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Part IV
Equality-constrained optimization
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12
Case studies of equality-constrained optimization

(i) Production, at least-cost, of a commodity from machines, while
meeting a total demand (Section12.1), and

(ii) State estimation in an electric power system where the power
injections at some of the buses are known to high accuracy
(Section12.2).
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12.1 Least-cost production
12.1.1 Motivation

• Consider a machine that makes a certain product, requiring some costly
input to produce.

• If stock-piling of the product is costly or inconvenient or if demand for
the product varies rapidly, then to avoid over-supplies andshortages we
must vary production to follow variations in demand.

• An extreme example of this problem is in the production of electricity.
• Typically the fuel cost is non-zero and it is not practical tostock-pile

electrical energy over even very short periods.
• Electric generators also have efficiencies that vary markedly with output.
• In electric power, the problem of least-cost production is calledeconomic

dispatch.

Title Page ◭◭ ◮◮ ◭ ◮ 4 of 211 Go Back Full Screen Close Quit



12.1.2 Formulation
12.1.2.1 Variables

• Suppose that we ownn machines or plants that are producing a
commodity or product.

• We consider the production over a particular period of time.
• The lengthT of this period of time should be chosen to be short enough

so that the productionper unit timefor the commodity or product by each
machine can be well approximated by a constant over the time periodT.

• That is, we are assuming that the plant is inquasi-steady state.
• Definexk ∈ R to be the total amount of the commodity produced by

machinek over the time period.
• We collect the production decisions of machinesk= 1, . . . ,n, into a

vectorx∈ R
n, so thatx=





x1
...

xn



.
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12.1.2.2 Production costs
• We suppose that fork= 1, . . . ,n there are functionsfk : R→ R such that

fk(xk) is the cost for machinek to producexk over the time periodT.

12.1.2.3 Objective
• We want to minimize the objectivef : Rn → R defined by:

∀x∈ R
n, f (x) =

n

∑
k=1

fk(xk). (12.1)
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12.1.2.4 Constraints
Machine

• We assume that machinek has:
a maximum production capacity, sayxk, and
a minimum production capacity,xk ≥ 0.

xk ≤ xk ≤ xk. (12.2)

• The feasible operating set for machinek is therefore:

Sk = {0}∪ [xk,xk].

• The setSk is not convex ifxk > 0.
• In specifying (12.1) we assumed that each functionfk was defined on the

whole ofR; however, only the values offk onSk are relevant to the
solution of the problem.

• In defining f , we have implicitly extrapolated the cost function of each
machine from its operating range, as specified bySk, to the whole ofR.
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Production

• Let us assume that during the time periodT we face a total demand for
the commodity of quantityD.

• To meet demand, we must satisfy the constraint:

D =
n

∑
k=1

xk. (12.3)
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Fig. 12.1. Production
from three machines.
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Production, continued

• We can write the constraint in the formAx= b with either of the
following two choices forA∈ R1×n andb∈ R:

A= 1†,b= [D], or
A=−1†,b= [−D].

• For reasons that will be made clear in Section13.5when we discuss an
economic interpretation of the problem, we prefer to use thesecond
choice forA andb.

Machine and production combined

• The feasible operating set for all the machines is:(∏n
k=1Sk)⊂ R

n, where
the symbol∏ means theCartesian product, so that the feasible set for
the problem is:

S=

(

n

∏
k=1

Sk

)

∩{x∈ R
n|Ax= b} .
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Relaxation

• For the discussion in this chapter, however, we are going to:
– assume that each machine is in-service and operating, and
– ignore minimum and maximum production capacity constraints.

• That is, we are going to relax the set of feasible operating points for
machinek from the setSk to the whole ofR and correspondingly relax the
feasible set for the problem fromS to:

S= {x∈ R
n|Ax= b} .
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Relaxation, continued

• Part of the feasible setS lying in the non-negative orthant is illustrated in
Figure12.2for n= 3 andD = 10.
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Fig. 12.2. Part of feasi-
ble setS for least-cost
production case study.
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12.1.2.5 Problem
• Our relaxed optimization problem is:

min
x∈Rn

{ f (x)|Ax= b} . (12.4)

• We have implicitly assumed that each functionfk has beenextrapolated
to being a function defined on the whole ofR.
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12.1.2.6 Alternative formulation
• If the cost function for each machine increases monotonically with

production, we could also consider solving the inequality-constrained
problem:

min
x∈Rn

{

f (x)

∣

∣

∣

∣

∣

D ≤
n

∑
k=1

xk

}

, (12.5)

• which is a further relaxation of our constraints, but which has the same
minimum and minimizer as Problem (12.4) if costs are strictly
monotonically increasing.

• The flexibility in the choice of formulation can sometimes beuseful in
adapting a problem formulation to an algorithm or in provingresults
about the problem.

• However, in this chapter we will only consider the equality-constrained
version, Problem (12.4).
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12.1.2.7 Discussion
• Suppose that the solutionx⋆ of the relaxed Problem (12.4) happens to

satisfy the omitted minimum and maximum capacity constraints (12.2).
• That is,x⋆k ∈ Sk.
• Then the solution of the relaxed Problem (12.4) is optimal for the

complete problem including the machine constraints:

min
x∈S

f (x).

• If the omitted constraints are not satisfied, then we must consider them
explicitly.

• We will explicitly consider inequality constraints such asthe minimum
and maximum production capacity constraints (12.2) in PartV, but the
feasible setSk for machinek is non-convex since it includes the points 0
andxk but not any points between 0 andxk.

Title Page ◭◭ ◮◮ ◭ ◮ 14 of 211 Go Back Full Screen Close Quit



12.1.3 Change in demand
• We can expect that demand will change over time.
• Consequently, it is important to be able to estimate the change in the costs

due to a change in demand fromD to D+∆D, say.

12.1.4 Problem characteristics
12.1.4.1 Objective

Separability

• It is expressed as the sum of functions,fk, each of which depends only on
a single entry,xk, of x.

• That is, the objective isadditively separable.
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Average production costs
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Fig. 12.3. The av-
erage production
cost fk(xk)/xk versus
production xk for a
typical machine for
xk ≤ xk ≤ xk.
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Average production costs, continued

• Consider theaverage cost per unit of production fk(xk)/xk for machine
k producingxk.

• At low levels of production, we would expect the average production cost
to be relatively high.

• This is because there are usually costs that must be incurredwhenever the
plant is in-service and producing non-zero levels of output.

• As xk increases from low levels, the average production costs typically
decrease because the costs of operating the auxiliary equipment are
averaged over a greater amount of production.

• For somexk, the average costsfk(xk)/xk reach a minimum and then begin
to increase again for larger values ofxk.

• The point wherefk(xk)/xk is at a minimum is the point of maximum
efficiency of the machine.
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Production costs

• If we multiply the values offk(xk)/xk in Figure12.3by xk, we obtain the
production costsfk(xk) as illustrated in Figure12.4.
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Fig. 12.4. Production
cost fk(xk) versus pro-
duction xk for a typical
machine.
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Production costs, continued

• Extrapolating the shape offk from xk to valuesxk < xk we find that at
xk = 0 the extrapolated value of the production cost function would be
greater than zero due to the auxiliary operating costs.

Convexity

• If xk > 0 thenSk = {0}∪ [xk,xk] is not convex.
• If xk = 0 thenSk = {0}∪ [xk,xk] = [xk,xk] = [0,xk] is convex.
• Even in this case, however, if there are non-zero auxiliary operating costs

then fk is not a convex function on[0,xk] because of the discontinuity in
fk.
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Convexity, continued

• To identify a test set on which the objective might be convex,suppose
that:
xk = 0 and consider the setSk = {xk ∈ R|0< xk ≤ xk} ⊂ Sk, or
xk > 0 and consider the setSk = {xk ∈ R|xk ≤ xk ≤ xk} ⊂ Sk.

• In both cases,Sk is a convex set.
• Moreover, for both these cases, Figure12.4suggests thatfk is convex on
Sk.

• We will assume that the cost function of each machine has been
extrapolated to a function that is convex on thewholeof R.

• We have effectively redefinedfk(0).
• It is often reasonable to assume thatfk : Sk → R is quadratic:

∀xk ∈ Sk, fk(xk) =
1
2

Qkk(xk)
2+ckxk+dk. (12.6)

• For convex costs,Qkk ≥ 0.
• With non-zero auxiliary costs,dk > 0.
• We also usually expect thatck > 0.
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Convexity, continued

• Adding together the cost functions for all machines, we obtain:

∀x∈R
n, f (x) =

1
2

x†Qx+c†x+d,

• whereQ∈ Rn×n is a diagonal matrix withk-th diagonal entry equal to
Qkk,

• c∈ Rn hask-th entry equal tock, and
• d = ∑n

k=1dk ∈ R.
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12.1.4.2 Constraint
Eliminating a variable

• By Corollary3.7, we can use the equality constraintAx= b to eliminate
one of the variables, sayx1, by writing:

x1 = D−x2−·· ·−xn.

• Expressing the objective in terms ofx2, . . . ,xn yields an unconstrained
problem with objectivef (x̃) where:

x̃ =









D−x2−·· ·−xn
x2
...

xn









=

[

D
0

]

+

[

−1†

I

]





x2
...

xn



 ,

= x̂+Zξ,
= τ(ξ),
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Eliminating a variable, continued

• where:

x̂ =

[

D
0

]

∈ S,

Z =

[

−1†

I

]

∈ R
n×(n−1),

ξ =





x2
...

xn



 ∈ R
n−1,

• and whereτ : Rn−1 → S is defined by:

∀ξ ∈ R
n−1,τ(ξ) = x̂+Zξ,

• and we note thatτ is ontoS.
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Eliminating a variable, continued

• The pointx̂ is a particular solution of the equationsAx= b.
• The matrixZ has columns that form a basis for the null space ofA.
• The objectivef (x̃) depends only onξ ∈ Rn−1.
• We have transformed the equality-constrained problem intoan

unconstrained problem with objectiveφ : Rn−1 → R defined by:

∀ξ ∈ R
n−1,φ(ξ) = f (x̃),

= f

(

D−1†ξ
ξ

)

,

= f (τ(ξ)).

• The unconstrained problem:

min
ξ∈Rn−1

f (x̃) = min
ξ∈Rn−1

φ(ξ),

• could then be solved using the techniques developed in Chapter 10.
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Eliminating a variable, continued

• Elimination of variables is often an effective way to solve aproblem with
linear constraints.

• If there were, say,m equality constraints eliminated, then there would be
(n−m) variables in the resulting transformed problem, assuming that the
corresponding rows ofA were linearly independent.

Treating the constraint directly

• We will also explore approaches that treat the equality constraints directly.
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12.1.4.3 Solvability
• Since:

(i) we have defined the objective functionf on the whole ofRn,
(ii) the objective increases with increasing values ofxk ≥ 0, for eachk,

and
(iii) the constraint has a particularly simple form,

• there will always be a solution to Problem (12.4).
• However, the solution might not satisfy the minimum and maximum

machine constraints (12.2).
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12.2 Power system state estimation with zero injection buses
12.2.1 Motivation

12.2.1.1 Zero injection buses
• Recall the power system state estimation problem introduced in

Section9.2.
• Consider the situation in Figure12.5.
• Bus 2 does not have any load nor generation nor any measurement

devices.
• Such buses are common at intermediate points in electric power systems

between generators and load.
• We called this bus azero injection bus.
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12.2.1.2 Ignoring zero injection buses
• Suppose we use only the measurements shown explicitly in Figure12.5in

the objective of Problem (9.8).
• We do not have enough information to uniquely determine the voltage

magnitudes and angles at buses 2 and 3.
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l
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Fig. 12.5. Three-bus
electric power system
with a bus, bus 2,
having neither load nor
generation.
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12.2.1.3 Treating zero injection buses as accurate measurements
• Alternatively, we could think of the zero injection at bus 2 as a pair of

very accurate real and reactive power measurements having zero value
and zero measurement error.
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Fig. 12.6. Zero injec-
tion bus re-interpreted
as an exact measure-
ment.
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Treating zero injection buses as accurate measurements, continued
• We pick a small but non-zero value of measurement errorσℓ for each zero

injection bus measurement.
• We must then compromise between:

(i) makingσℓ small enough to approximately represent our certainty
that the measurement is zero, and

(ii) making σℓ large enough so that the entries in[Σ]−1 are not too
large.

• The entry in[Σ]−1 corresponding to the zero injection bus measurement
G̃ℓ = 0 is (σℓ)

−1, which must be “approximately” infinity to enforce
satisfaction of the constraint ˜gℓ(x) = 0.

• We are effectively using a penalty function approach, as discussed in
Section3.1.2.1.

• The optimality conditions and algorithms developed in Section 11.2.3
involved factorizing either̃J(x)†[Σ]−2J̃(x) or [Σ]−1J̃(x), whereJ̃ is the
Jacobian of ˜g.

• The presence of widely differing values inΣ will lead to an
ill-conditioned coefficient matrix as discussed in Section3.1.2.1.
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12.2.1.4 Treating zero injection buses as equality constraints
• The approach we will follow is to explicitly represent the zero injection

buses as pairs of equality constraints each of the formgℓ(x) = 0.

12.2.2 Formulation
12.2.2.1 Objective

• LetM be the set of measurements in the system, not including the
injection measurements at the zero injection buses.

