
Applied Optimization:
Formulation and Algorithms

for Engineering Systems
Slides

Ross Baldick
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX 78712

Copyright c© 2018 Ross Baldick

Title Page ◭◭ ◮◮ ◭ ◮ 1 of 139 Go Back Full Screen Close Quit



Part I
Linear simultaneous equations
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4
Case studies of linear simultaneous equations

(i) Solution of Kirchhoff’s laws in a simple electrical circuit
(Section4.1), and

(ii) Search for a set of inputs to a “discrete-time linear system” that will
bring the system to a desired state (Section4.2).

Title Page ◭◭ ◮◮ ◭ ◮ 3 of 139 Go Back Full Screen Close Quit



4.1 Analysis of a direct current linear circuit
4.1.1 Motivation

• We want to calculate the behavior of a circuit.
• Circuits are characterized byKirchhoff’s laws .
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4.1.2 Formulation
• Consider a circuit consisting of interconnectedresistorsandcurrent

sourcesas shown in Figure4.1.
• A circuit can be thought of as a special type of graph where thebranches

are components.
• We want to:

– calculate all the electrical quantities associated with the circuit, and
– characterize how these quantities change if the circuit changes.

t t t t

t t t t1 2 3 4

0

✚✙
✛✘
↑ I1 Ra

Rb

Rc

Rd

Re

Rf

Rg ✚✙
✛✘
↑ I4

Fig. 4.1. A ladder cir-
cuit consisting of resis-
tors and current sources.
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4.1.2.1 Variables of interest
• Basic issue in problem formulation is to identify and distinguish:

– the variables of interest from
– the variables that are of less importance.

• This choice is one aspect ofOccam’s razor:
– The model should be no more complicated than is necessary to represent

the important issues, where “important” depends on our perspective.
• In typical circuits, we seek values of:

– the voltages across the resistors and current sources, and
– the currents through the resistors.

• We usually neglect most other quantities.
• For this problem, we could either:

– use thenodal voltagesas the independent variables and calculate the
current flowing through each resistor in terms of the nodal voltages, or

– use thebranch currents as the independent variables and calculate the
branch voltages in terms of the branch currents.

• A nodal based description will have less variables.
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4.1.2.2 Kirchhoff ’s voltage law
• Kirchhoff’s voltage law expresses the fact that the voltage around any

loop is zero.
• This means that we can single out one of the nodes and call it the datum or

ground node and measure all voltages with respect to the datum voltage.
• We writexk for the voltage of nodek= 0, . . . ,n with respect to the datum

voltage, wherek= 0 is the datum node.
• Kirchhoff’s voltage law is an example of aconservation law.

4.1.2.3 Branch constitutive relations
• Thebranch constitutive relationsexpress the relationship between

branch current and voltage.
• For a resistor there is a linear relationship between resistor current and

voltage.
• For a current source, the branch current is constant.
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4.1.2.4 Kirchhoff ’s current law
• Kirchhoff’s current law expresses conservation of charge when current is

flowing in a circuit.

• The net current flowing from node 1 into the components incident to
node 1 is:

x1−x0

Ra
+

x1−x2

Rb
− I1,

• Re-arranging:
(

1
Ra

+
1
Rb

)

x1+

(

− 1
Rb

)

x2 = I1. (4.1)

(

− 1
Rb

)

x1+

(
1
Rb

+
1
Rc

+
1
Rd

)

x2+

(

− 1
Rd

)

x3 = 0, (4.2)
(

− 1
Rd

)

x2+

(
1
Rd

+
1
Re

+
1
Rf

)

x3+

(

− 1
Rf

)

x4 = 0, (4.3)
(

− 1
Rf

)

x3+

(
1
Rf

+
1
Rg

)

x4 = I4. (4.4)
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4.1.2.5 Nodal admittance matrix and voltage and current vector

• Define: A =






A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44




 ,

=









1
Ra
+ 1

Rb
− 1

Rb
0 0

− 1
Rb

1
Rb

+ 1
Rc
+ 1

Rd
− 1

Rd
0

0 − 1
Rd

1
Rd

+ 1
Re
+ 1

Rf
− 1

Rf

0 0 − 1
Rf

1
Rf
+ 1

Rg









,(4.5)

x =






x1
x2
x3
x4




 . (4.6)

• The matrixA is called thenodal admittance matrix.
• The variablex0 is not included in our definition of the vectorx.
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Nodal admittance matrix and voltage and current vector, continued

b=






b1
b2
b3
b4




=






I1
0
0
I4




 . (4.7)

4.1.2.6 Linear equations

Ax=







∑4
k=1A1kxk

∑4
k=1A2kxk

∑4
k=1A3kxk

∑4
k=1A4kxk






.

• If we write Ax= b, we reproduce the nodal equations (4.1)–(4.4) for our
system.

• We callA thecoefficient matrix, while b is called theright-hand side.

Title Page ◭◭ ◮◮ ◭ ◮ 10 of 139 Go Back Full Screen Close Quit



4.1.3 Changes
• In our ladder circuit, there are two types of circuit components that can

change:
– either the currents from the current sources vary, corresponding to a

change in the right-hand side of the linear system,b, or
– the resistances vary, corresponding to a change in the coefficient matrix

of the system,A.
• For each type of component or parameter change, we can consider two

related notions of change:
(i) infinitesimal changes in component or parameter values,

providing asensitivity analysis, and
(ii) large changesin component values or parameters.
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4.1.3.1 Sensitivity
• Sensitivity analysis, sometimes calledsmall-signal sensitivity analysis

in the context of circuit theory, is the calculation of a partial derivative of
the solutionx⋆, or a function of the solution, with respect to some
parameter.

• For example, we might want to calculate the partial derivative of the
solution for a particular voltage, sayx2, with respect to the value of:

– a current source, sayI4, to obtain
∂x⋆2
∂I4

,

– a resistor, sayRb, to obtain
∂x⋆2
∂Rb

, or

– the temperature,T, to obtain
∂x⋆2
∂T .
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Sensitivity, continued
• As another example of a sensitivity analysis, we may also want to

consider the sensitivity of aperformance criterion or objective function
to variations in parameters.

• For example, consider the functionf : R4 → R defined by:

∀x∈ R
4, f (x) = (x1)

2+2(x2)
2+3(x3)

2+4(x4)
2. (4.8)

• We might want to calculate the derivative off ⋆(•) = f (x⋆(•)), with
respect to the value of:

– a current source, sayI4, to obtain
∂ f ⋆

∂I4
,

– a resistor, sayRb, to obtain
∂ f ⋆

∂Rb
, or

– the temperature,T, to obtain
∂ f ⋆

∂T .
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4.1.3.2 Large changes
Change in current source

• Consider a variation in the current injectionbℓ at nodeℓ by an amount∆bℓ
• The new circuit must satisfyAx′ = b+∆b.

t t t t t

t t t t t1 2 3 4

0

✚✙
✛✘
↑ I1 ✚✙

✛✘
↑∆b2Ra

Rb

Rc

Rd

Re

Rf

Rg ✚✙
✛✘
↑ I4 Fig. 4.2. The ladder

circuit of Figure 4.1
with a change,∆bℓ, in
the current injected at
nodeℓ= 2.
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Change in resistance

• Consider a variation in the resistance of the resistor joining nodesℓ andk.
• The change inA is ∆A, where∆A has zeros everywhere except in theℓℓ-th,
ℓk-th, kℓ-th, andkk-th entries.

• The new circuit must satisfy(A+∆A)x′ = b.

t t t t

t t t t1 2 3 4

0

✚✙
✛✘
↑ I1 1

Ra

1/Rb

1
Rc

1/Rd

∆G23

1
Re

1/Rf

1
Rg ✚✙

✛✘
↑ I4

Fig. 4.3. The ladder
circuit of Figure 4.1
with resistors re-labeled
with their conductances
and with a change in the
conductance between
nodesℓ = 2 andk = 3.
Note that the convention
for labeling the resistors
has changed compared
to the previous figures.
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4.1.4 Problem characteristics
4.1.4.1 Numbers of variables and equations

• SinceA is a square matrix, we callAx= b asquare system of linear
equations.

4.1.4.2 Solvability
• Since this circuit always has a unique solution,Ax= b is solvable for any

givenb and there is only one solution.
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4.1.4.3 Admittance matrix

∀ℓ= 1, . . . ,n,∀k= 1, . . . ,n,

Aℓk =







sum of the conductances connected to nodeℓ,
if ℓ= k,

minus the conductance joiningℓ andk,
if ℓ 6= k and there is a resistor betweenℓ andk,

0,
if ℓ 6= k and there is no resistor betweenℓ andk.

(4.9)

Symmetry

• A is symmetric.
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Sparsity

• In a large ladder circuit, theA matrix would be mostly zeros.
• We call a matrixsparseif most of its entries are zero.
• By choosing as datum node the node with the most branches incident to

it, we will minimize the number of non-zeros in the admittance matrix.

t t

t t

t t

t t

5 4

6 3

7 2

8 1

✏✏✏✏✏✏✏✏✏✏✏✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟
✏✏✏✏✏✏✏✏✏✏✏

�
�
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✁

✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂

❅
❅

❅❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅

❅
❅

❅
❅

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇

❆
❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆❆

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇

PPPPPPPPPPP ❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍
PPPPPPPPPPP Fig. 4.4. A graph with

n = 8 nodes and all
n(n−1)

2 = 28 possible
branches. For clarity in
this graph, each node is
represented by a bullet
•, while each branch
is represented by a
line. This is a different
convention to that used
in figures4.1–4.3.
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Diagonal dominance

• Entry Aℓℓ in A is greater than the sum of the absolute values of the other
entries in theℓ-th column ofA.

