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Part II
Non-linear simultaneous equations
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6
Case studies of non-linear simultaneous equations

(i) Solution of Kirchhoff’s laws in a non-linear direct current (DC)
circuit (Section6.1), and

(ii) Solution of Kirchhoff’s laws in a linear alternating current (AC)
circuit where the variables of interest are not currents andvoltages
but instead are power (and “reactive power”) injections
(Section6.2).
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6.1 Analysis of a non-linear direct current circuit
6.1.1 Motivation

• Predict the behavior of the circuit without actually building a prototype.
• Predict the effect of changes in component values on the circuit behavior.

6.1.2 Formulation
6.1.2.1 Device models

Terminal characteristics

• For a resistor, the current is a linear function of voltage.
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Non-linear devices

• Diode model:

∀Vdiode∈ R, idiode(Vdiode) = Isat

[

exp

(

qVdiode

ηK T

)

−1

]

. (6.1)

idiode❄

❆❆ ✁✁ Vdiode

+

− Fig. 6.1. Symbol for
diode together with
voltage and current
conventions.
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Non-linear devices, continued

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Vdiode (volts)

idiode(Vdiode) (amps)

Fig. 6.2. Current to
voltage relationship for
diode.
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Choice of terminal model

• Again, Occam’s razor is important in selecting a terminal model.
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6.1.2.2 Kirchhoff ’s current law
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Fig. 6.3. A simple non-
linear circuit.
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Kirchhoff ’s current law, continued
• By Kirchhoff’s current law applied to nodes 1, 2, 3, 4:

(

1
Ra

)

x1+ ib(x1−x2)− I1 = 0, (6.2)

−ib(x1−x2)+

(

1
Rc

+
1
Rd

)

x2+

(

− 1
Rd

)

x3 = 0, (6.3)
(

− 1
Rd

)

x2+

(

1
Rd

+
1
Re

+
1
Rf

)

x3+

(

− 1
Rf

)

x4 = 0, (6.4)
(

− 1
Rf

)

x3+

(

1
Rf

)

x4+ ig(x4) = 0. (6.5)

• As in the direct current linear circuit case study in Section4.1, the
equation for the datum node isredundant.
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6.1.2.3 Non-linear equations
• Define thevector function g : R4 → R4 by:

∀x∈ R
4,g(x) =

















(

1
Ra

)

x1+ ib(x1−x2)− I1

−ib(x1−x2)+
(

1
Rc
+ 1

Rd

)

x2+
(

− 1
Rd

)

x3
(

− 1
Rd

)

x2+
(

1
Rd

+ 1
Re
+ 1

Rf

)

x3+
(

− 1
Rf

)

x4
(

− 1
Rf

)

x3+
(

1
Rf

)

x4+ ig(x4)

















. (6.6)

• If we write g(x) = 0 then we have reproduced (6.2)–(6.5).
• These are a set of non-linear simultaneous equations.
• To represent linear equationsAx= b in this way we would define

g : Rn → Rm by:

∀x∈ R
n,g(x) = Ax−b.
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6.1.3 Circuit changes
• Changes in the values of resistors, current sources, or diode parameters

will change the functional form of corresponding entries ing.
• For example, if a resistor or a diode between nodesℓ andk changes then

the functional form ofgℓ andgk will change.
• If a resistor, current source, or diode between nodeℓ and the datum node

changes then the functional form ofgℓ will change.
• Changes in the diode could be due to changes inIsat,η, or T, for example,

and would change the functional relationship between the diode current
and diode voltage.
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6.1.4 Problem characteristics
6.1.4.1 Numbers of variables and equations

• As in the linear circuit, we have the same number of variablesas
equations.

6.1.4.2 Number of solutions
• The current to voltage characteristic of a diode is strictlymonotonically

increasing so that increasing voltage corresponds to increasing current.
• Strict monotonicity of component model functions is sufficient to

guarantee that there is at most one solution for the circuit.
• Not every two-terminal electronic component has a strictlymonotonically

increasing terminal model.
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Number of solutions, continued

• For example, atunnel diodehas a characteristic that is not strictly
monotonically increasing.
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Fig. 6.4. Current to
voltage relationship for
tunnel diode.
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6.1.4.3 Sparsity
• The vector functiong is “sparse” in the sense that a typical entry ofg

depends only on a few entries ofx.
• Although we cannot store the representation of a non-linearfunction as a

sparse matrix, we can still store the parameters necessary to specify the
functions in a sparse structure as suggested in Figure6.5.

D ✲ Isat η T

R ✲ R
Fig. 6.5. Storage of pa-
rameters for diode and
resistor as linked lists.

6.1.4.4 Non-existence of direct algorithms
• Because of the non-linear diode elements, there is in general no direct

algorithm for solving an arbitrary circuit consisting of current sources,
resistors, and diodes.
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6.2 Analysis of an electric power system
6.2.1 Motivation

• It is important to be able to predict the power flows on lines and the
voltage magnitudes at loads in advance of actual operations.
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6.2.2 Formulation
6.2.2.1 Variables

Phasors

• We can use complex numbers, calledphasors, to represent the magnitude
and angle of the AC voltages and currents at a fixed frequency.

• Themagnitude of the complex number represents the root-mean-square
magnitude of the voltage or current.

• Theangleof the complex number represents the angular displacement
between the sinusoidal voltage or current and a reference sinusoid.

Reference angle

• The angles of the voltages and currents in the system would all change if
we changed the angle of our reference sinusoid, but this would have no
effect on the physical system.

• We can therefore arbitrarily assign the angle at one of the buses to be zero
and measure all the other angles with respect to this angle.

• We call this bus thereference bus.
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Representation of complex numbers

• To represent a complex numberV with real numbers requires two real
numbers, either:
– themagnitude |V| and theangle 6 V, so thatV = |V|exp( 6 V

√
−1), or

– thereal ℜ{V} andimaginary ℑ{V} parts, so that
V = ℜ{V}+ℑ{V}

√
−1.

• Since we need to compare voltage magnitudes to limits, we will represent
voltages as magnitudes and angles.
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Scaling and “per unit”

• There are voltage transformers throughout a typical power system.
• This means that the nominal voltage magnitude varies considerably

throughout the system by several orders of magnitude.
• We scale the voltage magnitude so that an actual value of 121 kV in the

110 kV part of the system would be represented by a scaled value of:

121 kV
110 kV

= 1.1,

• while an actual value of 688.5 kV in the 765 kV part of the system would
be represented by a scaled value of:

688.5 kV
765 kV

= 0.9.
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6.2.2.2 Symmetry
Three-phase circuits

• Generation-transmission systems are usually operated as balanced
three-phase systems.
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Fig. 6.6. An example
balanced three-phase
system.
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Per-phase equivalent

• The behavior of a balanced three-phase circuit can be completely
determined from the behavior of aper-phase equivalent circuit.

• Figure6.7shows the a-phase equivalent circuit of the three-phase circuit
of Figure6.6.

generator
transmission

line load

neutral
✚✙
✛✘a

∼

Zp

ZL

Fig. 6.7. Per-phase
equivalent circuit for
the three-phase circuit
in Figure6.6.

Model transformation

• The determination of the behavior of a three-phase system through the
analysis of a related per-phase equivalent is an example ofmodel
transformation that utilizes thesymmetry of the three-phase circuit.
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6.2.2.3 Transmission lines
• We can represent the terminal behavior ofdistributed parameter

circuits with a π-equivalentcircuit.

• Each component has an impedance (or, equivalently, anadmittance)
determined by the characteristics of the line.

neutral

ℓ k
✉

✉

s
h
u
n
t

series ✉

✉

s
h
u
n
t

Fig. 6.8. Equivalent
π circuit of per-phase
equivalent of transmis-
sion line.
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6.2.2.4 Bus admittance matrix and power flow equations
• Consider the per-phase equivalent of a three bus, three linetransmission

system as illustrated in Figure6.9.
• For each busℓ= 1,2,3, the pair of shuntπ elements joining nodeℓ to

neutral can be combined together to form a single shunt element.

neutral
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3
t
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t

t

t

t

t

t

t

t
Fig. 6.9. Per-phase
equivalent circuit model
for three bus, three line
system.
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Bus admittance matrix and power flow equations, continued
• This yields a circuit with:

– one element corresponding to each of the busesℓ= 1,2,3, joining node
ℓ to neutral, and

– one element corresponding to each line,
• as illustrated in Figure6.10.

neutral

1 2

3
t

Y1

Y13
t

t
Y3

Y23
t

Y2

Y12

Fig. 6.10. Per-phase
equivalent circuit model
for three bus, three line
system with parallel
components combined.
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Bus admittance matrix and power flow equations, continued
• Let us writeYℓ for the admittance of the element joining nodeℓ to neutral,

and
• Yℓk for the admittance of the series element corresponding to a line joining

busesℓ andk.
• The series element is most easily characterized in terms of its impedance.
• For a series impedanceZℓk = Rℓk+Xℓk

√
−1 between busesℓ andk, the

corresponding admittanceYℓk is given by:

Yℓk =
1

Zℓk
,

=
1

Rℓk+Xℓk
√
−1

=
1

Rℓk+Xℓk
√
−1

× Rℓk−Xℓk
√
−1

Rℓk−Xℓk
√
−1

=
Rℓk−Xℓk

√
−1

(Rℓk)2+(Xℓk)2. (6.7)
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Bus admittance matrix and power flow equations, continued
• Using Kirchhoff’s laws, we can again obtain a relationship of the form

AV = I between current and voltage, where:

∀ℓ,k,Aℓk =







Yℓ+∑k′∈J(ℓ)Yℓk′, if ℓ= k,
−Yℓk, if k∈ J(ℓ) or ℓ ∈ J(k),

0, otherwise,
(6.8)

• whereJ(ℓ) is the set of buses joined directly by a transmission line to bus
ℓ.