• The maximum likelihood objective can again be transformed into:

∀x∈ R
n, f (x) = ∑

ℓ∈M

(g̃ℓ(x)− G̃ℓ)
2

2σ2
ℓ

. (12.7)

Title Page ◭◭ ◮◮ ◭ ◮ 31 of 211 Go Back Full Screen Close Quit



12.2.2.2 Constraints
• LetM0 be the set of real and reactive injections at the zero injection buses.
• For eachℓ ∈M0, let gℓ : Rn → R be the function representing an injection

at a zero injection bus.
• The power flow equations require that∀ℓ ∈M0,gℓ(x) = 0, so that our

estimate of the statex should be consistent with these constraints.
• We can collect the functions associated with the zero injection buses

together into a vector functiong : Rn → Rm, wherem is the number of
zero injection bus measurements, which is the number of elements inM0.

• That is,g : Rn → Rm is defined by:

∀x∈ R
n,g(x) = (gℓ(x))ℓ∈M0. (12.8)
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12.2.2.3 Problem
• Our problem is therefore:

min
x∈Rn

{ f (x)|g(x) = 0}. (12.9)

12.2.3 Change in measurement data
• Over time, the state of the power system changes as demand andsupply

situations change.
• Consequently, the measured data will change.
• We will consider how a change in measurement data affects theresult.
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12.2.4 Problem characteristics
12.2.4.1 Objective

• The objective of Problem (12.9) defined in (12.7) is approximately
quadratic.

12.2.4.2 Constraints
• The constraintsg(x) = 0 are approximately linear.
• However, since they are not exactly linear we cannot eliminate them and

re-write the problem as an unconstrained optimization in fewer variables.

12.2.4.3 Solvability
• The constraints in the problem are consistent with Kirchhoff’s laws and

we know from physical principles that there are solutions toKirchhoff’s
laws.
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13
Algorithms for linear equality-constrained

minimization

• In this chapter we will develop algorithms for constrained optimization
problems of the form:

min
x∈Rn

{ f (x)|Ax= b}, (13.1)

• where f : Rn → R, A∈ Rm×n, andb∈ Rm.
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Key issues
• Consideration ofdescent directionsfor the objective that also maintain

feasibility for the constraints,
• consideration of thenull spaceof the coefficient matrixA to transform

the constrained problem into an unconstrained problem,
• optimality conditions and the definition and interpretation of thedual

variablesand theLagrange multipliers,
• optimality conditions forconvex problems, and
• duality andsensitivity analysis.
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13.1 Optimality conditions
13.1.1 Descent directions

13.1.1.1 Conditions for non-minimizer
Analysis

• Consider a feasible point ˆx that is a candidate solution to Problem (13.1).
• By the discussion in Section5.8.1.2, every feasible point is of the form

x̂+∆x where:

∆x∈ N (A) = {∆x∈ R
n|A∆x= 0},

= {Z∆ξ|∆ξ ∈ R
n′},

• whereZ ∈ Rn×n′, with n′ ≥ n−m, is a matrix with columns that form a
basis for the null space ofA.
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Analysis, continued

• Suppose that a vector∆x∈ N (A) happened to also satisfy∇f (x̂)†∆x< 0.
• By Lemma10.1, such a direction is a descent direction forf at x̂.
• That is:

∃α ∈ R++ such that(0< α ≤ α)⇒ ( f (x̂+α∆x) < f (x̂)). (13.2)

• We also have that:

∀α ∈ R,A(x̂+α∆x) = b+αA∆x,
= b.

• If ∆x∈ N (A) and∇f (x̂)†∆x< 0 thenx̂ cannot be a minimizer.
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Example
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Fig. 13.1. Descent di-
rections for a function at

a pointx̂=

[

3
−3

]

, indi-

cated by the◦, and one
descent direction that
maintains feasibility for
the equality constraint
corresponding to the
feasible set illustrated
by the line.
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13.1.1.2 Minimizer
Analysis

• Supposex⋆ is a minimizer of the linear equality-constrained problem.
• Then for any direction∆x∈ N (A), that is, such thatA∆x= 0, we must

have that:

∇f (x⋆)†∆x 6< 0.

• Applying the same argument to the vector(−∆x) ∈ N (A), we must have
that:

∇f (x⋆)†(−∆x) 6< 0.

• Combining these two observations, we have that:

∇f (x⋆)†∆x= 0.

• If x⋆ is a minimizer of the linear equality-constrained problem then for
each∆x∈ N (A) we must have that∇f (x⋆)†∆x= 0.

• That is,N (A)⊆ {∆x∈ Rn|∇f (x⋆)†∆x= 0}.
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Example
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Fig. 13.2. Descent
directions for a function

at a pointx⋆ =
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,

indicated by the•, none
of which maintains fea-
sibility for the equality
constraint correspond-
ing to the feasible setS
illustrated by the line.
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13.1.1.3 Geometry of contour set
Tangent plane

Definition 13.1 Let f : Rn → R be partially differentiable,x⋆ ∈ Rn, and
suppose that∇f (x⋆) 6= 0. Let f ⋆ = f (x⋆). Then thetangent plane to the
contour setC f ( f ⋆) = {x∈ Rn| f (x) = f ⋆} of f at the pointx⋆ is the set:

P= {x∈ R
n|∇f (x⋆)†(x−x⋆) = 0}.

For brevity, we will often refer toP as “the tangent plane to the contour set
of f atx⋆.” If a setS⊆ Rn is contained inP then we say that “the contour
set of f is tangential to S atx⋆.” ✷
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Example
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C f ( f ⋆) Fig. 13.3. Tangent
planeP (shown dashed)
to contour setC f ( f ⋆)
of f (shown solid) at

a point x⋆ =
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,

indicated by the•.
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Example in higher dimension

• Considerx⋆ =

[

1
1
0

]

and objective functionf : R3 → R defined by:

∀x∈ R
3, f (x) = (x1)

2+(x2)
2+(x3)

2, (13.3)

∀x∈ R
3,∇f (x) =

[

2x1
2x2
2x3

]

,

∇f (x⋆) =

[

2
2
0

]

,

P = {x∈ R
3|∇f (x⋆)†(x−x⋆) = 0},

=







x∈ R
3

∣

∣

∣

∣

∣

∣

[

2
2
0

]†[x1−1
x2−1
x3−0

]

= 0







,

= {x∈ R
3|x1+x2 = 2}.
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Example in higher dimension, continued

• In Rn, the tangent plane is ahyperplane, that is, a space of dimension
n−1 defined by a single equality constraint.

• Descent directions forf atx⋆ point fromx⋆ into the sphere.

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1x2

x3

P

C f ( f ⋆)
Fig. 13.4. Tangent
plane P to contour set
C f ( f ⋆) of f at a point

x⋆ =

[

1
1
0

]

, indicated

by the •. The contour
set is the sphere and
the tangent plane is the
plane.
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13.1.1.4 Geometric interpretation
Analysis

• In Section13.1.1.2, we showed that ifx⋆ is a constrained minimizer off
then:

N (A)⊆ {∆x∈ R
n|∇f (x⋆)†∆x= 0}.

• Translating both of these sets by addingx⋆ to every element in both sets
and noting thatAx⋆ = b, we have that:

S = {x∈ R
n|Ax= b},

= {x∈ R
n|x= x⋆+∆x,∆x∈ N (A)}, sinceAx⋆ = b,

⊆ {x∈ R
n|x= x⋆+∆x,∇f (x⋆)†∆x= 0},
sincex⋆ is a constrained minimizer off ,

= {x∈ R
n|∇f (x⋆)†(x−x⋆) = 0},

= P,

• which is the tangent plane to the contour set off atx⋆.
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Analysis, continued

• Geometrically, we can say that the feasible set,S= {x∈ Rn|Ax= b}, is
contained in the setP, which is the tangent plane to the contour set off at
x⋆.

• We can also say that the contour set off is tangential to the feasible set at
x⋆.

• This observation is consistent with Figures13.2and13.3.
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Example

• Recall the example equality-constrained Problem (2.13):

min
x∈R2

{ f (x)|Ax= b},

where:∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

A = [1 −1] ,
b = [0] .

• The (unique) local minimizer is atx⋆ =

[

2
2

]

with minimum f ⋆ = 2.

• The tangent plane to the contour set off atx⋆ is:

P = {x∈ R
2|∇f (x⋆)†(x−x⋆) = 0},

=

{

x∈ R
2

∣

∣

∣

∣

∣

[

2
−2

]†(

x−

[

2
2

])

= 0

}

,

= {x∈ R
2|x1−x2 = 0},

• which is the same set as the feasible set.
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Example, continued

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x1

x2

Fig. 13.5. Descent
directions for a function

at a point x⋆ =

[

2
2

]

,

(indicated by the •),
none of which main-
tains feasibility for
the equality constraint
illustrated by the line.
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Example of strict containment

• In higher dimensions, it can typically be the case that the feasible set
S= {x∈ Rn|Ax= b} is strictly contained in
P= {x∈ Rn|∇f (x⋆)†(x−x⋆) = 0}.

• For example, consider again the objective functionf : R3 → R defined
in (13.3):

∀x∈ R
3, f (x) = (x1)

2+(x2)
2+(x3)

2.

• Moreover, suppose that the equality constraintsAx= b are defined by:

A =

[

1 0 0
0 1 0

]

,

b = 1.

• The constraints specify thatx1 = x2 = 1, so that the feasible set is the line
in R3 that is parallel to thex3-axis and that passes throughx1 = x2 = 1.

• By inspection, the minimizer of minx∈R3{ f (x)|Ax= b} is x⋆ =

[

1
1
0

]

.
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Example of strict containment, continued

• In this case:

S = {x∈ R
3|Ax= b},

= {x∈ R
3|x1 = x2 = 1},

P = {x∈ R
3|∇f (x⋆)†(x−x⋆) = 0},

=

{

x∈ R
3

∣

∣

∣

∣

∣

[2 2 0]

(

x−

[

1
1
0

])

= 0

}

,

= {x∈ R
3|x1+x2 = 2}.

• That is, the tangent plane to the contour set off atx⋆ is a plane,P, in R
3,

which strictly contains the feasible setS, which is a line.
• The situation is illustrated in Figure13.6, which repeats Figure13.4but

adds a line that representsS.
• Descent directions forf atx⋆ point into the sphere.
• No descent directions point along the feasible setS.
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Example of strict containment, continued

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1x2

x3

P

S

C f ( f ⋆)

Fig. 13.6. Feasible set
strictly S contained in
tangent planeP to con-
tour setC f ( f ⋆) of f at

a pointx⋆ =

[

1
1
0

]

, indi-

cated by the•. The con-
tour set is the sphere;
the tangent plane is the
plane; and, the feasible
set is the vertical line.
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13.1.1.5 Summary
• At a minimizerx⋆ of Problem (13.1), every descent direction forf atx⋆

must lie outside the null space ofA.
• At a minimizer, the contour set off is tangential to the feasible set.
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13.1.2 First-order necessary conditions
13.1.2.1 Transformation of problem

• Let Z ∈ Rn×n′, with n′ ≥ n−m, be a matrix with columns that form a
basis for the null space ofA. Then:

N (A) = {∆x∈ R
n|A∆x= 0},

= {Z∆ξ|∆ξ ∈ R
n′}.

• Suppose that ˆx∈ R
n is a particular solution toAx= b.

S = {x∈ R
n|Ax= b},

= {x∈ R
n|x= x̂+∆x,A∆x= 0,∆x∈ R

n},

= {x̂+Z∆ξ|∆ξ ∈ R
n′}.

• We can define anonto function τ : Rn′ → S by:

∀ξ ∈ R
n′,τ(ξ) = x̂+Zξ.

• Varying ξ overRn′ allowsτ(ξ) to explore over the feasible setS.
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Transformation of problem, continued
• We use Theorem3.5to transform the equality-constrained Problem (13.1)

into an unconstrained problem.
• In the hypothesis of Theorem3.5, letP= Rn′ and defineφ : Rn′ → R by:

∀ξ ∈ R
n′,φ(ξ) = f (τ(ξ)). (13.4)

• The functionφ is called thereduced function.
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Transformation of problem, continued
• By Theorem3.5:

(i) minx∈Rn{ f (x)|Ax= b} has a minimum if and only if minξ∈Rn′ φ(ξ)
has a minimum.

(ii) If either one of the problems in Item(i) possesses a minimum (and
consequently, by Item(i), each one possesses a minimum), then:

min
ξ∈Rn′

φ(ξ) = min
x∈S

f (x),

argmin
x∈Rn

{ f (x)|Ax= b} =

{

τ(ξ)

∣

∣

∣

∣

∣

ξ ∈ arg min
ξ∈Rn′

φ(ξ)

}

.

• minξ∈Rn′ φ(ξ) is anunconstrainedproblem.
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Transformation of problem, continued
• The gradient ofφ, ∇φ(•) = Z†∇f (τ(•)), is called thereduced gradientor

theprojected gradient.
• Consider the direction corresponding to the reduced gradient in the

original decision variablesx∈ Rn.
• Referred to the original decision variablesx, the reduced gradient∇φ

corresponding to a point ˆx∈ Rn lies in the directionZZ†∇f (x̂) ∈ Rn.
• The vector∆x=−ZZ†∇f (x̂), which is opposite to the direction

corresponding to the reduced gradient, is a descent direction for f at x̂
unless the reduced gradientZ†∇f (x̂) = 0.

• Moreover, ifAx̂= b then, for anyα, x̂+α∆x also satisfies the equality
constraints.
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13.1.2.2 Necessary conditions in terms of original problem
Analysis

Theorem 13.1 Suppose that f: Rn → R is partially differentiable with
continuous partial derivatives, A∈ R

m×n, and b∈ R
m. Let Z∈ R

n×n′ be
a matrix with columns that form a basis for the null space of A.If
x⋆ ∈ R

n is a local minimizer of the problem:

min
x∈Rn

{ f (x)|Ax= b},

then:

Z†∇f (x⋆) = 0, (13.5)
Ax⋆ = b.