• Such a matrix is calledstrictly diagonally dominant .
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Changes in the admittance matrix

• For a change in a resistor between nodesℓ andk:

∆A= ∆Gℓk











ℓ-th column
︷︸︸︷

k-th column
︷︸︸︷

1 −1 } ℓ-th row

−1 1 } k-th row











. (4.10)

• For a change in a resistor between nodeℓ and the datum node:

∆A= ∆Gℓ0







ℓ-th column
︷︸︸︷

1 } ℓ-th row






. (4.11)
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4.2 Control of a discrete-time linear system
4.2.1 Motivation

• Investigate the conditions under which we can shift thestateof the
system to a desired final value by adjusting the inputs over a sequence of
time intervals.

• That is, we are going to consider theopen loopcontrol of the system.
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Motivation, continued

✲
u(t)

plant
w(t)

✛controller
Fig. 4.5. A feedback
control system applied
to a plant.

• In a feedback controller, as illustrated in Figure4.5, we use the output
(or the state) of the system to decide on the controls.

• Furthermore, inoptimal control we recognize the costs of certain control
actions and states.

• These pose somewhat different problems to the one we investigate in this
case study.

• However, several of the issues turn out to be similar.
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4.2.2 Formulation
4.2.2.1 Variables

• Thestateof the system is the smallest set of variables,w∈ R
m, say, such

that:
– w includes all the variables of interest as a sub-vector, and
– knowledge of the value ofw for any particular timet = t0, together with

knowledge of the values of the inputu(t) to the plant fort1 ≥ t ≥ t0
completely specifies the value ofw for any timet1 ≥ t ≥ t0.

• We writew(kT) for the value ofw at thek-th sampling instant.
• We assume that the input stays constant between thek-th and(k+1)-th

sampling instant so thatu(t) = u(kT),kT ≤ t < (k+1)T.
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4.2.2.2 Behavior of system
• By the definition of state, the value of the state at timekT and the value of

the input for periodk determines value of the state at time(k+1)T.
• That is, for eachk, there exists a functionφ(k) : Rm×R→ R

m:

∀k∈ Z,w((k+1)T) = φ(k)(w(kT),u(kT)),

Linear : ∀k∈ Z,∀w∈ R
m,∀u∈ R,φ(k)(w,u) = G(k)w+h(k)u,

Time-invariant : ∀k∈ Z,w((k+1)T) = φ(w(kT),u(kT)),
Linear time-invariant :

∀k∈ Z,∀w∈ R
m,∀u∈ R,φ(k)(w,u) = Gw+hu.

• Linear time-invariant systems behave according to thedifference
equation:

∀k∈ Z,w([k+1]T) = Gw(kT)+hu(kT). (4.12)

• G is called thestate transition matrix .
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4.2.2.3 Changing the state of the system
• At time kT = 0 the plant is in statew(0) ∈ R

m and we would like it
instead to be in some other desired final statewdesired∈ R

m.
• That is,w(nT) = wdesired.

w(nT) = Gw([n−1]T)+hu([n−1]T),

on substituting forw(nT) from (4.12) for k= n−1,

= (G)2w([n−2]T)+Ghu([n−2]T)+hu([n−1]T),

on substituting forw([n−1]T) from (4.12) for k= n−2,

= (G)3w([n−3]T)+(G)2hu([n−3]T)
+Ghu([n−2]T)+hu([n−1]T), continuing,

... ...

= (G)nw(0)+
n−1

∑
k=0

(G)n−1−khu(kT).
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Changing the state of the system, continued
• Define:

A =
[
(G)n−1h (G)n−2h · · · Gh h

]
,

x =








u(0T)
u(1T)
...
u([n−2]T)
u([n−1]T)







,

b = wdesired− (G)nw(0).
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Changing the state of the system, continued
• Then:

Ax =
[
(G)n−1h (G)n−2h · · · Gh h

]








u(0T)
u(1T)
...
u([n−2]T)
u([n−1]T)







,

=
n−1

∑
k=0

(G)n−1−khu(kT).

• w(nT) will be equal towdesiredif:

wdesired= (G)nw(0)+Ax.

• That is:

Ax= b. (4.13)
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4.2.2.4 Example
• Suppose thatn= 2, m= 2, and:

h =

[
0
1

]

,

G =

[
0 1
1 1

]

,

w(0) =

[
1
3

]

,

wdesired =

[

3
7

]

.
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Example, continued
• Then:

A = [Gh h] ,

=

[
1 0
1 1

]

,

b = wdesired− (G)nw(0),

=

[
−1

0

]

.

• Solving forx, we obtain:
[

u(0T)
u(1T)

]

= x,

=

[
−1

1

]

.
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Example, continued
• For this particular example, it is also possible to find a control u(0T) that

achieved the desired final state in one time-step; that is, for n= 1.
• In particular, there is a solutionu(0T) ∈ R to:

hu(0T) = wdesired−Gw(0),

namelyu(0T) = 3.
• However, it will typically require more than one time-step to achieve a

desired state.
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4.2.2.5 Labeling of vector and matrix entries
• The columns ofA are labeled from 0 to(n−1).
• This contrasts with the labeling of the variables in the casestudy in

Section4.1where the entries were labeled from 1 ton.
• In general, we can label the entries of a vector in any way we choose.

4.2.3 Changes
4.2.3.1 Initial and desired state

• If wdesiredor w(0) change, then the right-hand sideb in the linear
equation (4.13) will also change correspondingly.

4.2.3.2 System
• If the behavior of the plant changes, then the state transition matrixG and

therefore the coefficient matrixA in (4.13) will change.
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4.2.4 Problem characteristics
4.2.4.1 Numbers of variables and equations

• The number of variables isn, which is equal to the number of entries inx,
but the number of equations is equal tom, which is the number of entries
in b.

4.2.4.2 Solvability
• It is not always the case that (4.13) is solvable.
• Solvability will depend onG, h, wdesired, w(0), and onn.

4.2.4.3 Coefficient matrix
• The coefficient matrix is not symmetric and has different numbers of rows

and columns.
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5
Algorithms for linear simultaneous equations

• Consider generally how to solve large systems of the form:

Ax= b. (5.1)

• A is called thecoefficient matrix, while b is called theright-hand side
vector.
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• First consider special cases of coefficient matrices:

Upper triangular : U =





2 3 4
0 −9

2 −9
0 0 1



 , (5.2)

Lower triangular : L =





1 0 0
7
2 1 0
4 2

3 1



 . (5.3)

Key issues
• Solution oftriangular systemsandfactorization of matrices,
• computational effort and particular features of problems, such as

symmetry andsparsity that can reduce the necessary computational
effort,

• sensitivity analysisandill-conditioning ,
• solution ofnon-square systems.
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5.1 Inversion of coefficient matrix
• Suppose thatA is invertible with inverseA−1.
• Let x= A−1b.
• Then:

Ax = AA−1b,
= Ib, by definition of inverse,
= b, by definition ofI .

• Craḿer’s rule says thatkℓ-th entry ofA−1 is given by:
(−1)ℓ+k times
the determinant of the matrix obtained fromA by deleting itsℓ-th row

andk-th column, divided by
the determinant ofA.

• Computational effort is on the order ofn! arithmetic operations.
• If n is large then Craḿer’s rule is impractical because the calculation of

determinants is too computationally intensive.
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Inversion of coefficient matrix, continued
• Nevertheless, Craḿer’s rule can be extremely useful for:

– proving properties of matrices,
– inverting small matrices, since Cramér’s rule allows the inverse to be

written down explicitly. For example, forA∈ R
2×2, if

A11A22−A12A21 6= 0 thenA is invertible and:

A−1 =
1

A11A22−A12A21

[
A22 −A12

−A21 A11

]

, (5.4)

– inverting specific types of matrices.
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5.2 Solution of triangular systems

5.2.1 Forwards substitution

5.2.1.1 Analysis

• If L is lower triangular thenLℓk = 0,∀ℓ < k.

• Suppose we want to findy⋆ ∈ R
n satisfyingLy= b.

• (We will see in Section5.3.1the reason for choosingy as the decision
variable instead ofx.)

b1 = L11y1,

b2 = L21y1+L22y2,

b3 = L31y1+L32y2+L33y3,
... ...

bn = Ln1y1+Ln2y2+Ln3y3+ · · ·+Lnnyn.

Title Page ◭◭ ◮◮ ◭ ◮ 37 of 139 Go Back Full Screen Close Quit



Analysis, continued
• Re-arranging:

y1 =
b1

L11
,

y2 =
b2−L21y1

L22
,

yℓ =
bℓ−∑ℓ−1

k=1Lℓkyk

Lℓℓ
. (5.5)

• This process is calledforwards substitution.
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5.2.1.2 Example

L =





1 0 0
7
2 1 0
4 2

3 1



 ,

b =

[
9

18
28

]

,

y⋆ =





9
−27

2
1



 .
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5.2.2 Backwards substitution

5.2.2.1 Analysis

• If U is upper triangular thenUℓk = 0,∀ℓ > k

• Suppose thaty∈ R
n is given and we want to solveUx= y.

U11x1 + · · · + U1,n−2xn−2+U1,n−1xn−1 + U1,nxn = y1,
... ...

Un−2,n−2xn−2+Un−2,n−1xn−1+Un−2,nxn = yn−2,

Un−1,n−1xn−1+Un−1,nxn = yn−1,

Un,nxn = yn.
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Analysis
• Re-arranging:

xn =
yn

Un,n
,

xn−1 =
yn−1−Un−1,nxn

Un−1,n−1
,

xℓ =
yℓ−∑n

k=ℓ+1Uℓkxk

Uℓℓ
.

• This process is calledbackwards substitution.

