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Appendix A

Mathematical preliminaries

In this appendix we introduce some notation and mathemdigzkground that we
will need throughout the book.

A.1 Notation
A.1.1 Universal and existential quantifiers

Definition A.1 The symbolV means “for all.” A statement such agx’ followed by a
condition onx means that all values afsatisfy the condition. The symbalmeans “there
exists.” A statement such asiX’ followed by a condition orx means that at least one
value ofx satisfies the conditiori]

A.1.2 Sets

Definition A.2 A setis an unordered collection of elements. Sets will be denbied
symbols such aS andP. We will use the symbol¢ and} to delimit the specification of
the elements of a set.

The symbolk means “is an element of.” Two sets are equal if every elemfthiedfirst is
an element of the second and every element of the second Ieraer of the first. The
set differenceS \ P is the set of those elements®that are not irP.

The symbolC means “is a non-strict subset of,” which is to say that evéynent of the
first set is also an element of the second set, but we allovhiopbssibility of equality of
the two sets. IfP C S butP # S then we say thaP is astrict subsetof S. We use the
symbol symbolcC to mean “is a strict subset of,” which is to say that every eetof the
first set is also an element of the second set, but the setobegual.C

For exampleS = {1,5, 2} is the three element set consisting of the numbers 1, 2,
5. The statement “& {1,5,2}" means that the number 1 is an element of the three
element se{1,5,2}, (which is a true statement.) The statemeftt}‘C {1,5,2}"
means that the set consisting of the number 1 is a strict sobtee three element
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set{1,5,2}, (which is a true statement.) Also{1,5,2} C {1,5,2}" means that the
three element sdftl,5,2} is a non-strict subset of the three element{deb, 2},
(which is also a true statement.) Finalj, 5,2} \ {1,3} = {5,2}.

Definition A.3 We defin€Z to be the set ohtegers The sefZ, is the set of non-negative
integers, whiléZ, . is the set of strictly positive integers.

We defineR to be the set ofeal numbers. The setR, is the set of non-negative real
numbers, whil&R , , is the set of strictly positive real numbers.

We defineK to be the set ofomplex numbers O

Definition A.4 Given two setsS andP, the Cartesian product S x P is the set of all
ordered pairs such that the first member of the pair is an elenfeS and the second
member of the pair is an element Bf[104, section 1.1]. We writ&" for the set of
all ordered lists consisting af (possibly non-distinct) elements 8f We say then-fold
Cartesian product df with itself. We write S™" for the set of all ordered lists ah
elements, each element itself being a membe&"of\We say them x n Cartesian product
of S with itself. Given a collection of sef$y,...,Sy, the Cartesian product of them is the
set of all ordered lists, with each list consisting of eletsaiSy, k= 1,...,n, respectively,
and is written[g_; Sk. O

Definition A.5 Then-fold Cartesian product dk ;. with itself is called thenon-negative
orthant and is denote®”) . Then-fold Cartesian product dR, ., with itself is called the
strictly positive orthant and is denote®" . . If M is a set the@®™ is the set of all ordered
lists of elements oR with the entries in the lists indexed by the elements in thé&ked

A.1.3 Matrices, vectors, and scalars

Definition A.6 A vectoris an element of a Cartesian product of sets, typically agS&m
product of the fornR". We will usually think of the list that specifies the vectortasng
arranged as eolumn of n entries or components We sometimes say@lumn vectorto
emphasize this. We can also define@ vector to be a list arranged as a row of entries.
A matrix is an element of am x n Cartesian product and we can think of the list that
specifies the matrix as being arranged as:

e mrows ofn entries each, or
e n columns ofmentries each.

A particular entry of a matrix or vector will be indicated bye or more subscripts on
the symbol for the matrix or vector. By default, the subdsrigre numbered consecu-
tively from 1. For example € R" will usually denote the vector consisting of the entries
X1,...,X%). However, we will occasionally depart from this conventibit is more conve-
nient to use non-consecutive numbering or to use other wedist the entries of the vector.
We will usually represent the entries of the vector by erinptghem with square brackets,
X1
so that in our examples= | : |. Occasionally, we will represent a vector having two
Xn
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or three entries by enclosing them with round brackets apdrst¢ing entries by commas.
For example(x,y, z) is a vector with entrieg, y, andz

For a matrix, the first subscript indexes the rows while theoed subscript indexes the
columns. Sometimes we will separate the first and secon@spbaith a comma to avoid
ambiguity. Thetranspose operator denoted by a superscript t, interchanges rows and
columns of a vector or matrixd

For exampleR x R = R? is the set of all ordered pairs of real numbers. Each

element ofR? is a 2-vector. The entries afc R? arex; andxy, so thatx = X1

The setR" is the set of all ordered lists af real numbers. Each element of
R"is ann-vector. The seR" is also calledh-dimensional Euclidean space, since it
generalizes our notion of three-dimensional space formtitticlidean geometry”
applies. Moreover, fox € R", x' € R1*" is thetransposeof x; that is,x" is a row
vector withk-th entry equal to th&-th entry of the column vectot.

The setR™" is the set of alin x n matrices of real numbers. Each element of
this set is a matrix. For exampl?*3 is the set of all Z 3 matrices. FoA € R?*3,
the entries ofA are indexed as follows:

A [All Ao Als}
A1 A Az

ForA e R™N Al is thetransposeof A; that is,A' is ann x m matrix with ¢k-th
entry equal to thé&/-th entry ofA.

Definition A.7 A matrix A € R™" is square if it has the same number of rows and
columns; that is, im=n. O

Definition A.8 Thediagonal of a matrixA € R™" is the collection of entriedy, k =
1,...,min{m,n}, where mi{m,n} means the smaller ah andn. A diagonal matrix is a
matrix with:

e the same number of rows and columns (that is, a square manid)
e zero entries everywhere except on its diagonal.

O

Definition A.9 A matrix A € R™" is diagonally dominant if:
VK Ak > /;JAM"

VK Ak > ;|A€k|-
{
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A matrix A € R™" is strictly diagonally dominant if:

VK, Ak > ;|Ak€|7
/
vk A > i;<|A£k|-
!

Definition A.10 Let A € R™" be a square matrix. We define tdeterminant of A,

denoted dé®), as follows. Ifn=1 then defA) is the single entry in the matrix itself. The

determinant of am x n matrix A can be calculated as the summaerms. Thek-th term in

the sum is given by the product of:

° (_1)k+l,

o Ay, and

o the determinant of thén — 1) x (n— 1) sub-matrix ofA obtained by deleting the first
row and thek-th column ofA.

O

The definition of determinant leads to a recursive algorifiemcalculating the
determinant having computational effort that increasdh thie factorial ofn, that
iswithn(n—1)(n—2)---1, which we denotea!

We define some particular constant matrices and vectorgifottowing.

Definition A.11 Then x nidentity matrix | € R™"is a diagonal matrix with ones on the
diagonal. We defing € R" to be thek-th column of the identity matrix; that is, the vector
with zeros everywhere except in tkeh entry, which has value 1.

We defined andl, respectively, to be matrices or vectors of all zeros andradls, respec-
tively. The dimensions o® and1 depend on the context. They will often hevectors of
all zeros and all ones, respectively.

A.1.4 Functions

Definition A.12 By f : S — P we mean thaf is afunction that takes elements from the
domain setS and returns elements (function values) from thage setP. That is, for
each element € S there is a well-defined valug(x) € P. Sometimes we writd (e) for

f to emphasize that is a function. To define a function we must specify the valuthef
function for each element of its domain.

In this book, we will always writef (x) for the value of the functiorf at x and
we will write f or f(e) for the function itself. That is, the symbdlx) is nota
function: it is the value of the functiof, evaluated ax. Usually, we think of the
setsS andP as being disjoint; however, sometimes we may have P, S C P,

or P C S, and sometimes one of the sets may be a subspace of the ofes. (
Definition A.51.)
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Definition A.13 Let f : S — P and suppose th& C S. Then therestriction of f to S is
the function that is defined dhand which matche$ on this domain. We usually use the
same symbol for a function and its restriction and distisguhe two by contextd

A.1.5 Alphabetical conventions

We will usually use Greek capital letters and italic Romapitzé letters for ma-
trices (and matrix-valued functions) and usually use Gieeler case and italic
Roman lower case letters for vectors (and vector-valuedtioms.) We will use
both capital and lower case letters for scalars (and swalaed functions.) The
context will make clear whether a symbol stands for a scalatamds for a vector
or matrix. If we define a vectox € R" say, then we will occasionally define the
corresponding capital letteX in this case, to be thdiagonal matrix inR™" with
diagonal entries equal to the corresponding entries ®hat is,X = diag{x,}. For

1 1 00
example, ifx= | 2| e R3thenX= |0 2 0| e R®*3. (The MaTLAB function
3 0O 0 3

di ag creates such a diagonal matrix from a vector.)

We will typically usually use Greek and italic Roman letteteh asx, B, I that
are near to the beginning of the Greek or Roman alphabetofstantsandpa-
rameters; that is, scalars, vectors, or matrices that have entragsdiin not change
or are held constant temporarily. We will use italic lettergh asf,g, h that are
further in to the Roman alphabet (and sometimes use thealkGregnates such as
@, Y, andn) for functions. We will occasionally not follow this convention. For
example, we will occasionally uge@andQ to stand for vectors, ugg J, andK to
stand for functions, and usen, p, andy to stand for parameters and vectors.

We will use italic Roman letters such ak, ¢,N and the Greek letter for coun-
ters. We will usek, £, and, occasionallyj andi, to index entries of vectors. (We
will usually, but not always, avoid indexing entries of warst with the symbol to
avoid confusion with the symbol for electrical current. hetdiscussion of com-
plex numbers, we writg/—1 instead ofi or j so that we can use the symbolsnd
j as counters.) The lettersm,r,s will be reserved for the number of entries in
particular vectors.

We will typically use italic letters such asy,z that are near to the end of the
Roman alphabet and their Greek cognates for variables. yiined A ligatured
before a symbol for a variable will be used to denote a nevatsgithat represents
a changein the value of the original variable. For exampl&, denotes a change
in x. The letterd, T,08 and calligraphic letters such && B, .X,9", Z will be used
in a variety of roles. An overline over or underline under enbypl for a variable
will usually mean a constant of the same dimension that septs a bound on
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the variable or function represented by the symbol. For @teniorx € R", the
symbolsx € R" andX € R" represent constant vectors that are lower and upper
bounds forx.

In some case studies, we need to distinguish sub-systen@mponents. We
will use arabic numerals and non-italic lower case lettexhsas a, b, ., f, g to
distinguish these components. These symbols should noomiesed with the
corresponding italic symbols used for functions and vector

A.1.6 Superscripts and accents

We use superscripts and accents in several ways as speuiftea following.

Definition A.14 To denote aroptimal or desired value of a decision vector satisfying
some criterion, we will use a superscript{5-pointed star). For examplg; will denote

an optimal value of the vectore R". We will occasionally consider the sensitivity of
an optimal value with respect to the paramegetn these cases, we will abuse notation
slightly and re-interpret¢* say, to be a function representing the minimizer of a problem
as a function ofy. We will use these conventions and natural generalizatidrieem
throughout the book without further comment.