• A is called thebus admittance matrix.
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6.2.2.5 Generators and loads
• When electricity is bought and sold, the power and energy arethe

quantities that are usually priced, not the voltage or current.
• However, real power does not completely describe the interaction

between generators or loads and the system.
• We also have to characterize the injectedreactive power.
• We can combine the real and reactive powers into thecomplex power,

which is the sum of:
the real power, and√
−1 times the reactive power.
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Generators and loads, continued
• The usefulness of this representation is that, for example,the complex

powerSℓ injected at nodeℓ into the network is given by:

Sℓ =VℓI
∗
ℓ ,

• where the superscript∗ indicatescomplex conjugate.
• The currentIℓ equals the sum of:

the current flowing into the shunt elementYℓ, and
the sum of the currents flowing into each line connectingℓ to a bus

k∈ J(ℓ) through admittanceYℓk.
• We can substitute for the currents to obtain:

Sℓ = Vℓ[AℓℓVℓ+ ∑
k∈J(ℓ)

AℓkVk]
∗,

= |Vℓ|2A∗
ℓℓ+ ∑

k∈J(ℓ)
A∗
ℓkVℓV

∗
k . (6.9)
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Generators and loads, continued
• Let Aℓk = Gℓk+Bℓk

√
−1,∀ℓ,k, where we note that by (6.7) and (6.8):

– we have thatGℓk < 0 andBℓk > 0 for ℓ 6= k, and
– we have thatGℓℓ > 0 and the sign ofBℓℓ is indeterminate but typically

less than zero;
• let Sℓ = Pℓ+Qℓ

√
−1,∀ℓ, with:

– for generator buses,Pℓ > 0 andQℓ is typically positive,
– for load buses,Pℓ < 0 andQℓ < 0;

• and letVℓ = uℓexp(θℓ
√
−1),∀ℓ, with:

– the voltage magnitudeuℓ ≈ 1 in scaled units to satisfy voltage limits,
– the voltage angleθℓ typically between−π/4 andπ/4 radians.
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Generators and loads, continued
• Then we can separate (6.9) into real and imaginary parts:

Pℓ = ∑
k∈J(ℓ)∪{ℓ}

uℓuk[Gℓkcos(θℓ−θk)+Bℓksin(θℓ−θk)], (6.10)

Qℓ = ∑
k∈J(ℓ)∪{ℓ}

uℓuk[Gℓksin(θℓ−θk)−Bℓkcos(θℓ−θk)]. (6.11)

• The equations (6.10) and (6.11), which are called thepower flow
equality constraints, must be satisfied at each busℓ.
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6.2.2.6 The power flow problem
Power balance

• A bus with a specified real and reactive power is called aPQbus.
• We specify:

– the real and reactive generations at the generatorPQbuses according to
the generator control settings, and

– the real and reactive power at the loadPQbuses according to supplied
data.

• However, we cannot specify the injected power at all the buses since this
would typically violate the first law of thermodynamics!
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Reference bus

• A traditional, butad hocapproach to finding a solution to the equations is
to single out the reference bus.

• At this bus, instead of specifying injected real and reactive power, we
specify the voltage magnitude.

• The reference generator is then assumed to produce whateveris needed to
“balance” the real and reactive power for the rest of the system, assuming
that such a solution exists.

• We re-interpretP1 andQ1 to be variables in our formulation and have
eliminated these variables by writing them as a function of the rest of the
variables.

• The reference bus supplies whatever power is necessary for power
balance.
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6.2.2.7 Non-linear equations
• We havenPQ PQbuses, including both thePQgenerators and the loads.
• Let n= 2nPQ and define a vectorx∈ Rn consisting of the voltage

magnitudes and angles at thePQbuses.
• For every busℓ (that is, including the reference bus as well as thePQ

buses) define functionspℓ : Rn → R andqℓ : Rn → R by:

∀x∈ R
n, pℓ(x) = ∑

k∈J(ℓ)∪{ℓ}
uℓuk[Gℓkcos(θℓ−θk)+Bℓksin(θℓ−θk)]−Pℓ,

(6.12)
∀x∈ R

n,qℓ(x) = ∑
k∈J(ℓ)∪{ℓ}

uℓuk[Gℓksin(θℓ−θk)−Bℓkcos(θℓ−θk)]−Qℓ.

(6.13)

• The functionspℓ andqℓ represent the net real and reactive power flow,
respectively, from busℓ into the rest of the system.

• Kirchhoff’s laws require that the net real and reactive flow out of a bus
must be zero.
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Non-linear equations, continued
• Finally, define a vector functiong : Rn → Rn that includes (6.12)

and (6.13) for all thePQ buses, but omits (6.12) and (6.13) for the
reference bus.

• We solve:

g(x) = 0. (6.14)

• In summary, solving Kirchhoff’s equations for the electricpower network
has been transformed into an equivalent problem:

(i) solve (6.14), which is a system of non-linear simultaneous
equations, and

(ii) substitute into (6.10) and (6.11) for the reference bus.
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6.2.3 Circuit changes
• If a real power injection changes at a busℓ then the entries ing

corresponding topℓ will change.
• If a reactive power injection changes at a busℓ then the entries ing

corresponding toqℓ will change.
• If a transmission line between busesℓ andk changes, then the entries ofg

corresponding topℓ,qℓ, pk, andqk will change.
• The entries in the admittance matrixA will change in a manner analogous

to the changes discussed in Section4.1.3for the DC circuit.
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6.2.4 Problem characteristics
6.2.4.1 Number of variables and equations

• There are the same number of variables as equations in (6.14).

6.2.4.2 Non-existence of direct algorithms
• As with the non-linear circuit in Section6.1, because the equations are

non-linear, there is no direct algorithm to solve forx for arbitrary systems.

6.2.4.3 Number of solutions
• There may be no solutions, one solution, or even multiple solutions

to (6.14).
• However, power systems are usually designed and operated sothat the

voltage magnitudes are near to nominal and the voltage angles are
relatively close to 0◦.

• If we restrict our attention to solutions such that voltage magnitudes are
all close to 1 (and make some other assumptions) then we can find
conditions for the there to be at most one solution.
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6.2.4.4 Admittance matrix
Symmetry

• The admittance matrix is symmetric.

Sparsity

• The matrixA is only sparsely populated with non-zero entries and each
component ofg depends on only a few components ofx.
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Values

• A typical line impedance has positive real and imaginary parts.
• The corresponding line admittanceYℓk therefore has positive real part and

negative imaginary part.
• If there is a line between busesℓ andk then the entries

Aℓk = Gℓk+
√
−1Bℓk in the admittance matrix satisfyGℓk < 0,Bℓk > 0.

• The diagonal entriesAℓℓ = Gℓℓ+
√
−1Bℓℓ in the admittance satisfy

Gℓℓ > 0 and, typically,Bℓℓ < 0.
• The resistanceRℓk of transmission lines is relatively small compared to

the inductive reactanceXℓk.
• Furthermore, the shunt elements are often also negligible compared to the

inductive reactance.
• This means that:

∀ℓ,∀k∈ J(ℓ)∪{ℓ}, |Gℓk| ≪ |Bℓk|.
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7
Algorithms for non-linear simultaneous equations

Key issues
• Approximating non-linear functions by alinear approximation ,
• using the linear approximation to improve our estimate of the solution,
• convergenceof the sequence of iterates produced by repeated

re-linearization,
• variations that reduce computational effort, and
• sensitivity andlarge change analysis.
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7.1 Newton–Raphson method
• Consider a functiong : Rn → Rn and suppose that we want to solve the

simultaneous non-linear equations:

g(x) = 0. (7.1)

7.1.1 Initial guess
• Let x(0) be the initial guess of a solution to (7.1).
• We seek an updated value of the vectorx(1) = x(0)+∆x(0) such that:

g(x(1)) = g(x(0)+∆x(0)) = 0. (7.2)
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7.1.2 Taylor approximation
7.1.2.1 Scalar function

g1(x
(1)) = g1(x

(0)+∆x(0)), sincex(1) = x(0)+∆x(0),

≈ g1(x
(0))+

∂g1
∂x1

(x(0))∆x(0)1 + · · ·+ ∂g1
∂xn

(x(0))∆x(0)n ,

= g1(x
(0))+

n

∑
k=1

∂g1
∂xk

(x(0))∆x(0)k ,

= g1(x
(0))+

∂g1
∂x (x(0))∆x(0). (7.3)

• In (7.3), the symbol “≈” should be interpreted to mean that the difference
between the expressions to the left and to the right of the≈ is small

compared to
∥

∥

∥
∆x(0)

∥

∥

∥
.
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Scalar function, continued

• Define theremainder at the point x(0),e : Rn → R, by:

∀∆x∈ R
n,e(∆x)

= g1(x
(0)+∆x)−g1(x

(0))− ∂g1
∂x1

(x(0))∆x1−·· ·− ∂g1
∂xn

(x(0))∆xn.