Title Page ◭◭ ◮◮ ◭ ◮ 41 of 139 Go Back Full Screen Close Quit



5.2.2.2 Example

U =





2 3 4
0 −9

2 −9
0 0 1



 ,

y =





9
−27

2
1



 ,

x⋆ =

[
1
1
1

]

.
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5.2.3 Computational effort
5.2.3.1 Forwards substitution

• Forwards substitution calculatesyℓ, ℓ= 1, . . . ,n.
• Calculation ofy1 requires a division.
• Calculation of eachyℓ for ℓ= 2, . . . ,n requires:(ℓ−1) multiplications,
(ℓ−2) additions, a subtraction, and a division.

• In total, this is:
n

∑
ℓ=2

(ℓ−1) =
1
2
(n−1)n multiplications,

n

∑
ℓ=2

(ℓ−2) =
1
2
(n−2)(n−1) additions,

(n−1) subtractions,
n divisions.
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5.2.3.2 Backwards substitution
• Backwards substitution calculatesxℓ, ℓ= n, . . . ,1.
• Calculation ofxn requires a division.
• Calculation of eachxℓ for ℓ= (n−1), . . . ,1 requires:(n− ℓ)

multiplications,(n− ℓ−1) additions, a subtraction, and a division.
• In total, this is:

n−1

∑
ℓ=1

(n− ℓ) =
1
2
(n−1)n multiplications,

n−1

∑
ℓ=1

(n− ℓ−1) =
1
2
(n−2)(n−1) additions,

(n−1) subtractions,
n divisions.

5.2.3.3 Overall
• Overall effort is on the order of thesquareof the number of variables.
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5.3 Solution of square, non-singular systems
5.3.1 Combining forwards and backwards substitution

• Suppose that we can factorizeA∈ R
n×n into LU , with L lower triangular

andU upper triangular:

b = Ax, the equation we want to solve,
= LUx, sinceA= LU ,
= L(Ux),
= Ly,

• wherey=Ux.
• We have transformed the problem of solvingAx= b into the solution of

three successive problems:
(i) factorization ofA into LU ,

(ii) forwards substitution to solveLy= b, and
(iii) backwards substitution to solveUx= y.

• If A is singular then we cannot factorizeA into LU with L andU having
non-zero diagonal entries.
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5.3.2 LU factorization
• We will specify a series of “stages” to implement the algorithm.
• M( j) represents a matrix that is defined in thej-th stage of the algorithm.
• To factorizeA, we will multiply it on the left by the non-singular matrices

M(1), M(2), . . . ,M(n−1) such that the matrixU = M(n−1)M(n−2) · · ·M(1)A
is upper triangular.

• At each stage, the product:

A( j+1) = M( j)M( j−1) · · ·M(1)A,

will become successively “closer” to being upper triangular.
• We will choose theM( j), j = 1, . . . ,n−1 to have two additional

properties:

(i) eachM( j) will be lower triangular and therefore have a lower
triangular inverse, and

(ii) [M( j)]
−1

, the inverse ofM( j), will be easy to compute.
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LU factorization, continued
• We let:

L = [M(n−1) · · ·M(1)]
−1
,

= [M(1)]
−1 · · · [M(n−1)]

−1
.

• That is,L is the product of(n−1) lower triangular matrices and,
therefore,L is also lower triangular.

LU = [M(n−1) · · ·M(1)]
−1

M(n−1) · · ·M(1)A, by definition,
= A,

• so thatA has been factorized intoLU .
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5.3.2.1 First stage
Pivoting

• In the first stage of the algorithm, we let:

M(1) =









1 0 · · · · · · 0
−L21 1 ... ...
−L31 0 1 ... ...

... ... . . . . . . 0
−Ln1 0 · · · 0 1









, (5.6)

• whereLℓ1 = Aℓ1/A11, ℓ= 2, . . . ,n.
• DefineA(2) = M(1)A.
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Pivoting, continued

A(2) =








A11 A12 · · · A1n

0 A(2)
22 · · · A(2)

2n... ... ...

0 A(2)
n2 · · · A(2)

nn







, (5.7)

A(2)
ℓk = Aℓk−Lℓ1A1k,1< ℓ,k≤ n.

A(2)
ℓ1 = Aℓ1−Lℓ1A11, for 1< ℓ≤ n,

= Aℓ1−
Aℓ1

A11
A11,

= Aℓ1−Aℓ1,

= 0.

• We have zeroed the entries in the first column ofA below its first entry.
• We say that we havepivoted on the entryA11.
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Pivoting, continued

• Note that:








1 0 · · · · · · 0
−L21 1 ... ...
−L31 0 1 ... ...

... ... . . . . . . 0
−Ln1 0 · · · 0 1

















1 0 · · · · · · 0
L21 1 ... ...
L31 0 1 ... ...
... ... .. . . . . 0

Ln1 0 · · · 0 1









=







1 0 · · · 0
0 1 ... ...
... . . . . . . 0
0 · · · 0 1






,

• so that:

[M(1)]
−1

=









1 0 · · · · · · 0
L21 1 ... ...
L31 0 1 ... ...
... ... . . . . . . 0

Ln1 0 · · · 0 1









.
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Small or zero pivot

• The construction will fail ifA11= 0.
• If A11 is small in magnitude compared toAℓ1 thenLℓ1 = Aℓ1/A11 will be

large in magnitude.
• For moderate to large values ofA1k this will mean that the productLℓ1A1k

can be large compared toAℓk.
• If so, Aℓk−Lℓ1A1k will have an error, due to round-off error, that is large

compared toAℓk.
• That is, the calculated valueA(2,calc)

ℓk differs from the exact value by

A(2,error)
ℓk :

A(2,calc)
ℓk = Aℓk−Lℓ1A1k+A(2,error)

ℓk . (5.8)

Error analysis

• We can re-arrange (5.8) to:

A(2,calc)
ℓk = (Aℓk+A(2,error)

ℓk )−Lℓ1A1k,

• where we now imagine the error as being in the original entry of A.
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Permuting rows and columns

• If A11= 0 (or if A11 is small in magnitude), butAℓk 6= 0 for someℓ andk
then we can reorder the rows and columns and pivot onAℓk instead.

• This simply corresponds to permuting:
– equationℓ is re-numbered to be equation 1, and
– variablek is re-numbered to be variable 1.

• This approach is calledfull pivoting .

Partial pivoting

• Instead of permuting both rows and columns we can only permute, say,
rows.

• The permutation of the rows can be represented by multiplying A on the
left by a permutation matrixP∈ R

n×n:

P=

[
0 1
1 0

]

.
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Diagonal pivoting

• Equationℓ is re-numbered to be equation 1, and
• Variableℓ is re-numbered to be variable 1.

Summary

• In the first stage of the algorithm, to calculateA(2) usingA11 as pivot, we:

– copy the first row ofA into A(2);
– zero the entries in the first column ofA(2) below the diagonal; and
– explicitly calculate the entriesA(2)

ℓk for 1< ℓ≤ n,1< k≤ n using

A(2)
ℓk = Aℓk−Lℓ1A1k.

• We callA11 thestandard pivot.

Title Page ◭◭ ◮◮ ◭ ◮ 53 of 139 Go Back Full Screen Close Quit



5.3.2.2 Second stage
Pivoting

• In the second stage of the algorithm, we now chooseM(2) to zero the
second column ofA(2) below the diagonal:

M(2) =











1 0 · · · 0
0 1 ...

−L32 1 ...
... −L42 0 ... ...

... ... .. . . . . 0
0 −Ln2 0 · · · 0 1











, (5.9)

• whereLℓ2 = A(2)
ℓ2 /A(2)

22 , ℓ= 3, . . . ,n.
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Pivoting, continued

• Let A(3) = M(2)M(1)A= M(2)A(2):

A(3) =










A11 A12 A13 · · · A1n

0 A(2)
22 A(2)

23 · · · A(2)
2n

0 0 A(3)
33 · · · A(3)

3n... ... ... ...

0 0 A(3)
n3 · · · A(3)

nn










, (5.10)

A(3)
ℓk = A(2)

ℓk −Lℓ2A(2)
2k ,2< ℓ,k≤ n.

[M(2)]
−1

=











1 0 · · · 0
0 1 ...

L32 1 ...
... L42 0 1 ...

... ... . . . . . . 0
0 Ln2 0 · · · 0 1











.
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Error analysis

• As in Section5.3.2.1, we can interpret round-off errors in the calculation
of A(3) in terms of a perturbation introduced intoA(2), which we can, in
turn, interpret in terms of a perturbation in the original matrix A.

Permuting rows and columns

• The construction may again fail ifA(2)
22 = 0.

• Again, full, partial, or diagonal pivoting can be used if there is a suitable
non-zero pivotAℓk for some 2≤ ℓ≤ n and 2≤ k≤ n.
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Summary

• At the second stage of the algorithm, to calculateA(3) usingA(2)
22 as pivot,

we:
– copy the first two rows ofA(2) into A(3);
– zero the entries in the first two columns ofA(3) below the diagonal; and
– explicitly calculate the entriesA(3)

ℓk for 2< ℓ≤ n,2< k≤ n using

A(3)
ℓk = A(2)

ℓk −Lℓ2A(2)
2k .

• We callA(2)
22 the standard pivot.
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5.3.2.3 Subsequent stages
Pivot

∀ℓ > j,Lℓ j = A( j)
ℓ j /A( j)

j j ,

∀ℓ > j,∀k> j,A( j+1)
ℓk = A( j)

ℓk −Lℓ jA
( j)
jk . (5.11)

Error analysis

• At each stage, errors inA( j+1) can be interpreted in terms of a
perturbation inA( j), which can be interpreted in terms of a perturbation in
the original matrixA.
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Summary

• At stagej of the algorithm, to calculateA( j+1) usingA( j)
j j as pivot, we:

– copy the firstj rows ofA( j) into A( j+1);
– zero the entries in the firstj columns ofA( j+1) below the diagonal; and
– explicitly calculate the entriesA( j+1)

ℓk for j < ℓ≤ n, j < k≤ n using

A( j+1)
ℓk = A( j)

ℓk −Lℓ jA
( j)
jk .

