

)
− S̃nij(t) ,

R̃ni (t) := Rni

(
γni

∫ t

0

Qni (s) ds

)
, δR̃ni (t, r) := Rni

(
γni

∫ t

0

Qni (s) ds+ γni r

)
− R̃ni (t) .

The filtration Fn := {Fnt : t ≥ 0} represents the information available up to time t, and the
filtration Gn := {Gnt : t ≥ 0} contains the information about future increments of the processes.

We say that a scheduling policy Zn is admissible if
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(i) Zn(t) ∈ Zn(Xn(t)) a.s. for all t ≥ 0;

(ii) Zn(t) is adapted to Fnt ;

(iii) Fnt is independent of Gnt at each time t ≥ 0;

(iv) for each i ∈ I and i ∈ J , and for each t ≥ 0, the process δS̃nij(t, ·) agrees in law with

Snij(µ
n
ij ·), and the process δR̃ni (t, ·) agrees in law with Rni (γni ·).

We denote the set of all admissible scheduling policies (Zn,Fn,Gn) by Zn. Abusing the notation
we sometimes denote this as Zn ∈ Zn. An admissible policy is called stationary Markov if
Zn(t) = z(Xn(t)) for some function z : ZI+ → ZG+, in which case we identify the policy with the
function z.

Under an admissible scheduling policy, the state process Xn can be represented as

Xn
i (t) = Xn

i (0) +Ani (λni t)−
∑
j∈J (i)

Snij

(
µnij

∫ t

0

Znij(s)ds

)
−Rni

(
γni

∫ t

0

Qni (s)ds

)
, (2.6)

for i ∈ I and t ≥ 0. Under a stationary Markov policy, Xn is Markov with generator

Lznf(x) :=
∑
i∈I

λni
(
f(x+ ei)− f(x)

)
+
∑
i∈I

∑
j∈J (i)

µnijzij
(
f(x− ei)− f(x)

)
+
∑
i∈I

γni qi(x, z)
(
f(x− ei)− f(x)

)
, f ∈ C(RI) , x ∈ ZI+ . (2.7)

2.2. Joint work conservation

Definition 2.1. We say that an action z ∈ Zn(x) is jointly work conserving (JWC), if

e · q(x, z) ∧ e · yn(z) = 0 . (2.8)

We define

Xn :=
{
x ∈ ZI+ : e · q(x, z) ∧ e · yn(x, z) = 0 for some z ∈ Zn(x)

}
,

with q and yn defined in (2.5).

Since (2.4) implies that

e · (x−Nn) = e · q(x, z)− e · yn(z) ,

it is clear that (2.8) is satisfied if and only if

e · q(x, z) =
[
e · (x−Nn)

]+
, and e · yn(z) =

[
e · (x−Nn)

]−
.

Let

Θn(x) :=
{

(q, y) ∈ ZI+ ×ZJ+ : e · q = [e · (x−Nn)]+ , e · y = [e · (x−Nn)]−
}
, x ∈ ZI+ .

It is evident that the JWC condition can be met at any point x ∈ ZI+ at which the image of
Zn(x) under the map z 7→

(
q(x, z), yn(z)

)
defined in (2.5) intersects Θn(x).

Let
DΨ :=

{
(α, β) ∈ RI ×RJ : e · α = e · β

}
.

As shown in Proposition A.2 of [20], provided that G is a tree, there exists a unique linear map
Ψ = [Ψij ] : DΨ → RI×J solving∑

j

Ψij(α, β) = αi ∀i ∈ I , and
∑
i

Ψij(α, β) = βj ∀j ∈ J , (2.9)
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with Ψij(α, β) = 0 for i � j.
We quote a result from [21], which is used later. The proof of Lemma 3 in [21] assumes that

the limits in (2.1) exist, in particular,
√
n(Nn

j − nνj) → 0 as n → ∞. Nevertheless, the proof
goes through under the weaker assumption that Nn

j − nνj = o(n).

Lemma 2.1 (Lemma 3 in [21]). There exists a constant M0 > 0 such that, the collection of

sets X̆n defined by
X̆n :=

{
x ∈ ZI+ : ‖x− nx∗‖ ≤M0 n

}
, (2.10)

satisfies X̆n ⊂ Xn for all n ∈ N. Moreover,

Ψ(x− q,Nn − y) ∈ ZI×J+ ∀ q, y ∈ Θn(x) , ∀x ∈ X̆n .

Remark 2.1. Lemma 2.1 implies that if x ∈ X̆n, then for any q ∈ ZI+ and y ∈ ZJ+ satisfying
e · q ∧ e · y = 0 and e · (x− q) = e · (Nn − y) ≥ 0, we have Ψ(x− q,Nn − y) ∈ Zn(x).

We need the following definition.

Definition 2.2. We fix some open ball B̆ centered at the origin, such that n(B̆+x∗) ⊂ X̆n for
all n ∈ N. The jointly work conserving action set Z̆n(x) at x is defined as the subset of Zn(x),
which satisfies

Z̆n(x) :=

{{
z ∈ Zn(x) : e · q(x, z) ∧ e · yn(z) = 0

}
if x ∈ n(B̆ + x∗) ,

Zn(x) otherwise,

with q and yn as in (2.5). We also define the associated admissible policies by

Z̆n :=
{
Zn ∈ Zn : Zn(t) ∈ Z̆n

(
Xn(t)

)
∀ t ≥ 0

}
,

Z := {Zn ∈ Z̆n , n ∈ N} .

We refer to the policies in Z as eventually jointly work conserving (EJWC).

The ball B̆ is fixed in Definition 2.2 only for convenience. We could instead adopt a more
general definition of Z, as explained in Remark 2.1 in [15]. The EJWC condition plays a crucial
role in the derivation of the controlled diffusion limit. Therefore, the convergence of mean
empirical measures of the controlled diffusion-scaled state process, and thus, also the lower and
upper bounds for asymptotic optimality are established for sequences {Zn, n ∈ N} ⊂ Z.

2.3. The diffusion-scaled processes

Let x∗ and z∗ be as in (2.3). We define the diffusion-scaled processes Ẑn, X̂n, Q̂n, and Ŷ n,
by

X̂n
i (t) :=

1√
n

(Xn
i (t)− nx∗i ) ,

Q̂ni (t) :=
1√
n
Qni (t) ,

Ẑnij(t) :=
1√
n

(Znij(t)− nz∗ij) ,

Ŷ nj (t) :=
1√
n
Y nj (t) .

(2.11)

Let

M̂n
A,i(t) :=

1√
n

(Ani (λni t)− λni t),

M̂n
S,ij(t) :=

1√
n

(
Snij

(
µnij

∫ t

0

Znij(s)ds

)
− µnij

∫ t

0

Znij(s)ds

)
,

M̂n
R,i(t) :=

1√
n

(
Rni

(
γni

∫ t

0

Qni (s)ds

)
− γni

∫ t

0

Qni (s)ds

)
.
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These are square integrable martingales w.r.t. the filtration Fn, with quadratic variations

〈M̂n
A,i〉(t) :=

λni
n
t , 〈M̂n

S,ij〉(t) :=
µnij
n

∫ t

0

Znij(s)ds , 〈M̂n
R,i〉(t) :=

γni
n

∫ t

0

Qni (s)ds .

Let M̂n(t) := M̂n
A,i(t)−

∑
j∈J (i) M̂

n
S,ij(t)− M̂n

R,i(t). By (2.6), we can write X̂n
i (t) as

X̂n
i (t) = X̂n

i (0) + `ni t−
∑
j∈J (i)

µnij

∫ t

0

Ẑnij(s)ds− γni
∫ t

0

Q̂ni (s)ds+ M̂n(t) , (2.12)

where `n = (`n1 , . . . , `
n
I )T is defined as

`ni :=
1√
n

(
λni −

∑
j∈J (i)

µnijz
∗
ijn

)
.

Under the assumptions on the parameters in (2.1) and the first constraint in the LP, it holds
that

`ni −−−−→
n→∞

`i := λ̂i −
∑
j∈J (i)

µ̂ijz
∗
ij .

We let ` := (`1, . . . , `I)
T.

By (2.3), (2.4), and (2.11), we obtain the balance equations

X̂n
i (t) = Q̂ni (t) +

∑
j∈J (i)

Ẑnij(t) ∀ i ∈ I ,

Ŷ nj (t) +
∑
i∈I(j)

Ẑnij(t) = 0 ∀ j ∈ J .
(2.13)

Definition 2.3. For each x ∈ ZI+ and z ∈ Zn(x), we define

x̃n = x̃n(x) := x− nx∗ , x̂n = x̂n(x) :=
x̃n(x)√

n
, ẑn(z) :=

z − nz∗√
n

,

q̂n(x, z) :=
q(x, z)√

n
, ŷn(z) :=

yn(z)√
n

, ϑ̂n(x, z) := e · q̂n(x, z) ∧ e · ŷn(z) ,

(2.14)

with q(x, z), yn(z) as in (2.5). We also let

Sn :=
{
x̂n(x) : x ∈ ZI+

}
, S̆n :=

{
x̂n(x) : x ∈ X̆n

}
and

Ẑn(x̂) := {ẑn(z) : z ∈ Zn(
√
nx̂+ nx∗)} x̂ ∈ Sn .

Abusing the notation, we also write

q̂ni (x̂, ẑ) = q̂ni (x̂n, ẑn) = x̂ni −
∑
j∈J (i)

ẑnij for i ∈ I , (2.15)

and

ŷnj (ẑ) = ŷnj (ẑn) =
Nn
j − n

∑
i∈I(j) z

∗
ij√

n
−
∑
i∈I(j)

ẑnij for j ∈ J . (2.16)
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Lemma 2.2. There exists a constant M̃0 > 0 such that for any z ∈ Z̆n(x), x ∈ ZI+, and
n ∈ N, we have

max

{
max

(i,j)∈E
|ẑnij(z)|, ‖q̂n(x, z)‖, ‖ŷn(z)‖, ϑ̂n(x, z)

}
≤ M̃0 ‖x̂n(x)‖ .

Proof. Note that

‖q̂n(x, z)‖ = ϑ̂n(x, z) +
(
e · x̂n(x)

)+
, and ‖ŷn(z)‖ = ϑ̂n(x, z) +

(
e · x̂n(x)

)−
(2.17)

for all x ∈ ZI+ and z ∈ Zn(x). Therefore, there exist probability vectors pc ∈ [0, 1]I and

ps ∈ [0, 1]J such that q̂n =
(
ϑ̂n + (e · x̂n)+

)
pc and ŷn =

(
ϑ̂n + (e · x̂n)−

)
ps. By the linearity of

the map Ψ and Lemma 2.1, it easily follows that

ẑn = Ψ(x̂n − q̂n,−ŷn) = Ψ
(
x̂n − (e · x̂n)+pc,−(e · x̂n)−ps

)
− ϑ̂n Ψ(pc, ps) . (2.18)

If x /∈ X̆n, then ‖x̂n‖ > M0
√
n by (2.10). Since for some constant C > 0, it holds that

‖ŷn(z)‖ ≤ C
√
n for all n ∈ N, the same bound also holds for ϑ̂n(x, z). Thus if x /∈ X̆n, we

obtain the bound asserted in the lemma by (2.17) and (2.18).