• By Taylor’s theorem with remainder , if g1 is partially differentiable
with continuous partial derivatives then:

lim
‖∆x‖→0

e(∆x)
‖∆x‖ = 0.

• As first mentioned in Section2.6.3.5, the expression to the right of the≈
in (7.3) is called afirst-order Taylor approximation .

• For a partially differentiable functiong1 with continuous partial
derivatives, the first-order Taylor approximation aboutx= x(0)

approximates the behavior ofg1 in the vicinity of x= x(0).
• The first-order Taylor approximation represents a plane that is tangential

to the graph of the function at the pointx(0).
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Scalar function, continued

• For example, suppose thatg1 : R2 → R is defined by:

∀x∈ R
2,g1(x) = (x1)

2+(x2)
2+2x2−3.
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Fig. 7.1. Graph of
function repeated from
Figure2.5and its Taylor
approximation about

x(0) =

[

1
3

]

.
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7.1.2.2 Vector function
• We now consider the vector functiong : Rn → Rn.
• Sinceg is a vector function andx is a vector, the Taylor approximation of

g involves then×n matrix of partial derivatives
∂g
∂x evaluated atx(0).

• A first-order Taylor approximation ofg aboutx(0) yields:

g(x(0)+∆x(0))≈ g(x(0))+
∂g
∂x (x(0))∆x(0),

• where by the≈ we mean that the norm of the difference between the

expressions to the left and the right of≈ is small compared to
∥

∥

∥
∆x(0)

∥

∥

∥
.
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Vector function, continued

• Define the remainder at the pointx(0),e : Rn → Rn, by:

∀∆x∈ R
n,e(∆x)

= g(x(0)+∆x)−g(x(0))− ∂g
∂x1

(x(0))∆x1−·· ·− ∂g
∂xn

(x(0))∆xn.

• By Taylor’s theorem with remainder , if g is partially differentiable with
continuous partial derivatives then:

lim
‖∆x‖→0

‖e(∆x)‖
‖∆x‖ = 0.

• The first-order Taylor approximation again represents a “plane” that is
tangential to the graph of the function; however, the situation is much
more difficult to visualize for a vector function.

Title Page ◭◭ ◮◮ ◭ ◮ 44 of 129 Go Back Full Screen Close Quit



7.1.2.3 Jacobian
• Recall from Section2.5.3.2that the matrix of partial derivatives is called

theJacobianand we will denote it byJ(•).
• Using this notation, we have:

g(x(1)) = g(x(0)+∆x(0)),by definition of∆x(0),

≈ g(x(0))+J(x(0))∆x(0). (7.4)

• In some of our development, we will approximate the Jacobianwhen we
evaluate the right-hand side of (7.4)

• In this case, the linear approximating function is no longertangential tof .
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7.1.3 Initial update
• Setting the right-hand side of (7.4) to zero to solve for∆x(0) yields a set of

linear simultaneous equations:

J(x(0))∆x(0) =−g(x(0)). (7.5)

7.1.4 General update

J(x(ν))∆x(ν) = −g(x(ν)), (7.6)

x(ν+1) = x(ν)+∆x(ν). (7.7)

• (7.6)–(7.7) are called theNewton–Raphson update.
• ∆x(ν) is theNewton–Raphson step direction.

Title Page ◭◭ ◮◮ ◭ ◮ 46 of 129 Go Back Full Screen Close Quit



7.1.5 Discussion
• Three drawbacks of the Newton–Raphson method:

(i) The need to calculate the matrix of partial derivatives and solve a
system of linear simultaneous equations at each iteration.Even with
sparse matrix techniques, this can require considerable effort.

(ii) At some iteration we may find that the linear equation (7.6) does not
have a solution, so that the update is not well-defined.

(iii) Even if (7.6) does have a solution at every iteration, the sequence of
iterates generated may not converge to the solution of (7.1).
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7.2 Variations on the Newton–Raphson method

• We will discuss various ways to reduce the effort involved inthe basic
Newton–Raphson method.

7.2.1 Approximation of the Jacobian

• ReplaceJ(x(ν)) by a matrixJ̃(ν) such that, compared to usingJ(x(ν))
directly:

(i) LU factorization ofJ̃(ν) requires less effort (or has already been
performed),

(ii) an inverse ofJ̃(ν) is easier to calculate, or
(iii) evaluation ofJ̃(ν) is more convenient.

• If the resulting approximation to the Newton–Raphson update satisfies
suitable conditions, then it turns out that we will still iterate towards the
solution.
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7.2.1.1 The chord method

J(x(0))∆x(ν) = −g(x(ν)), (7.8)

x(ν+1) = x(ν)+∆x(ν). (7.9)

7.2.1.2 The Shamanskii method

J(x(N⌊ ν
N⌋))∆x(ν) = −g(x(ν)), (7.10)

x(ν+1) = x(ν)+∆x(ν). (7.11)

7.2.1.3 Approximating particular terms
• Replace small terms in the Jacobian by zero.

7.2.1.4 Analytic approximation to Jacobian
• We may have anapproximateanalytical model.
• Then we can combine a numerical evaluation ofg with an approximate

analytical model ofJ to use in the Newton–Raphson update.
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7.2.1.5 Finite difference approximation to Jacobian

• Theforward difference approximation between the pointx(ν) and the
point x(ν)+∆x:

J(x(ν))∆x≈ g(x(ν)+∆x)−g(x(ν));

• Thecentral difference approximation between the pointx(ν)−∆x and
the pointx(ν)+∆x:

2J(x(ν))∆x≈ g(x(ν)+∆x)−g(x(ν)−∆x);

or
• Thesecant approximation, for x∈ R, between the pointx(ν) and the

point x(ν−1):

∂g
∂x (x(ν))≈ g(x(ν))−g(x(ν−1))

x(ν)−x(ν−1)
.
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Finite difference approximation to Jacobian, continued
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Fig. 7.2. Finite difference ap-
proximations to the derivative
of a functiong : R → R at a
point x(ν). The functiong is il-
lustrated as a solid curve. The

point

[

x(ν)

g(x(ν))

]

=

[

1.5
1

]

is in-

dicated by the•. The forward
difference approximation with
∆x = 1 is given by the slope
of the dotted line. The central
difference approximation with
∆x = 1 is given by the slope
of the dashed line. The secant
approximation forx(ν−1) = 0 is
given by the slope of the dash-
dotted line.
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7.2.1.6 Quasi-Newton methods
• Consider a first-order Taylor approximation ofg aboutx(ν−1):

g(x(ν−1)+∆x(ν−1))≈ g(x(ν−1))+J(x(ν−1))∆x(ν−1).

• Substituting from the Newton–Raphson update equations (7.6)–(7.7)
applied to calculatex(ν), we obtain:

g(x(ν))≈ g(x(ν−1))+J(x(ν−1))(x(ν)−x(ν−1)).

• Re-arranging, we have:

J(x(ν−1))(x(ν)−x(ν−1))≈ g(x(ν))−g(x(ν−1)). (7.12)
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Quasi-Newton methods, continued
• Quasi-Newton methodsinvolve successively updating each

approximationJ̃(ν−1) so that the updated approximationJ̃(ν) used for
calculatingx(ν+1) satisfies thequasi-Newton condition:

∀ν > 0, J̃(ν)(x(ν)−x(ν−1)) = g(x(ν))−g(x(ν−1)). (7.13)

• Quasi-Newton methods generalize the secant approximationto functions
g : Rn → Rn.

• The approximationJ̃(ν), (which is used in the calculation ofx(ν+1)) is
chosen to mimic the behavior of the change ing that resulted from the
choice ofx(ν) in the previous iteration.

• Under mild conditions, ifJ̃(ν−1) is symmetric thensymmetric rank two
updatescan be found that satisfy the Quasi-Newton condition.
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7.2.2 Iterative algorithms
• If the Jacobian is large and non-sparse, then the factorization- or

inversion-based techniques that we have discussed so far may not be
effective.

• Iterative algorithms may be used.

7.2.3 Pre-conditioning
• Pre-conditioning can be used to help with the solution of theupdate

equation if an approximate inverse to the Jacobian is known.
• A simple “pre-conditioner” is the diagonal matrix consisting of the

inverse of the diagonal elements of the Jacobian.
• Pre-conditioning is often used in combination with iterative methods.

7.2.4 Automatic differentiation
• If the calculation ofg is performed by code that implements a direct

algorithm, it is possible to systematically transform the code for
calculatingg into code that calculates the Jacobian.
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7.3 Local convergence of iterative methods
7.3.1 Closeness to a solution

• In this section, we discuss three measures of closeness to a solution that
are candidates for use as a stopping criterion.

