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There is considerable literature on the Harnack inequality for uniformly 

elliptic partial differential equations [2], 131, [5 ] .  Harnack's inequality, apart 

from being interesting in its own right, plays a very important role in the 

theory of partial differential equations. For example, it is applied to derive 

the interior estimates of the gradients of the solutions. Let us first state 

this result in the simplest situation. Let n be a bounded domain in Rd, r 
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a closed subset of fl and u : R + R a nonnegative harmonic function, i.e., 

Au = 0 in R. Then there exists a constant C which depends only on the 

dimension d, on the diameter of 0, and on the distance between r and 8 R ,  

such that 

u(x) 5 Cu(y), b'x, y E r . 
The Harnack inequality is also valid for both weak and strong solutions of 

second-order, uniformly elliptic operators with bounded coefficients [2], 131. 

Extensions to unbounded coefficients have also been established [9]. 

Consider a system of equations in u(x) = (ul(x) ,  . . . , un(x)) of the form 

where n is a positive integer and each Lk is a second-order, uniformly elliptic 

operator given by 

The operator L is called cooperative if the coupling coefficients ck3 are non- 

negative for k # j .  

Definition 1.1. We denote by C(X, d, n) the class of all cooperative oper- 

at,ors L of t,he form (1.1)-(1.2), with coefficients E C O , ~ ( I W ~ ) ,  b t ,  c k j  E 

Lm(IRd), bounded in L"-norm by a constant X 2 1, and satisfying the uni- 

form ellipticity condit,iori 

A function u is called L-harmonic in a domain c Rd provided u is a strong 

solution of L u  = 0 in the Sobolev space w~;,P(R; iRn), for some p E [l, m). 

Systems of the above form appear in the study of jump diffusion pro- 

cesses wit,h a discrete conlponent [I]. In this paper, we obtain analogues 

of Harnack's inequality for L-harmonic functions of operators in the claw 

C(X, d, n). We use the t,echnique introduced by Krylov for estimating the 
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oscillation of a harmonic function on bounded sets 131. The main results are 

given in Section 2. Section 3 is devoted to proofs and auxiliary results. 

After this work was submitted for publication, similar results were re- 

ported in [lo]. Our work and [lo] differ both in methodology and results. 

In [lo] the authors assume Holder continuous coefficients, and the proofs are 

based on estimates of the Green function in small balls, while this paper, 

motivated from a stochastic control problem, assumes only measurable co- 

efficients, and the proofs are based on the approach of Krylov. Also, in our 

work an averaged coupling matrix (see Definition 2.1) appears explicitly in 

the Harnack constant. This enables us to  provide a rather general version 

of the maximum principle and some further Harnack inequalities valid for a 

certain class of supersolutions. 

Throughout the paper, R denotes a bounded domain in Rd. We first 

establish a weak version of Harnack's inequality, under general conditions. 

Theorem 2.1. Let r c R be a closed set. There exists a constant K1 > 0, 

depending only o n  d, n, the diameter of R, the distance between r and dR, 

and the bound A, such that for any nonnegative L - h a m o n i c  function u i n  

R, with L E C(X, dl n) ,  

An inequality stronger than (2.1) is obtained under an irreducibility con- 

dition on the coupling coefficients. We need to introduce some additional 

notation. 

For a measurable set A C iRd, IAJ denotes the Lebesgue measure of A, 

while I (  . ( ( , ;A denotes the norm of L P ( A ) ,  1 5 p 5 co. Also, for A c 0, 

1 1  . denotes the restriction to A of the standard norm of WkJ'(R). 