• We callA( j)
j j the standard pivot.

• Again, if A( j)
j j = 0 or if it is small in magnitude, then the rows and/or

columns ofA( j) can be reordered to place a suitable non-zero entryA( j j )
ℓk ,

where j ≤ ℓ≤ n and j ≤ k≤ n, in the j j place.
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5.3.2.4 Last stage

U = A(n) = M(n−1)M(n−2) · · ·M(1)A=










A11 A12 A13 · · · A1n

0 A(2)
22 A(2)

23 · · · A(2)
2n

0 0 A(3)
33 · · · A(3)

3n... ... . . . . . . ...

0 0 · · · 0 A(n)
nn










.

L = [M(n−1) · · ·M(1)]
−1

=







1 0 · · · 0
L21 1 ... ...
... . . . . . . 0

Ln1 · · · Ln,n−1 1






.
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5.3.2.5 Example

• A=

[
2 3 4
7 6 5
8 9 11

]

,

• b=

[
9

18
28

]

.

M(1) =





1 0 0
−7

2 1 0
−4 0 1



 ,A(2) = M(1)A=





2 3 4
0 −9

2 −9
0 −3 −5



 .

M(2) =





1 0 0
0 1 0
0 −2

3 1



 ,U = A(3) =





2 3 4
0 −9

2 −9
0 0 1



 ,L =





1 0 0
7
2 1 0
4 2

3 1



 .

• x⋆ =

[
1
1
1

]

.
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5.3.2.6 Singular matrices
• Factorization can sometimes be performed on singular matrices.
• However, if factorization fails then (under the assumptionof infinite

precision calculations) the matrix is singular.
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5.3.3 Computational effort
• At the j-th stage, we calculate:

– the(n− j) entries ofL that are in itsj-th column and lying below the
diagonal,

– the(n− j)2 values ofA( j+1) that are in the lower right of the matrix.
• The total effort therefore is:

n−1

∑
j=1

(n− j) =
1
2

n(n−1) divisions,

n−1

∑
j=1

(n− j)2 =
1
6
(2n−1)n(n−1) multiplications,

n−1

∑
j=1

(n− j)2 =
1
6
(2n−1)n(n−1) subtractions.

• The overall effort forLU factorization is therefore on the order of the
cubeof the number of variables.
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5.3.4 Variations
5.3.4.1 Factorization in place

• To implement theLU factorization algorithm, we can start with a copy of
A and apply the pivot operations directly to update the entries in the copy
of A, thereby transforming it into theLU factors.

• The entries of the lower triangle ofL can be entered into the lower
triangle ofA as they are calculated, while the entries of the diagonal and
upper triangle ofU can be entered into the diagonal and upper triangle of
A as they are calculated.
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5.3.4.2 Diagonal entries of L and U
• L has ones on its diagonal, while the entries on the diagonal ofU were the

pivots.
• We can instead factorizeA into two matricesL′ andU ′ so thatU ′ has ones

on its diagonal, while the entries on the diagonal ofL′ are the pivots.

5.3.4.3 LDU factorization
• Suppose we factorizeA into LU ′.
• Let D have diagonal entries equal to the diagonal entries ofU ′

• DefineU = D−1U ′.
• We now have a factorization ofA into LDU , whereD is a diagonal matrix

and bothL andU have ones on the diagonal.
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5.4 Symmetric coefficient matrix
• If A is symmetric, we can save approximately half the work in

factorization, so long as we only use diagonal pivots.
• Symmetric systems often arise in circuit applications, as we have seen,

and also occur in optimization applications.
• Sometimes, a system that appears at first to be not symmetric can be

made symmetric byscalingthe rows or columns or re-arranging the rows
or columns.
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5.4.1 LU factorization

Lemma 5.1 Suppose that A is symmetric and diagonal pivoting was used
in the first stage of factorization to reorder rows and columns. Then:

(i) the first row of A is equal to A11 times the transpose of the first
column of L, (that is, the entries in the first column of L arranged
into a row), and

(ii) the submatrix of A(2) formed by deleting its first row and column
is symmetric.

Proof The proof involves calculation of the entriesA(2). ✷
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Lemma 5.2 Let2≤ j ≤ (n−1) and consider the matrix A( j) formed at the
( j −1)-th stage of the factorization. Suppose that the submatrix of A( j)

obtained by deleting its first( j −1) rows and( j −1) columns is
symmetric. Assume that diagonal pivoting is used at the j-thstage of
factorization. Consider the matrix A( j+1) formed at the j-th stage of
factorization. Then:

(i) the j-th row of A( j+1) is equal to A( j)
j j times the transpose of the

j-th column of L, (that is, the entries in the j-th column of L
arranged into a row), and

(ii) the submatrix of A( j+1) formed by deleting its first j rows and j
columns is also symmetric.

Proof The proof is analogous to that of Lemma5.1. ✷
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Corollary 5.3 Suppose that A is symmetric and that diagonal pivoting is
used at each stage of the factorization. Then for each j,2≤ j ≤ n, the
submatrix of A( j) formed by deleting its first( j −1) rows and( j −1)
columns is symmetric. Moreover, at the end of the factorization, for each
ℓ, theℓ-th row of U is equal to Uℓℓ times the transpose of theℓ-th column
of L.

Proof By induction. Lemma5.1proves the result forj = 1. Lemma5.2
then proves the induction step.✷

Title Page ◭◭ ◮◮ ◭ ◮ 69 of 139 Go Back Full Screen Close Quit



5.4.2 Example

• A=

[
2 3 4
3 5 7
4 7 13

]

5.4.2.1 First stage

• M(1) =





1 0 0
−3

2 1 0
−2 0 1





• A(2) = M(1)A=





2 3 4
0 1

2 1
0 1 5





• A(2)
32 = A(2)

23
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5.4.2.2 Second stage

• M(2) =

[
1 0 0
0 1 0
0 −2 1

]

• A(3) = M(2)M(1)A=





2 3 4
0 1

2 1
0 0 3



.

5.4.2.3 Last stage

• L = [M(1)]
−1
[M(2)]

−1
=





1 0 0
3
2 1 0
2 2 1



.
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5.4.3 Computational savings
• The savings in computational effort for the small example inSection5.4.2

is modest.
• For a general matrix, calculating only the diagonal and upper triangle in

the first stage of factorization saves a fraction of the work equal to:

(n−1)2− (n−1)n/2
(n−1)2 =

(n−1)2/2− (n−1)/2
(n−1)2 ,

=
n−2

2(n−1)
,

≈ 1
2
, for n large.

• Similarly, at each successive stage approximately half thework is saved,
so that overall approximately half the computational effort is required
compared to factorizing a non-symmetric matrix.
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5.4.4 LDL† and Cholesky factorization
• Suppose a symmetric matrix is factorized intoLU using diagonal pivots at

each stage of the factorization.
• Let D be a diagonal matrix with entries equal to the diagonal ofU .
• By Corollary5.3, U = DL†.
• That is,A= LDL† with the diagonal entries ofD being the pivots.
• If the entries ofD are all positive, letR= D

1
2L†, where the matrixD

1
2 is

diagonal with each diagonal entry equal to the positive square root of the
corresponding entry ofD.

• ThenA= R†R is called theCholesky factorization of A.
• The matrixR is upper triangular.
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5.4.5 Discussion of diagonal pivoting
• In the circuit case study from Section4.1, the admittance matrix is strictly

diagonally dominant and so the diagonal entries are relatively large
compared to the off-diagonal.

• Diagonal pivoting is consequently adequate for the particular problem in
our case study.

• In other circuit formulations and more generally in other applications, this
may not be the case and off-diagonal pivoting becomes necessary.
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5.4.6 Positive definite coefficient matrix

Lemma 5.4 Suppose that A∈ R
n×n is symmetric and can be factorized as

A= LDL†, with D∈ R
n×n diagonal and L lower triangular with ones on

the diagonal. Then A is positive definite if and only if all thediagonal
entries of D are strictly positive.
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Proof

⇒ We first prove thatA being positive definite implies that the diagonal
entries ofD are strictly positive. To prove this, we prove the
contra-positive. So, suppose that there is at least one diagonal entry,Dℓℓ,
say, ofD that is not strictly positive. We will exhibitx 6= 0 such that
x†Ax≤ 0. To find such ax, solve the equationL†x= I ℓ for x. (This is
possible sinceL is lower triangular and has ones on its diagonal. We just
perform backwards substitution onL†.) Notice thatx 6= 0, for else
I ℓ = L†x= L†0= 0, which is a contradiction. Furthermore,

x†Ax = x†LDL†x, by assumption onA,
= I ℓ

†DI ℓ, by definition ofx,
= Dℓℓ, on direct calculation,
≤ 0, by supposition.

Therefore,A is not positive definite.
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⇐ We now prove that the diagonal entries ofD being strictly positive
implies thatA is positive definite. So, suppose that all the diagonal
entries ofD are strictly positive. Define the matrixD

1
2 to be diagonal

with each diagonal entry
[

D
1
2

]

ℓℓ
equal to the positive square root of the

corresponding diagonal entry ofD. That is,
[

D
1
2

]

ℓℓ
=

√
Dℓℓ,∀ℓ. Let

x 6= 0 be given and definey= D
1
2L†x. We first claim thaty 6= 0.