On the other hand, if x ∈ X̆n and z ∈ Z̆n(x), then ϑ̂n(x, z) = 0, and again the assertion of
the lemma follows by (2.17) and (2.18). This completes the proof. �

Definition 2.4. We define the operator An : C2(RI)→ C(RI ,RI×J) by

Anf
(
x̂, ẑ
)

:=
∑
i∈I

(
Ani,1(x̂i, ẑ) ∂if(x̂) + Ani,2(x̂i, ẑ) ∂iif(x̂)

)
, f ∈ C2(RI) ,

where ∂i := ∂
∂xi

and ∂ij := ∂2

∂xi∂xj
, and

Ani,1
(
x̂i, ẑ

)
:= `ni −

∑
j∈J (i)

µnij ẑij − γni
(
x̂i −

∑
j∈J (i)

ẑij

)
,

Ani,2
(
x̂i, ẑ

)
:=

1

2

[
λni
n

+
∑
j∈J (i)

µnijz
∗
ij +

1√
n

∑
j∈J (i)

µnij ẑij +
γni√
n

(
x̂i −

∑
j∈J (i)

ẑij

)]
.

By the Kunita–Watanabe formula for semi-martingales (see, e.g., [37, Theorem 26.7]), we
have

f(X̂n(t)) = f(X̂n(0)) +

∫ t

0

Anf
(
X̂n(s), Ẑn(s)

)
ds+

∑
s≤t

Df(X̂n, s) ∀ f ∈ C2(RI) , (2.19)

for any admissible diffusion-scaled policy Ẑn, where

Df(X̂n, s) := ∆f(X̂n(s))−
∑
i∈I

∂if(X̂n(s−))∆X̂n
i (s)

− 1

2

∑
i,i′∈I

∂ii′f(X̂n(s−))∆X̂n
i (s)∆X̂n

i′ (s) . (2.20)

2.3.1. Control parameterization

Definition 2.5. Let Xn := {(x̂, ẑ) : x̂ ∈ Sn , ẑ ∈ Ẑn(x̂)}. For each (x̂, ẑ) ∈ Xn, we define

uci (x̂, ẑ) = uc,ni (x̂, ẑ) :=

{
q̂ni (x̂,ẑ)
e·q̂n(x̂,ẑ) if e · q̂n(x̂, ẑ) > 0 ,

eI otherwise,
i ∈ I , t ≥ 0 ,
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and

usj(ẑ) = us,nj (ẑ) :=

{
ŷnj (ẑ)

e·ŷn(ẑ) if e · ŷn(ẑ) > 0 ,

eJ otherwise,
j ∈ J , t ≥ 0 .

Let u(x̂, ẑ) := (uc(x̂, ẑ), us(ẑ)). Then u(x̂, ẑ) belongs to the set

U :=
{
u = (uc, us) ∈ RI+ ×RJ+ : e · uc = e · us = 1

}
. (2.21)

We also define the processes

U c,ni (t) := uci
(
X̂n(t), Ẑn(t)

)
, Us,ni (t) := usi

(
Ẑn(t)

)
,

and Un := (U c,n, Us,n), with U c,n := (U c,n1 , . . . , U c,nI )T, and Us,n := (Us,n1 , . . . , Us,nJ )T.

The process U c,ni (t) represents the proportion of the total queue length in the network at
queue i at time t, while Us,nj (t) represents the proportion of the total idle servers in the network
at station j at time t. Given Zn ∈ Zn the process Un is uniquely determined and lives in the
set U.

For u ∈ U, let Ψ̂[u] : RI → RG be defined by

Ψ̂[u](x) := Ψ(x− (e · x)+uc,−(e · x)−us) , (2.22)

where Ψ is as in (2.9).

We define the operator Ăn : C2(RI)→ C(RI ,U) by

Ănf(x̂, u) :=
∑
i∈I

(
Ăni,1(x̂, u) ∂if(x̂) + Ăni,2(x̂, u) ∂iif(x̂)

)
,

where

Ăni,1(x̂, u) := `ni −
∑
j∈J (i)

µnijΨ̂ij [u](x̂)− γni (e · x̂)+uci ,

Ăni,2(x̂, u) :=
1

2

(
λni
n

+
∑
j∈J (i)

µnijz
∗
ij +

1√
n

∑
j∈J (i)

µnijΨ̂ij [u](x̂) +
γni√
n

(
(e · x̂)+uci

))
.

The following lemma is a result of a simple calculation based on the definitions above. Recall
the definitions of B̆, Z̆n, and S̆n from Definitions 2.2 and 2.3.

Lemma 2.3. Let u = u(x̂, ẑ) : Xn → U denote the map given in Definition 2.5. Then for
f ∈ C2

c (
√
nB̆), we have

Ănf
(
x̂, u(x̂, ẑ)

)
= Anf

(
x̂, ẑ) , ∀ x̂ ∈ S̆n ∩

√
nB̆ , ∀ ẑ ∈ Z̆n(

√
nx̂+ nx∗) .

2.4. The diffusion limit

Consider the I-dimensional controlled diffusion given by the Itô equation

dXt = b(Xt, Ut) dt+ Σ dWt , (2.24)

where W is an I-dimensional standard Wiener process. The drift b : RI × U → RI takes the
form

bi(x, u) = bi(x, (u
c, us)) := `i −

∑
j∈J (i)

µijΨ̂ij [u](x)− γi(e · x)+uci ∀ i ∈ I ,
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where Ψ̂ij [u] is as in (2.22). Also Σ := diag
(√

2λ1, . . . ,
√

2λI
)
.

The control process U takes values in U, defined in (2.21), and Ut(ω) is jointly measurable
in (t, ω) ∈ [0,∞)× Ω. Moreover, it is non-anticipative, i.e., for s < t, Wt −Ws is independent
of

Fs := the completion of σ{X0, Ur,Wr, r ≤ s} relative to (F,P) .

Such a process U is called an admissible control. Let U denote the set of all admissible controls.
Recall that a control is called Markov if Ut = v(t,Xt) for a measurable map v : R+ ×RI → U,
and it is called stationary Markov if v does not depend on t, i.e., v : RI → U. Let USM denote
the set of stationary Markov controls. Recall also that a control v ∈ USM is called stable if the
controlled process is positive recurrent. We denote the set of such controls by USSM. Let

Luf(x) :=
∑
i∈I

[
λi ∂iif(x) + bi(x, u) ∂if(x)

]
, u ∈ U , (2.25)

denote the extended controlled generator of the diffusion in (2.24).
In [15], a leaf elimination algorithm was developed to obtain an explicit expression for the

drift b(x, u). This plays an important role in understanding the recurrence properties of the
controlled diffusion. See also Remark 4.2 and Example 4.4 in [15]. We quote this result as
follows.

Lemma 2.4 (Lemma 4.3 in [15]). The drift b(x, u) = b(x, (uc, us)) in the limiting diffusion
X in (2.24) can be expressed as

b(x, u) = `−B1(x− (e · x)+uc) + (e · x)−B2u
s − (e · x)+Γuc , (2.26)

where B1 is a lower-diagonal I×I matrix with positive diagonal elements, B2 is an I×J matrix
and Γ = diag{γ1, . . . , γI}.

The drift in (2.26) takes the form

bi
(
x, u

)
= `i − µijixi + b̃i(x1, . . . , xi−1) + F̃i

(
(e · x)+uc, (e · x)−us

)
− γi (e · x)+uci , (2.27)

where ji ∈ J , i ∼ ji, is the unique server-pool node corresponding to i when customer node i is
removed by the leaf elimination algorithm (see Section 4.1 in [15]). Two things are important
to note: (a) F̃i is a linear function, and (b) µiji > 0 (since i ∼ ji).

Under EJWC policies, convergence in distribution of the diffusion-scaled processes X̂n to
the limiting diffusion X in (2.24) follows by [21, Proposition 3] for certain classes of networks.
The fact that (2.24) can be viewed as a limit of the diffusion-scaled process X̂n is also indicated
by the following lemma.

Lemma 2.5. We have

Ăni,1 −−−−→
n→∞

bi , and Ăni,2 −−−−→
n→∞

λi

for i ∈ I, uniformly over compact sets of RI × U. In particular, for any f ∈ C2
c (RI) it holds

that
Ănf(x, u) −−−−→

n→∞
Luf(x) .

Nevertheless, for the time being, we consider solutions of (2.24) as the formal limit of (2.12).
Precise links of the nth system model and (2.24) are established in Section 6.
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Definition 2.6. Let ‖x‖β := (β1 |x1|2 + · · · + βI |xI |2)1/2, with β = (β1, . . . , βI) a positive
vector. Throughout the paper, Vκ,β , κ ≥ 1, stands for a C2(RI) function which agrees with

‖x‖κβ on the complement of the unit ball B in RI , i.e., Vκ,β(x) = ‖x‖κβ , for x ∈ Bc. Also, Ṽε,β ,
ε > 0, is defined by

Ṽε,β(x) := exp
(
ε‖x‖2β

(
1 + ‖x‖2β

)−1/2
)
, x ∈ RI .

In addition, for δ > 0, we define

Kδ :=
{
x ∈ RI : |e · x| > δ|x|

}
.

As shown in Theorem 4.1 of [15], the drift b in (2.27) has the following important structural
property. For any κ ≥ 1, there exists a function Vκ,β as in Definition 2.6, and positive constants
ci, i = 0, 1, 2, such that

b(x, u) · ∇Vκ,β(x) ≤ c0 − c1Vκ,β(x)1Kcδ(x) + c2Vκ,β(x)1Kδ(x) ∀ (x, u) ∈ RI × U . (2.28)

Since the diffusion matrix is constant, it is evident that a similar estimate holds for LuVκ,β
uniformly over u ∈ U. By a straightforward application of Itô’s formula, this implies that for
any κ ≥ 1 there exists a constant C depending only on κ such that (see [15, Lemma 3.1 (c)])

EUx
[∫ T

0

|Xs|κ ds

]
≤ C |x|κ + C EUx

[∫ T

0

(
1 + |e ·Xs|

)κ
ds

]
∀T > 0 , ∀U ∈ U . (2.29)

Moreover, it is shown in [15, Theorem 4.2] that there exists a stationary Markov control
v̄ ∈ USM satisfying

Lv̄Vκ,β(x) ≤ c̄0 − c̄1Vκ,β(x) ∀x ∈ RI , (2.30)

for any κ ≥ 1, and positive constants c̄0 and c̄1 depending only on κ. As a consequence of
(2.30), the diffusion under the control v̄ is exponentially ergodic. A slight modification of that
proof leads to the following theorem.

Theorem 2.1. Provided that γi > 0 for some i ∈ I, there exist ε > 0, a positive vector β ∈ RI ,
and a stationary Markov control v̄ ∈ USM satisfying

Lv̄Ṽε,β(x) ≤ c̃0 − c̃1Ṽε,β(x) ∀x ∈ RI , (2.31)

for some positive constants c̃0 and c̃1.

The properties in (2.28), (2.30), and (2.31) are instrumental in showing that the optimal control
problems defined in this paper are well posed.

3. Ergodic Control Problems

In this section, we consider two control objectives, which address the queueing (delay) and/or
idleness costs in the system: (i) unconstrained problem, minimizing the queueing and idleness
cost and (ii) constrained problem, minimizing the queueing cost while imposing a constraint on
idleness. We state both problems for the nth system and the limiting diffusion.
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3.1. Ergodic control problems for the nth system

The running cost is a function of the diffusion-scaled processes, which are related to the
unscaled ones by (2.11). For simplicity, in all three cost minimization problems, we assume
that the initial condition Xn(0) is deterministic and X̂n(0) → x ∈ RI as n → ∞. Let the
running cost r̂ : RI+ ×RJ+ → R+ be defined by

r̂(q̂, ŷ) =
∑
i∈I

ξiq̂
m
i +

∑
j∈J

ζj ŷ
m
j , q̂ ∈ RI+ , ŷ ∈ RJ+ , for some m ≥ 1 , (3.1)

where ξ = (ξ1, . . . , ξI)
T is a positive vector and ζ = (ζ1, . . . , ζJ)T is a nonnegative vector. In the

case ζ ≡ 0, only the queueing cost is minimized. We denote by EZ
n

the expectation operator
under an admissible policy Zn.