• We then discuss using the iteration count and the combination of several
stopping criteria.

7.3.1.1 Function value

∥

∥

∥
g(x(ν))

∥

∥

∥

∞
≤ εg, (7.14)

∥

∥

∥
g(x(ν))

∥

∥

∥

∞
≤ εg

∥

∥

∥
g(x(0))

∥

∥

∥

∞
. (7.15)
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7.3.1.2 Iteration space

∥

∥

∥
x(ν)−x⋆

∥

∥

∥

2
≤ εx, (7.16)

∥

∥

∥
x(ν)−x⋆

∥

∥

∥

2
≤ εx

∥

∥

∥
x(0)−x⋆

∥

∥

∥

2
.

7.3.1.3 Change in iterate

∥

∥

∥
∆x(ν)

∥

∥

∥
≤ ε∆x. (7.17)

7.3.1.4 Iteration count
• It is common to limit the total number of iterations.

7.3.1.5 Combined stopping criteria
• Combinations of criteria are used in practice to balance thedesire to:

– get close to a solution, but
– not perform an excessive number of iterations.
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7.3.2 The Cauchy criterion and contraction mappings
7.3.2.1 Cauchy sequences

Definition 7.1 A sequence{x(ν)}∞
ν=0 is said to be aCauchy sequenceor

Cauchy if:

∀ε∈R++,∃N∈Z+ such that(ν,ν′∈Z+ andν,ν′≥N)⇒
(∥

∥

∥
x(ν)−x(ν

′)
∥

∥

∥
≤ ε

)

.

✷

• The weaker condition:

∀ε∈R++,∃N∈Z+ such that(ν∈Z+ andν≥N)⇒
(∥

∥

∥
x(ν+1)−x(ν)

∥

∥

∥
≤ ε

)

,

(7.18)
• is insufficient to guarantee that the sequence{x(ν)}∞

ν=0 is Cauchy.

Lemma 7.1 A sequence{x(ν)}∞
ν=0 of real vectors converges to a limit inRn

if and only if it is Cauchy.✷
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7.3.2.2 Lipschitz continuity

Definition 7.2 A function Φ : Rn → Rm (or Φ : Rn → Rm×n) is Lipschitz
continuous:
• on a setS⊆ Rn,
• with respect to a norm‖•‖ on the domainRn,
• with respect to a norm‖•‖ on the rangeRm (or to a norm onRm×n), and
• with constantL ≥ 0, if:

∀x,x′ ∈ S,
∥

∥Φ(x)−Φ(x′)
∥

∥≤ L
∥

∥x−x′
∥

∥ . (7.19)

✷

✻

✲

✻

✲x1

x2

Φ1

Φ2

S

x′′ •
• x′

• x

• Φ(x′′)
Φ(x′) •
• Φ(x)

Fig. 7.3. Points x,x′, and
x′′ in a set S ⊆ R2 (left
panel) and their images
Φ(x),Φ(x′), and Φ(x′′)
(right panel) under a Lip-
schitz continuous function
Φ : R2 → R2.
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7.3.2.3 Contraction mapping

Definition 7.3 A mapΦ : Rn → Rn is called acontraction mapping or a
contraction map:
• on a setS⊆ Rn, and
• with respect to a norm‖•‖ onRn,
if ∃0≤ L < 1 such that:

∀x,x′ ∈ S,
∥

∥Φ(x)−Φ(x′)
∥

∥≤ L
∥

∥x−x′
∥

∥ .

✷

• A map fromRn to Rn is a contraction map onS⊆ Rn if it is:
– Lipschitz continuous onS for one particular norm applied to both its

domain and range, and
– the Lipschitz constant is less than one.

• The mapΦ illustrated in Figure7.3 is a contraction mapping with respect
to the Euclidean norm.
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7.3.2.4 General iterative methods and fixed points
• Consider a general iterative method:

∀ν ∈ Z+,x
(ν+1) = Φ(x(ν)), (7.20)

• whereΦ : Rn → Rn represents the calculations during a single iteration.
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General iterative methods and fixed points, continued

Definition 7.4 A point x⋆ is called afixed point of a mapΦ : Rn → Rn if
x⋆ = Φ(x⋆). ✷

✻

✲

✻

✲x1

x2

x1

x2

S S

x′′ •
• x′

• x

• x⋆
• Φ(x′′)

Φ(x′) •• Φ(x⋆) = x⋆
• Φ(x)

Fig. 7.4. Pointsx,x′,x′′,
and x⋆ in R2 (left
panel) and their images
Φ(x),Φ(x′),Φ(x′′), and
Φ(x⋆) (right panel)
under a function
Φ : R2 → R2. The point
x⋆ is a fixed point ofΦ
becauseΦ(x⋆) = x⋆.
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7.3.2.5 Contraction mapping theorem

Theorem 7.2 Suppose thatΦ : Rn → Rn is a contraction mapping with
Lipschitz constant0≤ L < 1 with respect to some norm‖•‖ on a closed
setS⊆ Rn. Also suppose that∀x∈ S,Φ(x) ∈ S. Then, there exists a
unique x⋆ ∈ S that is a fixed point ofΦ. Moreover, for any x(0) ∈ S, the
sequence of iterates generated by the iterative method (7.20) converges
to x⋆ and satisfies the bound:

∀ν ∈ Z+,
∥

∥

∥
x(ν)−x⋆

∥

∥

∥
≤ (L)ν

∥

∥

∥
x(0)−x⋆

∥

∥

∥
. (7.21)

Proof The long proof is divided into four parts:
(i) proving that{x(ν)}∞

ν=0 is Cauchy and has a limit that is contained
in S;

(ii) proving that the limit is a fixed point ofΦ;
(iii) proving that the fixed point is unique; and
(iv) proving that the sequence converges to the fixed point according

to (7.21).
✷
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7.3.3 The chord and Newton–Raphson methods
7.3.3.1 The chord method

Theorem 7.3 Consider a function g: Rn → Rn. Let‖•‖ be a norm onRn

and let‖•‖ also stand for the corresponding induced matrix norm.
Suppose that there exist a,b,c, andρ ∈ R+ such that:

(i) g is partially differentiable with continuous partial derivatives at
x(0), with Jacobian J(x(0)) satisfying:

∥

∥

∥
[J(x(0))]

−1
∥

∥

∥
≤ a,

∥

∥

∥
[J(x(0))]

−1
g(x(0))

∥

∥

∥
≤ b,

(ii) g is partially differentiable in a closed ball of radiusρ about x(0),
with Jacobian J that is Lipschitz continuous with Lipschitz
constant c. That is,

∀x,x′ ∈
{

x∈ R
n
∣

∣

∣

∥

∥

∥
x−x(0)

∥

∥

∥
≤ ρ

}

,
∥

∥J(x)−J(x′)
∥

∥≤ c
∥

∥x−x′
∥

∥ .

(iii) abc< 1
2, and
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(iv) ρ− ≤ ρ whereρ− = 1−
√

1−2abc
ac .

Then:
(i) In the open ball of radiusρ+ = min

{

ρ,
(

1+
√

1−2abc
)

/(ac)
}

about x(0) there is a unique solution x⋆ of g(x) = 0. (There may
be other solutions outside this ball.)

(ii) Consider the chord update (7.8)–(7.9) with x(0) as initial guess.
The sequence of iterates converges to x⋆ and each iterate x(ν) is
contained in the closed ball of radiusρ− about x(0). Furthermore,

∀ν ∈ Z+,
∥

∥

∥
x(ν)−x⋆

∥

∥

∥
≤ (acρ−)

νρ−. (7.22)
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The chord method, continued

✲

✻

x2

x1

✫ ✪
✬ ✩t
t

x⋆❞
❄

✚
✚

✚
✚

✚✚❂

✫✪
✬✩

x(0)

x⋆⋆

ρ−ρ+

{x∈ R2|g1(x) = 0}

{x∈ R2|g2(x) = 0} Fig. 7.5. Illustration of
chord and Kantorovich
theorems.
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The chord method, continued

✲

✻

x2

x1

x⋆t��
�
�
�
�✒

❞x(0)

✻
❞x(1)

✛❞x(2)

Fig. 7.6. Illustration of
the linear rate of conver-
gence in chord theorem.

Title Page ◭◭ ◮◮ ◭ ◮ 66 of 129 Go Back Full Screen Close Quit



Proof
• We defineΦ : Rn → Rn to be the map that represents the update in the

chord method.

∀x∈ R
n,Φ(x) = x− [J(x(0))]

−1
g(x).