For suppose the contrary. That is, suppose thaty= 0. Then,
[

D
1
2

]−1
y= 0. (Notice that the diagonal entries ofD

1
2 are all strictly

positive, so thatD
1
2 is invertible.) But then0=

[

D
1
2

]−1
y= L†x. Solving

L†x= 0 by backwards substitution we obtainx= 0, a contradiction.
Therefore,y 6= 0.
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⇐ continued Second, we observe that:

x†Ax = x†LDL†x, by assumption onA,

= x†LD
1
2D

1
2L†x, by definition ofD

1
2,

= y†y, by definition ofy,

= ‖y‖2
2 , by definition of‖•‖2,

> 0, since the length of a non-zero vector is strictly positive.

That is,A is positive definite.✷
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Theorem 5.5 If A is symmetric and positive definite, then:
(i) A is invertible,

(ii) A is factorizable as LDL†, with D diagonal having strictly
positive diagonal entries and L lower triangular with ones on the
diagonal, and

(iii) A−1 is also symmetric and positive definite.
✷
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5.4.7 Indefinite coefficient matrix
• Consider:

A =

[
A B
B† C

]

.

• Suppose thatA is a square symmetric matrix that is positive semi-definite
or positive definite and thatC is a square symmetric matrix that is
negative semi-definite or negative definite.

• The coefficient matrixA is indefinite; that is, it is neither positive
semi-definite nor negative semi-definite.

• For example:

A =

[
1 0
0 −1

]

.

• For a non-singular indefinite matrix there are special purpose
factorization techniques.
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5.5 Sparsity techniques
• The non-zero entries in the admittance matrix occur only:

– on the diagonal, and
– at those off-diagonal entries corresponding to resistors,

• so that the admittance matrix is asparse matrix.
• We may also have right-hand side vectorsb that only have a few non-zero

entries.
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5.5.1 Sparse storage
5.5.1.1 Sparse matrices

• Store onlyvaluesandlocationsof the non-zero entries in the matrix.

A=






1 2 0 5
2 1 3 0
0 3 1 4
5 0 4 1




 . (5.12)

❄
row 1

❄

✲ location 1 2 4 end
value 1 2 5

row 2 ✲

❄

location 1 2 3 end
value 2 1 3

row 3 ✲

❄

location 2 3 4 end
value 3 1 4

row 4 ✲ location 1 3 4 end
value 5 4 1

Fig. 5.1. Sparse matrix
storage by rows of the
matrix (5.12).
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5.5.1.2 Sparse vectors
• Sparse vectorscan be stored as a list of pairs of numbers representing the

locations and values of the non-zero entries of the vector.
• For example, consider the change in the circuit case study ofSection4

illustrated in Figure4.2, which is repeated for reference in Figure5.2.
• In this circuit, the current injected at node 2 changes by∆b2.

t t t t t

t t t t t1 2 3 4

0

✚✙
✛✘
↑ I1 ✚✙

✛✘
↑∆b2Ra

Rb

Rc

Rd

Re

Rf

Rg ✚✙
✛✘
↑ I4 Fig. 5.2. The ladder

circuit of Figure 4.2,
showing a change,∆bℓ,
in the current injected at
nodeℓ= 2.
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Sparse vectors, continued
• Suppose that the value of the change in the current source was∆b2 = 1.
• Then, we could define a vector∆b∈ R

4 that represents the changes at all
nodes as specified by:

∆b=






0
1
0
0




 . (5.13)

∆b ✲ location 2 end
value 1 Fig. 5.3. Sparse storage

of the vector (5.13).

5.5.1.3 Implementation
• A linked list of records can be easily modified by changing thepointers.
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5.5.2 Forwards and backwards substitution
5.5.2.1 Sparse matrices

• Forward substitution to solveLy= b:

yℓ =
1

Lℓℓ

(

bℓ−
ℓ−1

∑
k=1

Lℓkyk

)

,

= bℓ− ∑
k< ℓ

Lℓk 6= 0
yk 6= 0

Lℓkyk. (5.14)

• To calculateyℓ, we first initializeyℓ = bℓ.
• For each non-zero entryLℓk,k< ℓ, in row ℓ, if yk 6= 0, we calculateLℓkyk

and subtract it from the current value ofyℓ.

5.5.2.2 Sparse vectors
• If b= In then we only need perform (5.14) for ℓ= n sinceyℓ = 0 for
ℓ < n.
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5.5.3 Factorization
5.5.3.1 Fill-ins

A=






1 2 0 5
2 1 3 0
0 3 1 4
5 0 4 1




 .

• We can represent the zeros and non-zeros ofA with the following
diagram:

◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦

.
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Fill-ins, continued
• Similarly, we can represent the zeros and non-zeros ofL with:

◦
◦ ◦

◦ ◦
◦ • ◦ ◦

,

• where◦ and• both represent non-zeros:
◦ corresponds to an entry that was non-zero inA, while
• corresponds to an entry that was zero inA.

• We refer to the latter entries, indicated by bullets•, asfill-ins because
they correspond to a non-zero entry inL that was created at a position of a
zero inA.
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5.5.3.2 Choosing pivots to minimize fill-ins
• Fill-ins necessitate later calculations.
• We seek an ordering of the rows and columns of the matrix that

minimizes the number of fill-ins during factorization.

Heuristic criteria

• It is in general very difficult to find the optimal ordering to minimize the
total number of fill-ins created during the complete factorization.

• Several heuristics available to approximately minimize the number of
fill-ins created.

• Choose the pivot at stagej so as to minimize the number of fill-ins
created at stagej, ignoring the effect of this decision on the number of
fill-ins created at later stages.
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Number of fill-ins with standard pivot

• We have the following upper bound on the number of fill-ins:

Lemma 5.6 Suppose that A∈ R
n×n is symmetric. Let N( j) be the number

of fill-ins created at stage j of factorization using A( j)
j j as pivot. Then

N( j)≤ N( j), where:

N( j)= [(the number of non-zero entries in the j-th row of A( j)) minus 1]2,

✷

• The upper boundN( j) is very easy to evaluate and represents the worst
possible case of creation of fill-ins where every non-zero entry in the j-th
row of A( j) creates a fill-in for every one of the non-zero elements in the
j-th column ofA( j) below the diagonal that must be explicitly annihilated.

• That is, it ignores the entries that are already non-zero inA( j).
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Number of fill-ins with other pivots

• DefineN(ℓ) to be the number of fill-ins created at stagej if we pivot on

the entryA( j)
ℓℓ

• Again, we can approximateN(ℓ) by ignoring the entries that are already
non-zero inA( j) to obtain the upper boundN(ℓ).

• N(ℓ) is equal to the square of one less than the number of non-zero entries
in theℓ-th row of A( j).

Application of heuristic

• We choose to pivot on the entryA( j)
ℓℓ that minimizesN(ℓ), which will also

approximately minimizeN(ℓ).
• That is, we pick the rowℓ of A( j), where j ≤ ℓ≤ n, that has the least

number of non-zero entries.
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5.5.3.3 Computational effort
• The computational effort for factorization is difficult to calculate exactly

because it depends on the total number of fill-ins.
• However, the effort for factorization is typically much less than cubic in

the number of variables.
• In practice, elapsed computation time sometimes grows onlyslightly

faster thanlinearly in the number of variables.
• Solution time depends strongly on the number of non-zero entries in theA

matrix.
• A very large, but sparse, system can be faster to solve than a small dense

system having more non-zeros than the sparse system.

5.5.3.4 Other criteria for pivot selection
• We should try to avoid small pivots.
• This presents difficulties for ourLU factorization algorithm for sparse

matrices, because we would like to know the order of the pivots ahead of
time so that we can create the appropriate fill-ins in the linked list
representation of the matrix.
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5.5.4 Special types of sparse matrices
5.5.4.1 Banded matrices and matrices with regular structure

• A banded matrix has zeros everywhere except on the diagonal and on
entries that are close to the diagonal.

• A tri-diagonal matrix is a banded matrix that has non-zero entries only
on the diagonal and adjacent to the diagonal.

• There are special factorization algorithms that have been developed for
these types of matrices.
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5.5.4.2 Block pivoting and sparsity
• Consider factorization of the block matrix:

A =

[

A B
C D

]

,

M (1) =

[
I 0

−CA−1 I

]

,

A(2) =

[
I 0

−CA−1 I

][
A B
C D

]

,

=

[
A B
0 D−CA−1B

]

. (5.15)
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Block pivoting and sparsity, continued

• The pre-multiplication matrixM (1) was obtained by “pretending” that the
matrix:

A =

[
A B
C D

]

,

• was a 2×2 matrix and pivoting on the blockA.
• The first block column ofL in the blockLU factorization of

A =

[
A B
C D

]

is given by

[
I

CA−1

]

and the first block row ofU is given by

[A B].
• We say that we havepivoted on the blockA.
• We have that:

A = LU,

=

[
I 0

CA−1 I

][
A B
0 D−CA−1B

]

.
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Block pivoting and sparsity, continued
• If the sparsity pattern of the system is such that non-zero entries occur in

blocks, then it can be more efficient to store the matrix as a sparse
collection of blocks.

• The “entries” of the coefficient matrix will therefore consist of blocks and
block pivoting can be used.