These norms are extended to vector valued functions u using the convention 

IIuII = EL l I ~ 2 I J  

Definition 2.1. For R c Ktd and L E C(X, d ,  n ) ,  let CI, (R) E RnXn denote 

the matrix defined by 
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for ,i # j ,  

with diagonal entries equal to 0. Given a nonnegative matrix M E RnXn 

and a pair i ,  j E (1,.  . . , n ) ,  we say that j is reachable from i provided that 
n-1 . M .  

the i j ' th  element of (I + M) IS positive, and we denote this by i - 1. 
M 

Furthermore, the matrix M is called irreducible if i - j for all i, j E 

{I , .  . . , n); otherwise, it is called reducible. We say that L E C(X, d l  n) is pn- 

irreducible i n  R if there exish an irreducible matrix S E RnXn, with elements 

in {O,1) and pn E B, such that pnCL(f2) 2 S (here, the inequality is meant 

elementwise). The class of all pn-irreducible operators whose coefficients afj 

have a uniform Lipschitz constant y is denoted by C(X, dl n ,  y, pn). 

Theorem 2.2, Let r c R he a closed set. There ezists a positive constant 

K2 = Kz(R; r, A ,  d: n: 7 ,  ~ 4 1 )  such that jor any nonnegative L-hnrbmonic func- 

t ion u i n  0, ,with L E C(X. d, n , ~ ,  PO), 

More generally, i f  L E C(X, d, n) ,  and & denotes the smallest positive ele- 

ment  of CL(R) ,  then 

where Ka = K2(R,I ' ,X.d,n ,  y. &). 

Remark 2.1. Let r c R and L E C(X, d ,  n )  be given. Then, for the existence 

of a constant K2 > 0 satisfying (2 .2 )  for all nonnegative L-harmonic functions 

u in R,  it is necessary that L be pn-irreducible in R. Otherwise, there exists 

a nontrivial partition { I l ,  Z2) of (1, . . . , n) such that cij = 0 a.e. in R, for 

all ( i ,  j )  E x Z2; therefore, any nonzero L-harmonic function u satisfying 

u k  = 0' for k E Zl violates (2 .2) .  

There is a fair amount of work in the literature on maximum principles 

for cooperative, weakly-coupled systems [6], [7] .  In [6], it is assumed that the 

coupling coefficients are positive. Note that the notion of irreducibility in 

Definition 2.1 is in an 'average' sense only and that CL(R) may be irreducible 

even if [ctj (x)] is reducible at every x E R. We state the following version of 
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the strong maximum principle,which follows immediately from Theorem 2.2, 

and does not seem to be available in the existing literature. 

Corollary 2.1. Let L E C(X, d, n )  be such that CL(R) is irreducible. Then 

any nonnegative L-harmonic function u in R is either positive in R or iden- 

tically zero. 

It is well known that. in general. there is no Harnack inequality for non- 

negative L-superharmonic functions, i.e., functions u satisfying Lu 5 0 in R, 

for an elliptic operator L. Serrin [8] has utilized the maximum principle to 

provide a growth estimate in terms of the Harnack constant of a compari- 

son function and the value of 1 1  Lull", but this estimate does not result in 

a Harnack inequality. Theorem 2.2 can be employed to provide a Harnack 

constant for all superharmonic functions u for which -Lu lies in a convex 

positive cone of Lw. We introduce the following definition. 

Definition 2.2. For a measurable set A C JRd having finite, nonzero measure 

and for a constant 0 > 1, we define the positfive convex cone K(Q, A) C 

Lw (A; Rn)  by 

f E L"(A;R7" : f > 0 ,  min I l f k l l l ; ~  

l ~ k ~ n  lAlllfk(lW;~ 

Suppose, for the moment, that n = 1 and u is a nonnegative function 

satisfying Lu = - f in R, with L E C(X, dl 1) and f E K(Q, R).  We form tjhe 

cooperative system 
O f  (x) u2 = 0 

Lvl + ViLz 

Clearly, (ul, v2) = (u,  0-lll f ll,;n) is a nonnegative solution and Zn > 1. 

Therefore, from (2.3), we deduce Harnack's inequality for u by setting X = 

max{X, 0) and pn = 1 in the Harnack constant K2. 