✷
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Example

• We continue with the previous equality-constrained Problem (2.13).

• By inspection,Z =

[

1
1

]

∈ R2×1 is a matrix with columns that form a

basis for the null space:

N (A) = {∆x∈ R
n|A∆x= 0},

• since:
A∆x= 0 if and only if ∆x1 = ∆x2, and

for ξ ∈ R,Zξ =

[

ξ
ξ

]

.
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Example

• Also:

∀x∈ R
2,∇f (x) =

[

2(x1−1)
2(x2−3)

]

,

∇f (x⋆) =

[

2
−2

]

,

• so thatx⋆ =

[

2
2

]

is not anunconstrainedminimizer of f .

• Using these calculations, we obtain:

Z†∇f (x⋆) = [1 1]

[

2
−2

]

,

= [0].

• consistent with the conclusion of Theorem13.1.
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13.1.2.3 Lagrange multipliers
Analysis

Theorem 13.2 Suppose that f: Rn → R is partially differentiable with
continuous partial derivatives, A∈ R

m×n, and b∈ R
m. If x⋆ ∈ R

n is a
local minimizer of the problem:

min
x∈Rn

{ f (x)|Ax= b},

then:

∃λ⋆ ∈ R
m such that∇f (x⋆)+A†λ⋆ = 0, (13.6)

Ax⋆ = b. (13.7)

Proof By Theorem13.1:

Z†∇f (x⋆) = 0, (13.8)
Ax⋆ = b,

whereZ ∈ R
n×n′ is a matrix with columns that form a basis for the null

space ofA. Any vector inRn can be written in the formZu−A†λ for
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someu∈ Rn′ andλ ∈ Rm. In particular, since∇f (x⋆) ∈ Rn, we have:

∃u⋆ ∈ R
n′,∃λ⋆ ∈ R

m such that∇f (x⋆) = Zu⋆−A†λ⋆.

Multiplying this expression through byZ† we obtain:

Z†∇f (x⋆) = Z†Zu⋆−Z†A†λ⋆.

But Z†∇f (x⋆) = 0 by (13.8), so:

Z†Zu⋆−Z†A†λ⋆ = 0.

Also AZ= 0, soZ†A†λ⋆ = 0 andZ†Zu⋆ = 0. But this means thatu⋆ = 0
sinceZ has linearly independent columns. That is,

∃λ⋆ ∈ R
m such that∇f (x⋆)+A†λ⋆ = 0,

which is (13.6). We already have thatAx⋆ = b, which is (13.7). ✷

• A vectorλ⋆ satisfying (13.6), given anx⋆ that also satisfies (13.7), is
called a vector ofLagrange multipliers for the problem.

• The conditions (13.6)–(13.7) are called thefirst-order necessary
conditions (or FONC) for Problem (13.1).
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Example

• Continuing with the previous equality-constrained Problem (2.13), we
obtain:

∇f (x⋆)+A†[−2] =

[

2
−2

]

+

[

1
−1

]

[−2],

= 0,

• which is consistent with Theorem13.2for λ⋆ = [−2].
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13.1.2.4 Analytic interpretation
The Lagrangian

• Recall Definition3.2of theLagrangian.
• For a problem with objectivef : Rn → R and equality constraintsAx= b,

with A∈ R
m×n andb∈ R

m the LagrangianL : Rn×R
m→ R is defined

by:

∀x∈ R
n,∀λ ∈ R

m,L(x,λ) = f (x)+λ†(Ax−b), (13.9)

whereλ is called the vector ofdual variables for the problem.
• We also define the gradients ofL with respect tox andλ by, respectively,

∇xL =

[

∂L
∂x

]†

and∇λL =

[

∂L
∂λ

]†

.

• That is:

∇xL(x,λ) = ∇f (x)+A†λ,
∇λL(x,λ) = Ax−b.

• We can interpret the first-order necessary conditions (13.6)–(13.7) in two
ways using the LagrangianL .
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Minimization of Lagrangian over primal variables

• The first-order necessary conditions imply thatx⋆ is a critical point of the
functionL(•,λ⋆) that also satisfies the constraintsAx= b.

• We seek a pointx⋆ that minimizesL(•,λ⋆).
• The vector of Lagrange multipliersλ⋆ “adjusts” the unconstrained

optimality conditions byA†λ⋆ to “balance” the minimization of the
objective against satisfaction of the constraints.
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Critical point of the Lagrangian

• The first-order necessary conditions also imply that

[

x⋆

λ⋆

]

is a solution of

the simultaneous equations:

∇xL(x,λ) = 0, (13.10)
∇λL(x,λ) = 0. (13.11)

• The second set of equations requires thatx⋆ be feasible and are linear
equations.

• We seek

[

x⋆

λ⋆

]

satisfying∇L(x⋆,λ⋆) = 0, where∇L =

[

∇xL
∇λL

]

.

• That is,

[

x⋆

λ⋆

]

is a critical point ofL .

• However,

[

x⋆

λ⋆

]

is not a minimizer ofL(•,•) over values of

[

x
λ

]

.
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Algorithms

• As in the unconstrained case, these two interpretations lead us to two (of
several) classes of algorithms for solving Problem (13.1):

(i) minimize the Lagrangian overx for a fixedλ and then adjustλ
until feasibility is obtained, (Sections13.3.1.4and13.3.2.4), and

(ii) solve the necessary conditions (13.10)–(13.11) for x andλ,
(Sections13.3.1.3and13.3.2.3).
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Example

• Continuing with the previous equality-constrained Problem (2.13), the
LagrangianL : R2×R→ R is defined by:

∀x∈ R
2,∀λ ∈ R,L(x,λ) = (x1−1)2+(x2−3)2+λ(x1−x2). (13.12)

• Setting the value of the dual variable in the Lagrangian equal to the
Lagrange multiplier,λ⋆ = [−2], we have:

∀x∈ R
2,L(x,λ⋆) = (x1−1)2+(x2−3)2+(−2)(x1−x2).

• The first-order necessary conditions for minimizingL(x,λ⋆) with respect
to x is that:

∇xL(x,λ⋆) =

[

2(x1−1)−2
2(x2−3)+2

]

,

= 0,

• which yields a solution ofx⋆ =

[

2
2

]

.
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Example, continued
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Fig. 13.7. Contour sets
for LagrangianL(•,λ⋆)
evaluated at the La-
grange multipliersλ⋆ =
[−2].
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Example, continued

• For other values of the dual variablesλ not equal to the Lagrange
multipliersλ⋆, the corresponding minimizer ofL(•,λ) will differ from
the minimizer of Problem (2.13).

• For λ̃ = [−5], the contour sets ofL(•, λ̃) are illustrated in Figure13.8.

• The unconstrained minimizer of this function is at ˜x=

[

3.5
0.5

]

, illustrated

with a◦ in Figure13.8, which differs fromx⋆.
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Example, continued
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Fig. 13.8. Contour sets
for LagrangianL(•, λ̃)
evaluated at value of
dual variables̃λ = [−5]
not equal to Lagrange
multiplers.
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13.1.2.5 Relation to geometric interpretation
• To see that the first-order necessary conditions imply the geometric

observation made in Section13.1.1.4, suppose that ˆx∈ Rn satisfies:

x̂∈ S= {x∈ R
n|Ax= b}.

• ThenA(x̂−x⋆) = 0 and so[λ⋆]†A(x̂−x⋆) = 0.
• The necessary conditions require that∇f (x⋆)†+[λ⋆]†A= 0.
• Multiplying by (x̂−x⋆) on the right we obtain:

0 =
(

∇f (x⋆)†+[λ⋆]†A
)

(x̂−x⋆),

= ∇f (x⋆)†(x̂−x⋆).

• Therefore:

x̂∈ P= {x∈ R
n|∇f (x⋆)†(x−x⋆) = 0}.

• The contour set off is tangential to the feasible setS atx⋆.
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13.1.2.6 First-order necessary conditions are not sufficient
Discussion

• As with unconstrained problems, it is possible for a point ˆx to satisfy the
first-order necessary conditions (13.6)–(13.7) and yet not be a local
minimizer of Problem (13.1).

Example

• Consider the case of Problem (13.1) with n= 2 andm= 1 and:

∀x∈ R
2, f (x) = −

1
2
(x1)

2−
1
2
(x2)

2,

A = [1 −1] ,
b = [0] .

• x̂= 0 is not the minimizer of the problem.
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Example, continued
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Fig. 13.9. Contour sets
for non-convex objec-
tive. The objective de-
creases away from ˆx =
0.
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Example, continued

• The pointx̂= 0 satisfies (13.6)–(13.7) with λ̂ = 0 since:

∇f (x̂)+A†λ̂ = −x̂+

[

1
−1

]

λ̂,

= 0+
[

1
−1

]

0,

= 0,
Ax̂ = A0,

= 0,
= b.

• That is,x̂= 0 andλ̂ = 0 satisfy the first-order necessary conditions for
Problem (13.1), but x̂= 0 is not a minimizer of this problem.

• In fact, it is amaximizerof f over the feasible set.
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13.1.3 Second-order sufficient conditions
13.1.3.1 Null space basis

Analysis

Theorem 13.3 Suppose that f: Rn → R is twice partially differentiable
with continuous second partial derivatives, A∈ Rm×n, and b∈ Rm. Let
Z ∈ Rn×n′ be a matrix with columns that form a basis for the null space
of A. Let x⋆ ∈Rn and suppose that:

Z†∇f (x⋆) = 0,
Ax⋆ = b,

Z†∇2f (x⋆)Z is positive definite.

Then x⋆ ∈ Rn is a strict local minimizer of the problem:

min
x∈Rn

{ f (x)|Ax= b}.
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Proof The conditions follow from the second-order sufficient
conditions presented in Theorem10.5for unconstrained minimization
applied to the problem of minimizing the reduced functionφ : Rn′ → R

defined in (13.4):

∀ξ ∈ R
n′,φ(ξ) = f (τ(ξ)).

✷
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Example

• Continuing with the previous equality-constrained Problem (2.13),

∀x∈ R
2,∇2f (x) =

[

2 0
0 2

]

,

Z†∇2f (x⋆)Z = [1 1]

[

2 0
0 2

][

1
1

]

,

= [4],

• which is positive definite.
• Applying Theorem13.3, we conclude thatx⋆ is a local minimizer of

Problem (2.13).
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13.1.3.2 Lagrange multipliers
Analysis As previously, we can also develop second-order sufficient
conditions in terms of Lagrange multipliers:

Corollary 13.4 Suppose that f: Rn → R is twice partially differentiable
with continuous second partial derivatives, A∈ R

m×n, and b∈ R
m. Let

x⋆ ∈ Rn andλ⋆ ∈ Rm satisfy:

∇f (x⋆)+A†λ⋆ = 0,
Ax⋆ = b,

(A∆x= 0 and∆x 6= 0) ⇒ (∆x†∇2f (x⋆)∆x> 0).

Then x⋆ ∈ R
n is a strict local minimizer of the problem:

min
x∈Rn

{ f (x)|Ax= b}.

Proof The hypotheses of this corollary imply the hypotheses of
Theorem13.3. ✷

• We refer to the conditions in Corollary13.4as thesecond-order
sufficient conditions(or SOSC).
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Example

• Continuing with the previous equality-constrained Problem (2.13),

∇2f (x⋆) =

[

2 0
0 2

]

,

• which is positive definite onR2 and, in particular, on the null space
N (A) = {∆x∈ R

n|A∆x= 0}.
• Applying Corollary13.4, we conclude thatx⋆ is a local minimizer of

Problem (2.13).
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13.2 Convex problems
13.2.1 First-order sufficient conditions

13.2.1.1 Analysis

Theorem 13.5 Suppose that f: Rn → R is partially differentiable with
continuous partial derivatives, A∈ Rm×n, and b∈ Rm. Consider points
x⋆ ∈ Rn andλ⋆ ∈ Rm. Suppose that:

(i) f is convex on{x∈ R
n|Ax= b},

(ii) ∇f (x⋆)+A†λ⋆ = 0, and
(iii) Ax⋆ = b.

Then x⋆ is a global minimizer of the problem:

min
x∈Rn

{ f (x)|Ax= b}.
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Proof Consider any feasible pointx∈ {x∈ Rn|Ax= b}. We have:

f (x) ≥ f (x⋆)+∇f (x⋆)†(x−x⋆), by Theorem2.6, noting that:
f is partially differentiable with continuous partial derivatives,
f is convex on the convex set{x∈ Rn|Ax= b} by Item(i); and
x,x⋆ ∈ {x∈ Rn|Ax= b} by Item(iii) of the hypothesis,

= f (x⋆)− [λ⋆]†A(x−x⋆), by Item(ii) of the hypothesis,
= f (x⋆), sinceAx= Ax⋆ = b by Item(iii) and construction.

Thereforex⋆ is a global minimizer off on{x∈ Rn|Ax= b}. ✷
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Corollary 13.6 Suppose that f: Rn → R is partially differentiable with
continuous partial derivatives, A∈ R

m×n, and b∈ R
m. Let Z∈ R

n×n′

have columns that form a basis for the null space{∆x∈ Rn|A∆x= 0}.
Consider a point x⋆ ∈ Rn. Suppose that:

(i) f is convex on{x∈ Rn|Ax= b},
(ii) Z†∇f (x⋆) = 0, and

(iii) Ax⋆ = b.
Then x⋆ is a global minimizer of the problem:

min
x∈Rn

{ f (x)|Ax= b}.
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Proof Items(i) and(iii) of the hypothesis of this corollary are the same
as the corresponding Items(i) and(iii) of the hypothesis of
Theorem13.5.
Item(ii) of the hypothesis of this corollary says thatZ†∇f (x⋆) = 0. In the
proof of Theorem13.2, it was proven that:

(Z†∇f (x⋆) = 0)⇒ (∃λ⋆ ∈ R
m such that∇f (x⋆)+A†λ⋆ = 0.)