(P1) (unconstrained problem) The running cost penalizes the queueing and idleness. Let r̂(q, y)
be the running cost function as defined in (3.1). Here ζ > 0. Given an initial state Xn(0),

and an admissible scheduling policy Zn ∈ Z̆n, we define the diffusion-scaled cost criterion
by

J
(
X̂n(0), Zn

)
:= lim sup

T→∞

1

T
EZ

n

[∫ T

0

r̂
(
Q̂n(s), Ŷ n(s)

)
ds

]
. (3.2)

The associated cost minimization problem becomes

V̂ n(X̂n(0)) := inf
Zn∈Z̆n

J
(
X̂n(0), Zn

)
.

(P2) (constrained problem) The objective here is to minimize the queueing cost while imposing
idleness constraints on the server pools. Let r̂o(q) be the running cost function corre-
sponding to r̂ in (3.1) with ζ ≡ 0. The diffusion-scaled cost criterion Jo

(
X̂n(0), Zn

)
is

defined analogously to (3.2) with running cost r̂o(Q̂
n(s)), that is,

Jo
(
X̂n(0), Zn

)
:= lim sup

T→∞

1

T
EZ

n

[∫ T

0

r̂o
(
Q̂n(s)

)
ds

]
.

Also define

Jc,j
(
X̂n(0), Zn

)
:= lim sup

T→∞

1

T
EZ

n

[∫ T

0

(
Ŷ nj (s)

)m̃
ds

]
, j ∈ J ,

with m̃ ≥ 1. The associated cost minimization problem becomes

V̂ nc (X̂n(0)) := inf
Zn∈Z̆n

Jo
(
X̂n(0), Zn

)
,

subject to Jc,j
(
X̂n(0), Zn

)
≤ δj , j ∈ J , (3.3)

where δ = (δ1, . . . , δJ)T is a positive vector.

We refer to V̂ n(X̂n(0)) and V̂ nc (X̂n(0)) as the diffusion-scaled optimal values for the nth

system given the initial state Xn(0), for (P1) and (P2), respectively.

Remark 3.1. We choose running costs of the form (3.1) mainly to simplify the exposition.
However, all the results of this paper still hold for more general classes of functions. Let
ho : RI → R+ be a convex function satisfying ho(x) ≥ c1|x|m+c2 for some m ≥ 1 and constants
c1 > 0 and c2 ∈ R, and h : RI → R+, hi : R→ R+, i ∈ I, be convex functions that have at most
polynomial growth. Then we can choose r̂(q, y) = ho(q) + h(y) for the unconstrained problem,
and hi(yi) as the functions in the constraints in (3.3) (with r̂o = ho). Analogous running costs
can of course be used in the corresponding control problems for the limiting diffusion, which
are presented later in Section 3.2.
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3.2. Ergodic control problems for the limiting diffusion

We state the two problems which correspond to (P1)–(P2) in Section 3.1 for the controlled
diffusion in (2.24). Let r : RI × U→ R be defined by

r(x, u) = r
(
x, (uc, us)

)
:= r̂

(
(e · x)+uc, (e · x)−us

)
,

with r̂ as in (3.1), that is,

r(x, u) = [(e · x)+]m
∑
i∈I

ξi(u
c
i )
m + [(e · x)−]m

∑
j∈J

ζj(u
s
j)
m, m ≥ 1 , (3.4)

for the given ξ = (ξ1, . . . , ξI)
T and ζ = (ζ1, . . . , ζJ)T in (3.1). Let the ergodic cost associated

with the controlled diffusion X and the running cost r be defined as

Jx,U [r] := lim sup
T→∞

1

T
EUx

[∫ T

0

r(Xt, Ut) dt

]
, U ∈ U .

(P1′) (unconstrained problem) The running cost function r(x, u) is as in (3.4) with ζ > 0. The
ergodic control problem is then defined as

%∗(x) := inf
U∈U

Jx,U [r] .

(P2′) (constrained problem) The running cost function ro(x, u) is as in (3.4) with ζ ≡ 0. Also
define

rj(x, u) := [(e · x)−usj ]
m̃ , j ∈ J , (3.5)

with m̃ ≥ 1, and let δ = (δ1, . . . , δJ) be a positive vector. The ergodic control problem
under idleness constraints is defined as

%∗c (x) := inf
U∈U

Jx,U [ro] , subject to Jx,U [rj ] ≤ δj , j ∈ J .

The quantities %∗(x) and %∗c (x) are called the optimal values of the ergodic control problems
(P1′) and (P2′), respectively, for the controlled diffusion process X with initial state x. Note
that as is shown in Section 3 of [14] and Sections 3 and 5.4 of [15], the optimal values %∗(x)
and %∗c (x) do not depend on x ∈ RI , and thus we remove this dependence in the results stated
in Section 3.3.

Let G denote the set of ergodic occupation measures corresponding to controls in USSM, that
is,

G :=

{
π ∈ P(RI × U) :

∫
RI×U

Luf(x)π(dx, du) = 0 ∀ f ∈ C∞c (RI)

}
,

where Luf(x) is the controlled extended generator of the diffusion X given in (2.25). The
restriction of the ergodic control problem with running cost r to stable stationary Markov
controls is equivalent to minimizing π(r) =

∫
RI×U r(x, u)π(dx, du) over all π ∈ G. If the

infimum is attained in G, then we say that the ergodic control problem is well posed, and we
refer to any π̄ ∈ G that attains this infimum as an optimal ergodic occupation measure.

The characterization of the optimal solutions to the ergodic control problems (P1′)–(P2′)
has been thoroughly studied in [14] and [15]. We refer the reader to these papers for relevant
results used in the proof of asymptotic optimality which follows in the next section.
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3.3. Asymptotic optimality results

We summarize here the main results on asymptotic optimality, which assert that the values
of the two ergodic control problems in the diffusion scale converge to the values of the corre-
sponding ergodic control problems for the limiting diffusion, respectively. The proofs of the
asymptotic optimality are given in Section 7.

Recall the definitions of J , Jo, V̂
n, and V̂ nc in (P1)–(P2), and the definitions of %∗ and %∗c

in (P1′)–(P2′).

Theorem 3.1 (unconstrained problem). Suppose that γi > 0 for some i ∈ I. Then the
following are true.

(i) (lower bound) For any sequence {Zn, n ∈ N} ⊂ Z, the diffusion-scaled cost in (3.2)
satisfies

lim inf
n→∞

J
(
X̂n(0), Ẑn

)
≥ %∗ .

(ii) (upper bound) lim sup
n→∞

V̂ n(X̂n(0)) ≤ %∗ .

Theorem 3.2 (constrained problem). Under the assumptions of Theorem 3.1, we have the
following:

(i) (lower bound) Suppose that under a sequence {Zn, n ∈ N} ⊂ Z, the constraint in (3.3)
is satisfied for all sufficiently large n ∈ N. Then

lim inf
n→∞

Jo
(
X̂n(0), Ẑn

)
≥ %∗c ,

and as a result we have that lim inf
n→∞

V̂ nc (X̂n(0)) ≥ %∗c .

(ii) (upper bound) For any ε > 0, there exists a sequence {Zn, n ∈ N} ⊂ Z such that the
constraint in (3.3) is feasible for all sufficiently large n, and

lim sup
n→∞

Jo
(
X̂n(0), Ẑn

)
≤ %∗c + ε .

Consequently, we have that lim sup
n→∞

V̂ nc (X̂n(0)) ≤ %∗c .

4. BQBS Stability and Fairness

4.1. BQBS stable networks

It follows by (2.29) that the controlled diffusion limit for multiclass multi-pool networks have
the following property. If under some admissible control (admissible scheduling policy) the mean
empirical value of some power κ ≥ 1 of the queueing and idleness processes is bounded, then the
corresponding mean empirical value of the state process also remains bounded. This property
also holds for the diffusion-scaled processes in the nth system, as shown later in Proposition 6.1.

There is however a large class of networks that share a more specific property, namely that
the average value of any moment of a state process, is controlled by the average value of the
corresponding moment of the queueing process alone. More precisely, the limiting diffusion of
this class of networks satisfies

EUx
[∫ T

0

|Xs|κ ds

]
≤ C |x|κ + C EUx

[∫ T

0

[
1 +

(
e ·Xs

)+]κ
ds

]
∀T > 0 , ∀U ∈ U , (4.1)

for any κ ≥ 1, and for a constant C which depends only on κ. We refer to the class of networks
which satisfy (4.1) as bounded-queue, bounded-state (BQBS) stable.
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Define
Kδ,+ :=

{
x ∈ RI : e · x > δ|x|

}
. (4.2)

It follows by the proof of [14, Theorem 3.1] that a sufficient condition for BQBS stability is
that (2.28) holds with Kδ replaced by Kδ,+, i.e.,

b(x, u) ·∇Vκ,β(x) ≤ c0 + c1Vκ,β(x)1Kδ,+(x)− c2Vκ,β(x)1Kcδ,+(x) ∀ (x, u) ∈ RI ×U . (4.3)

As shown later in Proposition 6.2, the inequality in (4.3) is sufficient for (4.1) to hold for the
nth system, uniformly in n ∈ N. The class of networks which satisfy (4.3), and are therefore
BQBS stable, includes the following special classes:

(i) Networks with a single dominant class: there is only one class of jobs that can be served
by more than one server pools (see Corollary 4.2 in [15]). This includes the standard “N”
and “W” networks, the generalized “N” and “W” networks, and more general networks
as depicted in Figure 1.

“N” Network A Generalized “N” Network 

“W” Network A Generalized “W” Network A More General Network (circle-customer class, square-server pool)  

Figure 1: Examples of networks with a single dominant class

(ii) Networks with the following parameter assumptions:

max
i,i′∈I, j∈J (i)

|µij − µi′j | ≤ δ̃ max
i∈I, j∈J

{µij} ,

for sufficiently small δ̃ > 0. This includes networks with pool-dependent service rates,
i.e., µij = µ̄j for all (i, j) ∈ E , as a special class. (See Corollary 4.1 in [15]).

Remark 4.1. For networks that satisfy (4.3), ergodic control problems with a running cost
penalizing only the queue are well posed (e.g., we may allow ζ = 0 in (3.1)). This is because,
in the diffusion scale, the average value of the state process is controlled by the average value
of the queue, and also by the fact, as shown in Lemma 2.2, that idleness is upper bounded by
some multiple of the state.

4.2. The fairness problem

In addition to ergodic control problems as in (P1)–(P2), for BQBS stable networks we can
also consider constrained problems which aim at balancing idleness among the server pools,
and result in a fair allocation of idle servers. Let

SJ := {θ ∈ (0, 1)J : e · θ = 1} .