For the elliptic system in (1.1)-(1.2), this procedure leads to the following: 

Corollary 2.2. Let r c R be a closed set and u a nonnegative function 

satisfying -Lu E K(0,R).  The following are true: 

(i) If L E C(X, d, n ,  7) then (2.1) holds, with a Harnack constant 
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(ii) If L E C(X, d, n ,  y, pn) ,  then (2.2) holds with a constant 

If u E we:E(R; Rn),  for some p E [I,  m), is a solution of L u  = f in R and 

f E Lw (R; Rn) ,  then u E W:;~(R; UP), for all p E [I, m). This fact follows 

from the interior Lp estimates for second derivatives of uniforndy elliptic 

equations and the well known Sobolev inequalities. However, the natural 

space for some considerations is W2,d. This is t,he case, for example, for the 

Aleksandroff estimate (Lemma 3.2) and the comparison principle [Z] which 

states that if cp, @ E we2:(n; R'" )n CO(n; Rn)  satisfy L p  5 L@ in SZ and 

cp 2 $J on Af l ,  then cp 2 .ZC) in n. 
Let u E w ~ ; ( R ;  iRn) be s nonnegative solution of L u  = 0  in fl, with L E 

C(X, d, n) .  Augmenting the dimension of the domain, let I C R be a bounded 

open interval arid define the funct~ion v : R x I + iRd by v ( x , x ~ + ~ )  := 

u ( z )  exp (m3-.dfl) : and the operator E C((n  f 1)X, d + 1, n) by 

Then Ev = 0: and any Harnack estimates obtained for Z-harmonic func- 

tions clearly hold for u .  Observe that the coefficients F k j  of the opera- 

tor form a sub-stochastic matrix, i.e., they satisfy Ck,Eki < 0 ,  for all 

k = 1, .  . . . n.  Hence, witahout loss of generality, we restrict tlhe proofs to op- 

erators in C(X, d ,  n)  and C(X, d. n, y, pa) whose coupling coefficients form a 

sub-stochastic matrix, and we denote the corresponding classes by Co(X, d, n )  

and Co(X, d, n ,  y, p a ) ,  respectively. 

Let Un (U,) denote the space of all nonnegative functions u E 

w ~ ; ~ ( R ; R n )  n C o ( n ; R n ) ,  satisfying L u  = 0  (Lu 5 0 )  in R, for some 

L E Co(X,d,n).  If 6 E W, t>hen u 2 E is to be interpreted as ui 2 E, 
for all i E (1 , .  . . , n ) ,  and if 6 = ([I:. . . ,En) E Rn, then u 2 E. e ui 2 ti, 
for all i E (1,. . . , n).  In general, all scalar operations on Wn-valued functions 
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are meant to be componentwise. For greater clarity, we denote all Rn-valued 

quantities by a bold letter. If r is a closed subset of R, x E R, and E R?, 

we define 

@x(U12rr ; [ )  := inf { u ( z )  : u > E  o n r ) .  
uEUn 

Lastly, deviating from the usual vector space notation, if D is a cube in Rd 

and b > 0, SD denotes the cube which is concentrzc to D and whose edges 

are b times as long. 

We start with a measure theoretic result, announced in [4]. For a proof 

see [2]. 

Lemma 3.1. Let K c Rd  be a cube, r C K a closed subset, and 0 < cr < 1. 

Define 

& := {Q : Q is a subcube of K and IQ 0 rl 2 alQl) 

r := U ( 3 ~ n ~ ) .  
Q E Q  

Then either ?; = K or I?;/ > 
Next we state a variant of the weak maximum principle of A. D. Alexan- 

droff. This particular form of the estimate is derived by first using a trans- 

formation to remove the first-order terms and then dominating the L~ norm 

with the L" norm. The steps of the proof are quite standard and are there- 

fore omitted. 

Lemma 3.2. There exist constants C1 > 0 and KO E (O,l] such that, if 

D c P S ~  is any cube of volume (Dl 5 KO, and cp E 14',2d,d(~) r] C O ( B )  satzsfies 

Lkcp > f i n  D ,  and p = 0 on d D ,  with f E L d ( D )  and L E C(X, d ,  n ) ,  then 

For the remainder of this section, D denotes an open cube in IRd of volume 

not exceeding the constant KO in Lemma 3.2. 