• For example, Figure5.4shows the storage of such a matrix.
• As in Figure5.1, the matrix is stored by “rows;” however, in this case the

rows are actually pairs of rows in the matrix and the entries are 2×2
blocks.
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Block pivoting and sparsity, continued

❄
row 1

❄

✲

location 1 2 4 end

value

[
1 2
3 4

] [
2 3
4 5

] [
5 6
7 8

]

row 2 ✲

❄

location 1 2 3 end

value

[
2 3
4 5

] [
1 2
3 4

] [
3 4
5 6

]

row 3 ✲

❄

location 2 3 4 end

value

[
3 4
5 6

] [
1 2
3 4

] [
4 5
6 7

]

row 4 ✲

location 1 3 4 end

value

[
5 6
7 8

] [
4 5
6 7

] [
1 2
3 4

]
Fig. 5.4. Stor-
age by block
rows for a block
matrix.
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5.6 Changes
5.6.1 Sensitivity
5.6.1.1 Analysis

• We now generalize to the case where the coefficient matrix andright-hand
sides are functions of a parameterχ ∈ R

s.
• That is,A : Rs→ R

n×n andb : Rs→ R
n are matrix and vector valued

functions ofχ, respectively.
• We assume that we have already foundx= x⋆⋆ ∈ R

n that satisfied
A(0)x= b(0).
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Theorem 5.7 Suppose that A: Rs→ R
n×n and b: Rs→ R

n are partially
differentiable with continuous partial derivatives and that A(0) is
non-singular. Then, there exists a function x⋆ : Rs→ R

n such that:
• for χ in a neighborhood of0, the function x⋆ satisfies the linear

simultaneous equations A(χ)x⋆(χ) = b(χ), and
• the function x⋆ is partially differentiable in the neighborhood with

partial derivative with respect toχ j at χ = 0 given by:

∂x⋆

∂χ j
(0) = [A(0)]−1

[
∂b
∂χ j

(0)− ∂A
∂χ j

(0)x⋆⋆
]

, (5.16)

where x⋆⋆ ∈ R
n satisfies the base-case linear simultaneous equations

A(0)x⋆⋆ = b(0).
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Proof The matrixA(χ) is invertible for allχ in a neighborhood of0.
Consequently, there is a well-defined solution ofA(χ)x= b(χ) for all χ
in this neighborhood and for each suchχ we can define the value of
x⋆(χ) to be this solution. That is, for allχ within a neighborhood of0 we
have thatA(χ)x⋆(χ) = b(χ). (SinceA(0) is non-singular, the solution is
unique and we have thatx⋆(0) = x⋆⋆.)
That is,x⋆(χ) = [A(χ)]−1b(χ) for all χ in this neighborhood. The inverse
[A(χ)]−1 is partially differentiable with respect toχ j in the
neighborhood. Moreover, the partial derivative is continuous. Therefore,
x⋆(χ), being the product of partially differentiable functions with
continuous partial derivatives, is also partially differentiable with respect
to χ j in the neighborhood.
Totally differentiatingA(χ)x⋆(χ) = b(χ) with respect toχ j , evaluating at
χ = 0, and re-arranging yields (5.16). ✷
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5.6.1.2 Discussion
• If we have already factorized the base-case coefficient matrix A(0)

then (5.16) shows that the sensitivity ofx⋆ with respect to variation inχ j
can be calculated with one additional forwards and backwards

substitution using the right-hand side
∂b
∂χ j

(0)− ∂A
∂χ j

(0)x⋆⋆.

• Finding the partial derivative of all entries ofx⋆ with respect to all entries
of χ ∈ R

s requiress forwards and backwards substitutions.

• Each forwards and backwards substitution provides a sensitivity
∂x⋆

∂χ j
(0).

• Since the base-case solutionx⋆⋆ in Theorem5.7 is equal tox⋆(0), we will
from now on abuse notation somewhat and usually writex⋆ for the
base-case solution andalso for the function that represents the
dependence of the solution onχ.
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5.6.1.3 Direct sensitivity analysis
• A single forwards and backwards substitution is required tocalculate the

sensitivity ofx⋆ to an entryχ j of χ ∈ R
s.

Example

∀χ ∈ R,A(χ) =

[
1 2+χ
3 4

]

,

∀χ ∈ R,b(χ) =

[
1
1+χ

]

,

x⋆(0) =

[
−1

1

]

.
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Example, continued

∂A
∂χ (χ) =

∂A
∂χ (0),

=

[

0 1
0 0

]

,

∂b
∂χ (χ) =

∂b
∂χ (0),

=

[

0
1

]

,

∂b
∂χ (0)− ∂A

∂χ (0)x⋆(0) =

[

−1
1

]

,

∂x⋆

∂χ (0) = [A(0)]−1
[

∂b
∂χ (0)− ∂A

∂χ (0)x⋆
]

,

=

[

3
−2

]

.
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Circuit case study

• For the ladder circuit in Figure4.3, which is repeated in Figure5.5, there
is an additional conductance of∆G23 between nodes 2 and 3.

t t t t

t t t t1 2 3 4

0

✚✙
✛✘
↑ I1 1

Ra

1/Rb

1
Rc

1/Rd

∆G23

1
Re

1/Rf

1
Rg ✚✙

✛✘
↑ I4 Fig. 5.5. The ladder

circuit of Figure 4.3
that has a change in the
conductance between
nodesℓ= 2 andk= 3.
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Circuit case study, continued

• The sensitivity of the solution of this circuit with respectto ∆G23= χ,
evaluated at∆G23= χ = 0, is given by the solution of a circuit with
“current injections” (actually having units of voltage) equal to:

∂b
∂∆G23

(0)− ∂A
∂∆G23

(0)x⋆ = 0−






0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0




x⋆,

• where:
– x⋆ is the base-case solution,

– the current injections do not depend on∆G23 so that
∂b
∂∆G23

(0) = 0, and

– the dependence of the admittance matrixA on ∆G23 was discussed in
Section4.1.3.2.

• The solution of the circuit is a vector of “voltages” (actually having units
of voltage divided by admittance) that represent the sensitivities with
respect to∆G23.
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5.6.1.4 Adjoint sensitivity
• In this section we will suppose that there is anobjective function

f : Rn → R that provides the value or payoff of the solutionx.
• We definef ⋆ : Rs→ R by:

∀χ ∈ R
s, f ⋆(χ) = f (x⋆(χ)).

• We are interested in calculating the partial derivative off ⋆, again
assuming that we have a base-case solutionx⋆(0) corresponding to the
parameter valueχ = 0 and also assuming thatf is differentiable.

∂ f ⋆

∂χ j
(0) =

d[ f (x⋆(χ))]
dχ j

(0),

=
∂ f
∂x (x⋆(0))

∂x⋆

∂χ j
(0), by the chain rule,

=
∂ f
∂x (x⋆(0))[A(0)]−1

[
∂b
∂χ j

(0)− ∂A
∂χ j

(0)x⋆(0)
]

. (5.17)
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Adjoint sensitivity, continued
• Let us defineξ ∈ R

n to be the solution of:

[A(0)]†ξ = ∇f (x⋆(0)). (5.18)

• Solving forξ in (5.18) and taking the transpose of the result yields:

ξ† =
∂ f
∂x (x⋆(0))[A(0)]−1,

∂ f ⋆

∂χ j
(0) = ξ†

[
∂b
∂χ j

(0)− ∂A
∂χ j

(0)x⋆(0)
]

.

• Calculation of the vectorξ in (5.18) requires the solution of a linear
equation with coefficient matrix[A(0)]†.

• After ξ has been calculated with one forwards and backwards substitution,
sensitivities off ⋆ with respect to all entries ofχ can be evaluated.
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Example

∀x∈ R
2, f (x) = (x1)

2+(x2)
2+2x2−3,

∀x∈ R
2,∇f (x) =

[

2x1
2x2+2

]

,

∇f (x⋆) =

[

−2
4

]

.
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Example, continued

• In this case, (5.18) becomes:
[

1 3
2 4

]

ξ =

[
−2

4

]

,

• which has solutionξ =

[
10
−4

]

, so that:

∂ f ⋆

∂χ (0) = ξ†
[

∂b
∂χ (0)− ∂A

∂χ (0)x⋆(0)
]

,

= [10 −4]

[

−1
1

]

,

= −14.
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Circuit case study

• The linear equation that is solved for adjoint sensitivity analysis
corresponds to a circuit that has entries in its admittance matrix that are
thetransposeof those in the base-case and has entries in its “current
vector” that are defined in terms of the sensitivity of the objective
function.

• The circuit is called theadjoint sensitivity circuit .
• One solution of the adjoint sensitivity circuit suffices forsensitivities of

an objective function with respect to all parameters of interest.
• In the case of resistive circuits with current sources, the admittance matrix

is symmetric, so that the resistors in the adjoint circuit are the same as
those in the base-case circuit.

• For some circuits, however, the admittance matrix is not symmetric and
the adjoint circuit has components that are different from those in the
base-case circuit.
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5.6.2 Large changes
5.6.2.1 Right-hand side

• We can easily accommodate large changes inb, either by:
(i) re-solving the equations with the new value ofb, or

(ii) solving for the change∆x in x to match the change∆b in b.
• In the second case, we assume that we have already have a solution x⋆

that satisfiesAx⋆ = b and now we want to find∆x that satisfies
A(x⋆+∆x) = b+∆b, where∆b is the change in the right-hand side.

• We must solveA∆x= ∆b.
• The computational effort using forwards and backwards substitution as

described in Section5.2 is on the order of(n)2.
• We saw a case in Section5.5.2.2where the effort is much smaller than
(n)2 if ∆b has only a few non-zero entries.

• The solution of the systemAx= b is a linear function of the right-hand
side vectorb.

• If a sensitivity analysis is carried out with respect to parameters that are
all entries ofb then the sensitivity and large change analysis yield the
same result.

Title Page ◭◭ ◮◮ ◭ ◮ 110 of 139 Go Back Full Screen Close Quit



5.6.2.2 Coefficient matrix
• Assuming thatA has been factorized asLDL†, we have:

A+∆A = LDL†+∆A,

= LDL†+LL−1∆A[L−1]
†
L†, sinceLL−1 = I ,

= L(DL†+L−1∆A[L−1]
†
L†),

collecting the common factor on the left,

= L(D+L−1∆A[L−1]
†
)L†,

collecting the common factor on the right.