For the nth system, we formulate this type of ergodic control problems as follows.
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(P3) (fairness) Here we minimize the queueing cost while keeping the average idleness of
the server pools balanced. Let θ = (θ1, . . . ,θJ)T ∈ SJ be a positive vector and let 1 ≤ m̃ < m.
Let J̄c :=

∑
∈J Jc,. The associated cost minimization problem becomes

V̂ nf (X̂n(0)) := inf
Zn∈Z̆n

Jo
(
X̂n(0), Zn

)
subject to Jc,j

(
X̂n(0), Zn

)
= θj J̄c

(
X̂n(0), Zn

)
, j ∈ J .

For the corresponding diffusion, we have the following cost minimization problem.
(P3′) (fairness) The running costs ro, and rj , j ∈ J , are as in (P2′). Let θ = (θ1, . . . ,θJ)T ∈

SJ be a positive vector, and 1 ≤ m̃ < m. The ergodic control problem under idleness fairness
is defined as

%∗f (x) = inf
U∈U

Jx,U [ro]

subject to Jx,U [rj ] = θj
∑
∈J

Jx,U [r] , j ∈ J .
(4.4)

We next state an optimality result for the fairness problem (P3′). We first introduce some
notation. Let

Hr(x, p) := min
u∈U

[
b(x, u) · p+ r(x, u)

]
. (4.5)

For θ = (θ1, . . . ,θJ)T ∈ RJ+ and λ = (λ1, . . . , λJ)T ∈ RJ+, define the running cost hθ,λ by

hθ,λ(x, u) := ro(x, u) +
∑
j∈J

λj
(
rj(x, u)− θj r̄(x, u)

)
,

where r̄ = r1 + · · ·+ rJ . We also let

Hf(θ) :=
{
π ∈ G : π(rj) = θjπ(r̄) , j ∈ J

}
, θ ∈ RJ+ .

The following theorem characterizes of the optimal solution of (P3′)—see Theorem 5.8 in
[15] and Theorem 4.3 in [16]. The existence of solutions to the HJB equation is proved for the
diffusion control problem of the “N” network, but the argument used in the proof is applicable
to the general multiclass multi-pool model discussed here. The uniqueness of the solutions Vf
follows exactly as in the proof of Theorem 3.2 in [15].

Theorem 4.1. Suppose that the network is BQBS stable and γi > 0 for some i ∈ I. Then the
constraint in (4.4) is feasible for any positive vector θ = (θ1, . . . ,θJ)T ∈ SJ . In addition, the
following hold.

(a) There exists λ∗ ∈ RJ+ such that

inf
π∈H(θ)

π(ro) = inf
π∈G

π(hθ,λ∗) = %∗f .

(b) If π∗ ∈ H(θ) attains the infimum of π 7→ π(ro) in H(θ), then π∗(ro) = π∗(hθ,λ∗), and

π∗(hθ,λ) ≤ π∗(hθ,λ∗) ≤ π(hθ,λ∗) ∀ (π, λ) ∈ G×RJ+ .

(c) There exists Vf ∈ C2(RI) satisfying

min
u∈U

[
LuVf(x) + hθ,λ∗(x, u)

]
= π∗(hθ,λ∗) = %∗f , x ∈ RI .
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(d) A stationary Markov control vf ∈ USSM is optimal if and only if it satisfies

Hhθ,λ∗

(
x,∇Vf(x)

)
= b

(
x, vf(x)

)
· ∇Vf(x) + hθ,λ∗

(
x, vf(x)

)
a.e. in RI ,

where Hhθ,λ∗ is defined in (4.5) with r replaced by hθ,λ∗ .

(e) The map θ 7→ infπ∈H(θ) π(ro) is continuous at any feasible point θ̂.

We next state the asymptotic optimality result for this class of networks.

Theorem 4.2. For the class of networks which satisfy (4.3), and γi > 0 for some i ∈ I, the
following hold.

(i) (lower bound) there exists a positive constant Cf such that if a sequence {Zn, n ∈ N} ⊂ Z
satisfies

max
j∈J

∣∣∣∣Jc,j
(
X̂n(0), Zn

)
J̄c
(
X̂n(0), Zn

) − θj

∣∣∣∣ ≤ ε (4.6)

for some ε > 0 and for all sufficiently large n ∈ N, then

lim inf
n→∞

Jo(X̂
n(0), Zn) ≥ %∗f − Cfε ;

(ii) (upper bound) for any ε > 0, there exists a sequence {Zn, n ∈ N} ⊂ Z such that (4.6)
holds for all sufficiently large n ∈ N, and

lim sup
n→∞

Jo(X̂
n(0), Zn) ≤ %∗f + ε .

Remark 4.2. The reader will certainly notice that whereas Theorem 4.1 holds for BQBS stable
networks in general, i.e., networks which satisfy (4.1), the Foster–Lyapunov condition (4.3) is
assumed in Theorem 4.2 which asserts asymptotic optimality. The reason behind this, is that the
corresponding BQBS stability property should hold for the diffusion-scaled processes in order
to establish the lower bound, and (4.3) needs to be invoked in order to assert this property (see
Proposition 6.2 in Section 6). However, (4.3) is quite natural for the models considered here.

5. A family of stabilizing policies

We introduce a class of stationary Markov scheduling policies for the general multiclass
multi-pool networks which is stabilizing for the diffusion-scaled state processes in the H–W
regime. Let I◦ := {i ∈ I : γi = 0}. Throughout this section we fix a collection {Nn

ij ∈
N , (i, j) ∈ E , n ∈ N} which satisfies

bξ∗ijNn
j c ≤ Nn

ij ≤ dξ∗ijNn
j e , and

∑
i∈I(j)

Nn
ij = Nn

j .

We also define N̄n
i :=

∑
j∈I(i)N

n
ij for i ∈ I.

Lemma 5.1. Suppose that I◦ 6= I. Then, given C̃0 > 0, there exist a collection

{Ñn
ij ∈ N , (i, j) ∈ E , n ∈ N} ,

and a positive constant Ĉ0 satisfying∑
j∈J (i)

µnij(Ñ
n
ij −Nn

ij) ≥ 2C̃0

√
n if i ∈ I◦ , (5.1)

∣∣Nn
ij − Ñn

ij

∣∣ ≤ Ĉ0

√
n ∀(i, j) ∈ E , (5.2)
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and ∑
i∈I(j)

Ñn
ij = Nn

j ∀ j ∈ J (5.3)

for all sufficiently large n ∈ N.

Proof. Suppose, without loss of generality (WLOG), that I◦ = {1, . . . , I − 1}. We claim that
there exists a collection {ψij ∈ R : j ∈ J (i) , i ∈ I} of real numbers and a constant C0 > 0,
satisfying

∑
j∈J (i) µijψij > C0 for all i ∈ I◦, and∑

i∈I(j)

ψij = 0 ∀ j ∈ J . (5.4)

To prove the claim we use the argument of contradiction. If not, then by [38, Theorem 21.1]
there exists a collection of nonnegative real numbers κi, i = 1, . . . , I, such that∑

i∈I◦

κi
∑
j∈J (i)

µijψij ≤ 0 (5.5)

for all {ψij} satisfying (5.4), and κı̂ > 0 for some ı̂ ∈ I◦. Since G is a tree, there exists a pair
of finite sequences i1, . . . , i` and j1, . . . , j`−1 such that ı̂ = i1, i` = I, and ik ∼ jk, ik+1 ∼ jk for
k = 1, . . . , `− 1. Choosing ψi`j`−1

= −1, ψi`−1j`−1
= 1, ψij`−1

= 0 if i /∈ {i`−1, i`}, and ψij = 0
if j 6= j`−1, it follows from (5.5) that κi`−1

= 0. Thus, WLOG, we may suppose that κi2 = 0.
But then replacing ψi1,j1 with ψi1,j1 + C, and ψi2,j1 with ψi2,j1 − C, the new set of numbers
{ψij} satisfies (5.4). Therefore, by (5.5) we must have∑

i∈I◦

κi
∑
j∈J (i)

µijψij + κi1µi1j1C ≤ 0

for all C ∈ R, which is impossible since κi1µi1j1 > 0. This proves the claim.
Scaling {ψij} by multiplying with a constant, we may assume that∑

j∈J (i)

µijψij > 3 C̃0 ∀ i ∈ I◦ . (5.6)

For each j ∈ J , if I(j) is a singleton, i.e., I(j) = {i1}, then we define Ñn
i1j

:= Nn
i1j

. Otherwise,

if I(j) = {i1, . . . , i`}, then we let Ñn
ikj

:= Nn
ikj

+
⌊
ψikj
√
n
⌋

for k = 1, . . . , ` − 1, and Ñn
i`j

:=

Nn
j −

∑`−1
k=1 Ñ

n
ikj

. It is clear then that (5.1) holds for all sufficiently large n by (5.6), while (5.2)
and (5.3) hold by construction. This completes the proof. �

Definition 5.1. Let {Ñn
ij} be as in Lemma 5.1, and Ñn

i :=
∑
j∈I(i) Ñ

n
ij for i ∈ I. Let Zn

denote the class of Markov policies z satisfying

zij(x) ≤ Ñn
ij ∀ i ∼ j , and

∑
j∈J (i)

zij(x) = xi , if xi ≤ Ñn
i

zij(x) ≥ Ñn
ij ∀ i ∼ j , if xi > Ñn

i .

We refer to this class of Markov policies as balanced saturation policies (BSPs).

We remark that if all γi > 0 for i ∈ I, then in Definition 5.1, we may replace Ñn
ij and Ñn

i

by Nn
ij and N̄n

i , respectively. Note that by Lemma 5.1, the quantities Ñn
ij and Ñi are within

O(
√
n) of the quantities Nn

ij and N̄i, which can be regarded as the ‘steady-state’ allocations for
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the nth system. Thus, in the class of BSPs, if γi > 0 for some i, then the scheduling policy z is
determined using the ‘shifted’ steady-state allocations Ñn

ij and Ñi.
Note that the stabilizing policy for the ‘N’ network in [15] belongs to the class of BSPs.

As another example, for the ‘M’ network, if γi > 0 for some i = 1, 2, the scheduling policy
z = z(x), x ∈ Z2

+, defined by

z11 = x1 ∧Nn
1 ,

z12 =

{
(x1 −Nn

1 )+ ∧ Ñn
12 if x2 ≥ Ñn

2

(x1 −Nn
1 )+ ∧ (x2 −Nn

3 )+ otherwise ,

z22 =

{
(x2 −Nn

3 )+ ∧ Ñn
22 if x1 ≥ Ñn

1

(x2 −Nn
3 )+ ∧ (x1 −Nn

1 )+ otherwise ,

z23 = x2 ∧Nn
3 ,

is a BSP. If γi > 0 for i = 1, 2, then in the scheduling policy above, we can replace Ñn
ij and Ñn

i

by Nn
ij and N̄n

i , respectively.

Using the function x̂n in Definition 2.3, we can write the generator L̂zn of the diffusion-scaled
state process X̂n under the policy z ∈ Zn as

L̂znf(x̂) = Lznf
(
x̂n(x)

)
, (5.7)

where Lzn is as defined in (2.7).
Recall that a Rd-valued Markov process {Mt : t ≥ 0} is called exponentially ergodic if it

possesses an invariant probability measure π(dy) satisfying

lim
t→∞

eκt
∥∥Pt(x, ·)− π(·)

∥∥
TV

= 0 ∀x ∈ Rd ,

for some κ > 0, where Pt(x, ·) := Px(Mt ∈ ·) denotes the transition probability of Mt, and
‖·‖TV denotes the total variation norm.