Definition A.15 We will use superscript (asterisk) to represenbmplex conjugate O

For definitions and theorems, we will often need to refer te onmoretypical
vectors or matrices. To distinguish the vectors and matriae will use super-
scripts and accents. For example:

e x,X, andx’ are three different vectors,
e X, X, andX; are three different vectors, and

e if € € R then we might distinguish a vectg¥ for each possible value &f

If f:R"— R thenwe might distinguish a particular value or bound on émge
of f by adding a superscript or accent. For example, we will igwatite f*
for the optimal value of a function, where optimal is definetading to some
criterion. As noted above, the individuabmponentsor entries of vectors are
denoted by subscripts, so thatandx, are thek-th components of the vectors
andx, respectively.
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Definition A.16 Letx,x € R". We define thevector relations=,>, >, <, and<, respec-
tively, by:

x=X) & (x=X,Yk=1,...,n),
x>X) & (x>x,vk=1,...,n),
x>X) & (%>X,vk=1,...,n),
(x<X) & (<X,vk=1,...,n),
x<X) & (<x,Vk=1,...,n).

That is, when a relation is used between vectors, the ralapplies component-wisel

Definition A.17 The set ofextended real numbersis the sefR U {—c, 0} [104, sec-
tion 2.3]. Wedefine—o andw to have the following properties:

VaeR, —oo<d<oo,
G—FOO:OO’
q—|—(—oo):—oo,

An extended real functionf onS C R" is a function that, for eack< S, either takes on a
value inR or takes on one of the special value® or « [104, section 2.3]. Thatis, for each
x € S, the value off (x) is an extended real number. We write thatS — R U {—o0, o0},

O

We will be careful never taubtracteo from oo, nor toadd « to —: these opera-
tions are not defined.

Definition A.18 We will use superscripts in parentheses to distinguishessiee elements
of a sequence Usually, the sequences we consider will be the iteratedymed by an
iterative algorithm. Thenitial guess for an iterative algorithm will be denoted with a
superscrip(0), such ax(?; subsequent iterates will appearxa¥,x?,....xV), . ... To
represent the set of all iterates(?,xY, ...}, that is, the complete sequence, we will
write {xV)}&_,.

We use the superscript parentheses to avoid confusionexjibnentiation If we want
to represent the square ®f, for example, we will write(xc)?, to clearly distinguish it

from xi((z), which is the value of th&-th component of the second iterate of the sequence

{xV)}e_ . Naturally, (xff)) ’ is the cube of th&-th component of the second iterate of this
sequence.

Occasionally, we will need to consider an infinite sub-azlten of elements of a sequence.
For example, we might consider the sub-collection comsistf all the elements with
even numbered iteration courftx?),x(? x4 ... 1. This is called asub-sequencef the
sequencéxV)}e_.

We will sometimes use superscript in parenthesis to distsigelements of a finite collec-
tion.

m|
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A.2 Types of functions

We will classify functions by their functional form and byetih properties. First,
we will consider linear, affine, and quadratic functionatnis and then we will
consider polynomials and other functions.

A.2.1 Linear, affine, and quadratic

Definition A.19 A functiong: R" — RMis linear if it is of the form:
vx € R",g(x) = Ax,
for some fixedA € R™". A functiong: R" — RMis affine if it is of the form:
vx € R",g(x) = Ax—Db,

for some fixedA € R™" andb € R™. Recall that the/-th entry of Axis S|_; Auxk. In
other words, thé-th entry ofAxis determined by thé-th row of A and byx; namely, it is
the sum of the products of:

o the entries in thé-th row of A, and
e the corresponding entries in

Then:g¢(x) = Sp_; Asxx — by O

Sometimes, authors use the word linear to refer both toriagd to affine func-
tions.

Definition A.20 A function f : R" — R is quadratic if it is of the form:
1+t

YxeR" f(x) = > Qx+c'x+d,
1 n n n
= ZkZlélekazxwrkZlckkard, (A1)
where:
° QGRnxn,
e ccR" and
e dcRR.
|

The factor% in (A.1) is to simplify the functional form of the first deritrae of the
quadratic function. (See Section A.4.3.1 for definition lud first derivative.) If
Q = 0then the function is linear or affine. We often have tthat O.

Definition A.21 A matrix Q € R™"is symmetricif Vk,/ =1,...,n,Qx = Qu. O

We can assume th@tin (A.1) is symmetric because, if itis not, we can replace it
by @ = (Q+Q"), which is symmetric and yields the same value for the fungtio
as Exercise A.1 shows.
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A.2.2 Polynomial

Definition A.22 Let:

e D e Z, (Z; is the set of non-negative integers; see Definition A.3), and
e ap,a1,...,ap € R,

and define the functiog: R — R by:

D
vx € R,g(X) = k;ak(x)".

This function is gpolynomial of degreeD in the single variablg. A polynomial is said to
be affine, quadratic, cubic, or quartidif=1,2,3, or 4, respectively:

Linear, affine, quadratic, cubic, and quartic functions dfiregle variable are
special classes of polynomials.

A.2.3 Other special functions

Definition A.23 A function f : R" — R is additively separableif it is of the form:

n
XeRM () =% fi(x),
k=1

wherefy : R — R, k=1,....,n. The function ismultiplicatively separable if it is of the
form:

VxeR" f(x) = [ f(%)-
O

That is, a function is additively separable if it can be egpeal as the sum of
functions that each depend only on one entrx.of function is multiplicatively
separable if it can be expressed as the product of functimieach depend only on
one entry ok. If it is clear from context, we sometimes omit the word “adlily”
or the word “multiplicatively.”

There are various other notions of separability. For exarmplfunction is par-
tially separable if it can be expressed as the sum of furetioat each depend only
on a particular sub-vector of

Definition A.24 A functionn”" : R — R is monotonically increasingor monotonically
non-decreasingf:

¥, X € R, (x<X) = (7 (x) <n”(X)).
It is strictly monotonically increasing if:

v X €R,(x<X) = (n7(x) <n”(X)).
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Fig. A.2. An example of a
strictly monotonically in-
X creasing function.

Similarly, a functionn™ : R — R is monotonically decreasingor monotonically non-
increasingif:

¥, X € R, (x < X) = (n>(X) >n *(X)).
It is strictly monotonically decreasingif:
¥, X € R, (x < X) = (n>(X) >n *(X)).

O

The superscripts” and\, are meant to graphically indicate the nature of mono-
tonic functions. We can refer 19" as “eta-up” and refer tg > as “eta-down”

as mnemonics for their properties. Figures A.1 and A.2 shawoaotonically
increasing and a strictly monotonically increasing funictirespectively.
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Definition A.25 LetS CS CR", P CR', andt: P — S. (Recall thatr : P — S means that
1(¢) is defined for each € P and thatv€ € P, 1(§) € S.) We say that isonto S if:

vx € S,3¢ € P such thak = 1(§).
We say that is one-to-one(or 1-1) if:
VEE eP, (E#E) = (1(€) #1(E)).
m|

Definition A.26 We say that there is &1 and onto correspondencbetween two set®
ands if:

31 : P — S such thatr is 1-1 and onto

0O

Definition A.27 If T: P — S is 1-1 and onto then thaverset : S — P is defined by:
vx € S,17}(x) is the unique elemerdte P such thatr () = x.

O

If T:P— Sis 1-1 and onto then its inversel : S — Pis also 1-1 and onto.

A.3 Norms

We define a measure of the length of a vector that generalirasation of length
in space. This measure is callecharm [104, section 10.1]. We then define the
notion of the norm of a matrix.

A.3.1 Vector

Definition A.28 A norm (or vector norm) on R" is a function,||e|| : R" — R, with the
following properties:
(i) vxeR"||x|| >0,
(i) VxeR",(||x]| =0) < (x=0),
(i) xy € R [[x+y]| < [|x][+ [I¥]],
(iv) VxeR"Va eR,|ax| = |al|x|.
O

The most familiar example of a norm @& is the Euclidean length, usually
denoted|e||, and defined by:

n

VXERY Xl =/ > (x%)*
k=1
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X+y

y Fig. A.3. lllustration  of
the triangle inequality in
two dimensions.

Y

This norm is also called the; norm and is the same as our intuitive notion of
length in 1, 2, or 3 dimensions.

Property (iii) of a norm is called thgiangle inequality because it says that the
sum of the lengths of two sides of a triangle exceeds the leoigthe other side.
The triangle inequality is illustrated for= 2 in Figure A.3. In this figure, the sum
of the lengths of the vertical and horizontal sides of thantgie exceeds the length
of the oblique side. The same observation applies for eatheobther two pairs
of sides.

Properties (iii) and (iv) imply that a norm is a continuousdtion. (See Defini-
tion A.35 and Exercise A.8.)

There are many other norms, such as:

e thel, norm | e||; defined by:

n

VX € Rn’ HXH1 = Z ’Xk”
k=1

e theL. orinfinity norm ||e||,, defined by:

VX € R [IX][, = max {|xq},
k=1,...,n
and
¢ weighted norms||e||,, defined in terms of a non-singular weighting matrix (see
Definition A.49)W € R™" and any other nornje|| onRR" by:

VxR [|X]lyy = [IWX].

The choice of norm depends on the application. However, rfigmerms||e|| and
o] onR™, there are constanksk € R, | such that:

wx e R K||X]| < [Ix]" < K][x].

(See Exercise A.2.) In more general spaces fRathis is not necessarily true.

In several theorems, our results will be stated in terms ofmiso Usually, the
result is independent of the particular choice of norm. lis ttase we will use
the symbol||e|| to denote any particular norm. Of course, we must use the same
norm consistently throughout the theorem. Occasionallymilleuse ||e|| to refer
to norms in two different spaces, s&j andR™. This is a slight abuse of notation,
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since the norms are, strictly speaking, different and shbel distinguished nota-
tionally. Naturally, we must, for example, use the norm dstesitly for R" and
consistently fofR™. However, unless otherwise specified, the nornikdrcould
be, say|/|e||;, while the norm orR™ could be, sayj|e||,.

A.3.2 Matrix
We would also like to “measure” matrices. We make the follayvilefinition.

Definition A.29 A norm (or matrix norm ) onR™ " is a function/|e|| : R™" — R, with
the following properties:
(i) VAe R™" ||A|| >0,
(i) VA€ R™" (JJA| =0) < (A=0),
(iiiy vA,BeR™M [[A+B| < [|All+(B]|
(iv) VA€ R™" Va e R, |laA|| = |a] [|A].
O

We often use the particular matrix norm described in theaihg.

Definition A.30 Suppose we have two vector noripg| defined onR" andR™, respec-
tively. Then theénduced matrix norm |Je|| : R™" — R is defined by:

VAC ™" A] = max|ax]. (A.2)
X||=

where:

e the norm in||x|| is the norm orR",
e the norm in||Ax|| is the norm orR™, and
e the norm in||A|| is the induced matrix norm that is being defined.