Title Page ◭◭ ◮◮ ◭ ◮ 111 of 139 Go Back Full Screen Close Quit



Coefficient matrix, continued

• Suppose that we can factorizeD+L−1∆A[L−1]
†

into L̂D̂L̂† with L̂ lower
triangular with ones on its diagonal andD̂ diagonal.

• Then, we would have:

A+∆A = L(D+L−1∆A[L−1]
†
)L†,

= LL̂D̂L̂†L†,

= L̃D̂L̃†.

• The practicality of this approach depends on being able to factorize
D+L−1∆A[L−1]

†
using less effort than it takes to factorizeA+∆A.

• This is not true if∆A is an arbitrary change, but is true for some restricted
forms of∆A that are nevertheless extremely useful in applications.
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Coefficient matrix, continued
• For example, suppose that:

– γ,δ ∈ R with γ andδ non-zero, and
– w,u∈ R

n with w andu linearly independent.
• Then, for the particular forms:

∆A= γww† ∈ R
n×n, which is called asymmetric rank one update, and

∆A= γww†+δuu† ∈ R
n×n, which is called asymmetric rank two

update,
• the computational effort involved is on the order of(n)2, which is

considerably less than the effort involved in factorizingA+∆A directly.

5.6.3 New variables and equations
• We can also consider augmenting a system of equations by adding a new

variable or a new equation.

Title Page ◭◭ ◮◮ ◭ ◮ 113 of 139 Go Back Full Screen Close Quit



5.7 Ill-conditioning
5.7.1 Numerical conditioning and condition number

5.7.1.1 Discussion
• In Section5.3we showed that ifA is non-singular then we can factorize

it, while if it is singular then at some stage we will find that there are no
non-zero pivots.

• We avoided discussion of the issue of when a coefficient matrix is
“nearly” singular in the sense that a small perturbation of the matrix
would make is singular.
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5.7.1.2 Example

A=

[
1 δ
1 0

]

. (5.19)

• If δ 6= 0, then under the assumption of infinite precision arithmetic, we
could reliably factorizeA and solveAx= b exactly for the solutionx⋆.

• However, ifδ is small in magnitude, thenA is “nearly” singular in that
perturbingδ to make it equal to zero would makeA singular.

• Small relative errors in the specification ofA or b (or in the calculations to
factorizeA or to perform forwards or backwards substitution) lead to
large relative errors in the value of the solutionx⋆.

• That is, the problem of solvingAx= b given theA defined in (5.19) is
ill-conditioned according to Definition2.21.
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Example, continued

A−1 =

[
0 1

1/δ −1/δ

]

.

x⋆ = A−1b=

[
b2

(b1/δ)− (b2/δ)

]

. (5.20)

• Let b=

[

1
1

]

so that‖b‖2 =
√

2.

• We have thatx⋆ =

[

1
0

]

and‖x⋆‖2 = 1.

• We consider, in turn, changes tob and toA assuming infinite precision
calculations.

Title Page ◭◭ ◮◮ ◭ ◮ 116 of 139 Go Back Full Screen Close Quit



Right-hand side

• Ax= b+∆b, with ∆b=

[

χ
0

]

, so that‖∆b‖2 = |χ|.

• ∆x⋆ =

[

0
χ/δ

]

and‖∆x⋆‖2 = |χ/δ|.

‖∆x⋆‖2

‖x⋆‖2
= |χ/δ| ,

‖∆b‖2

‖b‖2
=

|χ|√
2
.

• The relative change in the norm of the solution is on the orderof |1/δ|
times the relative change in the norm of the right-hand side.
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Coefficient matrix

• (A+∆A)x= b, with ∆A=

[
χ 0
0 0

]

, so that‖∆A‖2 = |χ|

• x⋆+∆x⋆ =

[
1

χ/δ

]

, ∆x⋆ =

[
0

χ/δ

]

and‖∆x⋆‖2 = |χ/δ|.

‖∆x⋆‖2

‖x⋆+∆x⋆‖2
≈ |χ/δ| ,

‖∆A‖2

‖A‖2
≈ |χ|√

2
.

• Again, the relative change in the solution is on the order of|1/δ| times the
relative change in the coefficient matrix.
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5.7.1.3 Analysis
• The degree of ill-conditioning is characterized by a measure known as the

condition number of the matrix.

Definition 5.1 Let ‖•‖ stand for vector and matrix norms onRn andRn×n

that are compatible. For example, the matrix norm‖•‖ could be the matrix
norm induced by the vector norm. Suppose thatA∈ R

n×n is non-singular.
Then thecondition number of A is defined by‖A‖

∥
∥A−1

∥
∥. If A∈ R

n×n is
singular then the condition number is defined to be∞. ✷

Theorem 5.8 Let‖•‖ stand for vector and matrix norms onRn andRn×n

that are compatible. Suppose that A∈ R
n×n is non-singular and b∈ R

n.
We consider the relation between solutions of the system Ax= b and
solutions of the perturbed systems Ax= b+∆b and(A+∆A)x= b. We
have the following bounds:

(i) Consider the perturbed system Ax= b+∆b. The solution x⋆+∆x⋆

to this perturbed system satisfies:

‖∆x⋆‖
‖x⋆‖ ≤ ‖A‖

∥
∥A−1

∥
∥
‖∆b‖
‖b‖ ,
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where x⋆ is the solution to Ax= b. That is, the relative change in
the solution is bounded by the product of the condition number
and the relative change in the right-hand side.

(ii) Consider the perturbed system(A+∆A)x= b. The solution
x⋆+∆x⋆ to this system satisfies:

‖∆x⋆‖
‖x⋆+∆x⋆‖ ≤ ‖A‖

∥
∥A−1

∥
∥
‖∆A‖
‖A‖ ,

where x⋆ is the solution to Ax= b. That is, the relative change in
the solution is bounded by the product of the condition number
and the relative change in the coefficient matrix.

✷
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Example

• Consider the matrix defined in (5.19) and suppose thatδ is small.
• If the induced matrix norm‖•‖2 is chosen, then:

‖A‖2 ≈
√

2, and
∥
∥A−1

∥
∥

2 ≈ |1/δ|,
• so that the condition number is proportional to|1/δ|.
• According to Theorem5.8, relatively small changes in either the

right-hand sideb or the coefficient matrixA of the systemAx= b can
potentially produce large relative changes in the solutionwith the
amplification proportional to|1/δ|.

• By Theorem5.7, we obtain that the norm of the sensitivity toχ is |1/δ|.
• These observations are consistent with the above calculations for the

matrix defined in (5.19) since the changes inA andb were indeed
amplified by|1/δ| in the solution.
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5.7.2 Scaling and pre-conditioning
• Scaling can sometimes be used effectively to reduce the condition number

of a matrix.
• For example, consider the matrix:

A=

[

δ 0
1 1

]

, (5.21)

A−1 =

[

1/δ 0
−1/δ 1

]

,

x⋆ = A−1b=

[

b1/δ
−(b1/δ)+b2

]

. (5.22)

• If the ‖•‖2 induced matrix norm is again used, then for smallδ we have
that:
– ‖A‖2 ≈ 1,

–
∥
∥A−1

∥
∥

2 ≈
∣
∣
∣

√
2/δ
∣
∣
∣,

• so that the condition number is again proportional to|1/δ|.
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Scaling and pre-conditioning, continued
• By scaling the first equation ofAx= b by multiplying it by 1/δ we obtain

the new system:
[

1 0
1 1

]

x=

[

b1/δ
b2

]

, (5.23)

• and the coefficient matrix now has a condition number that is asmall
constant that is independent ofδ.

• We still face the issue that the solution (5.22) is very dependent on the
value ofδ; however, the condition number of the coefficient matrix has
improved.

• It is important to realize that pre-conditioning will not remove the
sensitivity of the solution to changes in the originally specified coefficient
matrix A and vectorb.
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5.7.3 Matrix factorization
5.7.3.1 LU factorizing ill-conditioned systems

• The condition number of the lower triangular matrix:

L = [M(n−1) . . .M(1)]
−1
,

• is:

‖L‖
∥
∥L−1

∥
∥=

∥
∥
∥[M(n−1) . . .M(1)]

−1
∥
∥
∥

∥
∥
∥M(n−1) . . .M(1)

∥
∥
∥ ,

• which is bounded by:
∥
∥
∥[M(n−1)]

−1
∥
∥
∥ . . .

∥
∥
∥[M(1)]

−1
∥
∥
∥

∥
∥
∥M(n−1)

∥
∥
∥ . . .

∥
∥
∥M(1)

∥
∥
∥=

∥
∥
∥M(n−1)

∥
∥
∥

∥
∥
∥[M(n−1)]

−1
∥
∥
∥ . . .

∥
∥
∥M(1)

∥
∥
∥

∥
∥
∥[M(1)]

−1
∥
∥
∥ .
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LU factorizing ill-conditioned systems, continued
• Similarly, the condition number of the upper triangular matrix:

U = M(1) . . .M(n−1)A,

• is bounded by:
∥
∥
∥M(n−1)

∥
∥
∥

∥
∥
∥[M(n−1)]

−1
∥
∥
∥ . . .

∥
∥
∥M(1)

∥
∥
∥

∥
∥
∥[M(1)]

−1
∥
∥
∥‖A‖

∥
∥A−1

∥
∥ .

• BothM( j) and[M( j)]
−1

have entries that are proportional to the inverse of
the pivot used at thej-th stage and their norms will both be
correspondingly large.