Proposition 5.1. Let L̂zn denote the generator of the diffusion-scaled state process X̂n under

a BSP z ∈ Zn. Let Ṽε,β be as in Definition 2.6, with β ∈ RI a positive vector. There exists
ε > 0, and positive constants C0 and C1 such that

L̂zn Ṽε,β(x̂) ≤ C0 − C1 Ṽε,β(x̂) ∀ x̂ ∈ Sn , ∀n ≥ n0 . (5.8)

The process X̂n is exponentially ergodic and admits a unique invariant probability measure π̂n

satisfying
lim
t→∞

eκt
∥∥Pnt (x, ·)− π̂n(·)

∥∥
TV

= 0 , x ∈ RI , (5.9)

for any κ < C1, where Pnt (x, ·) denotes the transition probability of X̂n.

Proof. Throughout the proof we use, without further mention, the fact that there exists a
constant C̃0 such that ∣∣∣∣λni − ∑

j∈J (i)

µnijN
n
ij

∣∣∣∣ ≤ C̃0

√
n ,

∣∣nx∗i − N̄n
i

∣∣ =

∣∣∣∣nx∗i − ∑
j∈J (i)

Nn
ij

∣∣∣∣ ≤ C̃0

√
n

for all i ∈ I and all sufficiently large n ∈ N. This follows by (2.1).
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Recall the collection {Ñn
ij ∈ N , (i, j) ∈ E} constructed in Lemma 5.1 with respect to the

constant C̃0 given above. Define x̆i = x̆ni (x) := xi − Ñn
i , ˆ̂xi := 1√

n
x̆ni , and let

V̂ε,β(x) := Ṽε,β(ˆ̂x) .

Using the identity

f(x± ei)− f(x)∓ ∂if(x) =

∫ 1

0

(1− t) ∂iif(x± tei) dt , (5.10)

we obtain ∣∣∣V̂ε,β(x± ei)− V̂ε,β(x)∓ ε βi√
n

ˆ̂xiφβ(ˆ̂x) V̂ε,β(x)
∣∣∣ ≤ 1

nε
2 κ̃1 V̂ε,β(x) (5.11)

for some constant κ̃1 > 0, and all ε ∈ (0, 1), with

φβ(x) :=
2 + ‖x‖2β(

1 + ‖x‖2β
)3/2 .

Fix n ∈ N. By (2.7), with

qi = qi(xi) = xi −
∑
j∈J (i)

zij

for i ∈ I (see (2.14)), and using (5.11), we obtain

Lzn V̂ε,β(x) ≤ ε
∑
i∈I

[
λni

(
βi√
n

ˆ̂xiφβ(ˆ̂x) + 1
nε κ̃1

)
+
∑
j∈J (i)

µnijzij

(
− βi√

n
ˆ̂xiφβ(ˆ̂x) + 1

nε κ̃1

)

+ γni qi

(
− βi√

n
ˆ̂xiφβ(ˆ̂x) + 1

nε κ̃1

)]
V̂ε,β(x)

= ε V̂ε,β(x)
∑
i∈I

(
βi√
n
φβ(ˆ̂x)F

(1)
n,i (x) + 1

nε κ̃1 F
(2)
n,i (x)

)
, (5.12)

where

F
(1)
n,i (x) := ˆ̂xi

(
λni −

∑
j∈J (i)

µnijzij − γni qi
)
,

F
(2)
n,i (x) := λni +

∑
j∈J (i)

µnijzij + γni qi .

(5.13)

It always holds that zij ≤ xi and qi ≤ xi for all (i, j) ∈ E . By (2.1), for some constant κ̃2 we
have

λni +
∑
j∈J (i)

(
µnij + γni

)
Ñn
i ≤ nκ̃2 ∀ i ∈ I , (5.14)

and all n ∈ N. Thus, by (5.13) and (5.14), we obtain

F
(2)
n,i (x) ≤ λni +

∑
j∈J (i)

µnijxi + γni xi

= λni +

( ∑
j∈J (i)

µnij + γni

)
(Ñn

i + x̆i)

≤ κ̃2 (n+ x̆i) . (5.15)
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We next calculate an estimate for F
(1)
n,i in (5.13). Consider any i ∈ I. Define

z̆ij := Nn
j −

∑
i′ 6=i

zi′j .

We distinguish three cases.

Case A. Suppose that xi < Ñn
i . We write∑

j∈J (i)

µnijz
n
ij =

∑
j∈J (i)

µnijÑ
n
ij +

∑
j∈J (i)

µnij
(
znij − Ñn

ij

)
.

Note that znij − Ñn
ij ≤ 0 and x̆i ≤ 0. Therefore, we have

−x̆i
∑
j∈J (i)

µnij
(
znij − Ñn

ij

)
≤ −x̆i

(
min
j∈J (i)

µnij

)(
xi − Ñn

i ) = −
(

min
j∈J (i)

µnij

)
|x̆i|2 .

We also have that

λni −
∑
j∈J (i)

µnijÑ
n
ij = λni −

∑
j∈J (i)

µnijN
n
ij −

∑
j∈J (i)

µnij(Ñ
n
ij −Nn

ij) ≤ −C̃0

√
n . (5.16)

Thus we obtain

F
(1)
n,i (x) ≤ −C̃0

√
n ˆ̂xi −

√
n

(
min
j∈J (i)

µnij

)
|ˆ̂xi|2 .

Case B. Suppose that

xi ≥ Ñn
i and xi ≥

∑
j∈J (i)

z̆ij .

Define
ζ̆ij := z̆ij − Ñn

ij ,

and note that ζ̆ij ≥ 0. Then zij = z̆ij = Ñn
ij + ζ̆ij .

Suppose first that γi = 0. Then by (5.16), we have

F
(1)
n,i (x) ≤ −C̃0

√
n ˆ̂xi + ˆ̂xi

[
λni −

∑
j ∈J (i)

µnij z̆ij

]

≤ −C̃0

√
n ˆ̂xi + ˆ̂xi

[
λni −

∑
j ∈J (i)

µnij (Ñn
ij + ζ̆ij)

]

≤ −2C̃0

√
n ˆ̂xi − ˆ̂xi

[ ∑
j ∈J (i)

µnij ζ̆ij

]

≤ −2C̃0

√
n ˆ̂xi .
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Suppose now that γi > 0. Then by (5.16), we have

F
(1)
n,i (x) ≤ −C̃0

√
n ˆ̂xi + ˆ̂xi

[
λni −

∑
j ∈J (i)

µnij z̆ij − γni

(
xi −

∑
j ∈J (i)

z̆ij

)]

≤ −C̃0

√
n ˆ̂xi + ˆ̂xi

[
λni −

∑
j ∈J (i)

µnij (Ñn
ij + ζ̆ij)− γni

(
x̆i −

∑
j ∈J (i)

ζ̆ij

)]

≤ −2C̃0

√
n ˆ̂xi − ˆ̂xi

[ ∑
j ∈J (i)

µnij ζ̆ij + γni

(
ˆ̂xi −

∑
j ∈J (i)

ζ̆ij

)]

≤ −2C̃0

√
n ˆ̂xi −

√
n
(
γni ∧ min

j∈J (i)
µnij

)
|ˆ̂xi|2 .

Case C. Suppose that

xi ≥ Ñn
i and xi <

∑
j∈J (i)

z̆ij .

Let ̂ ∈ J (i) be arbitrary. We have

F
(1)
n,i (x) ≤ −C̃0

√
n ˆ̂xi + ˆ̂xi

[
λni −

∑
j ∈J (i)\{̂}

µnij z̆ij − µnî

(
xi −

∑
j ∈J (i)\{̂}

z̆ij

)]

≤ −C̃0

√
n ˆ̂xi + ˆ̂xi

[
λni −

∑
j ∈J (i)\{̂}

µnij (Ñn
ij + ζ̆ij)− µnî

(
Ñn
î + x̆i −

∑
j ∈J (i)\{̂}

ζ̆ij

)]

≤ −2C̃0

√
n ˆ̂xi − ˆ̂xi

[ ∑
j ∈J (i)\{̂}

µnij ζ̆ij + µnî

(
x̆i −

∑
j ∈J (i)\{̂}

ζ̆ij

)]

≤ −2C̃0

√
n ˆ̂xi −

√
n

(
min
j∈J (i)

µnij

)
|ˆ̂xi|2 .

From cases A–C, we obtain

F
(1)
n,i (x) ≤ −2C̃0

√
n ˆ̂xi 1{x̆i>0} −

√
n

(
C̃0 ˆ̂xi +

(
min
j∈J (i)

µnij

)
|ˆ̂xi|2

)
1{x̆i≤0} if γi = 0 ,

F
(1)
n,i (x) ≤ −

√
n

(
2C̃0 ˆ̂xi +

(
γni ∧ min

j∈J (i)
µnij

)
|ˆ̂xi|2

)
1{x̆i>0}

−
√
n

(
C̃0 ˆ̂xi +

(
min
j∈J (i)

µnij

)
|ˆ̂xi|2

)
1{x̆i≤0} if γi > 0 .

It is clear from these estimates together with (5.12) and (5.15), that, for ε > 0 small enough,
there exist positive constants Mk, k = 0, 1, satisfying

Lzn V̂ε,β(x) ≤ M0 −M1 V̂ε,β(x) ∀x ∈ ZI+ .

Define ςni :=
√
nx∗i − 1√

n
Ñn
i . Then V̂ε,β(x) = Ṽε,β(x̂ + ςn). Thus, using the definition in

(5.7) and Definition 2.3, we obtain

L̂zn Ṽε,β(x̂+ ςn) ≤ M0 −M1 Ṽε,β(x̂+ ςn) . (5.17)
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Since |ςni | ≤ Ĉ0 by Lemma 5.1, it is clear that (5.8) follows by (5.17).
It is standard to show that (5.8) implies (5.9). One can apply, for example, equation (3.5)

in [39, Theorem 3.2], using Ψ1(x) = x and Ψ2(x) = 1. This completes the proof. �

The following is immediate from Proposition 5.1.

Corollary 5.1. If z ∈ Zn is a BSP, then for some ε > 0 we have

sup
n≥n0

lim sup
T→∞

1

T
Ez
[∫ T

0

eε |X̂
n(s)| ds

]
< ∞ , (5.18)

and the same holds if we replace X̂n with Q̂n or Ŷ n in (5.18). In particular, the invariant
probability measure of the diffusion-scaled process X̂n(t) under a BSP has finite moments of
any order.

Remark 5.1. A Foster–Lyapunov equation similar to (2.30) can be obtained for the diffusion-

scaled state process X̂n under a BSP policy. Let Vκ,β be as in Definition 2.6 and L̂zn as in
Proposition 5.1. One can show, by a slight modification of the proof of Proposition 5.1, that
for each κ > 1, there exist positive constants C0 and C1 depending only on κ and n0 ∈ N, such
that for all z ∈ Zn, we have

(i) If γi > 0 for all i ∈ I, then

L̂znVκ,β(x̂) ≤ C0 − C1 Vκ,β(x̂) ∀ x̂ ∈ Sn , ∀n ≥ n0 .

(ii) If γi > 0 for some i ∈ I (but not all i), then

L̂znVκ,β(x̂) ≤ C0 − C1 Vκ−1,β(x̂) ∀ x̂ ∈ Sn , ∀n ≥ n0 . (5.19)

The Foster–Lyapunov property in (5.19) can be equivalently written as

L̂znVκ,β(x̂) ≤ C0 − C ′1
(
Vκ,β(x̂)

)κ−1
κ ∀ x̂ ∈ Sn , ∀n ≥ n0 ,

for some constant C ′1. Such Foster–Lyapunov properties appear in the studies on subexponential
rate of convergence of Markov processes (see, e.g., [39], [40] and references therein). Thus
(5.19) provides an interesting example to that rich theory. On the other hand, (5.8) with the

exponential function Ṽε,β is stronger, and implies exponential ergodicity of the processes X̂n(t)
under a BSP.