O

(The maximum on the right-hand side of (A.2) exists by Thaogel since the max
is over a bounded set (see Definition A.46) and the norm is Bimayus function.
See Definition A.35 and Exercise A.8.) An induced matrix ndgra matrix norm
according to Definition A.29. (See Exercise A.4.) If the neramR" andR™ are,
say, both thd_, norms or both thd.; norms, then we will typically use the same
symbol for the norm omR", the norm orR™, and the induced matrix norm. The
appropriate norm will be clear from the context. Howeveth# norms oR" and
R™ are different then the symbols should be more carefullyrajsished.

We have the following.

Lemma A.1 Suppose that we have three vector notfws defined orR",R™, andRR'",
respectively. Then:

VA€ R™" xe R [|AX] < [[AIX], (A.3)
VAER™M B R™ ||AB|| < [|A][B]|,
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where each matrix norm is induced by the corresponding plarector norms.

Proof First observe that:

Vx # 0, H %x ’ = % Ix|| , by Property (iv) of Definition A.28 of norms, sindg&/ ||x||| = 1/ ||X|l,
= 1
Therefore,
IAY| = ||x||Aﬁx , multiplying and dividing by a constant
= ||x ‘Aﬁx , by Property (iv) of Definition A.28 of norms, sindélx|| | = |||,
< ||| |A]|, by definition of||A||, since H%HXH =1

We have proved (A.3).
Now let|ly|| = 1. Then,

[|ABY| Al IBYIl, by (A.3) applied toA € R™" andBy € R",
IAILIBI Iyl , by (A.3) applied taB € R™ andy € R',
= [AllB], since]ly|| = 1.

IAIA

Taking the maximum of the left-hand side over all vectorsiiigwnorm 1, we obtain
from (A.2) that||ABJ| < ||A||||B]]. O

If the norms orR" andR™ are both_, norms, then we writ¢e ||, for the induced
matrix norm and call it the., matrix norm. For anyA € R™", ||A]|, is equal
to the maximumsingular value of A [45, section 2.2.5.5][55, appendix]. The
singular values oA are the non-negative square roots of the eigenvaluds Af
If Ae R™"is symmetric therj|Al|, is equal to the largest of the absolute values
of the eigenvalues oA [45, section 2.2.5.5][55, appendix]. Recall the following
definition.

Definition A.31 Let A€ R™" be square and suppose that we can firdK andg € K"
such thatA¢ = AE. ThenA is called areigenvalueand¢ is called areigenvectorof A. O

In general, there ane eigenvalues for an x n matrix, given by the solution of the
characteristic equation
detA—IA) =0.

Definition A.32 Vector norms|je|| on R" and R™ and a matrix norni|e|" are called
compatibleif;

vx € R", YA€ R™" ||AX| < [|A]l"[|X]-
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By definition, vector norms of" andR™ and the corresponding induced matrix
norm are compatible. However, there are matrix norms whiemat compatible
with any vector norm. For example, theobenius norm:

B m n 2 %
1Al = (kzlgl(/w) )

is not compatible with any vector norms. More details on matorms are con-
tained in [45, section 2.2.4.2].

A.4 Limits
We discuss limiting properties of sequences and of funstion

A.4.1 Convergence and limits
Sequences have limiting properties embodied in the foligwi

Definition A.33 Let||e|| be a norm oR". (See Definition A.28 for the definition of norm.)
Let {x)}*_; be a sequence of vectorsif. Then, the sequendaV) }&_, convergesto
alimit x* if:

<e).

Ve > 0,3N € Z, such tha{v € Z, andv > N) = (‘
We write limy_,e x(V) = x* or lim x¥) = x* and callx* thelimit of the sequencéxV)}&_.
o

xV) —x

Definition A.34 A sequencéx(V) w_g has araccumulation pointx* if some sub-sequence
of the sequence convergesto O

A.4.2 Continuity

Definition A.35 A functiong: R" — R™ is continuous atx* if there are any normge||
onR" andR™ such that:

Ve > 0,30 > 0 such that(||x" —x|| < 8) = (]|g(x") —g(x)|| < ¢€). (A.4)

A function iscontinuous onS C R" if it is continuous ak* for everyx* € S. If a function
is continuous of$ = R", then it is said to beontinuousor continuous everywhere O

Notice that by Exercise A.2, Part (iv), for a giventhe largest value ob that
satisfies (A.4) will depend on which norm is used®h however, it can be shown
that the property of continuity of a functiog: R" — R™ is independent of the
choice of norm oR" andR™. In more general spaces th&A, this is not true [82,
section 2-7].
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A.4.3 Differentiation
A.4.3.1 First derivative

Definition A.36 We say that a functiofi : R — R is differentiable atx* with respect toc
or itsfirst derivative with respect tox exists atx* if the following limit exists:

im f(x*+9)— f(x ).
6—0 o

The value of the limitis denote(%; (x*). Afunction f : R" — R is partially differentiable

atx* if, for k=1,...,n, the first derivatives with respectxgall exist. We write% (x*) for

the first derivative with respecttQ, k=1, ...,n, and call them thérst partial derivatives
atx*. A functiong:R" — R™ is partially differentiable ak* if each functiong,, ¢ =
1,...,m, is partially differentiable at*.

Suppose that : R" — R andg : R" — R™ are partially differentiable at. Thatis, suppose

that%(x*) exists for eactk and suppose th%)t)?—kf(x*) exists for eacltk and¢. Then the

derivative andgradient of f atx*, symbolsa—;(x*) and0Of (x*), respectively, are defined

0
as follows:
o ﬂ(x*) € R is therow vector withk-th entry equal t of (x*), and
ox B X

e [f(x*) € R"is thecolumnvector withk-th entry equal t% (x*).

We have thal (x') = [ (x")] .

Furthermore, thelerivative andgradient of g at x*, symbolsg—)?(x*) andg(x*), respec-

tively, are defined as follows:

. %(x*) € R™N js the matrix with¢k-th entry equal t 9

(o]

£ (x*), and

St

0

«Q
S

o [g(x*) € R™M s the matrix withké-th entry equal t

().

£

That is,%(x*) = [Og(x*)]".
If the partial derivatives exist for all points in the &€ R" then the function is said to be
partially differentiable orS. We writeg—;, Df,%,
at eachx* € S is given byg—xf(x*), Df(x*),g—f(x*), andOg(x*), respectively. If the partial
derivatives exist for all points iR" then the function is said to be partially differentiable or
partially differentiable everywhere. (For the distinctibetween a partially differentiable

function and a differentiable function, see [72, sectid3].2.

and[g for the functions whose values
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The symbold is sometimes pronounced “del.” The matg)% is also called thdacobian
and we often use the symbdfor the Jacobian of the functian
a

If f:R"— R is partially differentiable with continuous partial deatwves and
x* € R" Ax € R", then the functionp: R — R defined by:

Vt € R, @(t) = (X" +tAX), (A.5)

is a differentiable function. Moreover, by the chain rul@[gection 2.4]:

g—t‘p(O) = Of (x*) &

Definition A.37 Let f : R" — R be partially differentiable with continuous partial dexiv
tives. We caIIDf(x*)TAx the directional derivative of f atx* in the directionx since it
evaluates the rate of changefoin the direction from x*. O

If f is partially differentiable at a point € R" but its partial derivatives are
not continuous at* then the functiorp defined in (A.5) may not be differentiable.
(See Exercise A.9.)

A.4.3.2 Second derivative

Definition A.38 A secogd derivatives a derivative of a derivative function. For a function

f:R" — R we write for the derivative with respect tgy of the derivative with

0XpOXk
respect tog of f. If these functions exist for eadhandk then we say that the function is

2
twice partially differentiable. We then defilg?(; (R — R™N py:

02f 0°f
w5t

2 2
We callg—xg theHessianof f and we also writé)?f andd3f for%; O
The Hessian of a function is the same as the Jacobian of ithegita Exer-
cise A.10 shows the reason for t§ein Definition A.20 of a quadratic function.
Exercise A.10 also shows thatfifis quadratic then its Hessian is constantf i
approximately quadratic, then its Hessian is approxirgatehstant.

A.4.3.3 Symbolic conventions

Symbols and conventions for functions and derivatives &encconfusing. We
will use the following convention. Each function we intraguwill be defined in
terms of a “dummy variable.” The dummy variable is the argntas specified in
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the definition of the function. We must specify the value @ finction for each
possible value that the dummy variable can take on in the doaidahe function;

that is, the dummy variable is running over all possible galuVe will then avoid
using the dummy variable in any role where it is thought of aoastant or a
particular value.

For example, suppose thatvere defined using the dummy variaBleVhen we
refer to the function we will write eitheg or g(e), omitting the dummy variable.
To indicateg evaluated at a particular poirtwe writeg(x').

og

To indicate the derivative of the function evaluated at aapdiwe Write&(x’).

og
ox
stand, at the same time, for the dummy variaduhe for a particular point in an
expression because of the difficulty in distinguishing:

e the use ok as the dummy variable gg from

The derivative function will be denote(%% or —(e). We will avoid usingx to

e the use ok in the argument o%?(x).

To see this issue, consider the functpnR — R defined by:

vx e R,g(x) = (x)°.

Then,% is the function defined by:
a, . 2
Vx e R,a—x(x) =3(x)°.
If we write:
09, .2
= ((02), (A.6)

then we mean the functiog)% evaluated at the pointx)2, which is 3(x)?)? =
3(x)*. However, we interpret the similar-looking express%(dg((x)z)] as mean-
ing:

9g
g 2y — 9902y 9 102
1007 = 207 x 5[0,

= 3(x)*x2x
= 6(x)°, (A.7)
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using the chain rule [72, section 2.4]. Because it is easpiduse (A.6) and (A.7)
we will usually try to avoid expressions like them and we wylically use the
notation to denote the gradient function.

A.4.4 Integration
A.4.4.1 Fundamental theorem of integral calculus

Theorem A.2 Let f: R — R be a differentiable function and letlae R. Then:

b
f(b)— f(a) = t:ag(t)dt.

Proof See [114, section 4-8[]

A.4.4.2 Integration of non-negative function

Theorem A.3 Let f: R — R be continuous and let, & € R with a< b. Then:

b
/t f(t)dt > 0.

=a

If f(t) is strictly positive for a<'t < b then the integral is strictly positive.

Proof See [114, section 4-8] and Exercise A.11.

A.5 Sets
A.5.1 Notation

It is often convenient to define sets by collecting togethiethase elements from
another set, such & or R", that have a particular property. We formalize this in
the following.

Definition A.39 Let ©:S — {true, falsé be a function that evaluates to either true or
false. By{x € S|®(x)} we mean the subset Sfconsisting of all those elementsuch that
O(x) is true. The functio® is often expressed “loosely

For example{x € R?|—1 < x; < 1} means the set of all two-vectors such that the
first entry of the two vector, namekj, has a value that lies betweerl and 1.