• The proof is divided into four parts:

(i) proving that the iterates stay inS=
{

x∈ Rn
∣

∣

∣

∥

∥

∥
x−x(0)

∥

∥

∥
≤ ρ−

}

,
(ii) proving thatΦ is a contraction map with Lipschitz constant

L = acρ− < 1 so that, by the contraction mapping Theorem7.2,
there exists a uniquex⋆ ∈ S that is a fixed point ofΦ,

(iii) proving that the fixed pointx⋆ of Φ satisfies (7.1) and (7.22),
and

(iv) proving thatx⋆ is the only solution within a distanceρ+ of x(0).
✷

• The rate of convergence is linear.
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7.3.3.2 Kantorovich theorem

Theorem 7.4 (Kantorovich) Consider a function g: Rn →Rn. Let‖•‖ be a
norm onRn and let‖•‖ also stand for the corresponding induced matrix
norm. Suppose that there exists a,b,c, andρ ∈ R+ such that:

(i) g is partially differentiable with continuous partial derivatives at
x(0), with Jacobian J(x(0)) satisfying:

∥

∥

∥
[J(x(0))]

−1
∥

∥

∥
≤ a,

∥

∥

∥
[J(x(0))]

−1
g(x(0))

∥

∥

∥
≤ b,

(ii) g is partially differentiable, with Jacobian J that is Lipschitz
continuous with Lipschitz constant c in a closed ball of radiusρ
about x(0). That is,

∀x,x′ ∈
{

x∈ R
n
∣

∣

∣

∥

∥

∥
x−x(0)

∥

∥

∥
≤ ρ

}

,
∥

∥J(x)−J(x′)
∥

∥≤ c
∥

∥x−x′
∥

∥ .

(iii) abc< 1
2, and
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(iv) ρ− ≤ ρ whereρ− = 1−
√

1−2abc
ac .

Then:

(i) In the open ball of radiusρ+ = min
{

ρ, 1+
√

1−2abc
ac

}

about x(0),

there is only one solution x⋆ of g(x) = 0. (There may be other
solutions outside this ball.)

(ii) Consider the Newton–Raphson update (7.6)–(7.7) with x(0) as
initial guess. The sequence of iterates converges to x⋆ and each
iterate x(ν) is contained in the closed ball of radiusρ− about x(0).
Furthermore,

∀ν ∈ Z+,
∥

∥

∥
x(ν)−x⋆

∥

∥

∥
≤ (2abc)((2)

ν)

(2)νac
. (7.23)

✷

• The rate of convergence is quadratic.
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7.3.3.3 Discussion
• The chord theorem and the Kantorovich theorem are “local.”
• If the Jacobian is non-singular at the initial guess (so thata is

well-defined),
• if the initial guess satisfies the equations sufficiently well (so that the

normb of the initial update:

b =
∥

∥

∥
[J(x(0))]

−1
g(x(0))

∥

∥

∥
,

=
∥

∥

∥
∆x(0)

∥

∥

∥
,

is small), and
• if the Jacobian does not vary too much over the closed ball of radiusρ

aboutx(0) (so thatc is small),
• then the chord and the Newton–Raphson updates converge to the solution.
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7.3.4 Computational effort
• Supposeρ is the best bound we have on the initial error; that is:

∥

∥

∥
x(0)−x⋆

∥

∥

∥
≤ ρ. (7.24)

• We want to estimate the number of iterationsN such that the error bound
is reduced by a factorεx < 1 so that:

∥

∥

∥
x(N)−x⋆

∥

∥

∥
≤ εxρ. (7.25)
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7.3.4.1 Chord method
• The computations required forN iterations are:

– one evaluation and one factorization of the Jacobian, requiring effort on
the order of(n)3, and

– one evaluation ofg per iteration, one forwards and backwards
substitution per iteration, and one vector addition per iteration, requiring
effort on the order ofN(n)2.

• The overall effort is on the order of(n)3+N(n)2 and the average effort
per iteration is on the order of(n)3/N+(n)2.

• We must find a bound on the size ofN that is necessary to satisfy (7.25).
∥

∥

∥
x(N)−x⋆

∥

∥

∥
≤ (acρ−)

Nρ−,

= (acρ−)
N
(

ρ−
ρ

)

ρ,

≤ (acρ−)
N
(

ρ−
ρ+

)

ρ,

• sinceρ+ ≤ ρ by definition.
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Chord method, continued

• Then (7.25) will be satisfied if(acρ−)N
(

ρ−
ρ+

)

≤ εx.

• Re-arranging this condition we obtain that(acρ−)N ≤ εxρ+

ρ−
.

• Taking natural logarithms and re-arranging, we obtain

N ≥ ln(εx)+ ln(ρ+)− ln(ρ−)
ln(acρ−)

,

• noting that ln(acρ−)< 0.
• Overall effort is on the order of:

(n)3+
ln(εx)+ ln(ρ+)− ln(ρ−)

ln(acρ−)
(n)2.

• Computational effort grows with(n)3 and(n)2| ln(εx)|.
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7.3.4.2 Newton–Raphson method
• The computations required forN iterations are:

– one evaluation and factorization of the Jacobian per iteration, requiring
effort on the order ofN(n)3, and

– one evaluation ofg per iteration and one forwards and backwards
substitution per iteration, requiring effort on the order of N(n)2.

• The overall effort is on the order ofN(n)3.
• Again, we must find a bound on the size ofN that is necessary to

satisfy (7.25).
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Newton–Raphson method, continued

∥

∥

∥
x(N)−x⋆

∥

∥

∥
≤ (2abc)((2)

N)

(2)Nac
,

=
(2abc)((2)

N)

(2)Nacρ
ρ,

≤ (2abc)((2)
N)

(2)Nacρ+
ρ,

≤ (2abc)((2)
N)

acρ+
ρ,

• sinceρ+ ≤ ρ by definition and(2)N ≥ 1.
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Newton–Raphson method, continued

• Then (7.25) will be satisfied if
(2abc)((2)

N)

acρ+
≤ εx.

• Re-arranging this condition we obtain that(2abc)((2)
N) ≤ acρ+εx.

• Taking natural logarithms, we obtain((2)N) ln(2abc)≤ ln(acρ+εx).
• Now 2abc< 1 by hypothesis, so ln(2abc)< 0 and dividing both sides by

the negative number ln(2abc) yields(2)N ≥ ln(acρ+εx)

ln(2abc)
.

• Taking natural logarithms again and re-arranging yields:

N ≥
ln
(

ln(acρ+εx)
ln(2abc)

)

ln(2)
=

ln(| ln(acρ+εx)|)− ln(| ln(2abc)|)
ln(2)

.

• Overall effort is:

(n)3ln(| ln(acρ+εx)|)− ln(| ln(2abc)|)
ln(2)

.

• For smallεx the computational effort grows with(n)3 ln(| ln(εx)|).
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7.3.4.3 Quasi-Newton methods
• Assuming super-linear convergence we again find that the number of

iterationsN grows with ln(| ln(εx)|) and consequently the computational
effort grows with(n)2 ln(| ln(εx)|).

• This effort grows much more slowly withn than for the Newton–Raphson
method.

7.3.4.4 Other variations
• Often, the variations that avoid a complete factorization at every iteration

will be more attractive than the basic Newton–Raphson method.
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7.3.4.5 Summary of performance of methods

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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20

30

40
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60

70

80

90

100

Average effort per iteration

Newton–Raphson

Quasi-Newton

Chord

Number of iterations to satisfy stopping criterion

Fig. 7.7. The qualita-
tive tradeoff between
effort per iteration and
number of iterations.
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7.3.4.6 Calculation of Jacobian
• The analysis so far has assumed that the entries ofJ take no more effort to

calculate than the entries ofg.
• It is sometimes more difficult to calculate entries ofJ than it is to

calculate entries ofg.
• In this case, we may choose to use a method that uses less information

aboutJ but also has a slower rate of convergence, and consequently a
larger required value ofN, because of the savings in the computational
effort per iteration.

7.3.5 Discussion
• The chord method and the Newton–Raphson method have great local

performance.
• The theorems can provide qualitative insights into convergence.
• However, we also consider cases where the initial guess is far from the

solution.
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7.4 Globalization procedures
• We must safeguard our algorithm from two related issues:

(i) singular Jacobian, and
(ii) excessively large steps.
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7.4.1 Singular Jacobian

7.4.1.1 Example

∀x∈ R,g(x) = (x−2)3+1.

0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

1.5

x
x⋆ x(ν) x(ν−1)

g(x)

Fig. 7.8. A function
with a singular Jacobian
at the point x(ν) = 2.
The first-order Taylor
approximation about
x(ν) is shown dashed.
The approximation
implied by the secant
approximation through
x(ν) andx(ν−1) is shown
as the dot-dashed line.
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7.4.1.2 Modified factorization
• If J is singular at any iterate then the basic Newton–Raphson update will

fail.
• An ad hocapproach to this problem is to modify terms inJ(x) if it is

singular and then solve the resulting update equation.
• For example, forg : R→ R, if |J(x(ν))|< E for some thresholdE ∈R++,

then we might replaceJ(x(ν)) by the secant approximation:

J̃(ν) =
g(x(ν))−g(x(ν−1))

x(ν)−x(ν−1)

• or replaceJ(x(ν)) by the valueE.
• Forg : Rn → Rn, during factorization ofJ, if we encounter a small or zero

pivot, we simply replace the pivot by a small non-zero number.
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7.4.2 Step-size selection
7.4.2.1 Region of validity of approximation of function

−15 −10 −5 0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

arctan(x)

x⋆ x(ν)

Fig. 7.9. The inverse
tan function (shown
solid) and its first-order
Taylor approximation
about x(ν) = 5 (shown
dashed.) The point
[

x(ν)

g(x(ν))

]

=

[

5
1.3734

]

is illustrated with a◦,
while the solution to
the equationg(x) = 0 is
shown with a•.
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Region of validity of approximation of function, continued

• Consider the iteratex(ν) shown in Figure7.9.