That is, Item(ii) of the hypothesis of Theorem13.5holds. Therefore, the
result then follows from Theorem13.5. ✷
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13.2.1.2 Example
• Continuing with the previous equality-constrained Problem (2.13), we

have already verified thatx⋆ =

[

2
2

]

andλ⋆ = [−2] satisfy the first-order

necessary conditions.
• We also have thatf is convex.
• By Theorem13.5, x⋆ is a global minimizer of Problem (2.13).
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13.2.2 Duality
• The discussion in Section13.1.2.4suggests that if we knew the vector of

Lagrange multipliersλ⋆ we could avoid explicit consideration of the
equality constraints iff was convex.

• Here we discuss one method to find the Lagrange multipliers and indicate
some of the issues that arise.

• In particular, we will see that we generally require strict convexity of f to
yield useful results.
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13.2.2.1 Dual function
Analysis

• As we discussed in Section3.4, we can define a dual problem where the
role of variables and constraints is partly or fully swapped.

• Recall Definition3.3of thedual function andeffective domain.
• For Problem (13.1), the dual functionD : Rm→ R∪{−∞} is defined by:

∀λ ∈ R
m,D(λ) = inf

x∈Rn
L(x,λ), (13.13)

• while the effective domain is:

E= {λ ∈ R
m|D(λ)>−∞},

• so that the restriction ofD to E is a functionD : E→ R.
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Example

∀x∈ R
2,∀λ ∈ R,L(x,λ) = (x1−1)2+(x2−3)2+λ(x1−x2),

∀λ ∈ R,D(λ) = inf
x∈R2

L(x,λ),

= inf
x∈R2

{(x1−1)2+(x2−3)2+λ(x1−x2)}.

• L(•,λ) is partially differentiable with continuous partial derivatives and
is strictly convex.

• By Corollary10.6the first-order necessary conditions are sufficient for
global optimality:

∇xL(x,λ) =

[

2(x1−1)+λ
2(x2−3)−λ

]

,

= 0.
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Example, continued

• For any givenλ ∈ R, the unique solution isx(λ) =

[

1−λ/2
3+λ/2

]

.

∀λ ∈ R,D(λ) =

(

1−
λ
2
−1

)2

+

(

3+
λ
2
−3

)2

+λ
(

1−
λ
2
−3−

λ
2

)

,

= −
(λ)2

2
−2λ. (13.14)
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13.2.2.2 Dual problem
Analysis

• Under certain conditions, Lagrange multipliers can be found as the
maximizer, over the dual variablesλ, of the following problem:

max
λ∈E

D(λ). (13.15)

• Problem (13.15) is called thedual problem to Problem (13.1).
• Problem (13.1) is called theprimal problem .
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Theorem 13.7 Suppose that f: Rn → R is convex and partially
differentiable with continuous partial derivatives, A∈Rm×n, and
b∈ R

m. Consider primal problem, Problem (13.1):

min
x∈Rn

{ f (x)|Ax= b}.

Also, consider the dual problem, Problem (13.15). We have that:
(i) If the primal problem possesses a minimum then the dual problem

possesses a maximum and the optima are equal. That is:

min
x∈Rn

{ f (x)|Ax= b}= max
λ∈E

D(λ). (13.16)

(ii) If:
• λ ∈ E,
• minx∈Rn L(x,λ) exists, and
• f is twice partially differentiable with continuous second

partial derivatives and∇2f is positive definite,
thenD is partially differentiable atλ with continuous partial
derivatives and

∇D(λ) = Ax(λ)−b, (13.17)
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where x(λ) is the unique minimizer ofminx∈Rn L(x,λ).

Proof This is a special case of Theorem17.4be presented in
Chapter17. ✷

• For someλ ∈ Rm it is possible for infx∈Rn L(x,λ) to be a real number, so
thatλ ∈ E, yet for there to be no minimum of minx∈Rn L(x,λ) or for ∇2f
to fail to be positive definite so that there are multiple minimizers of
minx∈Rn L(x,λ).

• In either case, the dual functionD may be non-differentiable atλ ∈ E.
• Recall from Theorem3.12that the effective domainE of the dual

function is a convex set and that the dual function is concaveonE.
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Corollary 13.8 Let f : Rn → R be twice partially differentiable with
continuous second partial derivatives and with∇2f positive definite,
A∈ R

m×n, and b∈ R
m. LetE be the effective domain of the dual

function.
If:
• E= Rm, and
• ∀λ ∈ Rm, minx∈Rn L(x,λ) exists,
then necessary and sufficient conditions forλ⋆ ∈ R

m to be the maximizer
of the dual function are that:

Ax(λ
⋆)−b= 0,

where{x(λ
⋆)}= argminx∈Rn L(x,λ⋆). Moreover, ifλ⋆ maximizes the dual

then x(λ
⋆) andλ⋆ satisfy the first-order necessary conditions for

Problem (13.1).
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Proof Note that the hypothesis implies that the dual function is finite
for all λ so that Problem (13.15) is an unconstrained maximization of a
real-valued function and, moreover, by Theorem3.12, −D is convex and
partially differentiable with continuous partial derivatives. By
Theorem10.3and Corollary10.6, ∇D(λ) = 0 is necessary and sufficient
for λ to be a global maximizer ofD. By Theorem13.7,
∇D(λ) = Ax(λ)−b, so the necessary and sufficient conditions for
maximizing the dual are thatAx(λ)−b= 0. Direct substitution shows
thatx(λ

⋆) andλ⋆ satisfy the first-order necessary conditions for
Problem (13.1). ✷

• Theorem13.7shows that an alternative approach to finding the minimum
of Problem (13.1) involves finding themaximumof the dual function over
λ ∈ Rm.

• Theorem3.12shows that the dual function has at most one local
maximum, with necessary and sufficient conditions for the maximizer
specified in Corollary13.8.

Title Page ◭◭ ◮◮ ◭ ◮ 94 of 211 Go Back Full Screen Close Quit



Example

• Continuing with the previous equality-constrained Problem (2.13), we
note that∇2f is positive definite and, for eachλ, L(•,λ) has a unique
minimizer, specified by the solution of∇xL(x,λ) = 0, so that, by
Theorem13.7, E= R and the dual function is partially differentiable with
continuous partial derivatives on the whole ofR.

• Moreover, since the dual function is concave, the first-order necessary
conditions to maximizeD are also sufficient.

• Partially differentiatingD we obtain:

∇D(λ) = [−λ−2].

• This is consistent with Theorem13.7, since:

Ax(λ)−b = [1 −1]

[

1−λ/2
3+λ/2

]

− [0],

= [−λ−2].
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Example, continued

• Moreover,∇D(λ) = [0] for λ⋆ = [−2].
• Also, D(λ⋆) = 2, which is equal to the minimum of Problem (2.13) and

x(λ
⋆) =

[

2
2

]

, which is the minimizer of Problem (2.13).
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Wolfe dual

• In some cases we can write down conditions characterizing the value of
the dual function more explicitly than in (13.13).

• Suppose thatf is partially differentiable with continuous partial
derivatives and that it is convex onRn.

• Then by Corollary10.6, the first-order necessary conditions
∇xL(x,λ) = 0 are sufficient for minimizingL(•,λ).

• Givenλ ∈ R
m, if there is a solution to∇xL(x,λ) = 0 then we can evaluate

the dual function by:

D(λ) = {L(x,λ)|∇xL(x,λ) = 0},

• where by the notation on the right-hand side we mean thevalueof L(x,λ)
evaluated for a value ofx that satisfies∇xL(x,λ) = 0, assuming a solution
for x exists.
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Wolfe dual, continued

• Using Theorem13.7, this observation means that under the same
assumptions, we can solve for the minimum of Problem (13.1) by using
theWolfe dual:

min
x∈Rn

{ f (x)|Ax= b}= max
λ∈Rm

{L(x,λ)|∇xL(x,λ) = 0}, (13.18)

• where we again use the equation∇xL(x,λ) = 0 to evaluatex and have
tacitly assumed that∇xL(x,λ) = 0 has a solution for eachλ.
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Discussion

• It is essential in Theorem13.7for f to be convex on thewholeof Rn, not
just on the feasible set.

• The reason is that the inner minimization ofL(•,λ) is taken over the
whole ofRn.

• Unfortunately, if f is notstrictly convex thenL(•,λ) may have multiple
minimizers overx for fixed λ.

• In this case, it may turn out that some of the minimizers ofL(•,λ⋆) do
not actually minimize (13.1).

• Even when the objective is not strictly convex we can still try to solve the
dual problem to obtainλ⋆ and extract a corresponding value ofx(λ

⋆).
• This approach forms the basis ofLagrangian relaxation, the

sub-gradient method, and other methods to solve non-differentiable
problems that result from “dualizing” a problem that has an objective that
is not convex or which has a feasible set that is not convex.
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13.2.2.3 Separable objective
Analysis

• Suppose thatf : Rn → R is additively separable, so that:

∀x∈ R
n, f (x) =

n

∑
k=1

fk(xk),

• where fk : R→ R,k= 1, . . . ,n.
• We consider the dual.
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Analysis, continued

∀λ ∈ E,D(λ) = inf
x∈Rn

L(x,λ),

= min
x∈Rn

L(x,λ), assuming that the minimum exists,

= min
x∈Rn

f (x)+λ†(Ax−b), by definition ofL ,

= min
x∈Rn

{

n

∑
k=1

fk(xk)+λ†

(

n

∑
k=1

Akxk−b

)}

,

whereAk is thek-th column ofA,

= min
x∈Rn

{

n

∑
k=1

(

fk(xk)+λ†Akxk

)

}

−λ†b,

=
n

∑
k=1

min
xk∈R

{ fk(xk)+λ†Akxk}−λ†b. (13.19)
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Analysis, continued

• For each fixedλ ∈ Rm, the dual functionD(λ) is the sum of:
a constant(−λ†b), and
n one-dimensional optimization “sub-problems” that can each be

evaluated independently.
• We havedecomposedthe problem by exploiting the separability of the

objective.
• If there are relatively few constraints but many variables and the objective

is separable then maximizing the dual problem involves optimization in a
smaller dimension than minimizing the primal problem.
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Example

• Continuing with the previous equality-constrained Problem (2.13), note
that the objective is separable.

• The dual function is:

∀λ ∈ R,D(λ) = min
x∈R2

L(x,λ),

= min
x1∈R

{(x1−1)2+λx1}+ min
x2∈R

{(x2−3)2−λx2}.

(13.20)

• Each of the two convex sub-problems can be solved separatelyand the
result is the same as obtained previously.
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13.2.2.4 Penalty functions and augmented Lagrangians
Discussion

• In Section3.4.5in discussing duality, we interpreted terms in the
Lagrangian as functioning as a penalty.

• In Section3.1.2.1, we discussed an approach to approximately solving
constrained problems by defining an unconstrained problem with a
penalized objective.

• In Section3.1.2.1we also observed that we could consider the penalized
objective f +Π‖g‖2 for some suitable value of the penalty coefficient
Π ∈ R++ and retain the constraints.

• Here we will consider the combined use of penalty functions and duality.
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Example
∀x∈ R

2, f (x) =−2(x1−x2)
2+(x1+x2)

2.

• The objective is not convex and is not bounded below.

−5
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5

−5

0

5
−200

−150

−100

−50

0

50

100

x1x2

f (x)

Fig. 13.10. The non-
convex objective
function defined in
section13.2.2.4.
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Example, continued

A = [1 −1] ,
b = [0],

∀x∈ R
2,∀λ ∈ R,L(x,λ) = f (x)+λ†(Ax−b),

= −2(x1−x2)
2+(x1+x2)

2+λ(x1−x2).

• For any givenλ ∈ R, L(•,λ) is not bounded below.
• Therefore:

∀λ ∈ R, inf
x∈Rn

L(x,λ) =−∞,

• andE= /0.
• We cannot usefully apply Theorem13.7.
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Example, continued

• However, we know that the solution to the equality-constrained
optimization problem:

min
x∈Rn

{ f (x)|Ax= b}

• is x⋆ = 0.
• Substitution into the necessary conditions shows that corresponding value

of the Lagrange multiplier isλ⋆ = [0], so thatL(•,λ⋆) = f (•).
• The primal problem is well-defined, the first-order necessary conditions

hold at the minimizer, andx⋆ andλ⋆ satisfy the second-order sufficient
conditions.

• The difficulties in applying Theorem13.7arise here because the objective
is not convex onRn.
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Example, continued

• Suppose that instead we consider a penalized objective.
• That is, we modify the objective to bef +Π fp, whereΠ ∈ R++ and

fp : Rn → R+ is defined by:

∀x, fp(x) = ‖Ax−b‖2
2 ,

= (x1−x2)
2.

• For example, suppose that we chooseΠ = 3.
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Example, continued
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x1x2

f (x)+Π fp(x)

Fig. 13.11. Convex pe-
nalized objective func-
tion f +Π fp for Π = 3.
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Example, continued

• The Lagrangian of the corresponding problem is called theaugmented
Lagrangian, Lp : R2×R→ R, defined by:

∀x∈ R
2,∀λ ∈ R,Lp(x,λ) = L(x,λ)+Π fp(x),

= (x1+x2)
2+λ(x1−x2)+(x1−x2)

2,

• which is strictly convex as a function ofx for fixed λ.
• Moreover, for eachλ ∈R, the minimizer ofLp(•,λ) exists, so thatE= R,

and the minimizer is unique, so that the dual function is partially
differentiable.