If the dummy variable in the definition @ and the sef are clear from context,
then we sometimes omit the& &£ S|.” For example, if the context is clear, we might
write {—1 <x <1} for {x € R|—-1 < x < 1}. If there are multiple conditions in
the definition of the set then these are separated by comrhag.should be inter-
preted as meaning “and” or “intersection.” For exampgbec R"|g(x) = 0,h(x) <
0} means the set of vectoxdn R" such thag(x) = 0 andh(x) < 0.
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A.5.2 Open and closed

Definition A.40 A point X® € R" is called apoint of closure or alimit point of a set
S C R" if there is a norn|e|| such that:

Ve > 0,3x¢ € S such thatl|x* —x°|| <.

A pointx € R"is called arinterior point of a setS C R" if there is a normj|e|| such that:

Je > 0 such that’x € R", (

‘xi —xH gs) = (x€S).

The set of all limit points ofS is denoted by ¢5). The set of all interior points d$ is
denoted by inS) and is called itsnterior . O

Any point inS is also a limit point ofS, but in general some limit points & may
not be contained i§. Thatis,S C cl(S). Any interior point ofS is contained irf,
but in general some points Sfare not interior points d§. That is, intS) C S.

Definition A.41 A setS C R" is closedif it contains all its limit points. That is§ is closed
if cl(S) =S. A setS C R"is openif (R"\S) is closed or, equivalently, if every point f
is an interior point ofS. That is,S is open if in{S) =S. O

Definition A.42 Theboundary of a setS C R" is defined to be the sétl(S) \ int(S)). O

For a pointx? on the boundary ob C R" there are points i that are arbitrarily
close tox? and points not it§ that are arbitrarily close t&. A closed set contains
its boundary. For example, consider a “closed ball” as ddfinghe following.

Definition A.43 A closed ballof radiusp € R, ; about a poink® e R" is the set:

{xeR” x—x(O)H gp}.

O

A closed ball is (not surprisingly) a closed set and contamboundary. By Def-
inition A.40, for any interior poini' of a setS, we can find a closed ball of some
radiuse > 0 aboutx' that is contained ifS. We can also define an “open ball.”

Definition A.44 An open ball of radiusp € R, about a poink® € R" is the set:

{xeR” x—x(O)H <p}.

O

The interior of a closed ball is the corresponding open ball.

Definition A.45 An open set ifR" containing a poink(© is called aneighborhood of
(0)
X\, 0
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An example of a neighborhood &) is an open ball of radiug > 0 aboutx©). For
any neighborhood of x(9, by definition of interior point applied t&?, there is
an open ball of some radigs> 0 aboutx?) that is contained in the neighborhood
P.

Definition A.46 A setS € R" is boundedif there existp € R, and a nornj|e|| such that
wxeS,|Ix <p. O

A closed ball is bounded. An open ball is bounded.

A.5.3 Projections

Definition A.47 LetS C R", letn’ < n, and letP C R" be defined by:

}P’:{EER“'

Ix € S such tha€y = X n_r, K= 1,...n’}.

The sefP is called theprojection of S onto the lastn’ components ofR". If n = 1 then
we call P the projection ofS on the last component @&". Similarly, we can define the
projection onto any other subset of the components.

For example, ifS C R? is the closed ball of radius 1 centered [ag} then the

projection ofS onto the last component &? is the sefP = {x; e R| —1 < xp <
1} CR.

Definition A.48 Let|/e|| be a normS C R", andX’e R". Then theprojection of XonS is
the set argmigs {||x— X|| } [15, sections 6.1 and 8.1

A.6 Properties of matrices
A.6.1 Singular and non-singular matrices
A.6.1.1 Definitions

Definition A.49 A square matriA € R™" is invertible if there exists another matrix in
R™" (which we writeA™! and call theénverse) that satisfies:
AA=AAT =1,

An invertible matrix is also referred to a®n-singular. If no inverse exists, theA is
calledsingular. O

Definition A.50 Let A€ R™". Then we define the following.

e Therange spaceof Ais the set® (A) = {y € R™|3x € R" such thay = Ax}. (We often
abbreviate this expression by writingAx € R™x € R"}, where it is understood that
the set contains the valugs= Ax for all x € R".)
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o Thenull spaceof Ais the setA\[(A) = {x € R"|Ax= 0}.
]

For example, consider the following.

o If A=0then® (A) = {Axe RMx e R"} = {0} andA[(A) = {x € R"|Ax=0} =
R".
e If A=1"then® (A) = {Axe R"x € R"} = R and\((A) = {x € R"|Ax= 0} =
{xeR" 31 x= 0}
e If A=1then® (A) = {Axe R"x € R"} = R" andA((A) = {x € R"|Ax= 0} =
{0}
SinceA0 = 0 for any matrixA, the zero vector is an element of both the range space
and the null space of any matrix.
For anyA € R™" we have the somewhat surprising result that any vect@f'in
can be expressed as the sum of ([55, section A.15]):

e an element of the range space?df plus
e an element of the null space Af

That is, we have the following.

Theorem A.4 Let Ac R™", Then,
vx € R", 3\ € R™ 3z € R" with Az= 0 such that x= z+ ATA.

Proof See [55, section A.15] and Exercise 5.47.

Definition A.51 A vector subspaceof R" is a sefS C R" with the following properties:
(i) ¥x,X € S,x+X €8,
(i) VxeS,VaeR,axeS.

O

The setR" is a vector subspace of itself. The null spag€A) and range space
R (A) of a matrixA € R™" are vector subspaces &f andR™, respectively.

Definition A.52 LetAc R™"andb € R™. A set of the form{x € R"|Ax= b} is called an
affine subspaceor alinear variety. If A< R*" and is not equal to the zero vector, then
{x € R|Ax= b} is called ahyperplane. O

The notion of a hyperplane generalizes the notion of a platieée dimensions:
a hyperplane has exactly one less “dimension” than the sR8da which it is
embedded. A hyperplane R" dividesR" into two half-spaces. The boundary of
each half-space is the hyperplane.

Definition A.53 In describing matrices, we will mention the:
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e upper triangle,

e diagonal, and

o lower triangle.

Some authors use “upper triangle” to refer to both the emaiimove the diagonal as well as
on the diagonal. In this book we will use upper triangle terdd only the entries above
the diagonal. Similarly, we will use “lower triangle” to mfto only the entries below the
diagonal. By arupper triangular matrix , we will mean a matrix that has zeros in its
lower triangle. Similarly, dower triangular matrix has zeros in its upper triangle.

A.6.1.2 Properties

Theorem A.5 A square matrix A2 R"™" that is singular has the property that there exists
a non-zero value of x such that Ax0. That is, the null space of a singular matrix
contains elements besides the zero vector.

Proof See [55, appendix]2

Theorem A.6Let Ac R™". Suppose that B R"™" satisfies AB=1. Then B= A1 and
BA=|. Similarly, if Be R™" satisfies BA= |, then B= A~ and AB=I.

Proof See [55, appendix]2

In general, for two arbitrary matrice& and B, it is not usually the case that
AB=BA In the special case thBt= A, this relationship, calledommutativity,
does hold.

A.6.2 Linearly independent columns and rows

Definition A.54 LetAc R™" xe R",ye R™, g: R"— R™ Then:

the column vectoAxis called dinear combination of the columns oA,

the row vectory'A is called dinear combination of the rows ofA,

the functiony’g: R" — R is called dinear combination of the entries of,

the equatiory’g(x) = 0 is called dinear combination of the equationg(x) = 0.

] ®© © @ @

Definition A.55 A matrix A€ R™" haslinearly independent columnsif:
vx € R",(Ax=0) = (x=0).

It haslinearly independent rowsif:
YeR™ (yTA=0)= (y=0).

If the matrix does not have linearly independent rows thercarewrite one of the rows as
a linear combination of the others and we say that the rowbregarly dependent If the
matrix does not have linearly independent columns then wewie one of the columns as
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a linear combination of the others and we say that the colarglmearly dependent A
set of vectors is linearly independent if the matrix withuoohs consisting of these vectors
has linearly independent columns.

If A has linearly independent columns th&hhas linearly independent rows. If
A has linearly independent rows thah has linearly independent columns. In the
case thain = n then having linearly independent columns is equivalenhéoma-
trix being non-singular and is equivalent to the matrix hgvinearly independent
rows. If the null space of has elements besid@ghen the columns of\ are not
linearly independent and vice versa as Exercise A.16 shows.

Definition A.56 A basisfor a vector subspace is a linearly independent set of vestath
that all the elements of the vector subspace can be exprasseléhear combination of the
vectors in the basisi

If the columns of a matribA are linearly independent, then the columns form a
basis for the range space Af For example] € R™" has linearly independent
columns and the vectofd,..., I} are a basis foR", which is the range space of
l.

Definition A.57 Consider a matriA € R™", We define:

e arow sub-matrix to be a matrix obtained fror by deleting some of its rows, and
e acolumn sub-matrix to be a matrix obtained from by deleting some of its columns.

Therow rank of Ais the number of rows in the largest row sub-matriAdhat has linearly
independent rows. Theolumn rank of A is the number of columns in the largest column
sub-matrix ofA that has linearly independent columns.

A matrix A € R™" has full row rank if its row rank is equal to. It has full column rank

if its column rank is equal ta. A square matriA € R™" is invertible if and only if it has
full row rank and if and only if it has full column rank.

O

A.6.3 Positive definite and positive semi-definite matrices

Definition A.58 A matrix Q € R"™" is positive definiteif:
vxe R", (x# 0) = (xX'Qx> 0).
A matrix Q € R™" is negative definiteif (—Q) is positive definiteD
Definition A.59 A matrix Q € R™" is positive semi-definiteif:
vx e R" x'Qx> 0.

A matrix Q € R™" is negative semi-definitef (—Q) is positive semi-definite
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A.6.4 Positive definiteness on a null pace
Definition A.60 A matrix Q € R™" is positive definite on the null spacgx € R"|Ax= 0}
if:
vx e R", (Ax=0andx # 0) = (x'Qx> 0).

O

Definition A.61 A matrix Q € R™" is positive semi-definite on the null spacex
R"Ax= 0} if:

vx € R", (Ax=0) = (x'Qx> 0).

A.7 Special results
In this section we present some special results.

A.7.1 Weierstrass accumulation principle
Although, in general, sequences may or may not converge awe the following.

Theorem A.7 Suppose that the sequen{)é")}\?:o is bounded. (See Definition A.46.)
Then it has a convergent sub-sequence. (See DefinitionsaAdL8.34.)

Proof See [111, corollary of theorem 2 of chapter 21].

A.7.2 I'Hopital’s rule
In some cases, limits involving ratios can be calculatedgid dpital’s rule.

Theorem A.8 Let f,g: R — R be differentiable and suppose thia x_,o f (X) = limy_,09(X) =
0. Then:

df

m LX) = lim &(X)
= ag

&(X)

)

x—0 g(X) x—0

assuming that the limit on the right-hand side exists.

Proof See[111, theorem 9 of chapter 10.
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A.7.3 Implicit function theorem

In discussing sensitivity analysis, we are interested iw lam optimal solution
varies with the values of a parameter.

Theorem A.9 Let g: R" x RS — R" be partially differentiable with continuous partial
derivatives. Consider solutions of the equatiofis g) = 0, wherey € R® is a parame-
ter. Suppose thatx € R" is a solution fory = 0, satisfying:

g(x™;0) = 0.