• The effect of pre-conditioning byM(1), . . . ,M(n−1) is to increase the
condition number of the resulting system, which exacerbates the
ill-conditioning of A.

• If A is ill-conditioned then the resulting systemsLy= b andUx= y can
be extremely ill-conditioned.
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5.7.3.2 LDL† for positive definite A
• In the case of a strictly diagonally dominant matrix such as in our circuit

case study of Section4.1, the largest pivots are on the diagonal and
diagonal pivoting will keep the condition number of the system relatively
low.

• This favorable circumstance also occurs forLDL† factorization of any
symmetric positive definite matrix.
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5.7.3.3 QR
• An alternative factorization involves multiplying by a sequence of

matricesM( j) for which
∥
∥
∥M( j)

∥
∥
∥

2
=
∥
∥
∥[M( j)]

−1
∥
∥
∥

2
= 1 so that the condition

number ofL is one and the condition number ofU is the same as the
condition number ofA.

• The resulting factorization is called theQRfactorization and can be
applied to anm×n matrix A with m≥ n and having linearly independent
columns to produce a factorizationA= QRwhereQ∈ R

m×m is unitary
andR∈ R

m×n is upper triangular.
• That is,Rℓk = 0 for ℓ > k.

• The main drawbacks ofQR factorization are that:
– it takes more computational effort thanLU factorization, and
– the matrixQ will not usually be sparse even ifA is sparse.
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5.8 Non-square systems
5.8.1 More variables than equations

• Consider the systemAx= b whereA∈ R
m×n,b∈ R

m, andm< n.

5.8.1.1 Inconsistent equations
• A system of equations is calledinconsistentif there is no solution.
• This problem will turn out to be an optimization problem and we will

treat it in Section11.1.

5.8.1.2 Consistent equations and the null space
• If the m rows ofA arelinearly independent then there is anm×m

sub-matrix ofA with linearly independent columns.
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First mcolumns linearly independent

• Let n′ = n−m and partitionA into
[

A‖ A⊥ ] whereA‖ ∈ R
m×m and

A⊥ ∈ R
m×n′.

• Similarly, partitionx into

[
ω
ξ

]

whereω ∈ R
m andξ ∈ R

n′.

• Suppose thatA‖ has linearly independent columns, so thatA‖ is
non-singular.

Ax= b ⇔
[

A‖ A⊥ ]
[

ω
ξ

]

= b, by definition of
[

A‖ A⊥ ] and

[

ω
ξ

]

,

⇔ A‖ω+A⊥ξ = b,

⇔ A‖ω = b−A⊥ξ,

⇔ ω = [A‖]
−1
(b−A⊥ξ),

• Let ξ̂ = 0 andω̂ = [A‖]
−1

b.
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First mcolumns linearly independent, continued

• Then define:

x̂ =

[
ω̂
ξ̂

]

,

=

[

[A‖]
−1

b
0

]

.

• The vector ˆx is oneparticular solution to Ax= b.
• The set of all solutions toAx= b is given by{x̂+∆x∈ R

n|A∆x= 0}.
• The set:

N (A) = {∆x∈ R
n|A∆x= 0},

• is called thenull spaceof A.
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First mcolumns linearly independent, continued

• Partition∆x into

[

∆ω
∆ξ

]

, where∆ω ∈ R
m and∆ξ ∈ R

n′.

A∆x= 0 ⇔
[

A‖ A⊥ ]
[

∆ω
∆ξ

]

= 0,

⇔ A‖∆ω+A⊥∆ξ = 0,

⇔ A‖∆ω =−A⊥∆ξ,

⇔ ∆ω =−[A‖]
−1

A⊥∆ξ.
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First mcolumns linearly independent, continued

N (A) = {∆x∈ R
n|A∆x= 0},

=

{[

−[A‖]
−1

A⊥∆ξ
∆ξ

]∣
∣
∣
∣
∆ξ ∈ R

n′
}

,

= {Z∆ξ|∆ξ ∈ R
n′},

where:Z =

[

−[A‖]
−1

A⊥

I

]

.

• The columns ofZ form abasisfor the null space ofA.

• Every solution ofAx= b is of the formx=

[

ω̂
0

]

+

[

∆ω
∆ξ

]

,

• where:

x̂=

[

ω̂
0

]

is a particular solution ofAx= b, and
[

∆ω
∆ξ

]

∈ N (A).

Title Page ◭◭ ◮◮ ◭ ◮ 132 of 139 Go Back Full Screen Close Quit



First mcolumns linearly independent, continued

✻

ξ

✲ ω

N (A)
{[

ω
ξ

]

∈ R
n

∣
∣
∣
∣
A

[

ω
ξ

]

= b

}

✓✓
✓✓

✓✓
✓✓

✓✓
✓✓

✓✓
✓✓

✓✓
✓✓

✓
✓
✓
✓
✓
✓
✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

❞

t❞

[

ω̂
0

]

[

ω̂
0

]

+

[

∆ω
∆ξ

]

[

∆ω
∆ξ

]

Fig. 5.6. Solution of
linear equations. The
solid line represents the
set of points satisfying
the linear equations.
The null space of the
coefficient matrix is
shown as the dashed
line.
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Linearly independent columns unknown

• An analogous factorization to theQR factorization can be used to write
PA= LQ, where now:
P∈ R

m×m is a permutation matrix,
L ∈ R

m×n is lower triangular, with its firstm′ columns linearly
independent and its lastn′ = n−m′ columns zero, and

Q∈ R
n×n is unitary.

• PartitionL into
[

L‖ 0
]

whereL‖ ∈ R
m×m′

is lower triangular with itsm′

columns linearly independent.
• If A hasm linearly independent columns thenm′ = m.
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Linearly independent columns unknown, continued

• Let n′ = n−m′ andy= Qxand partitiony∈ R
n into y=

[

ω
ξ

]

where

ω ∈ R
m′

andξ ∈ R
n′.

Ax= b ⇔ PAx= Pb, sinceP is non-singular,
⇔ LQx= Pb, by definition ofLQ,
⇔ Ly= Pbandy= Qx,

⇔
[

L‖ 0
]
[

ω
ξ

]

= Pbandy= Qx,

⇐ L‖ω = Pb andy=

[

ω
0

]

= Qx.

• If m′ = m then similar arguments to before show that ˆy=

[

[L‖]
−1

Pb
0

]

satisfiesLy= Pb and that ˆx= Q−1ŷ= Q†ŷ satisfiesAx= b.
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Linearly independent columns unknown, continued

N (A) = {∆x∈ R
n|A∆x= 0},

=

{

Q†
[

0
∆ξ

]∣
∣
∣
∣
∆ξ ∈ R

n′
}

,

= {Z∆ξ|∆ξ ∈ R
n′},

• whereZ is the lastn′ columns ofQ†.
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5.8.2 More equations than variables
• Consider the systemAx= b whereA∈ R

m×n,b∈ R
m, andm> n.

5.8.2.1 Inconsistent equations
• Inconsistent equationstypically occur ifA is non-square with more

equations than variables.
• We will investigate this type of problem in Section11.1.

5.8.2.2 Consistent equations
• Forb∈ R (A), the systemAx= b will have one or more solutions, even if

there are more equations than variables.
• For suchb, we say that the equations areconsistent.
• There are redundant equations.

5.8.3 The pseudo-inverse
• The preceding discussion can be unified by defining the notionof the

pseudo-inverse, which is defined to be the (unique) matrixA+ ∈ R
n×m

such that the vectorx= A+b is the vector having the minimum value of
norm‖x‖2 over all vectors that minimize‖Ax−b‖2.
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5.9 Iterative methods
• Very large, but sparse, systems can be solved effectively byfactorization.
• However, if the coefficient matrix is extremely large or is dense, then the

factorization approaches become too time consuming.
• An alternative approach involves aniterative algorithm where a

sequence{x(ν)}∞
ν=0 of approximations to the solution ofAx= b are

calculated.

Title Page ◭◭ ◮◮ ◭ ◮ 138 of 139 Go Back Full Screen Close Quit



5.10 Summary
• In this chapter we have describedLU factorization (and its variants) and

forwards and backward substitution as an efficient approachto solving
systems of linear equations, paying particular attention to symmetric
systems.

• We considered the selection of pivots and discussed the solution of
perturbed systems, sparse methods, and the issue of ill-conditioning.

• We briefly discussed the solution of non-square systems and iterative
techniques.

• In later chapters we will need to solve large linear systems repeatedly so
that the algorithms developed in this chapter will be incorporated into all
subsequent algorithms.

Title Page ◭◭ ◮◮ ◭ ◮ 139 of 139 Go Back Full Screen Close Quit


	Part I Linear simultaneous equations
	Case studies
	Analysis of a direct current linear circuit
	Motivation
	Formulation
	Changes
	Problem characteristics

	Control of a discrete-time linear system
	Motivation
	Formulation
	Changes
	Problem characteristics


	Algorithms
	Inversion of coefficient matrix
	Solution of triangular systems
	Forwards substitution
	Backwards substitution
	Computational effort

	Solution of square, non-singular systems
	Combining forwards and backwards substitution
	LU factorization
	Computational effort
	Variations

	Symmetric coefficient matrix
	LU factorization
	Example
	Computational savings
	LDL and Cholesky factorization
	Discussion of diagonal pivoting
	Positive definite coefficient matrix
	Indefinite coefficient matrix

	Sparsity techniques
	Sparse storage
	Forwards and backwards substitution
	Factorization
	Special types of sparse matrices

	Changes
	Sensitivity
	Large changes
	New variables and equations

	Ill-conditioning
	Numerical conditioning and condition number
	Scaling and pre-conditioning
	Matrix factorization

	Non-square systems
	More variables than equations
	More equations than variables
	The pseudo-inverse

	Iterative methods
	Summary