• In particular, for the example shown, minimizingLp(•,λ⋆) overx now
yields the optimalx⋆.

• We must pickΠ large enough so that:
– the augmented LagrangianLp(•,λ) is strictly convex for each givenλ

(so that there is at most one minimizer ofLp(•,λ) for each givenλ), and
– there is a minimizer of the augmented LagrangianLp(•,λ) for eachλ.
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Analysis

• Consider a quadraticf : Rn → R with quadratic coefficient matrix
Q∈ R

n×n and the use of a penalty functionΠ‖Ax−b‖2
2.

• The Hessian of the augmented LagrangianLp(•,λ) for fixed λ is
Q+2ΠA†A.

Theorem 13.9 Suppose that Q∈Rn×n is positive definite on the null-space
of A∈ Rm×n. Then there existsΠ > 0 such that Q+2ΠA†A is positive
definite.✷

• Theorem13.9shows that we can findΠ such that the augmented
Lagrangian is strictly convex as a function ofx for fixed λ.

• We typically must apply an adjustment procedure to find a suitable value
of Π.

Title Page ◭◭ ◮◮ ◭ ◮ 111 of 211 Go Back Full Screen Close Quit



Separability and the augmented Lagrangian

• Augmented Lagrangians have a drawback for separable objectives since
the penalty function adds “cross-terms” between variables, which prevent
decomposition into sub-problems.

• One approach to preserving separability while maintainingthe advantages
of augmented Lagrangians involves linearizing the cross-terms.
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13.3 Approaches to finding minimizers
• For each case considered, we will tacitly assume that a minimum and

minimizer exists.

• The algorithms will either be:
– direct, typically involving solution of a linear system of equations, or
– iterative, typically requiring at each iteration the solution of a linear

equation representing a Newton–Raphson update for solvingnon-linear
equations or an approximation to the Newton–Raphson update.

• We will proceed as though these Hessians are available and that the
resulting linear systems can be conveniently factorized using the basicLU
factorization.

• However, in practice, it may be necessary or desirable to:
– use a variation on the basic Newton–Raphson update along thelines

described in Section10.2.3.3to avoid the computational effort of
evaluation and factorization of the Hessian at each iteration, or

– use a different factorization method such asQR if the equations are
ill-conditioned.
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13.3.1 Convex quadratic objective
13.3.1.1 Problem

∀x∈ R
n, f (x) =

1
2

x†Qx+c†x,

• with c∈ Rn andQ∈ Rn×n and symmetric.
• We assume thatQ is positive semi-definite, or at least positive

semi-definite on the null spaceN (A) = {∆x∈ Rn|A∆x= 0}.
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13.3.1.2 Null space basis
Optimality conditions

• Let Z ∈ Rn×n′ be a matrix with columns that form a basis for the null
spaceN (A) = {∆x∈ Rn|A∆x= 0}.

Z†Qx⋆ = −Z†c, (13.21)
Ax⋆ = b. (13.22)

Algorithm

• Equations (13.21) and (13.22) are linear and involven′+mequations inn
variables.
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Example
min
x∈R2

{ f (x)|Ax= b},

∀x∈ R
2, f (x) =

1
2

x†Qx+c†x,

Q=

[

2 0
0 2

]

,c=

[

−2
−6

]

.

A= [1 −1] ,b= [0].

Z =

[

1
1

]

∈ R
2×1,

Z†Q = [1 1]

[

2 0
0 2

]

,

= [2 2] ,
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Example, continued

−Z†c = − [1 1]

[

−2
−6

]

,

= [8]
A = [1 −1] ,
b = [0],

[

2 2
1 −1

]

x⋆ =

[

8
0

]

,

x⋆ =

[

2
2

]

.

Discussion

• The main drawback of this approach is the need to construct the matrixZ

and then form and factorize the coefficient matrix

[

Z†Q
A

]

.
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13.3.1.3 Lagrange multipliers
Optimality conditions

Qx⋆+A†λ⋆ = −c, (13.23)
Ax⋆ = b. (13.24)

Algorithm

• Equations (13.23) and (13.24) are linear and involven+m equations in
n+m variables.

• The coefficient matrix of this system:

A =

[

Q A†

A 0

]

, (13.25)

• is indefinite, so that a special purpose algorithm for factorization of
indefinite matrices should be used, as mentioned in Section5.4.7.

• Performing a single forwards and backwards substitution then solves:
[

Q A†

A 0

][

x
λ

]

=

[

−c
b

]

. (13.26)
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Example

∀x∈ R
2, f (x) =

1
2

x†Qx+c†x,

Q=

[

2 0
0 2

]

,c=

[

−2
−6

]

.

A= [1 −1] ,b= [0].
[

2 0 1
0 2 −1
1 −1 0

]

[

x
λ

]

=

[

2
6
0

]

.

x⋆ =

[

2
2

]

,λ⋆ = [−2].

Title Page ◭◭ ◮◮ ◭ ◮ 119 of 211 Go Back Full Screen Close Quit



Discussion

• The coefficient matrixA in (13.25) is sparse ifQ andA are sparse.
• Although (13.23)–(13.24) has more equations than (13.21)–(13.22),

if (13.23)–(13.24) is sparse then it can be much easier to solve
than (13.21)–(13.22).

• If Q is positive semi-definite but not positive definite, then it may be the
case that the minimizer of Problem (13.1) is non-unique. AQR
factorization ofA specialized to indefinite matrices can be used. (See
Section5.4.7.)

• If Q= 0 so that the problem is actually linear, then it is usually thecase
that no minimum exists.

• If some of the rows ofA are linearly dependent, then the Lagrange
multipliers are not unique.
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13.3.1.4 Dual maximization
Optimality conditions

• The dual functionD : Rm→ R∪{−∞} is defined by:

∀λ ∈ R
m,D(λ) = inf

x∈Rn

{

1
2

x†Qx+c†x+λ†(Ax−b)

}

. (13.27)

• The dual problem is:

max
λ∈E

D(λ).

• The first-order necessary conditions for the unconstrainedminimization
problem on the right-hand side of (13.27) are:

∇xL(x,λ) = Qx+c+A†λ = 0. (13.28)
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Optimality conditions, continued

• For the rest of the analysis of dual maximization, we will assume thatQ is
positive definite so that the unconstrained problem on the right-hand side
of (13.27) is strictly convex and (13.28) has a unique solution:

x(λ) =−Q−1(c+A†λ).

• The necessary conditions for maximizing the dual are that:

∇D(λ) = Ax(λ)−b= 0.

• Each entry inλ can be increased or decreased depending on whether the
corresponding entry ofAx(λ)−b is greater than or less than zero.
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Algorithm

• A steepest ascent algorithm:

x(ν) = −Q−1(c+A†λ(ν)), (13.29)

∆λ(ν) = Ax(ν)−b, (13.30)

λ(ν+1) = λ(ν)+α(ν)∆λ(ν),

• whereα(ν) should be chosen to ensure asufficient increasein D(λ(ν+1))
compared toD(λ(ν)) using, for example, the Armijo criterion described
in Section10.2.4.2.

Stopping criterion

• By Theorem3.13, D(λ(ν+1)) provides a lower bound on the value of the
minimum.

• This lower bound can be incorporated into a stopping criterion.
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Example

∀x∈ R
2, f (x) =

1
2

x†Qx+c†x,

Q=

[

2 0
0 2

]

,c=

[

−2
−6

]

.

A= [1 −1] ,b= [0].

• Let λ(0) = [0].
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Example, continued

x(0) = −Q−1(c+A†λ(0)),

= −

[

1
2 0
0 1

2

][

−2
−6

]

,

=

[

1
3

]

,

∆λ(0) = Ax(0)−b,

= [1 −1]

[

1
3

]

−0,

= [−2].

Title Page ◭◭ ◮◮ ◭ ◮ 125 of 211 Go Back Full Screen Close Quit



Example, continued

λ(1) = λ(0)+α(0)∆λ(0),

= [0]+1× [−2], picking α(0) = 1,
= [−2],

x(1) = −Q−1(c+A†λ(1)),

= −

[

1
2 0
0 1

2

]([

−2
−6

]

+

[

1
−1

]

−2

)

,

=

[

2
2

]

,

∆λ(1) = Ax(1)−b,
= [0],

• and the dual algorithm has converged in one iteration.
• Usually, the dual iteration using steepest ascent requiresmore than one

iteration to converge, even if an optimal step-size is chosen, because the
level sets of the dual function are elliptical and not spherical.
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Discussion

• The algorithm adjustsλ until the optimality conditions for the dual are
satisfied.

• Maximizing the dual involves:

– choosingx to satisfy∇f (x)+A†λ(ν) = 0 at each iteration, given the
current estimate of the Lagrange multiplier,λ(ν), and

– updating the Lagrange multiplier estimate at each iteration so as to more
nearly satisfy the constraint (13.7), that is,Ax= b.
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13.3.2 Non-quadratic objective
13.3.2.1 Problem

• Suppose that the objectivef : Rn → R is partially differentiable with
continuous partial derivatives.

• We will consider several approaches to this problem.
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13.3.2.2 Null space basis
Optimality conditions

• Let Z ∈ Rn×n′ be a matrix with columns that form a basis for the null
spaceN (A) = {∆x∈ Rn|A∆x= 0}.

Z†∇f (x⋆) = 0, (13.31)
Ax⋆ = b. (13.32)
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Algorithm

• Suppose we construct an initial guessx(0) that satisfies the equality
constraints.

• The set of all solutions to the linear equations is given by:

{x(0)+Zξ|ξ ∈ R
n′}.

• We can now proceed to minimize the reduced functionφ : Rn′ → R

defined by:

∀ξ ∈ R
n′,φ(ξ) = f (x(0)+Zξ).

• Any of the unconstrained minimization methods developed in
Section10.2can be used to minimize this function.

• A natural initial guess forξ is ξ(0) = 0, corresponding to an initial guess
of x(0).
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Algorithm, continued

• A steepest descent algorithm using the reduced gradient∇φ would involve
the following recursion to define the iterates:

ξ(ν+1) = ξ(ν)−α(ν)∇φ(ξ(ν)),

• or equivalently:

ξ(ν+1) = ξ(ν)−α(ν)Z†∇f (x(0)+Zξ(ν)),
= ξ(ν)−α(ν)Z†∇f (x(ν)),

• wherex(ν) = x(0)+Zξ(ν) and the step-sizeα(ν) should be chosen to
achieve sufficient decrease in the reduced functionφ(ξ(ν+1)) according to,
for example, the Armijo criterion.
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Algorithm, continued

• A Newton–Raphson algorithm would involve:

∇2φ(ξ(ν))∆ξ(ν) = −∇φ(ξ(ν)),
ξ(ν+1) = ξ(ν)+α(ν)∆ξ(ν),

• or equivalently:

Z†∇2f (x(ν))Z∆ξ(ν) = −Z†∇f (x(ν)),

ξ(ν+1) = ξ(ν)+α(ν)∆ξ(ν).
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Example

• Considerf : R2 → R defined by:

∀x∈ R
2, f (x) = 0.01× (x1−1)4+0.01× (x2−3)4+(x1−1)2+(x2−3)2

−1.8(x1−1)(x2−3).

• Consider the problem minx∈R2{ f (x)|Ax= b}, whereA∈ R
1×2 and

b∈ R1 are defined by:

A = [1 −1] ,
b = [8].

• By inspection,Z =

[

1
1

]

is a matrix with columns that form a basis for the

null space ofA.
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Example, continued

• Consider the initial guessx(0) =

[

3
−5

]

, which is feasible for the equality

constraint.
• We perform one iteration of a steepest descent algorithm to minimize the

reduced function with initial guessξ(0) = [0].

f (x(0)) = 137.77,

∇f (x) =

[

0.04× (x1−1)3+2× (x1−1)−1.8× (x2−3)
0.04× (x2−3)3−1.8× (x1−1)+2× (x2−3)

]

,

∇f (x(0)) =

[

18.72
−40.08

]

,

Z†∇f (x(0)) = [−21.36].
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Example, continued

• Using a step-size of 1, we obtain a tentative update of:

ξ(1) = ξ(0)−Z†∇f (x(0)),
= [21.36],

x(0)+Zξ(1) =

[

24.36
16.36

]

,

f (x(0)+Zξ(1)) = 3458.8.

• This is larger thanf (x(0)), so we must consider a step-size rule.
• We use the Armijo rule, with the step-size halved until the Armijo

condition (10.14) is satisfied.
• For α(0) = 0.25, the Armijo condition is satisfied and we obtain:

ξ(1) = [5.34],

x(1) =

[

8.34
0.34

]

,

f (x(1)) = 125.6.
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Stopping criterion

• The algorithm involved unconstrained minimization of the reduced
functionφ.

• Stopping criteria for unconstrained problems as discussedin
Section10.2.5can be used for this algorithm.

Discussion

• Whatever algorithm is used for minimizingφ, at each iteration the iterate
x(ν) = x(0)+Zξ(ν) is feasible for the equality constraints.

• In summary, we generate iterates that are:
– feasible at each iteration, satisfying (13.32), and
– in principle, become closer to satisfying the condition (13.31).
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13.3.2.3 Lagrange multipliers
Optimality conditions

∇f (x⋆)+A†λ⋆ = 0, (13.33)
Ax⋆−b = 0. (13.34)

Algorithm

• Equations (13.33)–(13.34) are non-linear in

[

x
λ

]

, involven+m equations

in n+m variables, and can be solved iteratively using the
Newton–Raphson method.