We call x= x** the base-case solution ad= 0 the base-case parameters. Define the
(parameterized) Jacobian:R" x RS — R™" by:

vx e R"vx € RS J(xX) = %(x:x).
Suppose that(X*;0) is non-singular. Then, there exists a neighborh&aaf x = 0 and

a partially differentiable function’: RS — R" with continuous partial derivatives such
that:

e x*(0) =X is equal to the base-case solution,
e X" satisfies:

VX € P,g(x*(x);X) =0,

and
e the sensitivity of xto variation of the parameters satisfies:

ox* .
oy (0) = —1x

where K: R" x RS — RS is defined by:

(0);0)] 'K (x*(0);0),

vx € R", VX € R% K(x;X) :g—)?(x;x).

Proof See [70, section A.6][72, section 4.4].

The most straightforward application of the implicit fuioct theorem is in calcu-
lating the sensitivity t of the solution of simultaneous equations evaluated at the
base-case. This is considered in Section 7.5.

Since the base-case solutiori in Theorem A.9 is equal t&*(0), we will usually
abuse notation somewhat and weitefor both the base-case solution aaddo for
the function that represents the dependence of the solatign That is, whether
the symbolx* stands for a particular vector value or for a vector functiaii
depend on context. Since we are usually only interestedeibéise-case solution

x* and its sensitivity at the base—cagé(,—(O), this will not be ambiguous.
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A.7.4 Inverse function theorem

A related result is called the inverse function theorem.llttivas us to “invert” a
function. See Exercise A.19 and [72, section 4.4] for detall

Exercises
Types of functions

A.1 In the following,Q € R™" is not necessarily symmetric. Defi@ = 3(Q-+QT).
(i) Show thatQ’ is symmetric.
(i) Show thatyx € R", 1x"Qx= $x"Qx.
(iii) Show that(Q is positive semi-definites (Q’ is positive semi-definite
(iv) Show that(Q is positive definitg < (Q’ is positive definitg.

Norms

A.2 In this exercise we consider several norms.

(i) Prove thatthd norm||e||; satisfies the definition of a norm.
(i) Prove that infinity norm|e|| , satisfies the definition of a norm.
(iliy Show that onR? that|e||; = ||e||, = ||®]|.,.
(iv) Show that onR" each of these three norms is bounded above and below by some
constant multiple of the others. Calculate all six congtaetating the norms.
(Some of the constants dependrop

A.3 Use the triangle inequality (and any other properties ofirothat you might need)
to prove that for any norrfje|| onRR"™:

vxe R Wy € R, [[x+yl|| > ||| — [yl -

A.4 Show that the induced matrix norm in Definition A.30 satisfhedinition A.29 of a
matrix norm.

A.5 Consider the matri € R?*? and theL, norm||e||,. Calculate the value of the
induced matrix nornfjA|| for:

(i) A= ,

(i) A=

(i) A=

NP NO RO

‘O OrR OrR
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Limits

A.6 Do the following sequence&é")}(‘fzo have any accumulation points? For each
accumulation point, specify a convergent sub-sequencésadcumulation point.

: V) _ (v)?, if vis odd,
() WeZyx { 1/(v+1), ifviseven.
1, if vis divisible by 4,
. 1/v, if v has remainder 1 after division by 4,
V) = v . L
(i) W eZy,x (v)?, if v has remainder 2 after division by 4,
—1/v, if v has remainder 3 after division by 4,

2
{(1"/)\)] . ifvisodd,
(i) Wez,,xV =

[1(615%)] , if viseven.

A.7 Consider the functiori : R — R defined by:
1, ifx=0,

Show thatf is not continuous at* = 0. Use theg|e||; norm.

A.8 Show that a norm ofR" is a continuous function. (Hint: Notice thgé|| : R" — R,

so you must define norms d&" and onR. Which norms should they be to make your
work easy?)

A.9 ([72, example 2 of appendix A].) Lét: R? — R be defined by:

X - jfx+£0,
vx € R?, f(x) = ()2 002" 7
0, ifx=0.
(i) Sketch the function.

(i) Show thatf is partially differentiable at eache R2.
(iii) Show that the partial derivatives are not continuotig‘a= 0.
(iv) Let A =1 € R? and define the functiop: R — R by:

vt e R,@(t) = f(tAX).

Is @ continuous at = 0?

(v) For@defined in the previous part, gdifferentiable at = 0?

A.10 In this exercise we consider quadratic functions.

(i) Let Q € R™" be symmetric. Show that the Hessianfodlefined in (A.1) is given
by Q.

(i) Suppose tha® € R™"is not symmetric. What is the Hessianfoflefined in (A.1)?
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A.lllLetf:R — R, be continuous andletb € R witha<h.
(i) Prove that:

b
/t f(t)dt> 0.

=a

(i) Now suppose thaf (t) is strictly positive fora < t < b. Prove that:

b
/t f(t)dt> 0.

=a

(Hint: Use the definition of the integral in [114].)

Sets

A.12 In this exercise we consider open and closed balls.

(i) Prove that a closed ball is a closed set. Make sure that goapf applies the
definitions carefully.

(i) Prove that an open ball is not a closed set.
(iii) What points would have to be added to the open ball toeiaklosed? Specify the

smallest set of added points that would make the open balkitosed set.
(iv) Prove that an open ball is an open set.

A.13 Show that the intersection of two closed sets is closed.

A.14 In this exercise we consider sets defined in terms of funstion

(i) Letg:R"— R™be continuous. Show th&t= {x € R"|g(x) = 0} is closed.
(i) Let h:R"™ — R' be continuous. Show th&t= {x € R"|h(x) < 0} is closed.
(i) Let g:R"— RM™andh:R" — R" be continuous. Show th&t= {x € R"|g(x) =
0,h(x) < 0} is closed.

_A.15 Suppose thalt : R" — R" is continuous and consider the sBts- {R"|h(x) < 0},
S = {xe R"h(x) < 0and, for at least on& h,(x) = 0}, andS = {x € R"|h(x) < 0}.

(i) Suppose that each elementSis a regular point of the constrairfiéx) < 0. (See

Definition 19.1.) Show that the interior &fis S and that the boundary &fis S.

(ii) Suppose thahis a convex function (see Definition 2.16) and thgt 0. Show that
the interior ofS is S and that the boundary &fis S.

(iii) Show by an example that i is not continuous then the boundary$fs not nec-
essarilysS.

(iv) Show by an example that ifis continuous but some elementsSoére not regular
points of the constraints(x) < 0 then the interior of is not necessaril§.

(v) Show by an example thatfifis continuous and convex bt= 0 then the interior
of S is not necessaril§.
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Properties of matrices
A.16 Let Ae R™". Show that the columns @ are not linearly independent if and only
if the null space ofA contains vectors besidés

A.17 Do the following have linearly independent columns? Whahecolumn rank of
each matrix?

0
(i) A= 0].
0
N 0 1
(i) A= 1 0l
1 0
(i) A= |0 1].
0 0
1 1 0
(iv) A=|0 O 1].
0 0 O
r—1 1
(v) A=| 0 o].
| 0 0
. 1 1 3
(Vi) A= _2 > 4].
i) A=|3 3 1(6)].
o 1
(vii) A=10 2}.
0 3

A.18LetQ e R™"MandA e R™"N,
() Suppose that there exiss € R, such thatQ + MATA is positive definite. Show
thatQ is positive definite on the null spadé(A) = {Ax € R"|AAx = 0}.
(i) Suppose tha@ is positive definite on the null spacg(A) = {&x € R"|AMx = 0}.
Show that there exisf8 € R, such thaQ+ MATAis positive definite. (Hint: Prove
by contradiction. Suppose that for each Z. there isxV) such tha‘ x| =1and

[x(V>]T(Q+vATA)x<V) < 0. Apply Theorem A.7 to find a convergent sub-sequence
of {xV}e_1)

Special results

A.19 Leth: R" — R" be partially differentiable with continuous partial deriives and

x* € R". Suppose thah(x™) = 0 and that% (x**) is non-singular. Use the implicit
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function theorem, Theorem A.9, to show that, in a neighbodhaf x = 0, there exists an
inverse functiornk* : R" — R" to h. In particular, show that there exists a neighborhood
P of x = 0 and a partially differentiable functiox* : R" — R" with continuous partial
derivatives such that:

° X*(O) — X**,
e X* satisfies:
VX € P,h(x*(X)) = X:

and
o the sensitivity of«* to variation ofy satisfies:

20~ [ 2]

(Hint: Defineg: R" x R" — R" by ¥x € R",Vx € R", g(x;X) = h(X) — X.)



Appendix B

Proofs of theorems

B.1 Problems, algorithms, and solutions

Theorem 2.6 We follow the proof of [70, proposition 4, section 6.4].

= Suppose thaf is convex. Letx,x € S be given. Then, by definition,
vt €[0,1], f(X +t[x—X]) < f(X) +t[f(x)— f(X)].
Re-arranging and dividing through byor 0 <t < 1, we obtain:

f(x’+t[x—tx’])— f(x) < f(x)— f(X). (B.1)

vt € (0,1,

To interpret (B.1), first consider a line interpolatifigoetweernx’ andx as shown in
Figure B.1. This line has slope:

f(x) — f(X)
X=Xl ’

and is illustrated with the dashed line in Figure B.1. Nowsidar a line interpo-
lating f betweernx' andx +t[x— X]. This line has slope:

f(X +tx—x]) — f(X)
tx—=xl,

9

and is illustrated with the dash-dotted line in Figure B.Jqu&tion (B.1) shows
that the slope of the dash-dotted line is no greater tharidipe f the dashed line.
This is true for each value ¢fin the range 0<t < 1. The situation is illustrated in
Figure B.1.

802
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f(x)
0.9
0.7
oal Fig. B.1. Graphical illus-
e tration of inequality (B.1)
o3 1 in Theorem 2.6. The line
02l /;::’ 1 interpolatingf betweenx’
wl z and x is shown dashed,
while the line interpolating
% 0.1 02 03 04 05 06 o7 08 09 1 X f between(’ andX/ +t[X—

X X +tx—x] x X is shown dash-dotted.