6. Ergodic Properties of the nth System

6.1. Moment bounds for general multiclass multi-pool networks

Recall the moment bounds for the diffusion limit in (2.29). We prove the analogous property
for the diffusion-scaled state process X̂n.

Proposition 6.1. For any κ ≥ 1, there exist constants C̃0 and C̃1, depending only on κ, such
that

EZ
n

[∫ T

0

|X̂n(s)|κ ds

]
≤ C̃0

(
T + |X̂n(0)|κ

)
+ C̃1 EZ

n

[∫ T

0

(
1 + |Q̂n(s)|+ |Ŷ n(s)|

)κ
ds

]
(6.1)

for all n ∈ N, and for any sequence {Zn ∈ Zn, n ∈ N}.
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Proof. Let V(x) :=
∑
i∈I βiVi(xi), x ∈ RI , where βi, i ∈ I, are positive constants to be

determined later, and Vi(xi) = |xi|κ when κ > 1, whereas Vi(xi) = |xi|2√
δ+|xi|2

for some δ > 0

when κ = 1. By applying Itô’s formula on V, we obtain from (2.12) that for t ≥ 0,

E
[
V(X̂n(t))

]
= E

[
V(X̂n(0))

]
+ E

[∫ t

0

AnV
(
X̂n(s), Ẑn(s)

)
ds

]
+ E

[∑
s≤t

DV(X̂n, s)

]
, (6.2)

where An is given in Definition 2.4, and DV(X̂n, s) is as in (2.20).
Let Θ̂n := e · Q̂n ∧ e · Ŷ n. Then Q̂n =

(
Θ̂n + (e · X̂n)+

)
ûc and Ŷ n =

(
Θ̂n + (e · X̂n)−

)
ûs for

some (ûc, ûs) ∈ U by (2.13). Also by the linearity of the map Ψ in (2.9), we obtain

Ẑn = Ψ(X̂n − Q̂n,−Ŷ n)

= Ψ
(
X̂n − (e · X̂n)+ûc,−(e · X̂n)−ûs

)
− Θ̂n Ψ(ûc, ûs) . (6.3)

Define

Āi,1
(
xi, {zij}

)
:= `i −

∑
i∈J (i)

µijzij − γi
(
xi −

∑
j∈J (i)

zij

)
,

and
ĀV(x, z) :=

∑
i∈I

(
Āi,1(xi, {zij})∂iV(x) + λi ∂iiV(x)

)
. (6.4)

By the convergence of the parameters in (2.1), we have∣∣Āi,1(xi, {zij})−Ani,1(xi, {zij})
∣∣ ≤ c1(n)

(
1 + ‖x‖

)
,∣∣λi −Ani,2(xi, {zij})

∣∣ ≤ c1(n)
(
1 + ‖x‖

)
,

for all i ∈ I, for some constant c1(n)↘ 0 as n→∞. Therefore∣∣ĀV(x, z)−AnV(x, z)
∣∣ ≤ c′1(n)

(
1 + ‖x‖κ

)
(6.5)

for some constant c′1(n)↘ 0 as n→∞.
Recall the drift representation b(x, u) in (2.26). By (6.3), we obtain that for each i,

Āi,1
(
X̂n
i , {Ẑnij}

)
= bi

(
X̂n, (ûc, ûs)

)
+ Θ̂n

∑
j∈J (i)

µijΨij(û
c, ûs)− γi Θ̂nûci . (6.6)

Since −B1 in (2.26) is lower diagonal and Hurwitz, there exist positive constants βi, i ∈ I, such
that

∇V(x) ·B1x ≥ c2V(x) ,

for some positive constant c2. Thus, applying Young’s inequality, after some simple calculations,
we obtain

ĀV
(
X̂n, Ẑn

)
≤ −c3V(X̂n) + c4

(
1 + |e · X̂n|κ + (Θ̂n)κ) (6.7)

for some positive constants c3 and c4.
Concerning the last term in (6.2), we first note that by the definition of Vi, since the jump size

is of order 1√
n

, there exists a positive constant c5 such that sup|x′i−xi|≤1|V′′i (x′i)| ≤ c5(1+|xi|κ−2)

for each xi ∈ R. Then by the Taylor remainder theorem, we obtain that for each i ∈ I,

∆Vi
(
X̂n
i (s)

)
− V′i

(
X̂n
i (s−)

)
·∆X̂n

i (s) ≤ 1

2
sup

|x′i−X̂ni (s−)|≤1

|V′′i (x′i)|(∆X̂n
i (s))2 .
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Thus, we have

E

[∑
s≤t

DVi(X̂
n, s)

]
≤ E

[∑
s≤t

c5

(
1 + |X̂n

i (s−)|κ−2

)
(∆X̂n

i (s))2

]

= c5 E
[∫ t

0

(
1 + |X̂n

i (s−)|κ−2

)(
λni
n

+
1

n

∑
j∈J (i)

µnijZ
n
ij(s) +

1

n
γni Q

n
i (s)

)
ds

]

≤ c5 E
[∫ t

0

(
1 + |X̂n

i (s−)|κ−2

)
(
λni
n

+
1

n

∑
j∈J (i)

µnijN
n
j +

1

n
γni

(
Θ̂n(s) +

(
e · X̂n(s)

)+))
ds

]

≤ E
[∫ t

0

(
c3
4

∣∣X̂n
i (s)

∣∣κ + c6

(
1 + |e · X̂n(s)|κ +

(
Θ̂n(s)

)κ))
ds

]
, (6.8)

for some positive constant c6, independent of n. In the first equality in (6.8) we use the fact
that the optional martingale [X̂n

i ] is the sum of the squares of the jumps, and that [X̂n
i ]−〈X̂n

i 〉
is a martingale, while in the last inequality we use Young’s inequality.

Therefore, the assertion of the proposition follows by combining (6.2), (6.5), (6.7), and (6.8),
and the inequality

1 + |e · X̂n|κ + (Θ̂n)κ ≤
(
1 + |Q̂n|+ |Ŷ n|

)κ
. �

6.2. Moment bounds for BQBS stable networks

For the class of BQBS stable networks, the moment bound in (4.1) holds for the limiting
diffusion X. The following proposition shows that the analogous moment bound also holds for
the diffusion-scaled process X̂n of this class of networks.

Proposition 6.2. Suppose that (4.3) holds. Then Proposition 6.1 holds with (6.1) replaced by

EZ
n

[∫ T

0

|X̂n(s)|κ ds

]
≤ C̃0

(
T + |X̂n(0)|κ

)
+ C̃1 EZ

n

[∫ T

0

(
1 + |Q̂n(s)|

)κ
ds

]
(6.9)

for all n ∈ N.

Proof. Recall the definition of the cone Kδ,+ in (4.2). By (4.3), (6.4), and (6.6), we obtain

ĀV
(
X̂n, Zn

)
≤ c0

(
1 + V(X̂n)1Kδ,+(X̂n) + |∇V(X̂n)| Θ̂n

)
− c1V(X̂n)1Kcδ,+(X̂n)

≤ (c0 ∨ c1)
(

1 + V(X̂n)1Kδ,+(X̂n) + |∇V(X̂n)| Θ̂n
)
− c1V(X̂n) (6.10)

for some positive constants c0 and c1. Since

‖Q̂n‖ = Θ̂n + (e · X̂n)+

≥ Θ̂n + δ|X̂n|1Kδ,+(X̂n) ,

we obtain by (6.10) that

ĀV
(
X̂n, Zn

)
≤ (c0 ∨ c1)

(
1 + ‖Q̂n‖+ |∇V(X̂n)| ‖Q̂n‖

)
− c1V(X̂n)

≤ c′0
(
1 + V(Q̂n)

)
− c′1V(X̂n) (6.11)

for some positive constants c′i, i = 0, 1, where the second inequality in (6.11) follows by applying
Young’s inequality. The rest follows as in the proof of Proposition 6.1. �
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As a consequence of Proposition 6.2, we also obtain the following moment bound for the
idleness process.

Corollary 6.1. If (4.3) holds, then there exist some constants C̃ ′0 > 0 and C̃ ′1 > 0 such that

EZ
n

[∫ T

0

|Ŷ n(s)|κ ds

]
≤ C̃ ′0

(
T + |Ŷ n(0)|κ

)
+ C̃ ′1 E

Zn
[∫ T

0

(
1 + |Q̂n(s)|

)κ
ds

]
,

for all n ∈ N, and for any sequence {Zn ∈ Zn, n ∈ N}.

Proof. The claim follows from (6.9) and the fundamental identities ‖Q̂n‖ = Θ̂n + (e · X̂n)+

and ‖Ŷ n‖ = Θ̂n + (e · X̂n)−. �

6.3. Convergence of mean empirical measures

For the process X̂n under a scheduling policy Zn, and with Un as in Definition 2.5, we
define the mean empirical measures

ΦZ
n

T (A×B) :=
1

T
EZ

n

[∫ T

0

1A×B
(
X̂n(t), Un(t)

)
dt

]
(6.12)

for Borel sets A ⊂ RI and B ⊂ U. Recall Definition 2.2. The lemma which follows shows that
if the long-run average first-order moment of the diffusion-scaled state process under an EJWC
scheduling policy is finite, then the mean empirical measures ΦZ

n

T are tight and converge to
an ergodic occupation measure corresponding to some stationary stable Markov control for the
limiting diffusion control problem. This property is used in the proof of the lower bounds in
Theorems 3.1 and 3.2.

Lemma 6.1. If under some sequence of scheduling policies {Zn, n ∈ N} ⊂ Z, we have

sup
n

lim sup
T→∞

1

T
EZ

n

[∫ T

0

∣∣X̂n(s)
∣∣ ds] < ∞ , (6.13)

then
{

ΦZ
n

T : n ∈ N, T > 0
}

is tight, and any limit point π ∈ P(RI × U) of
{

ΦZ
n

T

}
over a

sequence (nk, Tk), with nk →∞ and Tk →∞, lies in G.

Proof. It is clear that (6.13) implies that
{

ΦZ
n

T : n ∈ N, T > 0
}

is tight. For f ∈ C∞c (RI),

by (2.19), the definition of ΦZ
n

T in (6.12), and Lemma 2.3, we obtain

E
[
f(X̂n(T ))

]
− E

[
f(X̂n(0))

]
T

=

∫
RI×U

Ănf(x, u) ΦZ
n

T (dx, du)

+
1

T
E

[∑
s≤T

Df(X̂n, s)

]
. (6.14)

Let

‖f‖C3 := sup
x∈RI

(
|f(x)|+

∑
i∈I
|∂if(x)|+

∑
i ,i′ ∈I

|∂ii′f(x)|+
∑

i ,i′ ,i′′ ∈I
|∂ii′i′′f(x)|

)
.