• Ideally, convergence is quadratic.
• Since the constraintsAx= b are linear, we can construct an initial point

x(0) that satisfiesAx(0) = b using the techniques discussed in
Section5.8.1.
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Algorithm, continued

• At each subsequent iteration, we try to solve for the Newton–Raphson
step direction using:

A

[

∆x(ν)

∆λ(ν)

]

= −

[

∇f (x(ν))+A†λ(ν)

Ax(ν)−b

]

,

= −

[

∇f (x(ν))+A†λ(ν)

0

]

, (13.35)

• whereA ∈ R(n+m)×(n+m) is defined by:

A =

[

∇2f (x(ν)) A†

A 0

]

• and where we have assumed thatAx(ν)−b= 0.
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Example

• Continuing with the non-quadratic objectivef : R2 → R we consider the

initial guessx(0) =

[

3
−5

]

andλ(0) = [0].

• We perform one Newton–Raphson update.
• The coefficient matrixA and right-hand side in (13.35) is given by:

A =

[

∇2f (x(0)) A†

A 0

]

,

=

[

2.48 −1.8 1
−1.8 9.68 −1

1 −1 0

]

,

−

[

∇f (x(ν))+A†λ(ν)

0

]

=

[

−18.72
40.08

0

]

.
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Example, continued

• Solving (13.35) for these values yields:
[

∆x(ν)

∆λ(ν)

]

=

[

2.4953
2.4953

−20.4168

]

.

• Using a step-size of one, we obtain:

x(1) =

[

5.4953
−2.5047

]

,

λ(1) = [−20.4168],

• with objective valuef (x(1)) = 108.3163.

Title Page ◭◭ ◮◮ ◭ ◮ 140 of 211 Go Back Full Screen Close Quit



Stopping criterion

• Suppose that:
f is convex,
there is a known bound on where the minimizer can lie of the form

∥

∥

∥
x⋆−x(ν)

∥

∥

∥
≤ ρ, and

we want to ensure thatf (x(ν)) is within ε f of the minimum.

• Then we should iterate until
∥

∥

∥
∇f (x(ν))+A†λ(ν)

∥

∥

∥
≤ ε f/ρ.

Discussion

• As in the case of the quadratic objective, even if∇2f (x(ν)) is positive
definite, the coefficient matrixA in (13.35) is indefinite.

• To factorize it, we should use a special purpose algorithm asmentioned in
Section5.4.7.

• The iterates are:
– feasible at each iteration, satisfying (13.7), and
– in principle, become closer to satisfying the condition (13.6).
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13.3.2.4 Dual maximization
Optimality conditions

• The dual function in this case isD : Rm→ R∪{−∞} defined by:

∀λ ∈ R
m,D(λ) = inf

x∈Rn
{ f (x)+λ†(Ax−b)}.

• The dual problem is:

max
λ∈E

D(λ).

• If we assume that there is a minimum and minimizer of the primal
problem and that there is no duality gap, then maximizing thedual
function yields the minimum of the primal problem.

• If the conditions of Corollary13.8hold then the optimality conditions for
the dual problem are that:

∇D(λ) = Ax(λ)−b,
= 0,

• wherex(λ) is the unique minimizer of minx∈Rn{ f (x)+λ†(Ax−b)}.
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Algorithm

x(ν) ∈ argmin
x∈Rn

{ f (x)+ [λ(ν)]
†
(Ax−b)}, (13.36)

∆λ(ν) = Ax(ν)−b,

λ(ν+1) = λ(ν)+α(ν)∆λ(ν).
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Example

• Continuing with the objective defined in (10.9),

∀x∈ R
2, f (x) = 0.01× (x1−1)4+0.01× (x2−3)4+(x1−1)2+(x2−3)2

−1.8(x1−1)(x2−3),

• and constraints defined by:

A = [1 −1] ,
b = [8],

• we letλ(0) = [0], and perform one (outer) iteration of a dual maximization
algorithm.
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Example, continued

• Sinceλ(0) = [0], Problem (13.36) is equivalent to unconstrained
minimization of f .

• The minimizer isx(0) =

[

1
3

]

, and we have:

∆λ(0) = Ax(0)−b,

= [1 −1]

[

1
3

]

− [8],

= [−10].

• Using a step-size ofα(0) = 1, this yields:

λ(1) = λ(0)+α(0)∆λ(0),

= [0]+1[−10],
= [−10].
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Stopping criterion

• Again Theorem3.13can be used to show thatD(λ(ν+1)) provides a lower
bound on the value of the minimum.

Discussion

• Maximizing the dual involves:

– satisfying∇f (x(ν))+A†λ(ν) = 0 at each outer iteration, given the
current estimate of the Lagrange multiplier,λ(ν), and

– updating the Lagrange multiplier estimate at each outer iteration so as to
more nearly satisfy the constraint (13.7).

• For each update ofλ there are a number of inner iterations to solve
Problem (13.36) to sufficient accuracy.

• Once a minimizer of Problem (13.36) is obtained then, to updateλ, α(ν)

should be chosen to yield asufficient increasein the dual function using,
for example, the Armijo condition as described in Section10.2.4.2.
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13.4 Sensitivity
• We imagine that we have solved the problem:

min
x∈Rn

{ f (x;χ)|A(χ)x= b(χ)},

• for the base-case value of the parametersχ = 0.
• We now consider the sensitivity of the minimizer and minimumto

variation of the parameters aroundχ = 0.
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13.4.1 General case

Corollary 13.10 Let f : Rn×R
s→ R be twice partially differentiable with

continuous second partial derivatives and let A: Rs→ Rm×n and
b : Rs→ R

m be partially differentiable with continuous partial
derivatives. Consider the minimization problem:

min
x∈Rn

{ f (x;χ)|A(χ)x= b(χ)}, (13.37)

whereχ is a parameter. Suppose that x⋆ ∈ Rn is a local minimizer of
Problem (13.37) for the base-case value of the parametersχ = 0 with
corresponding Lagrange multipliersλ⋆ ∈ Rm. We call x= x⋆ a base-case
minimizer and callλ = λ⋆ the base-case Lagrange multipliers. Define
the (parameterized) Hessian∇2

xxf : Rn×Rs→ Rn×n by:

∀x∈ R
n,∀χ ∈ R

s,∇2
xxf (x;χ) = ∂2 f

∂x2 (x;χ).
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Suppose that:
• ∇2

xxf (x
⋆;0) is positive definite on the null space of A(0), so that x⋆ and

λ⋆ satisfy the second-order sufficient conditions for the base-case
problem, and

• A(0) has linearly independent rows.
Then, for values ofχ in a neighborhood of the base-case value of the
parametersχ = 0, there is a local minimum and corresponding local
minimizer and Lagrange multipliers for Problem (13.37). Moreover, the
local minimum, local minimizer, and Lagrange multipliers are partially
differentiable with respect toχ and have continuous partial derivatives
in this neighborhood.
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We consider the sensitivity with respect toχ j , the j-th entry ofχ. The
sensitivity of the local minimizer x⋆ and Lagrange multipliersλ⋆ to χ j ,
evaluated at the base-caseχ = 0, is given by the solution of:

A







∂x⋆

∂χ j
(0)

∂λ⋆

∂χ j
(0)






=









−K j(x⋆;0)−
[

∂A
∂χ j

(0)
]†

λ⋆

−
∂A
∂χ j

(0)x⋆+
∂b
∂χ j

(0)









, (13.38)

where:

A =

[

∇2
xxf (x

⋆;0) [A(0)]†

A(0) 0

]

,

and Kj : Rn×R
s→ R

n is defined by:

∀x∈ R
n,∀χ ∈ R

s,K j(x;χ) = ∂2 f
∂x∂χ j

(x;χ).
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The sensitivity of the local minimum f⋆ to χ, evaluated at the base-case
χ = 0, is given by:

∂ f ⋆

∂χ (0) =
∂L
∂χ (x⋆,λ⋆;0),

whereL : Rn×Rm×Rs→ R is the parameterized Lagrangian defined
by:

∀x∈ R
n,∀λ ∈ R

m,∀χ ∈ R
s,L(x,λ;χ) = f (x;χ)+λ†(A(χ)x−b(χ)).

If f (•;χ) is convex forχ in a neighborhood of0 then the minimizers and
minima are global in this neighborhood.
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Proof The sensitivity of the local minimizer follows from
Corollary7.5, noting that:
• the Hessian∇2

xxf is positive definite on the null space ofA(χ) for x in a
neighborhood of the base-case minimizerx⋆ andχ in a neighborhood
of χ = 0, and

• the coefficient matrixA is non-singular in a neighborhood of the
base-case minimizer and parameters,

so that the first-order necessary conditions (13.6)–(13.7) for
Problem (13.37) are well-defined and satisfied in a neighborhood of
χ = 0 and the sensitivity of the first-order necessary conditionsat χ = 0
is given by the solution of (13.38). Moreover, the second-order sufficient
conditions for Problem (13.37) given in Corollary13.4are satisfied in
this neighborhood.
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The sensitivity of the local minimum follows by totally differentiating
the value of the local minimumf ⋆(χ) = f (x⋆(χ);χ) with respect toχ and
noting that the first-order necessary conditions for the local minimizer

mean that
∂ f
∂x (x⋆;0) =−[λ⋆]†A(0). But:

A(0)
∂x⋆

∂χ (0) =−
∂A
∂χ (0)x⋆+

∂b
∂χ (0), (13.39)

by the second block row of (13.38) evaluated forj = 1, . . . ,s and where,

abusing notation, we interpret
∂A
∂χ (0)x⋆ ∈ Rm×s as havingℓ j-th entry

equal to∑n
k=1

∂Aℓk
∂χ j

(0)x⋆k.
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Therefore,

∂ f ⋆

∂χ (0) =
∂ f
∂x (x⋆;0)

∂x⋆

∂χ (0)+
∂ f
∂χ (x⋆;0), since f ⋆(χ) = f (x⋆(χ);χ),

= −[λ⋆]†A(0)
∂x⋆

∂χ (0)+
∂ f
∂χ (x⋆;0),

=
∂ f
∂χ (x⋆;0)− [λ⋆]†

(

−
∂A
∂χ (0)x⋆+

∂b
∂χ (0)

)

, by (13.39),

=
∂L
∂χ (x⋆,λ⋆;0).

✷

• The sensitivity of the local minimum is again called theenvelope
theorem.
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13.4.2 Special case

Corollary 13.11 Consider Problem (13.1), a perturbation vectorγ ∈ Rm,
and a perturbed version of Problem (13.1) defined by:

min
x∈Rn

{ f (x)|Ax= b− γ}. (13.40)

Suppose that f: Rn → R is twice partially differentiable with continuous
second partial derivatives, A∈ Rm×n, and b∈ Rm, with the rows of A
linearly independent. Let x⋆ ∈ Rn andλ⋆ ∈Rm satisfy the second-order
sufficient conditions in Corollary13.4for Problem (13.1):

∇f (x⋆)+A†λ⋆ = 0,
Ax⋆ = b,

((A∆x= 0) and(∆x 6= 0)) ⇒ (∆x†∇2f (x⋆)∆x> 0).

Consider Problem (13.40). For values ofγ in a neighborhood of the
base-case value of the parametersγ = 0, there is a local minimum and
corresponding local minimizer and Lagrange multipliers for
Problem (13.40). Moreover, the local minimum, local minimizer, and
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Lagrange multipliers are partially differentiable with respect toγ and
have continuous partial derivatives in this neighborhood.The sensitivity
of the local minimum toγ, evaluated at the base-caseγ = 0, is equal to
[λ⋆]†. If f is convex then the minimizers and minima are global.✷
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13.4.3 Discussion
• A significant part of the effort in proving Corollary13.10and

Corollary13.11is using the implicit function theorem to show that the
sensitivity of the minimizer is well-defined.

• If we assume that the minimizer and minimum are partially differentiable
with respect toχ, then the following argument explains why the
sensitivity is given by the value of the Lagrange multipliers.

• Consider Problem (13.40), a perturbationγ, and the corresponding change
∆x⋆ in the minimizer of the perturbed problem.

• The change in the minimum is:

f (x⋆+∆x⋆)− f (x⋆) ≈ ∇f (x⋆)†∆x⋆, with equality as∆x⋆ → 0,

= −[λ⋆]†A∆x⋆, by the first-order
necessary condition∇f (x⋆)+A†λ⋆ = 0,

= [λ⋆]†γ,

• sinceA(x⋆+∆x⋆) = b− γ, so that−A∆x⋆ = γ.
• But this is true for any such perturbationγ. In the limit asγ → 0, the

change in the minimum approaches[λ⋆]†γ.

Title Page ◭◭ ◮◮ ◭ ◮ 157 of 211 Go Back Full Screen Close Quit



Discussion, continued
• We can interpret the Lagrange multipliers as the sensitivity of the

minimum to changes inγ.
• In many problems, the specification of constraints represents some

judgment about the availability of resources.
• Then we can use the Lagrange multipliers to help in trading off the

change in the optimal objective against the cost of the purchase of
additional resources.
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13.4.4 Example
• Consider the equality-constrained Problem (2.13) from Section2.3.2.2:

min
x∈R2

{ f (x)|Ax= b},

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

A = [1 −1] ,
b = [0] .

• Suppose that the equality constraints changed fromAx= b to Ax= b− γ.
• Then, ifγ is small enough, the minimum of the perturbed problem differs

from the minimum of the original problem by approximately
[λ⋆]†γ = (−2)γ.
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13.5 Solution of the least-cost production case study
13.5.1 Problem

min
x∈Rn

{ f (x)|Ax= b} .

• Suppose thatn= 3.
• Then the coefficient matrix and right-hand side can be specified as:

A = [−1 −1 −1] ,
b = [−D ] .

• In summary, this problem has a convex separable objective and only one
equality constraint.