Moreover, since is partially differentiable with continuous partial deatives,
0f (X) " (x— X)
N !
— im f(X +t[x—X])— f(X)

t—0 t ’
by definition of the partial derivative (see Definition A.36)

and of the directional derivative (see Definition A.37),
< tIirr(l)[f(x) — f(x)], by (B.1), on replacing f (X +t[x—X]) — f(X))/t
—

with the valuef (x) — f(X'), which is always greater,
= f(x)—f(X).
The result is true for arbitrany, X' € S so that (2.31) holds.
< Conversely, suppose that (2.31) holds. xet’ € S and 0<t < 1 be arbitrary.
To prove thatf is convex, we must show thdi{x+t[x" —x]) < f(x) +t[f(X") —

f(x)]. LetX =x+t[x" —x]. Then, equivalently, we must prove thiex') < f(x) +
t[f(X") — f(x)]. Now notice that:

f(x) +t[f(X") — f(x)] = [1—t]f(x) +tf(X"),
so that equivalently we must show that:
f(X) <[1-t]f(x) +tf(X"). (B.2)
By (2.31), sincex, X €S,
f(x) > f(xX)+0f(X)T(x—X). (B.3)
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But by (2.31) applied ta” andx, (that is, replacing by x” in (2.31) and observing
thatx” X' € S),

f(X') > f(xX)+0f(X) (¥ = X). (B.4)

Now multiply (B.3) by[1—t] and multiply (B.4) byt and add the results together
to obtain:

[1—t]f(x)+tf(X")
> 1=t f(X) + [1—t)0F(X) (x= %)+ tF(x) +tOF (x) (X" = X),
= )+ 0F )T [(L—t) (x=X) +t(X — X)),
= )+ OF (<) [x+t(X —x) — X],
on collecting and re-arranging the terms in the square btack
—  f(xX)+Of(xX)"[0], by definition ofx,
= f(x),

which is (B.2). O

Theorem 2.7 By Theorem 2.6, we must show that (2.31) holds. x&t € S. For
0 <t <1 we have thatx +t[x—X]) € S sinceS is convex. Definegp: [0,1] — R
by vt € [0,1],@(t) = f(X +t[x—X]). Notice that:

®(0) (B.5)
1) = f(x). (B.6)

I

—
~~

>
~

Taking derivatives:

g—t(p(t) = Of(X +t[x—x])"(x—x), by the chain rule [72, section 2.4],

g—t(p(O) = Of(X)"(x—x), evaluating the previous expressiort at 0, (B.7)
2
%}”(t) = (x—xX)"0% (X +t[x—X])(x—X),

> 0, for 0 <t < 1since0 (X +t[x—X]) is positive semi-definite
(B.8)
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By (B.5), (B.6), and (B.7), the condition (2.31) is equivaleo @(1) > @(0) +

do :
W(O)' We have:

0 = 00+ [ P
t=0

by the fundamental theorem of integral calculus applieg, to
(see Theorem A.2 in Section A.4.4.1 of Appendix A)

_ 't [de v
- w0+ [ [E(O)%—ﬂ_ow—(t )dt} dt,

by the fundamental theorem of integral calculus appliegtfeo
(see Theorem A.2 in Section A.4.4.1 of Appendix A)
_ de Lot dPe g
= ®0)+5(0) +/t:0/tlzoaf(t )dt dt, (8.9)
evaluating the integral of the first term in the integrand
do
> _r
> 90)+5(0),

since the integrand is non-negative everywhere by (B.8),
(see Theorem A.3 in Section A.4.4.2 of Appendix A)

This is the result we were trying to prove. A similar analyaiplies if0%f is posi-

tive definite, where we note that continuity and positive tfness of the Hessian
2

implies that the integrané’;}p(t’) in (B.9) is continuous and strictly positive ev-

erywhere. O

B.2 Algorithms for linear simultaneous equations

Lemma 5.1 First notice that the symmetry éfis preserved when we re-order the
rows and columns using diagonal pivoting. Therefore, weassume thaf has
its rows and columns ordered so tiaf is the first pivot. By definition,

Vil = 2,. N Ly = Agl/All.
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Now consider any entr&\é? with £,k > 2. We have:

Aéi) = Ax—LpnAx, by definition ofA®,
= Ax— AnnAik/A11, by definition ofL;.
Also, A? = Ay — LAy, by definition ofA®),

= A — AuAar/A11, by definition ofLy,

= Awx—AnAw/A11, by symmetry ofA,

2
= Agk)'

O
Lemma 5.2 Again, we can assume thAﬂ> was used as the pivot. Then,
o> Ly =AY /A,

by definition. Consider any ent ﬂj(”) with £,k > j+ 1. We have

A§|j<+1) = Aéi) - ijAgli), by definition of AU+1),
= Al —AVAY /AP by definition ofL;.
Also, At((fl) = Aﬁ? — Lk,-AE?, by definition of AU+D),

= AY—AYAD /AP by definition ofLy;,
= Al —Ag})Aglj()/Aﬂ), by symmetry ofAll),
_ AE:IJ;H)-

O

Theorem 5.5 We divide the proof into three parts.

A is invertible Suppose thafA € R™" is singular. Then, by Theorem A.5 in
Section A.6.1.2 of Appendix A, there exists# 0 such thatAx = 0. But then
x'Ax= x"0 = 0 and soA is not positive definite. This is a contradiction and/so
is, in fact, non-singular. (Positive definiteness is a ‘ilstyer” condition than being
invertible.)

Ais factorizable asLDL'T We now claim that we can use the standard p}%}

at each stage of the factorization algorithm to factorizamsetric positive definite
Ainto LU. For suppose not. That is, suppose that the factorizatitedfat, say,
stagefl. By this we mean that factorization using the standard pixax successful
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for stages 1..,(¢ —1), but we found that at stage A%) = 0. (If we find a zero
pivot at the first stage, theh= 1 and we defined)) = A. In this particular case,
A =AY A =0) |

Let L’ be the product of the inverses of the matrié#d), ..., M~ defined in
the factorization algorithm in Section 5.3.2. (I= 1, then defind’ = 1.) Notice
thatL’ is lower triangular with ones on its diagonal. We hadve: L'A).

Consider the top left-hantix ¢ submatrices o\, L', andA¥) and writeA, L/, and
A, respectively, for these thréex ¢ submatrices. By construction, the matkix
is lower triangular, whiléA(®) is upper triangular. Let us use the symidb stand
for blocks of a matrix that have unknown and possibly norozattries. Then we
can write:

A = ] , by definition ofA,

[ ]
L [ ]
= L'AY, by construction

'L 0] [AD
o KR o o’
by definition ofL’, [/, andA®) and since.’ is lower triangular
A0 o .
= .} , on multiplying.

Therefore A= L’AY). For example, if we encounter a zero pivot at the first stage,
thenA = [A1q] = [0], [’ = [1], AD = [0], and [0] = [1]]0]. SinceA") is upper
triangular, if we let)’ = A then theLU factorization ofA is given byA = ['U".
FurthermoreA is symmetric and has been factorized ifft)’ using diagonal
pivots. Recall that from Corollary 5.3 and the discussioBéation 5.4.4 that if we
defineD to be diagonal with diagonal entries equal to the diagonal’of A,

then we can factoA asL/D[L]", where(’ is lower triangular with ones on the
diagonal and is diagonal. Sincé\%) =0, we have thab,, = 0. By Lemma 5.4
applied toA, A is not positive definite, since the entdy, is not positive.

In summary, if the factorization fails at stagehen A, the top left-hand x ¢
sub-matrix ofA, is not positive definite.

X

But letX € R’ be given and define = {0

} € R". We have:

X£0 = Xx= [(ﬂ #0,

1t re
stho X X Ut
= xAx_[o} A[O}_ Ax> 0,

sinceA is positive definite by hypothesis
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Thatis, X+ 0= XTAX> 0. But this is true for any % 0 and sdA s positive definite.
This contradicts the earlier result, so that in fact we cowdtlhave encountered a
zero pivot at stagé. Therefore, we can successfully use the algorithm to fexor
A asLU. But sinceA is symmetric, by definind to be diagonal with diagonal
entries equal to the diagonal 0f, we can factorizéd asA = LDLT.

In conclusion A can be factorized intbDLT with L lower triangular having ones
on its diagonal an® diagonal. By Lemma 5.4, singkis positive definiteD has
strictly positive diagonal entries.

A1 is positive definite As we did in the proof of Lemma 5.4, @3 be diago-
nal with diagonal entries equal to the positive square robthie corresponding
diagonal entries db. Then:

Al = [LDLY™, by assumption oM,
— [LY'D L, recalling from Section 5.3.2 thatis invertible
— LY DL, sincelL " = [LT] 7, (see Exercise 5.18)

- Y'[p?] - D?] L1, by definition ofD?.

-1

Let x # 0 be given. Note thaED%] L—1x =£ O (for elsex = LD20 = 0.) But this
2

> 0, by Property (i) of norms, so thaét is

)
means thax'A—1x = H [D%] L1x
2

positive definite. O

Lemma 5.6 To calculateAli+D), usingAﬂ) as pivot, we apply (5.11) to calculate:
ALY =AY - LAY f<t<nj<k<n

The number of fill-ins is equal to the number of times m%ﬁ =0, yetngAgljg #0,
so thatAll ™ £ 0. Definel () € R™" by:
. i AU) _
vk =3 & T A=0
1, if Ay #0.
Then afill-in is created at thék-th entry if:
@) A =o;thatis)) =0,
(i) L= AL /AY % 0; that is Al #0andl}) =1, and
(iiiy A% #0; thatis,I{}) = 1.
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Therefore, a fill-in occurs at thék-th entry if and only if(1—1))1{V1) = 1. ifa

‘
fill-in does not occur, thefil — 1)1 V1% = 0.

We definedN(j) to be the number of fill-ins created at stagdue to pivoting
onA}P at stagej. We can calculat®l(j) by summing(1— Iél‘ﬁ)lé‘j)l fﬂ) over all the

(k-th entries that are in row§ + 1) to nand columng j + 1) ton. That is:

= 3 g @10
] <t
i<

n
k<n

ININ

SinceA is sparse and we are trying to minimize fill-ins, it is reasnedo as-
sume that\(l) is also sparse. That is, it is rare faf!’ to be non-zero and we can

approximate the sum in (B.10) by neglecting the téfim- Iélj()), since it is usually
equal to one. We calculate an upper bouX(l;), on the number of fill-indN(j) by
neglecting the factofl — Iﬁfg). That is:

N(j) < N(j

_ O
_ 0 ko

< ; Ié?) ( Z IEB) , separating out the sums,
j<f<n j<kzn

2

= Z I§|’<) , becausé\l)) is symmetric.

j<k<n

The last expression is the square of:
[(the number of non-zero entries in thieh row of A)) minus 1]

(Recall that the firsfj — 1) entries in this row are zero because of earlier stages in
the factorization.) O

B.3 Algorithms for non-linear simultaneous equations

Theorem 7.2 We reproduce the proof from [58, section 4.2] and dividetib fiour
parts:
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(i) proving that{x)}*_, is Cauchy and has a limit that is containedSin
(i) proving that the limit is a fixed point o;
(iii) proving that the fixed point is unique; and

(iv) proving that the sequence converges to the fixed poirdraing to (7.21).

{xV)}2_, is Cauchy and has a limit that is contained inS We prove that the se-
quence of iterates is a Cauchy sequence. By Lemma 7.1, thisshéblish that the
sequence of iterates converges to some poirgay. To prove that the sequence is
Cauchy requires four main steps, which successively bdumdifference between
various pairs of iterates.

Step 1: We first bound the norm of the difference between two sucee#srates:

s}

Hq:(x<m>) —o(x™Y )(
by (7.20), and by the definitions &™) andx(™,

)

< L Hx<m> —xm-y|
since® is a contraction mapping with Lipschitz constant
< (L)? Hx(mfl) —x(m-2) H , repeating the same argument
< (" Hx<1> X0, (B.11)

repeating the argument a furth@gn— 2) times.