Lemma 3.3. There exist constants > 0 and cro < 1 such that, i f  r is a 

closed subset of some cube D c Rd satisfying jrl > aolDl, then 
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Proof. Observe that if u E N;, then each component ug satisfies Lkuk 5 0 

on D .  Define p', p" E w Z , ~  (D) n Co (B) by 

and cp' = pl' = 0 ,  on d D .  

Then p := p' + p" satisfies L k p  = -1 in D and cp = 0 on dD.  Without loss 

of generality, suppose D is centered at the origin and consider the function 

Clearly, + = 0 on d D  and Q > 0 in D; moreover, there exists a positive 

constant C2 such that 

Therefore, by the comparison principle 

By (3.1) and (3.2), 

On the other hand, since Lkpl  = 0 in D \ r  and p' = 0 on OD, the comparison 

principle yields 

c, - c, (1 - #) 
inf {uk(:c)) > .& 

X E  4 D 
m 
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Selecting C Y ~  to satisfy 

inequality (3.3) yields 
C26k inf uk(x) 2 -. 

X E B D  2 G  

Hence, the claim follows with Do = 3. 
Lemma 3.4. For each 6 > 0, there exists k i  > 0 such that zf Q  C (1 - 6)D 

is a subcube of an open cube D C Rd, then 

Proof. Let B( r )  C Rd denote the ball of radius r centered at  the origin. We 

claim that there exists a constant mo > 0 such that if r 5 1, then 

In order to establish (3.4) we use the function 

which satisfies Lkcp(x) 2 0, for all L E Co(h, d ,  n),  provided llxil 2 and 

r 5 1. By the comparison principle, (3.4) holds with 

It  follows that if B ( r )  is centcrcd at y, and x is a point in D such that the 

distance between d D  and the line segment joining x and y is at  least r ,  then 

for all 6 E Rn+. If we define 

then an easy calculation, using (3.5) with r = min{z, g)IQll/d, establishes 

the result. 
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Lemma 3.5. Suppose there exist constants E and 0 such that if I' C ( 1  -6)D 

is a closed subset of some cube D and 6 E WT, then 

Then there exists a constant k6 > O such that 

where cq is the constant i n  Lemma 3.3. 

Proof. Suppose Irl > aioQIDl and let y E r, with ?; as defined in Lemma 3.1 

corresponding to a = aio and K = (1 - 6)D. Then there exists a subcube 

Q c K such that / r n Q I  > cvolQl and y E 3 9 0  K. We use the identities, 

and 

By Lemma 3.3, 

i q  wu i , rnQ; r )  2 POE, 
z E 3 Q  

(3.8) 

while from Lemma 3.4, we obtain Py (Us, SQ; PO[) 2 Polc;i(, for all y E 

3 Q n  K. Hence, combining ( 3 . 7 )  and (3.8), we obtain 

By Lemma 3.1, > & I  2 01DI. Therefore, by hypothesis, 

inf ~ ~ ( u ~ , f ; k ~ ~  ~ ~ k s t ,  
X E  + D 

which along with (3.6) and (3.9) yield the desired result. 0 
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Proposition 3.1. The following estimates hold: 

(i) Let D be a cube and r c (1 - 6 ) D  a closed subset. Then for all 

E E K?, 

where the constants cq, Po and kb are as in  Lemma 3.3 and 

Lemma 3.5. 

(ii) There exists a real function F defined on [0, 11, satisfying F(B) > 0 

for 0 > 0, such that if r c D is a closed subset of a cube D,  then 

Proof. Part (i) is direct consequence of Lemmas 3.3 and 3.5. For part (ii), 

choose 6 = &. Then, 

then if we let 

F ( 0 )  := Po ( ? ) P ( & )  , 

the bound in (3.11) follows from (3.10) and (3.12). 0 

Proposition 3.2. If D is a cube, u E !do and q = F ( ; ) ,  with F ( . )  as 

defined in  Proposition 3.1 (ii), then 

osc(uk; D) I (1 - :) max sup ( u k ( 2 ) )  , v k E {I,  . . . , n }  , 
l < k < n  X E D  

where osc(f; A) denotes the oscillation of a function f over a set A. 