• Furthermore, the equality constraint is linear.
• That is, the problem is convex.
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13.5.2 Algorithms
13.5.2.1 Null space basis

• We first construct an initial guessx(0) that is feasible for the equality
constraint:

x(0) =

[

D
0
0

]

.

• A matrix Z with columns that form a basis for the null space is

Z =

[

−1 −1
1 0
0 1

]

.

• We can form the reduced gradient and updateξ to decrease the reduced
objective.

• This is equivalent to expressingx1 in terms ofx2 andx3 as discussed in
Section12.1.4.2.
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13.5.2.2 Lagrange multipliers

∀k= 1, . . . ,n,
d fk
dxk

(x⋆k)−λ⋆ = 0,

D−
n

∑
k=1

x⋆k = 0.
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13.5.2.3 Dual maximization

∀k= 1, . . . ,n,x(ν)k ∈ argmin
xk∈R

{ fk(xk)−λ(ν)xk}, (13.41)

∆λ(ν) = Ax(ν)−b,

= D−
n

∑
k=1

x(ν)k ,

λ(ν+1) = λ(ν)+α(ν)∆λ(ν).

• If fk is quadratic then, at each iterationν, thek-th sub-problem on the
right-hand side of (13.41) can be solved directly in one step by solving
the linear necessary conditions.

• If fk is not quadratic then (13.41) can be solved by applying the
Newton–Raphson update until a value ofx(ν)k is obtained that satisfies the
necessary conditions to within a tolerance.

• That is, if fk is non-quadratic, then at each outer iterationν and for eachk
we must perform several inner iterations to solve the necessary conditions
of (13.41).
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13.5.3 Discussion
• Maximizing the dual has a suggestive economic interpretation if we think

of λ as the price paid for producing the commodity.
• The valuesλ(ν) are tentative prices that are suggested at each iteration by

a central purchaser.
• The goal of the central purchaser is to pick prices such that supply

matches demand.
• The Lagrange multiplierλ⋆ is the final price that matches supply to

demand.
• Each cost functionfk is associated with a decision-making agent that

makes decisions based on:
its own cost function, and
the tentative prices.
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Discussion, continued
• Each decision-making agent sells a quantity of productxk to maximize its

profits, which is equivalent to minimizing the difference between:
thecostof productionfk(xk) for the quantityxk, minus
therevenues xkλ(ν), based on the current value of the dual variable,λ(ν).

• The solution of (13.41) maximizes the agent’sprofit, that is, revenues
minus costs, for the given value of the dual variable.

• At each iteration, the central agent adjusts the tentative prices based on
comparing the sum of offered productions by the agents to thetarget
valueD:
– price is raised or lowered to encourage or discourage production.

• At the optimum, the “marginal cost of production” for each agent, that is,
the derivative of its cost function, is the same for all agents.

• The value of the Lagrange multiplier is sometimes called theshadow
price.
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13.6 Summary
• We have discussed descent directions for linear equality-constrained

optimization problems.
• Analysis of descent directions yielded optimality conditions, which in

turn led to algorithms.
• We also discussed sensitivity analysis.
• Finally, we discussed solution of the least-cost production case study.
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14
Algorithms for non-linear equality-constrained

minimization

• In this chapter we will develop algorithms for constrained optimization
problems of the form:

min
x∈Rn

{ f (x)|g(x) = 0}, (14.1)

• where f : Rn → R andg : Rn → R
m.

Title Page ◭◭ ◮◮ ◭ ◮ 167 of 211 Go Back Full Screen Close Quit



Key issues
• The notion of aregular point of constraints as a characterization of

suitable formulations of non-linear equality constraint functions,
• linearization of non-linear constraint functions and consideration of the

null space of the coefficient matrixof the linearized constraints and the
associatedtangent plane,

• optimality conditions and the definition and interpretation of the
Lagrange multipliers,

• algorithms that seek points that satisfy the optimality conditions,
• use of amerit function in the trade-off between satisfaction of

constraints and improvement of the objective, and
• duality andsensitivity analysis.
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14.1 Geometry and analysis of constraints
• In the case oflinear equality constraints, the convexity of the feasible set

allowed us to consider step directions such that successiveiterates were
always feasible.

• With non-linear constraints, movement from a feasible point along a line
segment will usually take us outside the feasible set.

• Nevertheless, our approach to non-linear equality constraints will be to
linearize the equality constraint functiong about a current iterate.

• We must explore conditions under which this linearization yields a useful
approximation to the original feasible set.
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14.1.1 Regular point of constraints
14.1.1.1 Definition

Definition 14.1 Let g : Rn →Rm. Then we say thatx⋆ is aregular point of
the equality constraintsg(x) = 0 if:

(i) g(x⋆) = 0,
(ii) g is partially differentiable with continuous partial derivatives atx⋆,

and
(iii) the m rows of the JacobianJ(x⋆) of g evaluated atx⋆ are linearly

independent.
✷
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14.1.1.2 Example
• Consider the functiong : R3 → R defined by:

∀x∈ R
3,g(x) = (x1)

2+(x2+1)2−x3−4,

• and the pointx⋆ =

[

1
3

13

]

.

• We observe thatx⋆ =

[

1
3

13

]

is a regular point of the equality constraints

g(x) = 0 because:
(i) g(x⋆) = (1)2+(3+1)2−13−4= 0,

(ii) g is partially differentiable with JacobianJ : R3 → R1×3 defined
by ∀x∈ R

3,J(x) = [2x1 2(x2+1) −1], which is continuous at
x⋆, and

(iii) the one row of the JacobianJ(x⋆) of g evaluated atx⋆ is
J(x⋆) = [2 8 −1], which is a linearly independent row.
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14.1.2 Tangent plane
14.1.2.1 Definition

• We make the following generalization of Definition13.1.

Definition 14.2 Let g : Rn → Rm be partially differentiable andx⋆ ∈ Rn.
Let J : Rn → Rm×n be the Jacobian ofg. Suppose thatx⋆ is a regular point
of the constraintsg(x) = 0. Then thetangent planeto the set
S= {x∈ Rn|g(x) = 0} at the pointx⋆ is the set
T= {x∈ Rn|J(x⋆)(x−x⋆) = 0}. ✷

• The tangent plane atx⋆ is the set of points such that the first-order Taylor
approximation tog aboutx⋆ has value0.
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14.1.2.2 Example
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x1x2

x3
SetS

Tangent planeT

Fig. 14.1. Tangent
plane T to a set
S in R3 at the point

x⋆ =

[

1
3

13

]

∈ S, shown

as a•.
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14.1.2.3 Affine case

• In the case thatg is affine of the form:

∀x∈ R
n,g(x) = Ax−b,

thenJ(x) = A and the tangent planeT at a point
x⋆ ∈ S= {x∈ Rn|Ax= b} is given by:

T = {x∈ R
n|A(x−x⋆) = 0},

= {x∈ R
n|Ax= b},

= S,

• sinceAx⋆ = b at a feasible pointx⋆.
• That is, in the case thatg is affine, the tangent planeT is the same as the

feasible setS= {x∈ Rn|g(x) = 0}.
• In contrast, for non-linearg such as shown in Figure14.1, the tangent

planeT to {x∈ Rn|g(x) = 0} atx⋆ is usually different to
S= {x∈ Rn|g(x) = 0}.
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14.1.2.4 Discussion
• The concept of a regular point will help us to characterize when the

tangent planeT is a good approximation to the feasible setS.
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14.1.3 Relationship of regular points to seeking minimizers
14.1.3.1 Movement from a feasible point

• If x⋆ is a regular point ofg(x) = 0 then we will be close to satisfying the
constraints so long as we stay near tox⋆ and in the tangent plane
T= {x∈ Rn|J(x⋆)(x−x⋆) = 0}.

• Considern= 2 and f : R2 → R andg : R2 → R defined by:

∀x∈ R
2, f (x) = −x1, (14.2)

∀x∈ R
2,g(x) = x2−sin(x1). (14.3)

• Figure14.2shows part of the set of pointsS satisfying the equality
constraintg(x) = 0 as a solid curve.

• Also shown is the feasible pointx⋆ =

[

5
sin(5)

]

, shown as a◦, and the

tangent planeT to the feasible setS atx⋆, shown dashed.
• For this problem, the tangent planeT is only a good approximation to the

feasible for points that are close tox⋆.
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Movement from a feasible point, continued

0 1 2 3 4 5 6 7 8 9 10
−2
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−1

−0.5

0

0.5

1

1.5

2

x1

x2

x⋆

S

T

Fig. 14.2. Feasible
point x⋆ ∈ S and tangent
planeT (shown dashed)
to S at x⋆ (shown solid).
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14.1.3.2 Descent
• Figure14.3shows the same feasible set as illustrated in Figure14.2.
• The arrows emanating from the feasible points illustrate directions along

the tangent plane at these points.
• Moving along these directions takes us outside the feasibleset but

reduces the objectivef .
• Paths that stay on the feasible set must follow the curveg(x) = 0 and

therefore depart from straight line segments.
• Nevertheless, we will consider paths that, at least initially, follow the

tangent planeT.
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Descent, continued

0 1 2 3 4 5 6 7 8 9 10
−2
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1

1.5
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x1

x2

Fig. 14.3. Feasible
points and directions
along the corresponding
tangent planes.
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14.1.3.3 Movement from an infeasible point
• We will again approximate the feasible points by a set definedin terms of

linear equalities:

T= {x∈ R
n|J(x̂)(x− x̂) =−g(x̂)}. (14.4)

• Linear independence of the rows ofJ and proximity ofx̂ to the feasible
set will guarantee that this set closely approximates the feasible set in the
vicinity of x̂.

• Figure14.4again shows the part of the set of points satisfying the
equality constraintg(x) = 0.

• Also shown is an infeasible point ˆx=

[

5
−1.5

]

and the setT defined

according to (14.4).
• In this particular case, the setT is tangential to the feasible setS;

however, in general this is not the case.
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Movement from an infeasible point, continued

0 1 2 3 4 5 6 7 8 9 10
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x1

x2

x̂

S

T Fig. 14.4. Movement
from an infeasible point
x̂ ∈ S and approxima-
tion T (shown dashed)
to feasible setS (shown
solid).

Title Page ◭◭ ◮◮ ◭ ◮ 181 of 211 Go Back Full Screen Close Quit



14.1.3.4 Linear constraints
• If g is affine andg(x⋆) = 0 thenT= {x∈ Rn|A(x−x⋆) = 0} is the same

as the feasible set, whether or notA has linearly independent rows.
• However, if the linear coefficient matrix does not have linearly

independent rows, then a slight perturbation of the coefficient matrix will
make the linear approximation to the feasible set empty.

14.1.3.5 Formulation of problems
• Whether or notg is affine, we should try to formulate the problem to

avoid linear dependence of the rows ofJ since, analogously to the case of
simultaneous equations, redundant linearized constraints make the
linearized problem ill-conditioned.
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14.2 Optimality conditions
14.2.1 First-order necessary conditions

14.2.1.1 Analysis

Theorem 14.1 Consider Problem (14.1) and a point x⋆ ∈ Rn. Suppose
that:

(i) f is partially differentiable with continuous partial derivatives,
(ii) x⋆ is a regular point of the equality constraints g(x) = 0. That is:

(a) g(x⋆) = 0,
(b) g is partially differentiable with continuous partial

derivatives, and
(c) the m rows of the Jacobian J(x⋆) of g evaluated at x⋆ are

linearly independent.
Then if x⋆ is a local minimizer of Problem (14.1) then:

∃λ⋆ ∈ R
m such that∇f (x⋆)+J(x⋆)†λ⋆ = 0. (14.5)

✷
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Analysis, continued
• The vectorλ⋆ is again called the vector ofLagrange multipliers for the

constraintsg(x) = 0.
• We will refer to:

∇f (x⋆)+J(x⋆)†λ⋆ = 0, (14.6)
g(x⋆) = 0, (14.7)

• as thefirst-order necessary conditionsor FONC.
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14.2.1.2 Lagrangian
• Recall Definition3.2of theLagrangian.
• For Problem (14.1) the LagrangianL : Rn×Rm→ R is defined by:

∀x∈ R
n,∀λ ∈ R

m,L(x,λ) = f (x)+λ†g(x).

• As in the linear case, we can reproduce the first-order necessary
conditions (14.6)–(14.7) by setting the gradients ofL with respect tox
andλ, respectively, equal to zero.
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14.2.1.3 Relationship to linearly constrained problems
• The condition (14.5) is the same as the corresponding first-order

condition for thelinearly constrained problem:

min
x∈Rn

{ f (x)|J(x⋆)(x−x⋆) = 0}. (14.8)

• Regularity ofx⋆, in addition to the hypotheses for the linear case, ensures
that (14.5) characterizes the necessary conditions in the non-linear
equality-constrained case.

• Unlike in the linear case, the assumption of regularity is important to
ensure that there are Lagrange multipliers satisfying (14.5).
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14.2.1.4 Geometric interpretation
• In the linear equality-constrained case, we interpreted the first-order

necessary conditions as requiring that the feasible set be asubset of the
tangent plane to the contour set of the objective.

• We said that the contour set off was tangential to the feasible set atx⋆.
• In the non-linear equality-constrained case, we can similarly

interpret (14.5) as requiring that the feasible set and the contour set be
tangential atx⋆.
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14.2.1.5 Example
• If the objective is non-convex then a maximizer can satisfy the necessary

conditions.
• In the case of non-linear equality constraints, however, wemay have an

objective f : Rn → R that is convex onRn, but have a non-convex feasible
set.