Step 2: We use (B.11) to bound the norm of the difference betweervitieand
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0-th iterate:

‘%w_%mH

)

= wa—%wﬂyuﬂwn_%waﬂﬂ”+@m_%%
adding and subtracting terms

< MM_%wnww%wﬂ_%wawP”+Wm_%ﬂL
by the triangle inequality (Property (iii) in Definition A82
of norms in Section A.3.1 of Appendix A) applied repeatedly
v-1
< YT Hx(l) —xO1l using (B.11) fom=0,...,v—1,
m=0
I el O M WEIRN )
= T e
using the formula for the sum of a geometric progression

1
< 1_LH%D_X@ 7 (B.12)

since O< L < 1.
Step 3: We use (B.12) to bound the norm of the difference between laitrany
pair of iterates<V) andx("'). Let us first suppose that< v’. Then:

W) _ y¥)

:(@M“%—mwﬂﬂ

, by (7.20)

< L‘ XV _xV-D|l "since®d is a contraction mapping

(L)V X(VI_V) _ X(O)

applying the same argument a furttjer— 1) times
(L) |10 _ 0
< _
= 1—LHX X

IN -

9

, by (B.12) for the(Vv' — v)-th iterate.

Similarly, if v/ <v then:
(L)Y

‘ 1-L
Combining the two results, we obtain:

X(VI) _ X(V) <

‘%n_%m”

min{v,v’'}
_ U
- 1-L

Hx(l) —x(o)H . (B.13)
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Step 4: We use (B.13) to prove thgx™ 1% _ is a Cauchy sequence. For, et 0
be given. We claim that:

yo [e(1—L)/||xV —xO]
N In(L)

will suffice in the definition of a Cauchy sequence. By defamitdf N, we
have that (on re-arranging and taking the exponential df bintes):

so that forv,v’ > N we have thatL)™n{V>'}
Therefore, by (B.13):

XV —xO /1-L) <e.

v,V > N, ‘ xV) — xV)

<eg

)

and the sequence is Cauchy. By Lemma 1) }%_ has a limit,x*, say.
ButS is closed an&¥) € S,¥v € Z, sox* € S.

x* is a fixed point of ® Notice that:

Hdb(x*) —xV) , by (7.20)

= [ @0c) - o)

*

< L|xt—xOD

, since® is Lipschitz (B.14)

Taking limits of the left- and right-hand sides of (B.14),darecalling that the
norm is a continuous function, (see Exercise A.8,) we olitaa|| P (x*) — x*|| <
L{jx*—x*|| = 0, so that, by Property (ii) of normsp(x*) = x* andx* is a fixed
point of ®.

Uniqueness of fixed pointNow suppose there are two fixed points# x™ of ®
inS. Then,

*

1

_X**H

= ||P(X") — D(xX™)]||, sincex* andx™ are fixed points ofb,
L ||X"— x|, since® is Lipschitz

2

<
< |Ix

—X"™|, sinceL < 1 andx* # xX** by supposition.

But this is a contradiction. So, there is exactly one fixedpoi, say.
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Rate of convergenceNow note that:

|

23

xV) — x

_ an(xW*l))—x* by (7.20)

an(x<v-1>) —o(x)

, sincex* is a fixed point ofd,

< L‘ xV=Y —x*||, by definition of contraction mapping,
< (L)z‘ xV=2 _x*|| repeating the same argument in the last three lines,
< (L)Y ||x9 —x*||,repeating the argument a furth@r— 2) times.

So asv — o, (L)Y — 0, andx¥) — x*. That is, the iterative method (7.20) con-
verges to the unique fixed point df in S. Furthermore, the error improves by a
factorL at each iteration, satisfying the bound (7.2D.

Theorem 7.3 We reproduce the proof from [58, section 5.5] and dividetib fiour
parts:

(i) we first prove that the iterates staySn= {x € R"|||x—x@|| <p_};
(i) we then go on to prove that the chord method iterationmasfia contraction
mapping ors;
(iii) we then prove that the sequence of iterates convergessblutionx* € R"
of (7.1) that satisfies the estimate (7.22); and
(iv) finally, we prove thatx* is the only solution in the open ball of radips.
aboutx(9.

The iterates stay inS Consider the map:
(x) =x— ()] "g(x),

which specifies the chord method (7.8)—(7.9) in the form{)..2Ve show thatb
mapsS to itself. This requires us to estimate the valuddk®)] "g(x) in terms
of known quantities. We know properties Ejf(x(o))]_lg(x(o)) andJ, so we will
express[J(x(O))]flg(x) in terms of these. This requires five main steps.

Step 1: First:

(B.15)
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on adding and subtractirig(x®)] g(x©).
Step 2: We evaluate(g(x) — g(x(9))), the factor in the second term on the right-
hand side of (B.15). Defing: [0,1] — R" by:

vt € [0,1],y(t) = g(x @ +t(x—xO)).

Theny(0) = g(x(9)), y(1) = g(x), and, by the chain rule [72, section 2.4]),

3:’( t) = JI(X9 +t(x—x9)) x (x—xO).

Therefore:
g —g(x?) = y(1)-¥0),
/t St
by the fundamental theorem of integral calculus
(Theorem A.2 in Section A.4.4.1 of Appendix A)

= / t;l[J(x(O) +t(x—xO))] x (x—x@)dt.  (B.16)
t=

Step 3: Substituting (B.16) into (B.15), we obtain:

-1

= PO g(x?)
=1

Oy /tio O +t(x—x9))] x (x—x9)dt,

— 3¢9 (X9 + (x—xO) =[]
t=1

POy /t_o KO 4 t(x— xO))] x (x—xO) dt,

adding and subtracting— x(@) = [J(x(©)] TI(xX) x (x—x©)),
= [J<x<°>>1‘1g<x<°>> + (x=X%) + PO x

[/ O 4 t(x—x9))] x (x—=x9)dt—I(x?) x (x—x(o))} :

IxO) x (x—x)

on re-arranging
= PEO)] gx @) + (x—x9)
Oy / - [J(x<0>+t(x—x<0>))_3(x<0>)] x (x—x@)dt,
t=0
(B.17)
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where the last equality holds since the integral of a con$t@tween 0 and
1is equal to the constant.
Step 4: We have:
Pd(x) —x©
— x—[I(X9)] g(x) — x©, by definition,
= —P9)] gk

IO /:01 [J(x<0> Ft(x— X0 - J(x(0>)] x (x—x9)dt,

from (B.17).

Taking norms and using the triangle inequality and Lemmaii 3ec-
tion A.3.2 of Appendix A repeatedly, we obtain:

o]
<P @) |+ a6

K:WPW@+¢Q—%®»—J@@mHP—%WHm,

t=1 2
< b+a/t:0 ct”x—x(o)H dt, forxes,
by the definitions of, b, andc, since:
e Jis Lipschitz with constant on S;
e x9 +t(x—x9) ¢ s; and
o (X0 +t(x—x9)) —xO =t(x—x0),
< b+acp_)?/2, (B.18)

evaluating the integral and noting tHat—x(9|| < p_.
Step 5: By definition ofp_:

1-2y/1—2abc+ (1— 2abc)

2
~ 2(1-+/1—2abq) —2abc
B (ac)? ’
 2p—2b
N ac '’

sob+ac(p-)%/2=p_. Therefore, by (B.18)||d(x) —x(?|| < p_ and so
@ mapss to itself.
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@ is a contraction mapping We now show tha® is a contraction mapping. This
requires three main steps.

Step 1: First:

%‘)(X) = 1 -[P(x9)] "3(x), by definition ofJ,

Therefore, fox € S:

0P

=0 < H[J(x@))]’lH [96¢©) 30|, by Lemma A1
< acHx(O) —x‘ , by assumption
< acp_, since[|x—x9| <p_. (B.19)

Step 2: Let X, X" € S and defingp: R — R" by ¢(t) = ®(X" +t(X —x")). Then
by the chain rule [72, section 2.4]:

20) = 22 (0 t( X)) x (X X))

dt
and so:
D(X) — d(X')
t=1 d(p
_ /t:o (bt

by the fundamental theorem of integral calculus,
(see Theorem A.2 in Section A.4.4.1 of Appendix A)

B /ti;l [g%)(xn“(xl—%'))] x (X =x")dt.

Therefore, on taking norms and using Lemma A.1:

=1
[e(x) — (X)) < /tio %"(%’H(%-%’))

t=1
/t:o acp_ [[¥ —X'|| dt,
by (B.19) sincex” +t(xX —X") € S,
= a X x|

|H>a_x'H dt.

IN
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Step 3: By definition,acp_ =1—+/1—2abc< 1, so® is a contraction with Lips-
chitz constant. = acp_ < 1. Therefore, by Theorem 7.2, there is a unique
fixed pointx* of ® in S and, moreover, the chord iteration convergeg to

The fixed point x* satisfies (7.1) and (7.22otice that:
(®(x) =x) = ()] “gx) =0) = (g(x") = 0),
so thatx* is a solution of (7.1). Furthermore, singee S, we have that:

-

<p-.

Substituting this and the Lipschitz constant acp_ into (7.21) in the statement
of Theorem 7.2, we obtain the error estimate (7.22).

x* is the only solution within a distancep_. of x© We claimed that there is only
one fixed point of® (and solution of (7.1)) in the seix € R"|||x—x©|| < p_ }.
Since we have already proven that there is exactly one fixéut poits subset
{xeR"||[x—x@| < p_}, we must show that there are no fixed pointsiofn
{xeR"|p_ < ||x—xO| < p, }. Thatis, we must show that:

(p- < [x=x@ < 1) = (@) £ %),
or equivalently that:
(p- < |x=x| <p+) = (IX®) "g(x) £ 0).

So, let us suppose thip_ < |[x—x@|| < p..). We prove that this implies that
[J(x(o))]_lg(x) # 0. There are two main steps.

Step 1: From (B.17):

)] "g(x)
= (x—x9)+ )] Tgx?)
RO /tt? [J(x<°> +t(x—x9)) = IXD)]| x (x—x)dt
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Therefore, by the triangle inequality (see Exercise A.3) Bemma A.1:

20O g0

> st oo

o)
_ “[J(X(O))]—l“ X/ti;l“J(X(())H(X_X(O))) _J(X(O))H HX_X(O)Hdt’

> Hx— x© H —b— a/t:l HJ(X(O) +t(x—x)) —J(X(o>)H Hx— x“»” dt,
by assump?ion

t=1 2
> Hx—x(o)H - b—a/ ctHx—x(O)H dt, since:
t=0
e Jis Lipschitz with constant in the ball of radiugp > p, aboutx©);
o X0 +t(x—x) is contained in this ball for &t < 1; and
o (X9 +t(x—x9)) =xO = t(x—x@),

2
x— x(0) H _b— acHx_ x(©) H /2, on integrating (B.20)

- |

Step 2: We claim that the right-hand side of (B.20) is greater thamo fer:

p_< HX—X(O)H <ps.
Consider the quadratic function:
p—b—ac(p)?/2. (B.21)

It has zerop_ = (1—+/1—2abc)/(ac) and(1+ +/1— 2abc)/(ac). Fur-
thermore, the coefficient ¢p)? in (B.21) is negative, so (B.21) is positive
for pin the rangep_ < p < (1++/1—2abc)/(ac).