Proof. Let 
M l  := sup { u k ( x ) )  , M a  := max ME 

X E  g D I<k<n 

ma .- .- inf { u k ( x ) )  , m a  .- .- min mg 
X E ~ D  I<k<n 
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and Mb, mb be the corresponding bounds relative to D. Consider the sets 

r!k) : = { X E D  : u ~ ( z )  I w) 
rik) := { X E D  : u k ( x )  2 w). 

Suppose lT,(") 2 i 1 Dl. Since M h  - u is nonnegative and M b  - uk 2 
in I'!"), applying Proposition 3.1 (ii), we get 

Consequently, MF 5 hfb - civ+ and since ma 2 mb, we obtain 

On the other hand, if ~r,(~)l > i IDI ,  the analogous argument relative to t,he 

nonnegative function u, yields 

and the result follows by (3.13)-(3.14). 

Proposition 3.3. There ezzsts u constant Ml > 0 such that, for any u E 

U D  

sup { u i ( x ) )  < MI max inf {u ,+(x ) )  , V i E {I, . . . , n} 
ZE;D l 5 k < n  X E ~ D  

Proof. Let Po be as in Lemma, 3.3 and p ( , )  and q as in (3.10) and Proposi- 

tion 3.2, respectively. Define 

We claim that the value of the constant M1 may be chosen a s  

We argue by contradiction. Suppose u violates this bound and let 
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{x('), . . . , x ( ~ ) )  denote the points in iD where the minima of u are attained, 

i.e., 

inf { u ~ ( z ) ) = u ~ ( x ( ~ ) ) ,  l < k < n .  
X E ~ D  

Without loss of generality, suppose that max { u ~ ( x ( ~ ) ) )  = 1 and that for 
l < k < n  

some yo E $ D  and k0 E (1 , .  . . , n ) ,  uko(yO) = M > aMlr with a > 1. Using 

the estimate for the growth of the oscillation of u in Proposition 3.2, we then 

show that u has to be unbounded in iD. By hypothesis, exceeds M1 in 

(3.16) and, in order to facilitate the construction which follows, we choose 

to express this as 

For [ > 0, define 

DL') := {x E !jD : uk(x) >_ E )  , a ( ( ) : =  U DLc). 
l < k < n  

If lk E Rn+ stands for the vector whose k-th component is equal to 1 and the 

others 0. then 

while, on the other hand, Proposition 3.1 yields 

By (3.18)-(3.19) and using (3.15), we obtain the estimate 

for all E > 0. Choosing E = q, we have by (3.20) 
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d 
Hence, if Qo is a cube of volume (Qo/  = n(&) ID1 centered at  yo, then 

By Proposition 3.2 and (3.21), there exists y(l) E 3Qo and kl E (1, .  . . , n)  

such that 

Note that (3.17) implies that 3Qo C gD. This allows us to repeat the 

argument above, this time choosing E = q o Y  in (3.20) and a cube Q1 

of volume n ( a ) ' d ~ i  centered at y( ') ,  to conclude that there exists 

y(') € 3Q1 and liz E 11, . . , { I )  such that u ~ , ( ~ ( " )  3 q i M .  Inductively, we 

construct a sequence {y(')). k , ,  Q , ) : ~  satisfying, for all z = 0, I , .  . . , 

The iriequality in (3.17) gunrnntces that y(" ) E D ,  for all t .  Hence, (3.22) 

implies that u is unbounded in i D ,  and we reach a contradiction. 0 

Theorem 2.1 now follows via the standard technique of selecting an appro- 

priate cover of r consisting of congruent cubes and applying the estimates 

in Proposition 3.1 and Proposition 3.3. 

We next proceed to prove Theorem 2.2. We need the following lemma. 

Lemma 3.6. Let D C EXd be a cube, L E Co(A,d, 1, y ) ,  and f E K(9,D) .  