• For the function shown,
∥

∥

∥
x(ν)−x⋆

∥

∥

∥
= ‖5−0‖= 5.

• Using step-size equal to 1:
∥

∥

∥
x(ν+1)−x⋆

∥

∥

∥
>

∥

∥

∥
x(ν)−x⋆

∥

∥

∥
,

∥

∥

∥
g(x(ν+1))

∥

∥

∥
>

∥

∥

∥
g(x(ν))

∥

∥

∥
.

• If the Newton–Raphson step direction∆x(ν) is so large that it would take
the next iterate outside the region of validity of the linearapproximation,
then we should not move as far as∆x(ν) suggests.

• Instead, we should consider moving a smaller step in the direction of
∆x(ν).
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7.4.2.2 Step-size rules
• Damped Newton method: pick a fixed 0< α < 1 and modify (7.7) to:

x(ν+1) = x(ν)+α∆x(ν).

• Allow the step-size to vary with iteration:

x(ν+1) = x(ν)+α(ν)∆x(ν), (7.26)

• where 0< α(ν) ≤ 1 is chosen at each iteration so that:
∥

∥

∥
g(x(ν)+α(ν)∆x(ν))

∥

∥

∥
<

∥

∥

∥
g(x(ν))

∥

∥

∥
. (7.27)

• If the L2 norm is chosen in (7.27) then it is possible to choose a suitable
α(ν) if:
– g is partially differentiable with continuous partial derivatives, and
– the step direction∆x(ν) satisfies:

[∆x(ν)]
†
J(x(ν))

†
g(x(ν))< 0. (7.28)
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7.4.2.3 Armijo step-size rule
• Condition (7.27) does not specify byhow muchthe norm ofg should

decrease to ensure that we obtain a satisfactory improvement in the
satisfaction of the equations.

• A variation on (7.27) that does specify a “sufficient” decrease requires
that:

∥

∥

∥
g(x(ν)+α(ν)∆x(ν))

∥

∥

∥
≤ (1−δα(ν))

∥

∥

∥
g(x(ν))

∥

∥

∥
, (7.29)

• where 0< δ < 1 is a positive constant.
• To understand (7.29), suppose thatα(ν) is small enough so that the linear

Taylor approximation is accurate and also assume that the
Newton–Raphson step direction was used:

g(x(ν)+α(ν)∆x(ν))

≈ g(x(ν))+J(x(ν))α(ν)∆x(ν), sinceα(ν) is assumed to be
small enough so that the linear Taylor approximation is accurate,

= g(x(ν))−α(ν)g(x(ν)), by definition of∆x(ν),

= (1−α(ν))g(x(ν)).
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Armijo step-size rule, continued
• Therefore, taking norms:

∥

∥

∥
g(x(ν)+α(ν)∆x(ν))

∥

∥

∥
≈ (1−α(ν))

∥

∥

∥
g(x(ν))

∥

∥

∥
.

• With a step-size ofα(ν), the best we could expect is for
∥

∥

∥
g(x(ν)+α(ν)∆x(ν))

∥

∥

∥
to be reduced by a factor of(1−α(ν)) compared to

∥

∥

∥
g(x(ν))

∥

∥

∥
.

• In practice, we will not achieve this reduction, as allowed for in
condition (7.29).

• Condition (7.29) together with a reduction rule for choosingα(ν) is called
theArmijo step-size rule.

• For example, the rule could be to find the largest step-size ofthe form:

α(ν) = (2)−k,k≥ 0, (7.30)

• that satisfies (7.29).
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Armijo step-size rule, continued

✲

✻

x2

x1

x(ν)
t��

�
�
�
�✒

tx(ν)+∆x(ν)

�
�
�✒

tx(ν)+(2)−1×∆x(ν)

��✒
t
x(ν)+(2)−2×∆x(ν)

Fig. 7.10. Illustration
of back-tracking in
Armijo step-size rule.
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7.4.2.4 Example

• Again consider the arctan function andx(ν) = 5.

∆x(ν) = −[J(x(ν))]
−1

g(x(ν)),
≈ −35.7.

• Setδ = 0.5.
• The dotted lines in Figure7.11bound the set of points of the form
[

x(ν)+α(ν)∆x(ν)

γ

]

satisfying:

0≤ α(ν) ≤ 1,

−(1−δα(ν))
∥

∥

∥
g(x(ν))

∥

∥

∥
≤ γ ≤ (1−δα(ν))

∥

∥

∥
g(x(ν))

∥

∥

∥
.
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Example, continued

−35 −30 −25 −20 −15 −10 −5 0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

arctan(x)

x⋆ x(ν)
×

××

Fig. 7.11. Armijo update ap-
plied to solving equation with
arctan function (shown solid).
The first-order Taylor approxi-
mation aboutx(ν) = 5 is shown

dashed. The point

[

x(ν)

g(x(ν))

]

is

illustrated by the rightmost◦,
while the solution to the equa-
tion g(x) = 0 is shown with
a •. The dotted lines bound
the region of acceptance for the
Armijo rule with δ = 0.5. The
leftmost three× do not satisfy
the Armijo rule. The updated
iterate is illustrated by the left-
most◦.
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Example, continued
• Using step-sizes of the form (7.30) results in tentative updated iterates

and corresponding function values of:

x(ν)+∆x(ν) ≈−30.7, g(x(ν)+∆x(ν))≈−1.54,

x(ν)+(2)−1×∆x(ν) ≈−12.9, g(x(ν)+(2)−1×∆x(ν))≈−1.49,

x(ν)+(2)−2×∆x(ν) ≈−3.93, g(x(ν)+(2)−2×∆x(ν))≈−1.32,

x(ν)+(2)−3×∆x(ν) ≈ 0.54, g(x(ν)+(2)−3×∆x(ν))≈ 0.49.
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7.4.2.5 Choice ofδ
• If the parameterδ is close to one then it may take many reductions ofα(ν)

to satisfy (7.29).
• δ is often chosen to be considerably less than one.

7.4.2.6 Variations
• There are other variations on (7.29)–(7.30) that seek to avoid unnecessary

“back-tracking.”

7.4.2.7 Discussion
• Step-size rules can significantly aid in convergence from aninitial guess

that is far from the solution.

7.4.3 Computational effort
• Variations on the Newton–Raphson method that require less effort per

iteration will tend to perform better overall than the exact
Newton–Raphson method.

Title Page ◭◭ ◮◮ ◭ ◮ 92 of 129 Go Back Full Screen Close Quit



7.5 Sensitivity and large change analysis

7.5.1 Sensitivity

7.5.1.1 Implicit function theorem

Corollary 7.5 Let g: Rn×Rs→ Rn be partially differentiable with
continuous partial derivatives. Consider solutions of theequations
g(x;χ) = 0, whereχ is a parameter. Suppose that x⋆ satisfies:

g(x⋆;0) = 0.

We call x= x⋆ the base-case solution andχ = 0 the base-case
parameters. Define the (parameterized) Jacobian J: Rn×Rs→Rn×n by:

∀x∈R
n,∀χ ∈ R

s,J(x;χ) = ∂g
∂x (x;χ).

Suppose that J(x⋆;0) is non-singular. Then, there is a solution to
g(x;χ) = 0 for χ in a neighborhood of the base-case values of the
parametersχ = 0. The sensitivity of the solution x⋆ to variation of the
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parametersχ, evaluated at the base-caseχ = 0, is given by:

∂x⋆

∂χ (0) =−[J(x⋆;0)]−1K(x⋆;0),

where K: Rn×Rs→ Rn×s is defined by:

∀x∈ R
n,∀χ ∈ R

s,K(x;χ) = ∂g
∂χ (x;χ).

✷

• If J(x⋆;0) has already been factorized then the calculation of the
sensitivity requires one forwards and backwards substitution for each
entry ofχ.
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7.5.1.2 Example
• Suppose thatg : R×R→ R is defined by:

∀x∈ R,∀χ ∈ R,g(x;χ) = (x−2−sinχ)3+1.

• The base-case solution isx⋆ = 1.
• We consider the sensitivity of the solution to the parameterχ, evaluated at

χ = 0.
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Example, continued
• Using Corollary7.5, we have that the sensitivity is given by:

−[J(x⋆;0)]−1K(x⋆;0),

• whereJ : Rn×Rs→ Rn×n andK : Rn×Rs→ Rn×s are defined by:

∀x∈ R
n,∀χ ∈ R

s,J(x;χ) =
∂g
∂x (x;χ),

= 3(x−2−sinχ)2,

J(x⋆;0) = 3,

∀x∈ R
n,∀χ ∈ R

s,K(x;χ) =
∂g
∂χ (x;χ),

= 3(x−2−sinχ)2(−cosχ),
K(x⋆;0) = −3.