Now letp = ||x—x@||. By assumptionp_ < [|x—x9|| < p, butp.. <
(1++/1—2abc)/(ac) by definition, so (B.21) is positive far= ||x—x?||
in the rangep_ < p < p;. Thatis:

Hx— x0) H —b-— acHx— X9 H2/2 > 0.
But, by (B.20), this means that:
H 3] Yg(x) H > Hx— x(© H —b-— acHx— X0 HZ/Z > 0.
Therefore, there are no fixed points®fin:

{XGR” p_ < Hx—x(o)H < p+}.
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B.4 Algorithms for linear equality-constrained minimization

Theorem 13.1 First notice that forx* to be optimal for the problem it must be
feasible, so thaf\x* = b.
Define the functiort : R™ — {x € R"|Ax= b} by:

VEeR" T(§) =X* +Z§,

which is onto{x € R"|Ax = b} by definition ofZ. (See Exercise 13.1, Part (ii).)
Consider the functiop: R" — R defined by:

VE € R", (&) = f(1(2)).

The functiong@is partially differentiable with continuous partial deatives since it
is the composition of andt, which are both partially differentiable with continu-
ous partial derivatives. (See Exercise 13.1, Part (iii).)

By hypothesisx* € argminegrn{ f (X)|Ax=b}. Therefore, by Theorem 3.5, there
exists¢* € argmin v @(&) such thai* = 1(&).

By Theorem 10.3 applied to the unconstrained problemﬁgﬂm(p(ﬁ), we have
thatgp(§*) = 0. But, @(e) = f(1(e)), sO:

g—ép@*) = %(T(E*)) X g—;(&*), by the chain rule [72, section 2.4],
= g—;(x*)27 by definition oft and by Exercise 13.1, Part (iii),

so thatTp(&*) = Z'0f (x*). Thatis,Z'0f (x*) =0. O

B.5 Algorithms for linear inequality-constrained minimiz ation
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Theorem 17.1 ([84, section 14.4].) Consider tleguality-constrained problem:
m]%n{f(x)|Ax: b,Cx=d;, V¢ € A(X)}. (B.22)
XeRN

Problem (B.22) includes all the constraints of Problem )L that were satisfied
with equality byx*. The active inequality constraints from Problem (17.1)ehav
been included as equality constraints in Problem (B.22).

We are going to apply our earlier results fquality-constrained problems to
Problem (B.22) to prove the theorem. We divide the proof thtee parts:

(i) showing thatx* is a local minimizer of Problem (B.22),
(i) using the necessary conditions of Problem (B.22) toraefi* and pu* that
satisfy the first four lines of (17.2), and
(i) proving thatu* > 0.

x* is a local minimizer of Problem (B.22) We prove this by contradiction. Sup-
pose that* is not a local minimum of Problem (B.22). We consider the ol
tions of this supposition.

For any/ ¢ A(x*) we have thatC,x* < dy,. By continuity of the continuous
functionCx, let€ > 0 be small enough such that:

Ve & A(X"),Vx such that||x* — x|| <€ Cyx < dy. (B.23)

That is, the inequality constraints that are not activeaére also not active at
pointsx that are nearby tw*.

Lete > 0 be given. By hypothesig; is not a local minimum of Problem (B.22).
Therefore, by (2.27), there existssuch that:

X" = < min{e,g},
<
F6E) < f(x),
A€ = b,

WS A(X*),CZXS = d,.
But these, together with (B.23) mean that there is a pdittat:

e s within € of x*,
e is feasible for Problem (17.1), and
e has a smaller value of the objective.

Furthermore, such a poirt exists for anye > 0. Thereforex* is not a local min-
imum of Problem (17.1). This is a contradiction,»ds in fact a local minimizer
of Problem (B.22).
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Implications of the necessary conditions of Problem (B.22Yonsider Theo-
rem 13.2 applied to Problem (B.22). The objectivas partially differentiable
with continuous partial derivatives amd is a local minimizer of Problem (B.22).
Therefore, by Theorem 13.2:

N € RM V0 e A(X"), 3 € R such thatdf (x*) + ATA* + > iC/) " = 0.

LeA(x)
(B.24)

We now consider constraints= A(x*) and constraintg ¢ A(x*) separately.

By definition, v/ € A(x*), C,x* = d, so that:

Ve e A(XY), 7 (Cx* —dy) = 0. (B.25)

Definew; = 0,v¢ ¢ A(x*). Then, trivially, v/ ¢ A(x"), 5 (Cx* —dy) = 0 and,
combining with (B.25), we obtain:

Ve=1,...,rW(Cx —d) =0,
which is the second line of (17.2). Moreove¥, & A (x*),[C/] " = 0 so that:

cw = 3 e+ Y [cd'w
LeA(xr) L&A (x)
= Y 'y
LeA(x)

Therefore, combining with (B.24), we obtain:
N e R™ 3p* € R, such thatlf (x*) + AT\ +CTur = 0, (B.26)
which is the first line of (17.2).

Non-negativity of p* By definition, V¢ ¢ A(x*), if = 0> 0. We are left with
proving thaty; > 0,V/ € A(x*). Suppose that this is not true; that is, suppose that
W, < 0 for somet’ € A(x*). We construct a step directidx and an upper limit on
the step-sized > 0, such thak* + aAx is feasible for 0< a < @ and f decreases
in the direction ofAx away fromx*.

Consider the matriA consisting of all the rows of\ together with the rowg,
of C for thosel € A(x*). That is, the rows oA consist of:

e themrows ofA, and
o those rows oC corresponding to the active constraints.

We assume thak has linearly independent rows. (Otherwise, consider a maixi

subset of the rows oA that are linearly independent and that includes the row cor-
responding to constrairit.) Using the analysis in Section 5.8.1.2 we can solve the
equationAMx = —1 , for Ax, wherel ; is a vector that has zeros everywhere except
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in the position corresponding to inequality constrdinéWe are going to show that
X* + ax is feasible for Problem (17.1) far sufficiently small and positive. To do
this, we will, in order, consider feasibility with respect t

the equality constraints,

the inequality constraints that are activecatexcept for constraint/,
constraint?’, and

the constraints that are inactivexat

We have that:
Va e R, AX +oMX) = AX + oA,
= b+a0,
by assumption ow* and construction ofix,
= b,
Vo e R,V e A(X)\ {¢'},
C/(X*+ax) = CX'+aCiAx,
d; + a0,
by assumption ow* and construction afix,
dy,
d,
Cy X" +aCpXx,
dy + aCp X,
dy +a(—1), by construction of\x,
< dp.

IN

Va > 0,Cp (X" + alx)

By continuity, 30 > 0 such that:
Ve & A(X"),Co(X" + alX) CoxX* + aCplXX,
dy +aC/x, sincel & A(X"),

de, for0<a <.

IN A

That is, movement in the directialx is feasible for step-sizesQ a < d. More-
over,
Of(x)'oax =~V Aax— [pr]cax, by (B.26)
= —W,CplX, by construction of\x,
= —My(—1), by construction of¥,
< 0, sincey;, < 0 by assumption.

But this means thaf decreases in the directidkx from x* and there are feasible
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steps in this direction. This contradicts the local optitgabf x*. Therefore, no
such/’ exists and s> 0. O

Theorem 17.3 By Item (iv), x* is feasible. Consider any other feasible poihe
R". That is, considex’ such that:

AX =Db,CX <d.

We haveAX = Ax* = b, sOA(X —x*) = 0and:

MTAX —x) =0. (B.27)

We now consider constraintsc A(x*) and constraintg ¢ A(x*) separately.
Forl ¢ A(x"), C,x* < d, and Item (iii) implies thagy; = 0. Therefore,

Ve & AXY), lC(X —x*) =0. (B.28)

Also, sinceC,X < d, for all ¢ and sinceC,x* = d; for £ € A(x*), we have:

\WAS A(X*),Cg()(’ — X*) = CgX’ — dg,
d; —dy,
0.

IN

Therefore, since; > 0 for £ € A(x"), we have:

Ve e A(X"),l5Cy (X —Xx*) < 0. (B.29)
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We have:

f(xX) > f(x)+0f(x) (X —x*), by Theorem 2.6, noting that:

f is partially differentiable with continuous partial deatives;
by Item (i) of the hypothesis,
f is convex on the convex sk € R"|Ax=b,Cx< d}; and
by Item (iv) of the hypothesis and construction,
X, x* € {x € R"|Ax=b,Cx< d},

= () — [AN T T = x),

by Item (ii) of the hypothesis
= () = VA —x) =[] 'e(K —x),

= <x> [m*c< X)(X — >by(B 27)

= WC(X Z WC(X —Xx*),
LeA(x) LEA(X)

= f(x)— Y HC(X~-x), by(B.28)
LeA(xr)

> f(x), by (B.29)

Thereforex* is a global minimizer off on {x € R"|Ax=b,Cx<d}. O

B.6 Algorithms for non-linear inequality-constrained minimization

Theorem 19.4 By Item (v), x* is feasible. Consider any other feasible potht
R". That is, considex such that:

AX =bh(X) <0
We haveAX = Ax" = b, sOA(X —x*) = 0and:
MTAX —x) =0. (B.30)

We now consider constraintsc A(x*) and constraintg ¢ A(x*) separately.
For¢ & A(x"), h(x*) < 0 and Item (iv) implies thafi; = 0. Therefore,

Ve & A K () (X —X) = (B.31)

whereK; is the/-th row of K. Also, sinceh,(x') < 0 for all ¢ and sinceh,(x*) = 0
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for ¢ € A(x*), we have:

Ve e AX),hy(X) —h(x") = h(x)-0,
0.

IN

We have that:
he(X) > hy(X*) + Ke(X) (X = X),
by Theorem 2.6, noting thdt, is partially differentiable with continuous partial

derivatives and is convex by Item (i). Therefore, sipge> 0 for £ € A(x"), we
have:

Ve AXY), WK (X)) (X —x) < (B.32)
By Item (i), his convex so thafx € R"|Ax= b, h(x) < 0} is a convex set. We have:
f(X) > f(x")+0f(x")"(X —x*), by Theorem 2.6, noting that:
f is partially differentiable with continuous partial deatives;
by Item (ii) of the hypothesis,
f is convex on the convex séx € R"|Ax= b,h(x) < 0}; and
by Item (v) of the hypothesis and construction,
X, x* € {x € R"|Ax= b,h(x) < 0},
= () — AN K] (¢ %),
by Item (iii) of the hypothesis
= 1) = VTTAK —x) = W] K ) (X =),
- < *> KR )X — > by (B.30)

— - 5 HK(x Z wa X),
1ehTx) (¢ATx

— ) Y KOO X, oy (831
LeA(x)

v

f(x), by (B.32)

Thereforex* is a global minimizer off on {x € R"|Ax=Db,h(x) <0}. O