• For example:

∀x∈ R
2, f (x) =

1
2
(x1)

2+
1
2
(x2)

2, (14.9)

∀x∈ R
2,g(x) =

1
4
(x1)

2+(x2)
2−1. (14.10)
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Example, continued
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x⋆⋆

ˆ̂x x̂

Fig. 14.5. Points x⋆,
x⋆⋆, x̂, and ˆ̂x that satisfy
the first-order necessary
conditions but which
may or may not be
minimizers.
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Example, continued
• There are four points that satisfy the first-order necessaryconditions.

– Two of the points arex⋆ =

[

0
1

]

andx⋆⋆ =

[

0
−1

]

, both with Lagrange

multiplier λ⋆ = λ⋆⋆ = [−0.5], which corresponds to aminimum f⋆ = 0.5
of the objective over the feasible set. The pointsx⋆ andx⋆⋆ are
illustrated with• in Figure14.5.

– The other two points are ˆx=

[

2
0

]

and ˆ̂x=

[

−2
0

]

, both with dual

variableŝλ =
ˆ̂λ = [−2], which corresponds to amaximumf̂ = 2 of the

objective over the feasible set. The points ˆx and ˆ̂x are illustrated with◦
in Figure14.5.
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14.2.2 Second-order sufficient conditions
14.2.2.1 Analysis

Theorem 14.2 Suppose that f: Rn → R and g: Rn → Rm are twice
partially differentiable with continuous second partial derivatives. Let
J : Rn →Rm×n be the Jacobian of g. Consider Problem (14.1) and points
x⋆ ∈ Rn andλ⋆ ∈ Rm. Suppose that:

∇f (x⋆)+J(x⋆)†λ⋆ = 0,
g(x⋆) = 0,

∇2f (x⋆)+
m

∑
ℓ=1

λ⋆
ℓ∇2gℓ(x

⋆) is positive definite on the null space:

N = {∆x∈ R
n|J(x⋆)∆x= 0}. (14.11)

Then x⋆ is a strict local minimizer of Problem (14.1). ✷
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Analysis, continued
• Compared to the first-order necessary conditions, the second-order

sufficient conditions in addition require that:
– the objective and constraint functions are twice partiallydifferentiable

with continuous second partial derivatives, and
– x⋆ andλ⋆ satisfy (14.11).

• In (14.11), the function∇2
xxL : Rn×Rm→ Rn×n defined by:

∀x∈ R
n,∀λ ∈ R

m,∇2
xxL(x,λ) = ∇2f (x)+

m

∑
ℓ=1

λℓ∇2gℓ(x),

• is called theHessian of the Lagrangian.
• The condition (14.11) is analogous to the corresponding condition in

Corollary13.4for linear constraints.
• It requires that the Hessian of the Lagrangian evaluated at the minimizer

and corresponding Lagrange multipliers,∇2
xxL(x⋆,λ⋆), be positive definite

on the null spaceN defined in the theorem.
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14.2.2.2 Example
• Continuing with the example from Section14.2.1.5, the two minimizers

x⋆ andx⋆⋆ satisfy the second-order sufficient conditions.
• However, both of the other points, ˆx and ˆ̂x, that satisfy the first-order

necessary conditions do not satisfy the second-order sufficient conditions.
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14.3 Approaches to finding minimizers
• If the constraints are non-linear, we cannot expect to exactly satisfy them.
• We can consider algorithms that attempt to satisfy the first-order

necessary conditions or use step directions based on the Newton–Raphson
update for solving the first-order necessary conditions.

14.3.1 Solution of first-order necessary conditions

∇f (x)+J(x)†λ = 0,
g(x) = 0.
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14.3.1.1 Newton–Raphson step direction

[

∇2
xxL(x(ν)),λ(ν)) J(x(ν))

†

J(x(ν)) 0

]

[

∆x(ν)

∆λ(ν)

]

=−

[

∇f (x(ν))+J(x(ν))
†λ(ν)

g(x(ν))

]

.

(14.12)

• An indefinite factorization algorithm should be used.
• As discussed for the unconstrained case in Section10.2.3.2, zero and

negative pivots in the top left-hand block should be modifiedto be

positive to ensure that∆x(ν) is a descent direction forf +[λ(ν)]
†
g atx(ν).

• We can approximate the solution of (14.12).
• The approximations will, in principle, inherit the corresponding

convergence rates described for the solution of non-linearequations.
• The update is then:

[

x(ν+1)

λ(ν+1)

]

=

[

x(ν)

λ(ν)

]

+α(ν)
[

∆x(ν)

∆λ(ν)

]

.
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14.3.1.2 Selection of step-size
• In choosing a step-size, we cannot just seek reduction inf because if we

are far from satisfying the constraints then we may have to accept an
increase inf to obtain a feasible point.

• We must trade-off the tension between satisfaction of the constraints and
improvement in the objective.

• A standard approach to this trade-off is to define amerit function
φ : Rn → R of the form, for example:

∀x∈ R
n,φ(x) = f (x)+Π‖g(x)‖2 , (14.13)

• for some norm‖•‖ and someΠ ∈ R++ and use a rule analogous to the
Armijo rule or variants to seek a step that leads to sufficientreduction in
the merit functionφ at each iteration.

• We will discuss the choice ofΠ in the context of the power system state
estimation with zero injection buses case study in Section14.5.
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Selection of step-size, continued
• A variant on the merit function approach is to replace the objective in

Problem (14.1) with the merit functionφ : Rn → R defined in (14.13).
• In this case, the Newton–Raphson update will explicitly seek a direction

that reduces the merit function.
• There are other approaches including:

– afilter , where the step-size is selected to improve satisfaction ofthe
constraints or the value of the objective or both at each iteration, and

– awatchdog, where the merit function is allowed to increase for a
limited number of iterations.
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14.3.1.3 Feasibility
• In some applications, we might want to be able to terminate atany

iteration with an iterate that is close to being feasible.
• In this case, at each iteration we can first updatex to reduce the objective

or reduce a merit function and then do a subsidiary search using an
iterative technique to return to the feasible set.

• This approach is used in thegeneralized reduced gradientalgorithm.

14.3.1.4 Stopping criteria
• We iterate until the first-order necessary conditions are satisfied to

sufficient accuracy.
• Unless the second-order sufficient conditions hold or approximately hold,

we cannot be certain that we are at or close to a local optimum.
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14.3.2 Dual maximization
• Recall Definition3.3of thedual function.
• For Problem (14.1), the dual functionD : Rm→ R∪{−∞} is defined by:

∀λ ∈ R
m,D(λ) = inf

x∈Rn
L(x,λ),

• whereL : Rn×Rm→ R is the Lagrangian.
• Although the problem is not convex, we can try to maximize thedual

function.
• The following recursion can be used to define the iterates:

x(ν) ∈ argmin
x∈Rn

{ f (x)+ [λ(ν)]
†
g(x)},

∆λ(ν) = g(x(ν)),

λ(ν+1) = λ(ν)+α(ν)∆λ(ν).

• If f or g is non-quadratic then we will have to perform several inner
iterations to approximately minimize the Lagrangian for each outer
iteration to updateλ.
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Dual maximization, continued
• There can be a duality gap.
• Nevertheless, by Theorem3.13, the maximum of the dual is a lower

bound for the minimum of the primal problem and the solution of the dual
can be a useful guide to the solution of the primal.
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14.4 Sensitivity
14.4.1 Analysis

• Suppose that the objectivef and equality constraint functiong are
parameterized by a parameterχ ∈ Rs.

• We imagine that we have solved the non-linear equality-constrained
minimization problem:

min
x∈Rn

{ f (x;χ)|g(x;χ) = 0}, (14.14)

• for a base-case value of the parameters, sayχ = 0, to find the base-case
local minimizerx⋆ and the base-case Lagrange multipliersλ⋆.

• We now consider the sensitivity of the local minimum of Problem (14.14)
to variation of the parameters aboutχ = 0.

• That is, we also consider perturbationsγ ∈ Rm and the problem:

min
x∈Rn

{ f (x)|g(x) =−γ}. (14.15)

• For the parameter valuesγ = 0, Problem (14.15) is the same as
Problem (14.1).

Title Page ◭◭ ◮◮ ◭ ◮ 201 of 211 Go Back Full Screen Close Quit



Corollary 14.3 Consider Problem (14.14) and suppose that the functions
f : Rn×Rs→ R and g: Rn×Rs→ Rm are twice partially differentiable
with continuous second partial derivatives. Also consider
Problem (14.15) and suppose that the functions f: Rn → R and
g : Rn → Rm are twice partially differentiable with continuous second
partial derivatives. Suppose that x⋆ ∈ Rn andλ⋆ ∈ Rm satisfy:
• the second-order sufficient conditions for Problem (14.14) for the

base-case value of parametersχ = 0, and
• the second-order sufficient conditions for Problem (14.15) for the

base-case value of parametersγ = 0.
In particular:
• x⋆ is a local minimizer of Problem (14.14) for χ = 0, and
• x⋆ is a local minimizer of Problem (14.15) for γ = 0,
in both cases with associated Lagrange multipliersλ⋆. Moreover,
suppose that the rows of the Jacobians J(x⋆;0) and J(x⋆), respectively,
are linearly independent so that x⋆ is a regular point of the constraints
for the base-case problems.
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Then, for values ofχ in a neighborhood of the base-case value of the
parametersχ = 0, there is a local minimum and corresponding local
minimizer and Lagrange multipliers for Problem (14.14). Moreover, the
local minimum, local minimizer, and Lagrange multipliers are partially
differentiable with respect toχ and have continuous partial derivatives
in this neighborhood. The sensitivity of the local minimum f⋆ to χ,
evaluated at the base-caseχ = 0, is given by:

∂ f ⋆

∂χ (0) =
∂L
∂χ (x⋆,λ⋆;0),

whereL : Rn×Rm×Rs→ R is theparameterized Lagrangiandefined
by:

∀x∈ R
n,∀λ ∈ R

m,∀χ ∈ R
s,L(x,λ;χ) = f (x;χ)+λ†g(x;χ).
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Furthermore, for values ofγ in a neighborhood of the base-case value of
the parametersγ = 0, there is a local minimum and corresponding local
minimizer and Lagrange multipliers for Problem (14.15). Moreover, the
local minimum, local minimizer, and Lagrange multipliers are partially
differentiable with respect toγ and have continuous partial derivatives.
The sensitivity of the local minimum toγ, evaluated at the base-case
γ = 0, is equal to[λ⋆]†.
✷
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14.4.2 Discussion
• As in the case of linear equality constraints, we can interpret the Lagrange

multipliers as the sensitivity of the minimum to changes inγ.
• Again, this allows us to trade-off the change in the optimal objective

against the cost of changing the constraint.
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14.4.3 Example
• Consider the example equality-constrained Problem (2.14) first

mentioned in Section2.3.2:

min
x∈R2

{ f (x)|g(x) = 0},

• where f : R2 → R andg : R2 → R were defined by:

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

∀x∈ R
2,g(x) = (x1)

2+(x2)
2+2x2−3.

• The minimizers and Lagrange multipliers of Problem (2.14) satisfy the
second-order sufficient conditions and the minimizers are regular points
of the constraints.

• If the equality constraint changes tog(x) =−γ, whereγ = 0.1, then we
can use Corollary14.3to approximate the change in the minimum by
0.1λ⋆.
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14.5 Solution of power system state estimation with zero injection
buses case study

14.5.1 Problem
• Recall Problem (12.9):

min
x∈Rn

{ f (x)|g(x) = 0},

• where f : Rn → R andg : Rn → Rm were defined in (12.7) and (12.8),
respectively:

∀x∈ R
n, f (x) = ∑

ℓ∈M

(g̃ℓ(x)− G̃ℓ)
2

2σ2
ℓ

,

∀x∈ R
n,g(x) = (gℓ(x))ℓ∈M0.
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14.5.2 Algorithms
14.5.2.1 Newton–Raphson step direction

• The most straightforward way to solve this problem is to seeka solution
of the necessary conditions (14.6)–(14.7) using the Newton–Raphson step
direction given by the solution of (14.12) or some approximation to it that

ensures that a descent direction is found forf +[λ(ν)]
†
g.

• Possible approximations to the coefficient matrix for the
Newton–Raphson step direction include:
– using the fast-decoupled or other approximations to the Jacobian of the

power flow equations, as in the discussion of the solution of the power
flow equations in Section8.2.4.2, and

– using the Gauss–Newton or Levenberg–Marquardt approximation to the
Hessian of the objective, as in the discussion of the state estimation
problem in Section11.2.3.2.
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14.5.2.2 Merit function and step-size

• f consists of (half of) the sum of squares of terms each of whichrepresent
a measurement error for measurementℓ divided by the standard deviation
σℓ of the measurement error.

• Consequently, each term has expected value of 1 if evaluatedat the true
value of the voltage angles and magnitudes in the system.

• The terms ing represent real and reactive power values that are exactly
equal to zero when evaluated at the true value of the voltage angles and
magnitudes in the system.

• We can use a merit function (14.13) with theL2 norm‖•‖2 and a value of
penalty coefficientΠ that is somewhat larger than the inverse of the
square of a typical real and reactive power measurement error standard
deviation.

• We can interpret the merit function as being a penalized objective, as
discussed in Section12.2.1.3, that uses modest values of the penalty
coefficient.

• The step-size should be selected to ensure sufficient reduction in (14.13)
using the Armijo rule.
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14.5.2.3 Observability
• To ensure that there is a unique maximum likelihood estimator there must

be enough measurements and zero bus injections spread around the
system to make it observable.
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14.6 Summary
• In this chapter we considered the notion of a regular point ofconstraints

as a bridge between equality-constrained problems with linear constraints
and equality-constrained problems with non-linear constraints.

• We developed optimality conditions, algorithms, and sensitivity analysis.
• We then applied the algorithms to the power system state estimation with

zero injection buses case study.
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