By Taylor’s formula, using also the fact that the jump size is 1√
n

, we obtain

∣∣Df(X̂n, s)
∣∣ ≤ κ‖f‖C3√

n

I∑
i,i′=1

∣∣∆X̂n
i (s)∆X̂n

i′ (s)
∣∣ ,
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for some constant κ that does not depend on n ∈ N. On the other hand, since independent
Poisson processes have no simultaneous jumps w.p.1., we have

1

T
E
[∫ T

0

I∑
i,i′=1

∣∣∆X̂n
i (s)∆X̂n

i′ (s)
∣∣ds] =

1

T
E
∣∣∣∣∫ T

0

∑
i∈I

(
λni
n

+
1

n

∑
j∈J (i)

µnijZ
n
ij(s)+

1

n
γni Q

n
i (s)

)
ds

∣∣∣∣ ,
and the right hand side is uniformly bounded over n ∈ N and T > 0 by (6.13).

Therefore, taking limits in (6.14), we obtain

lim sup
n→∞, T →∞

∫
RI×U

Ănf(x, u) ΦZ
n

T (dx,du) = 0 . (6.15)

Let (nk, Tk), with nk → ∞ and Tk → ∞, be any sequence along which ΦZ
nk

Tk
(dx, du)

converges to some π ∈ P(RI × U). By (6.15), Lemma 2.5, and a standard triangle inequality,
we obtain ∫

RI×U
Luf(x)π(dx,du) = 0 .

This implies that π ∈ G. �

We introduce a canonical construction of scheduling policies which is used in the proofs of
the upper bounds for asymptotic optimality. Recall Definitions 2.2 and 2.3, and X̆n defined in
(2.10).

Definition 6.1. Let $ : {x ∈ RI+ : e · x ∈ Z} → ZI+ be a measurable map defined by

$(x) :=
(
bx1c, . . . , bxI−1c, e · x−

∑I−1
i=1 bxic

)
, x ∈ RI .

By abuse of notation, we denote by $ the similarly defined map $ : {x ∈ RJ+ : e ·x ∈ Z} → ZJ+.
For a precise control v ∈ USSM, define the maps qn[v] : RI → ZI+ and yn[v] : RI → ZJ+ by

qn[v](x̂) := $
(
(e · (
√
nx̂+ nx∗))+vc(x̂)

)
, yn[v](x̂) := $

(
(e · (
√
nx̂+ nx∗))−vs(x̂)

)
,

where x̂ ∈ Sn. Recall the definition of the linear map Ψ in (2.9). Define the Markov scheduling

policy zn[v] on S̆n by

zn[v](x̂) := Ψ
(
x− qn[v](x̂), Nn − yn[v](x̂)

)
.

Corollary 6.2. For any precise control v ∈ USSM, we have

e · qn[v](x̂n(x)) ∧ e · yn[v](x̂n(x)) = 0 , and zn[v](x̂n(x)) ∈ Zn(x) ,

for all x ∈ X̆n, i.e., the JWC condition is satisfied in X̆n.

Proof. This follows from Lemma 2.1 and the definition of the maps qn[v], yn[v] and zn[v]. �

The next lemma is used in the proof of upper bounds in Theorems 3.1 and 3.2. It shows that
for any given continuous precise stationary stable Markov control, if we construct a sequence of
EJWC scheduling policies as in Definition 6.1, then the corresponding mean empirical measures
of the diffusion-scaled processes converge and the limit agrees with the ergodic occupation
measure of the limiting diffusion corresponding to that control.
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Lemma 6.2. Let v ∈ USSM be a continuous precise control, and
{
Zn : n ∈ N

}
be any sequence

of admissible scheduling policies such that each Zn agrees with the Markov scheduling policy
zn[v] given in Definition 6.1 on

√
nB̆, i.e., Zn(t) = zn[v]

(
X̂n(t)

)
whenever X̂n(t) ∈

√
nB̆. For

x̂ ∈
√
nB̆ ∩ Sn, we define

uc,n[v](x̂) :=


qn[v](x̂)
e·qn[v](x̂) if e · qn[v](x̂) > 0 ,

vc(x̂) otherwise,

and

us,n[v](x̂) :=


yn[v](x̂)
e·yn[v](x̂) if e · yn[v](x̂) > 0 ,

vs(x̂) otherwise.

For the process Xn under the scheduling policy Zn, define the mean empirical measures

Φ̃Z
n

T (A×B) :=
1

T
EZ

n

[∫ T

0

1A×B
(
X̂n(t), un[v]

(
X̂n(t)

))
dt

]
(6.16)

for Borel sets A ⊂
√
nB̆ and B ⊂ U. Suppose that (6.13) holds under this sequence {Zn}.

Then the ergodic occupation measure πv of the controlled diffusion in (2.24) corresponding to v
is the unique limit point in P(Rd × U) of Φ̃Z

n

T as n and T tend to ∞.

Proof. The proof follows exactly as that of Lemma 7.2 in [16]. �

6.4. A stability preserving property in the JWC region

If there exists a stationary Markov control under which the controlled diffusion is expo-
nentially ergodic, then it can be shown that under the corresponding scheduling policy as
constructed in Definition 6.1, the diffusion-scaled state process satisfies a Foster–Lyapunov
condition of the exponential ergodicity type in the JWC region. We refer to this as the stability
preserving property in the JWC region. This property is important to prove the upper bounds
for the asymptotic optimality, and is also the reason why the spatial truncation technique works.
We present this in the following Proposition.

Proposition 6.3. Let Ṽε,β be as in Definition 2.6. Suppose v ∈ USSM is such that for some
positive constants c0, c1, and ε > 0, and a positive vector β ∈ RI , it holds that

LvṼε,β(x) ≤ c0 − c1 Ṽε,β(x) ∀x ∈ RI . (6.17)

Let X̂n denote the diffusion-scaled state process under the scheduling policy zn[v] in Defini-

tion 6.1, and L̂n denote its generator. Then, there exists n0 ∈ N such that

L̂nṼε,β(x̂) ≤ ĉ0 − ĉ1 Ṽε,β(x̂) ∀x̂ ∈ S̆n ∩
√
nB̆ ,

for some positive constants ĉ0 and ĉ1, and for all n ≥ n0.

Proof. Recall the notation x̂ = x̂n(x) in Definition 2.3. Under the Markov scheduling policy
zn[v] in Definition 6.1, for each given x ∈ RI , we define the associated diffusion-scaled quantities

q̂n = q̂n[v] :=
qn[v]√
n
, ŷn = ŷn[v] :=

yn[v]√
n
, ẑn = ẑn[v] :=

zn[v]− nz∗√
n

.
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Recall that L̂n = L̂
zn[v]
n denotes the generator of X̂n under the scheduling policy zn[v] (see

(2.7) and (5.7)). Let V̂ε,β(x) := Ṽε,β(x̂), with Ṽε,β as in Definition 2.6. Using the identity in
(5.10), we obtain∣∣∣V̂ε,β(x± ei)− V̂ε,β(x)∓ ε 1√

n
βix̂iφβ(x̂) V̂ε,β(x)

∣∣∣ ≤ 1
nε

2 κ̂1 V̂ε,β(x) (6.18)

for some constant κ̂1 > 0, and all ε ∈ (0, 1). Thus by (2.7), (5.7), and (6.18), we obtain

Lzn V̂ε,β(x) ≤ ε V̂ε,β(x)
∑
i∈I

(
βi x̂i φβ(x̂)G

(1)
n,i(x̂) + ε κ̂1G

(2)
n,i(x̂)

)
, (6.19)

in direct analogy to (5.12), where

G
(1)
n,i(x̂) := `ni −

∑
j∈J (i)

µnij ẑ
n
ij − γni q̂ni ,

G
(2)
n,i(x̂) :=

λni
n

+
∑
j∈J (i)

µnijz
∗
ij +

1√
n

∑
j∈J (i)

µnij ẑ
n
ij +

γni√
n
q̂ni .

The dependence of G
(1)
n,i and G

(2)
n,i on x̂ is implicit through zn[v]. By Definition 6.1, it always

holds that znij ≤ xi and qni ≤ xi for all (i, j) ∈ E . Since xi√
n

= x̂i +
√
nx∗i , and ẑij = xi√

n
+ z∗ij ,

we obtain

nG
(2)
n,i(x) ≤ λni +

√
n
∑
j∈J (i)

µnijz
∗
ij +
√
n
∑
j∈J (i)

µnij
(
x̂i +

√
n(x∗i − z∗ij)

)
+
√
nγni (x̂i +

√
nx∗i )

= λni + n

( ∑
j∈J (i)

µnij + γni

)
x∗i +

√
n

( ∑
j∈J (i)

µnij + γni

)
x̂i

≤ κ̂2

(
n+
√
n|x̂i|

)
, (6.20)

for some constant κ̂2 > 0, where the last inequality follows from the assumption on the param-
eters in (2.1).

Since the control v satisfies (6.17), we must have, for some positive constants c′0 and c′1 that∑
i∈I

εβibi
(
x, v(x)

)
xiφβ(x)Ṽε,β(x) ≤ c′0 − c′1Ṽε,β(x) ∀x ∈ RI . (6.21)

By Lemmas 2.3 and 2.5, we have G
(1)
n,i(x̂) → bi

(
x̂, v(x̂)

)
, uniformly over compact sets of RI as

n→∞. Therefore, the result follows by combining (6.19)–(6.21). �

7. Proofs of Asymptotic Optimality

We need the following lemma, which is used in the proof of the upper bound.

Lemma 7.1. For any ε > 0, there exists a continuous precise control vε ∈ USSM with the
following properties:

(a) For some positive vector β ∈ RI which does not depend on ε, and any κ > 1, we have

LvεVκ,β(x) ≤ c0 − c1 Vκ,β(x) ∀x ∈ RI (7.1)

for some constants c0 and c1 depending only on κ.
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(b) With πvε denoting the ergodic occupation measure corresponding to vε, it holds that

πvε(r) =

∫
RI×U

r(x, u)πvε(dx,du) < %∗ + ε ,

where %∗ is the optimal value of problem (P1′).

Proof. By [15, Theorem 4.2] there exists a constant Markov control ū and a positive vector
β ∈ RI satisfying

LūVκ,β(x) ≤ c̄0 − c̄1 Vκ,β(x) ∀x ∈ RI (7.2)

for all κ > 1 and some constants c̄0 and c̄1. Even though not stated in that theorem, it follows
from its proof that the constants c̄0 and c̄1 depend only on κ. We perturb r by adding a positive
strictly convex function f : U → R+, such that the optimal value of the problem (P1′) with r
replaced by r + f is smaller than %∗ + ε

3 . Following the proof of Theorems 4.1 and 4.2 in [14],
there exists R > 0 large enough and a stationary Markov control v̄R, which agrees with ū on
BcR and satisfies πv̄R(r + f) < %∗ + 2ε

3 . This control satisfies, for some VR ∈ C2(BR),

min
u∈U

[
b(x, u) · ∇VR + r(x, u) + f(u)

]
= b

(
x, v̄R(x)

)
· ∇VR + r

(
x, v̄R(x)

)
+ f

(
v̄R(x)

)
(7.3)

for all x ∈ BR. Since u 7→ {b(x, u) · p + r(x, u) + f(u)} is strictly convex whenever it is not
constant, it follows by (7.3) that v̄R is continuous on BR. Consider the concatenated Markov
control which agrees with v̄R in BR and with ū in BcR. As in the proof of [14, Theorem 2.2], we
can employ a cut-off function to smoothen the discontinuity of this control at the concatenation
boundary, and thus obtain a Markov control vε satisfying πvε(r + f) < %∗ + ε. Clearly then
part (b) holds since f is nonnegative, while part (a) holds by (7.2) and the fact that vε agrees
with ū outside a compact set. This completes the proof. �

Concerning the constrained problem (P2′) and the fairness problem (P3′) we have the fol-
lowing analogous result.