• Substituting, the sensitivity is 1.
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7.5.2 Large changes
• Use the iterative techniques we have developed, using as initial guess the

solution to the base-case.

7.6 Summary
• The Newton–Raphson method and variants,
• Local convergence results,
• Globalization procedures,
• Sensitivity analysis.

Title Page ◭◭ ◮◮ ◭ ◮ 97 of 129 Go Back Full Screen Close Quit



8
Solution of the non-linear simultaneous equations case

studies

• Non-linear DC circuit in Section8.1, and
• Power flow problem in Section8.2.
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8.1 Analysis of a non-linear direct current circuit
• The circuit satisfiesg(x) = 0, whereg : R4 → R4 was defined in (6.6):

∀x∈ R
4,g(x) =

















(

1
Ra

)

x1+ ib(x1−x2)− I1

−ib(x1−x2)+
(

1
Rc
+ 1

Rd

)

x2+
(

− 1
Rd

)

x3
(

− 1
Rd

)

x2+
(

1
Rd

+ 1
Re
+ 1

Rf

)

x3+
(

− 1
Rf

)

x4
(

− 1
Rf

)

x3+
(

1
Rf

)

x4+ ig(x4)

















.

t t t

t t t1 2 3 4

0

✚✙
✛✘
↑ I1 Ra

✟✟
❍❍

Db

Rc

Rd

Re

Rf

❆❆ ✁✁ Dg

Fig. 8.1. The non-
linear DC circuit from
Figure6.3.

Title Page ◭◭ ◮◮ ◭ ◮ 99 of 129 Go Back Full Screen Close Quit



8.1.1 Jacobian

∀x∈ R
4,J(x) =





















(

1
Ra

)

+
dib
dVb

(x1−x2) −dib
dVb

(x1−x2) 0 0

−dib
dVb

(x1−x2)
dib
dVb

(x1−x2)+
(

1
Rc
+ 1

Rd

) (

− 1
Rd

)

0

0
(

− 1
Rd

) (

1
Rd

+ 1
Re
+ 1

Rf

) (

− 1
Rf

)

0 0
(

− 1
Rf

) (

1
Rf

)

+
dig
dVg

(x4)





















.

(8.1)

• The Jacobian is similar in appearance to the admittance matrix for a linear
circuit, with the same sort of sparsity structure:
– non-zeros on the diagonals, and
– non-zeros on the off-diagonals corresponding to branches.

• For the diodes, we haveincremental admittances evaluated atx instead
of admittances.
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8.1.2 Initial guess
• In the absence of a better guess,x(0) = 0 may be a reasonable initial guess

for our circuit.
• Better guesses will save on computation time and occasionally make the

difference between successful and unsuccessful application of the
algorithm.

8.1.3 Calculation of iterates

J(x(0))∆x(0) = −g(x(0)),

x(1) = x(0)+∆x(0).
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8.1.4 Application of chord and Kantorovich theorems
• Applying the chord and Kantorovich theorems can require considerable

effort even for simple problems.
• The theorems will run into difficulty if the entries in the Jacobian vary

greatly with their argument because this will cause a large value for the
Lipschitz constantc.

• Large variation of the entries in the Jacobian occurs in the diode model
and other models with cut-off/cut-on characteristics where the slope of the
current versus voltage characteristic varies from near zero to very large.

• We can find that:

∥

∥

∥
g(x(1))

∥

∥

∥

2
>

∥

∥

∥
g(x(0))

∥

∥

∥

2
.

• The chord and Kantorovich convergence theorems we have presented are
local in nature.

• Their conclusions do not help us if we are solving a circuit for the first
time and do not know which diodes will be conducting and whichwill be
off.
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8.1.5 Step-size rules
• A step-size rule can significantly aid in convergence even when the

Jacobian varies greatly.

• The Armijo rule will guarantee that
∥

∥

∥
g(x(1))

∥

∥

∥

2
<

∥

∥

∥
g(x(0))

∥

∥

∥

2
and improve

convergence.

Title Page ◭◭ ◮◮ ◭ ◮ 103 of 129 Go Back Full Screen Close Quit



8.1.6 Stopping criteria
• If the measurement is accurate to, say, 0.1%, then it is superfluous to try

to solve the equations tofar better than this accuracy.

• If all measurements were accurate to around 0.1%= 10−3, a suitable
stopping criterion would be:
∥

∥

∥
g(x(ν))

∥

∥

∥

∞
≤ 10−4, and

∥

∥

∥
∆x(ν−1)

∥

∥

∥

2
≤ 10−4 or

∥

∥

∥
∆x(ν−1)

∥

∥

∥

∞
≤ 10−4.

• We might require that this condition be satisfied over several successive
iterates.

• We can also try to apply the chord and Kantorovich theorems tothe
current iterate,x(ν) say, re-interpreted as a new initial guess.
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8.1.7 Circuit changes
• Now we suppose that the equations areparameterizedby a parameter

χ ∈ Rs.
• That is,g : R4×Rs→ R4, with the base-case solution corresponding to

χ = 0.

8.1.7.1 Sensitivity
• Sensitivity of the base-case solution to changes inχ:

∂x⋆

∂χ (0) =−[J(x⋆;0)]−1K(x⋆;0),

• whereJ : R4×Rs→ R4×4 andK : R4×Rs→ R4×s are defined by:

∀x∈ R
4,∀χ ∈ R

s,J(x;χ) = ∂g
∂x (x;χ),K(x;χ) = ∂g

∂χ (x;χ).
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8.1.7.2 Large change analysis
• Apply the Newton–Raphson method (or one of the variants) to the

changed system using an initial guess for the changed systemthat is given
by the base-case solutionx⋆ or by an estimate of the change-case solution
using sensitivity analysis.

• For a change in a resistor or diode, we can also update the Jacobian using
a rank one update.
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8.2 Analysis of an electric power system

neutral

1 2

3
t

Y1

Y13
t

t
Y3

Y23
t

Y2

Y12

Fig. 8.2. Per-phase
equivalent circuit
model repeated from
Figure6.10.

Title Page ◭◭ ◮◮ ◭ ◮ 107 of 129 Go Back Full Screen Close Quit



8.2.1 Jacobian
8.2.1.1 Terms

• The entries ing : Rn → Rn are either of the formpℓ : Rn → R:

∀x∈ R
n, pℓ(x) = ∑

k∈J(ℓ)∪{ℓ}
uℓuk[Gℓkcos(θℓ−θk)+Bℓksin(θℓ−θk)]−Pℓ,

• or of the formqℓ : Rn → R:

∀x∈ R
n,qℓ(x) = ∑

k∈J(ℓ)∪{ℓ}
uℓuk[Gℓksin(θℓ−θk)−Bℓkcos(θℓ−θk)]−Qℓ.

• The entries in the vectorx are either of the formθk or of the formuk.
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Terms, continued
• Four qualitative types of partial derivative terms corresponding to each

combination:

∀x∈ R
n,

∂pℓ
∂θk

(x)

=











∑
j∈J(ℓ)

uℓu j [−Gℓ j sin(θℓ−θ j)+Bℓ j cos(θℓ−θ j)], if k= ℓ,

uℓuk[Gℓksin(θℓ−θk)−Bℓkcos(θℓ−θk)], if k∈ J(ℓ),
0, otherwise,

∀x∈ R
n,

∂pℓ
∂uk

(x)

=











2uℓGℓℓ+ ∑
j∈J(ℓ)

u j [Gℓ j cos(θℓ−θ j)+Bℓ j sin(θℓ−θ j)], if k= ℓ,

uℓ[Gℓkcos(θℓ−θk)+Bℓksin(θℓ−θk)], if k∈ J(ℓ),
0, otherwise,
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Terms, continued

∀x∈ R
n,

∂qℓ
∂θk

(x)

=











∑
j∈J(ℓ)

uℓu j [Gℓ j cos(θℓ−θ j)+Bℓ j sin(θℓ−θ j)], if k= ℓ,

uℓuk[−Gℓkcos(θℓ−θk)−Bℓksin(θℓ−θk)], if k∈ J(ℓ),
0, otherwise,

∀x∈ R
n,

∂qℓ
∂uk

(x)

=











−2uℓBℓℓ+ ∑
j∈J(ℓ)

u j [Gℓ j sin(θℓ−θ j)−Bℓ j cos(θℓ−θ j)], if k= ℓ,

uℓ[Gℓksin(θℓ−θk)−Bℓk cos(θℓ−θk)], if k∈ J(ℓ),
0, otherwise.
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8.2.1.2 Partitioning by types of terms
• Order the entries ing so that all the equations for real power appear first

in a sub-vectorp followed by all the equations for reactive power in a
sub-vectorq.