There exists a constant C' = C1(IDI, A, d, y, 6') > 0 such that zf p is a solution 

to the Dirichlet problem L p  = - f on D, with p = 0 on a D ,  then 

Proof. First note that the Dirichlet problem has a unique strong solu- 

tion p E W ? ~ ( D )  n C o ( n ) .  for all p E [d, cm). Then, arguing by con- 

tradiction, suppose there exists a sequence of operators {L(~)}:=~ c 
&(A, d, 1, y),  with coefficients {a$), b,(m), dm)}, and a sequence of functions 
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{ f (m))z=l C K ( Q ,  D ) ,  with 1 1  f ( m ) l l o o ; D  = I ,  such that the corresponding so- 
cc 

lutions { p ( m ) ) m = l  satisfy 

By Proposition 3.1, 

Since the sequence qdm) is bounded in L m ( D )  (by Lemma 3.2). it follows 

from (3.23) that p(m) --+ 0 in LP(D), as m + cm, for all p E [l, m). For 

any subcube Dl = 6D,  with 6 < 1: and p E [l, m), we use the well known 

estimate 

I \ ~ ( ~ ) 1 ( 2 , p ; D '  < ~ " ( l / ~ ( ~ ) / l p ; D  + I I f ( 7 n ) I l p ; ~ )  r 

for some constant CI1 = C1/(lDI. p,  6 ,  A ,  d, y) ,  to conclude that the first and 

second derivatives of p(") converge weakly to 0 in LP(D1),  for all p  E [ I ,  x). 

In turn, since W ; ' ~ ( D ' )  - W " ~ ( D I )  is compact for p  > d, using the stan- 

dard approximation argument, we deduce that converges in LP(D') 

strongly, for all t = 1, . . . , d Also. since the sequence {a t ; ) )  is uniformly 

Lipschitz, we can extract a subsequence which converges uniformly. The 

previous arguments combined imply that { L ( ~ ) ~ ( ~ L ) )  converges weakly to 0 

in L P ( D 1 ) ,  p E 11, m). On the other hand, if we choose 6 2 (1 - $) ' I d ,  an 

easy calculation yields, 

resulting in a ~ontradict~ion. 

Proof of Theorem 2.2. Let L E Co(A, d, n ,  y,  pn) and S = [sz3] as in Def- 

inition 2.1. Select a collection { D e ,  I  = 1 , .  . . , P o )  of disjoint, congru- 

ent open cubes, whose closures form a cover of r: in such a manner that 
eo 

3De C 0, 1 5 ! 5 lo, and V := U De is a connected set satisfying 
e = i  

Dl < (1 - ) 1 .  It follows that 2 p n C ~ ( D )  2 S. Therefore, for each 

pair i, j  E ( 1 , .  . . , n ) ,  i # j. there exists l( i ,  j )  E (1,. . . , l o )  such that 
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Then, by Lcmrna 3.6: and (3.24). t,herc cxists a constant C' > 0, such that 

By Proposition 3.1, (3 .25)  and (3 .26) ,  

Moreover, provided 3 D k  > Dkj,  1 5 k ,  k' < to, Proposition 3.1 also asserts 

that 

inf {W}  2 F(&) x & f k , { 4 4 }  1 
X E D k  

from which we deduce that 

i n  { ( z )  ( F ) )  i n  { ( x ) }  , Y k , i  t { I , .  . . , to). (3 .28)  
X E D &   ZED^ 

Therefore, by (3 .27)  and (3 .28) ,  for dl i f j ,  

and in turn, the irreducibility of S implies that, for all i, j E (1,. . . , n), 
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The result follows by combining (3.29) and the estimate in Theorem 2.1 

relative to the closed set 2> C S1. 0 

The authors wish to thank Prof. S.R.S. Varadhan for explaining the work 

of Krylov and Safonov on Harnack's inequality. The proof of Theorem 2.1 

is inspired by his notes on the proof of Harnack's inequality for a uniformly 
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visiting the Department of Mathematics at  the Indian Institute of Science in 
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