Corollary 7.1. For any ε > 0, there exists a continuous precise control vε ∈ USSM satisfying
Lemma 7.1 (a), and constants δεj < δj, j ∈ J such that:

(i) In the case of problem (P2′) we have

πvε(ro) < %∗c + ε , and πvε(rj) ≤ δεj , j ∈ J .

(ii) In the case of problem (P3′) we have

πvε(ro) < %∗f + ε , and πvε(rj) = θj
∑
∈J

πvε(r) , j ∈ J .

Proof. Part (i) follows as in Theorem 5.7 in [15]. The proof of part (ii) is analogous. �

7.1. Proof of Theorem 3.1

Proof of the lower bound. Without loss of generality, we may suppose that for some
increasing sequence {nk} ⊂ N, Znk ∈ Znk is a collection of scheduling policies in Z such that
J
(
X̂nk(0), Znk

)
converges to a finite value as k → ∞. Denote by ΦnkT , the mean empirical

measure ΦZ
nk

T defined in (6.12). Then by Proposition 6.1 and the definitions of the running

cost r̂ in (3.1) and J
(
X̂n(0), Zn

)
in (3.2) we obtain

sup
k∈N

lim sup
T→∞

EZ
nk

[∫ T

0

|X̂nk(s)|m ds

]
< ∞ . (7.4)
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It is also clear by the definition of ΦnT and J that we can select a sequence {Tk} ⊂ R+, with
Tk →∞, such that∫

RI×U
r(x, u) ΦnkTk (dx, du) ≤ J

(
X̂nk(0), Znk

)
+

1

k
∀ k ∈ N . (7.5)

By Lemma 6.1 and (7.4), {ΦnkTk : k ∈ N} is tight and the limit of any converging subsequence

{Φn
′
k

T ′k
} is in G. Therefore it follows by (7.5) that

lim
k→0

J
(
X̂nk(0), Znk

)
≥ inf

π∈G
π(r) = %∗ .

and this completes the proof. �

Proof of the upper bound. Recall Vκ,β in Definition 2.6. Let κ = m+ 2. By Lemma 7.1,
there exists a continuous precise control vε such that the corresponding ergodic occupation
measure satisfies πvε(r) < %∗ + ε, and (7.1) holds.

For the nth system, we construct a concatenated Markov scheduling policy z̊n as follows.
Recall Definition 2.2. Inside X̆n, we apply the stationary policy zn[vε] as in Definition 6.1,

and outside X̆n, we apply some Markov scheduling policy z ∈ Zn in Definition 5.1 that is
exponentially stable. By Propositions 5.1 and 6.3 there exist positive constants ĉ0, ĉ1, a positive
vector β ∈ RI , and n0 ∈ N, such that

L̂z̊
n

n Ṽε,β(x̂) ≤ ĉ0 − ĉ1 Ṽε,β(x̂) ∀x̂ ∈ Sn , ∀n ≥ n0 . (7.6)

This immediately implies that supn≥n0
J(X̂n(0), Zn) <∞. Let Φ̃nT ≡ Φ̃z̊

n

T be the corresponding
mean empirical measures as defined in (6.16). Then the Foster–Lyapunov condition in (7.6)
implies that we can choose a sequence {Tn} such that

sup
n≥n0

sup
T≥Tn

∫
RI×U

Ṽε,β(x̂) Φ̃nT (dx̂, du) < ∞ . (7.7)

WLOG, we assume that Tn →∞.

It is clear that z̊n can be viewed as a function of x̂ ∈ Sn. We let ˆ̊znij(x̂) :=
(̊znij(x̂)−nz∗)

√
n

as

in Definition 2.3. In analogy to (2.15) and (2.16) we define

ˆ̊qni (x̂) := x̂i −
∑
j∈J (i)

ˆ̊znij(x̂) , ∀ i ∈ I ,

ˆ̊ynj (x̂) :=
Nn
j − n

∑
i∈I(j) z

∗
ij√

n
−
∑
i∈J (j)

ˆ̊znij(x̂) , ∀j ∈ J .

The running cost r̂ is uniformly integrable with respect to the collection {Φ̃nT , n ∈ N , T ≥
0} by (7.7). Thus by Birkhoff’s ergodic theorem, for any η > 0, we can choose a ball B(η), and
a sequence Tn such that∣∣∣∣∫

B(η)×U
r̂
(
(e · ˆ̊qn(x̂)

)+
uc, (e · ˆ̊yn(x̂)

)+
us
)

Φ̃nT (dx̂, du)− J(X̂n(0), z̊n)

∣∣∣∣ ≤ 1

n
+ η , (7.8)

for all T ≥ Tn.
By the JWC condition on {x̂ ∈ S̆n} and Corollary 6.2, we have (e · ˆ̊qn(x̂)

)+
= (e · x̂)+ and

(e · ˆ̊yn(x̂)
)+

= (e · x̂)− for all x̂ ∈ B(η), and for all large enough n. On the other hand we have

sup
(x̂,u)∈B(η)×U

∣∣r̂((e · ˆ̊qn(x̂)
)+
uc, (e · ŷn(ˆ̊x)

)+
us
)
− r(x̂, u)

∣∣ −−−−→
n→∞

0 . (7.9)
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Since vε is a continuous precise control then Φ̃nT converges to πvε in P(RI ×U) as n and T tend
to ∞ by Lemma 6.2. Thus, using (7.9) and a triangle inequality, we obtain∫

B(η)×U
r̂
(
(e · ˆ̊qn(x̂)

)+
uc, (e · ˆ̊yn(x̂)

)+
us
)

Φ̃nTn(dx̂,du)

−−−−→
n→∞

∫
B(η)×U

r(x, u)πvε(dx, du) . (7.10)

By (7.8) and (7.10) we have

lim sup
n→∞

J(X̂n(0), z̊n) ≤ %∗ + ε+ η .

Since η and ε are arbitrary, this completes the proof of the upper bound. �

Remark 7.1. It is clear that if the network satisfies (4.3) and ζ = 0 in (3.4), then the same
conclusion for the lower bound can be drawn by invoking Proposition 6.2 in the preceding proof.

7.2. Proof of Theorem 3.2

Proof of the lower bound. The proof follows by a similar argument as in the proof of the
lower bound for Theorem 3.1. Let {Znk ∈ Znk} ⊂ Z, with {nk} ⊂ N an increasing sequence,
such that Jo

(
X̂nk(0), Znk

)
converges to a finite value. Select an increasing sequence {Tk} ⊂ R+

such that (7.5) holds with J replaced by J◦ and r by r◦. Following the proof of Theorem 3.1,

let π̂ ∈ P(RI ×U) be the limit of Φ
n′k
T ′k

along some subsequence {n′k, T ′k} ⊂ {nk, Tk}. Recall the

definition of rj in (3.5). Since rj is bounded below, taking limits, we obtain π̂(rj) ≤ δj , j ∈ J .
Thus, by Lemmas 3.3–3.5 and Theorems 3.1–3.2 in [15], optimality implies that π̂(ro) ≥ %∗c . As
the proof of Theorem 3.1, we obtain,

lim inf
k→∞

Jo
(
X̂n′k(0), Zn

′
k
)
≥ π̂(ro) ≥ %∗c .

This proves the lower bound. �

Proof of the upper bound. Let ε > 0 be given. By Corollary 7.1, there exists a continuous
precise control vε ∈ USSM and constants δεj < δj , j ∈ J , satisfying (7.1), and

πvε(ro) ≤ %∗c + ε , and πvε(rj) ≤ δεj , ∀j ∈ J .

For the nth system, we construct a Markov scheduling policy Zn as in the proof of the upper
bound of Theorem 3.1, by concatenating zn[vε] and z ∈ Zn in Definition 5.1.

Following the proof of part (i) and choosing η small enough, i.e., η < ε∧ 1
2 min{δj − δεj , j ∈

J }, we obtain

lim sup
n→∞

Jo(X̂
n(0), Zn) ≤ %∗c + 2ε ,

lim sup
n→∞

Jc,j
(
X̂n(0), Zn

)
≤ 1

2
(δj + δεj) , j ∈ J .

This completes the proof of the upper bound. �
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7.3. Proof of Theorem 4.2

Proof of the lower bound. The proof follows along the same lines as that of Theorem 3.2,
with the only difference that we use Proposition 6.2 instead of Proposition 6.1 to assert tightness
of the ergodic occupation measures. With π̂ as given in that proof, we have

lim inf
k→∞

Jo
(
X̂nk(0), Znk

)
≥ π̂(ro) . (7.11)

We then obtain
(θj − ε)π̂(r̄) ≤ π̂(rj) ≤ (θj + ε)π̂(r̄) ∀ j ∈ J , (7.12)

by (4.6) and the uniform integrability of

1

T
EZ

nk

[∫ T

0

(
Ŷ nj (s)

)m̃
ds

]
, j ∈ J ,

which is asserted by Corollary 6.1. The proof is then completed using (7.11) and (7.12) and
Theorem 4.1 (e). �

Proof of the upper bound. This also follows along the lines as that of Theorem 3.2. For
the limiting diffusion control problem, by Theorem 5.7 and Remark 5.1 in [15], for any ε > 0,
there exists a continuous precise control vε ∈ USSM for (P3′) satisfying (7.1) and

πvε(ro) ≤ %∗f + ε , and πvε(rj) = θj πvε(r̄) , j ∈ J . (7.13)

In addition, we have
inf

ε∈(0,1)
πvε(r̄) > 0 .

This follows from observing that {πvε , ε ∈ (0, 1)} is tight, and (e ·x)− is strictly positive on an
open subset of B1, and from applying the Harnack inequality for the density of the invariant
probability measure of the limiting diffusion.

For the nth system, we construct a Markov scheduling policy z̊n as in the proof of the upper
bound of Theorem 3.2, and obtain

lim sup
n→∞

Jo(X̂
n(0), z̊n) ≤ %∗f + ε ,

lim
n→∞

Jc,j
(
X̂n(0), z̊n

)
= πvε(rj) , j ∈ J .

(7.14)

The result then follows by (7.13) and (7.14), thus completing the proof. �

8. Conclusion

In this work as well as in [14–16], we have studied ergodic control problems for multiclass
multi-pool networks in the H–W regime under the hypothesis that at least one abandonment
parameter is positive. The key technical contributions include (i) the development of a new
framework of ergodic control (unconstrained and constrained) of a broad class of diffusions, (ii)
the stabilization of the limiting diffusion and the diffusion-scaled state processes, and (iii) the
technique to prove asymptotic optimality involving a spatial truncation and concatenation of
scheduling policies that are stabilizing. The methodology and theory can be potentially used
to study ergodic control of other classes of stochastic systems.

There are several open problems that remain to be solved. First, in this work, we have
identified a class of BQBS stable networks as discussed in Section 4. It will be interesting to find
some examples of network models in which the boundedness of the queueing process would not
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imply the boundedness of the state process. Second, we have studied the networks with at least
one positive abandonment parameters. It remains to study the networks with no abandonment.
The challenges lie in understanding the stability properties of both the limiting diffusions and
the diffusion-scaled state processes. It is worth noting that the existence of a stabilizing control
asserted in Theorem 2.1, which is established via the leaf elimination algorithm in [15], depends
critically on the assumption that at least one abandonment parameter is positive. Although
the proof of exponential ergodicity of the BSPs also relies on that assumption, this property
is expected to hold with certain positive safety staffing for at least one server pool when all
abandonment rates are zero.
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