• Partitionx so that all the voltage angles appear first in a sub-vectorθ
followed by all the voltage magnitudes in a sub-vectoru.
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Partitioning by types of terms, continued

• We can partition the Jacobian into four blocks:

∀x∈ R
n,J(x) =

[

Jpθ(x) Jpu(x)
Jqθ(x) Jqu(x)

]

, (8.2)

∀x∈ R
n,Jpθ(x) =

∂p
∂θ (x),

∀x∈ R
n,Jpu(x) =

∂p
∂u (x),

∀x∈ R
n,Jqθ(x) =

∂q
∂θ (x),

∀x∈ R
n,Jqu(x) =

∂q
∂u (x).

8.2.1.3 Sparsity

• Each of the four blocks in (8.3) has the same sparsity structure as the bus
admittance matrix.
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8.2.1.4 Symmetry

• The blocksJpθ,Jpu, Jqθ, andJqu are not symmetric and[Jpu]
† 6= Jqθ.

• That is, the Jacobian as a whole is not symmetric.

8.2.1.5 Partitioning by bus number
• An alternative to partitioning by the types of terms is to partition the

Jacobian into blocks based on the bus number.
• As discussed in Section5.5.4.2, we can treat each 2×2 block as a single

“entry” in our sparse matrix.
• We can use block pivoting as discussed in Section5.5.4.2.
• We can treat each 2×2 block as a single entity in factorization by

explicitly inverting the block using the formula for the inverse of a 2×2
matrix.

• We will not use this approach for solving the power flow problem.
• In some extensions of this problem block pivoting can be exploited to

speed up calculations considerably.
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8.2.2 Initial guess
• A sensible choice for the initial guess for the voltage magnitude is

u(0) = 1, where1 is the vector of all ones.
• A possible guess for the voltage angle isθ(0) = 0.
• These choices of initial guess for voltage angle and magnitude are called

a “flat start.”

8.2.3 Calculation of iterates

[

Jpθ(x) Jpu(x)
Jqθ(x) Jqu(x)

][

∆θ(ν)
∆u(ν)

]

= −
[

p(x(ν))
q(x(ν))

]

, (8.3)

θ(ν+1) = θ(ν)+∆θ(ν), (8.4)

u(ν+1) = u(ν)+∆u(ν). (8.5)
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8.2.4 Approximation of the Jacobian and update
8.2.4.1 Chord and Shamanskii updates

• Using a flat start,x(0) =

[

θ(0)
u(0)

]

=

[

0
1

]

, as our initial guess, the entries for

the Jacobian become:

∂pℓ
∂θk

(x(0)) =











∑
j∈J(ℓ)

Bℓ j , if k= ℓ,

−Bℓk, if k∈ J(ℓ),
0, otherwise,

∂pℓ
∂uk

(x(0)) =











2Gℓℓ+ ∑
j∈J(ℓ)

Gℓ j, if k= ℓ,

Gℓk, if k∈ J(ℓ),
0, otherwise,
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Chord and Shamanskii updates, continued

∂qℓ
∂θk

(x(0)) =











∑
j∈J(ℓ)

Gℓ j , if k= ℓ,

−Gℓk, if k∈ J(ℓ),
0, otherwise,

∂qℓ
∂uk

(x(0)) =











−2Bℓℓ− ∑
j∈J(ℓ)

Bℓ j , if k= ℓ,

−Bℓk, if k∈ J(ℓ),
0, otherwise.

8.2.4.2 Approximating particular terms
• We will first approximate the Jacobian by:

(i) neglecting all the terms in the blocksJpu andJqθ, and
(ii) approximating some of the terms in the blocksJpθ andJqu.

• Neglecting terms in the blocks increases the sparsity of theequations.
• Approximations to the terms inJpθ andJqu then yield a linear system that

is similar to the Jacobian used in the chord update with a flat start.
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Neglecting terms

• As noted in Section6.2.4.4, typically:

|Gℓk| ≪ |Bℓk|. (8.6)

• A typical limit on angle differences is|θℓ−θk| ≤ π
4.

|sin(θℓ−θk)| ≈ |θℓ−θk|, for small angle differences in radians,
≪ 1, for small angle differences, (8.7)

cos(θℓ−θk) ≈ 1, for small angle differences, (8.8)
uℓ ≈ 1. (8.9)
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Neglecting terms, continued

∂pℓ
∂θk

(x) = uℓuk[Gℓksin(θℓ−θk)−Bℓkcos(θℓ−θk)],

≈ Gℓk(θℓ−θk)−Bℓk,

sinceuℓ ≈ 1,uk ≈ 1,cos(θℓ−θk)≈ 1,
≈ −Bℓk, since|θℓ−θk| ≪ 1 and|Gℓk| ≪ |Bℓk|, (8.10)

∣

∣

∣

∣

∂pℓ
∂uk

(x)

∣

∣

∣

∣

=
∣

∣uℓ[Gℓkcos(θℓ−θk)+Bℓksin(θℓ−θk)]
∣

∣ ,

≈ |Gℓk+Bℓk(θℓ−θk)| ,
sinceuℓ ≈ 1,cos(θℓ−θk)≈ 1,sin(θℓ−θk)≈ (θℓ−θk),

≪ |Bℓk|, since|θℓ−θk| ≪ 1 and|Gℓk| ≪ |Bℓk|, (8.11)
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Neglecting terms, continued
∣

∣

∣

∣

∂qℓ
∂θk

(x)

∣

∣

∣

∣

=
∣

∣uℓuk[−Gℓkcos(θℓ−θk)−Bℓk sin(θℓ−θk)]
∣

∣ ,

≈ |−Gℓk−Bℓk(θℓ−θk)| ,
sinceuℓ ≈ 1,uk ≈ 1,cos(θℓ−θk)≈ 1,sin(θℓ−θk)≈ θℓ−θk),

≪ |Bℓk|, since|θℓ−θk| ≪ 1 and|Gℓk| ≪ |Bℓk|, (8.12)
∂qℓ
∂uk

(x) = uℓ[Gℓksin(θℓ−θk)−Bℓk cos(θℓ−θk)],

≈ Gℓk(θℓ−θk)−Bℓk,

sinceuℓ ≈ 1,cos(θℓ−θk)≈ 1,sin(θℓ−θk)≈ (θℓ−θk),
≈ −Bℓk, since|θℓ−θk| ≪ 1 and|Gℓk| ≪ |Bℓk|. (8.13)

• These approximations reflect the qualitative observation that real power
flow is mostly determined by differences in voltage angles across lines,
while reactive power flow is mostly determined by voltage magnitude
differences
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Neglecting terms

• If we neglect all the terms inJpu andJqθ, then we can then approximate

the Jacobian byJ(x)≈
[

Jpθ(x) 0
0 Jqu(x)

]

.

[

Jpθ(x) 0
0 Jqu(x)

][

∆θ(ν)
∆u(ν)

]

= −
[

p(x(ν))
q(x(ν))

]

, (8.14)

θ(ν+1) = θ(ν)+∆θ(ν),
u(ν+1) = u(ν)+∆u(ν).

• These are called thedecoupledNewton–Raphson update equations:

Jpθ(x)∆θ(ν) = −p(x(ν)), (8.15)

Jqu(x)∆u(ν) = −q(x(ν)). (8.16)
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Approximating terms

• In addition to assuming that|Gℓk| ≪ |Bℓk| and that cos(θℓ−θk)≈ 1, we
will assume that:

(i) for any busℓ, the magnitude of the voltagesu j at busesj ∈ J(ℓ) is
approximately the same as the magnitude of the voltageuℓ at ℓ, and

(ii) Bℓℓ ≈−∑ j∈J(ℓ)Bℓ j .

∂pℓ
∂θℓ

(x) = ∑
j∈J(ℓ)

uℓu j [−Gℓ j sin(θℓ−θ j)+Bℓ j cos(θℓ−θ j)],

≈ ∑
j∈J(ℓ)

(uℓ)
2[−Gℓ j sin(θℓ−θ j)+Bℓ j cos(θℓ−θ j)],

assumingu j ≈ uℓ for j ∈ J(ℓ),

≈ ∑
j∈J(ℓ)

(uℓ)
2Bℓ j , since|Gℓk| ≪ |Bℓk| and cos(θℓ−θk)≈ 1,

≈ −(uℓ)
2Bℓℓ, sinceBℓℓ ≈−∑ j∈J(ℓ)Bℓ j .
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Approximating terms, continued

∂qℓ
∂uℓ

(x) = −2uℓBℓℓ+ ∑
j∈J(ℓ)

u j [Gℓ j sin(θℓ−θ j)−Bℓ j cos(θℓ−θ j)],

≈ −2uℓBℓℓ+ ∑
j∈J(ℓ)

uℓ[Gℓ j sin(θℓ−θ j)−Bℓ j cos(θℓ−θ j)],

assumingu j ≈ uℓ for j ∈ J(ℓ),

≈ −2uℓBℓℓ− ∑
j∈J(ℓ)

uℓBℓ j , since|Gℓk| ≪ |Bℓk| and cos(θℓ−θk)≈ 1,

≈ −uℓBℓℓ, assumingBℓℓ ≈−∑ j∈J(ℓ)Bℓ j ,

∂pℓ
∂θk

(x) ≈ −uℓBℓkuk,

∂qℓ
∂uk

(x) ≈ −uℓBℓk.
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Approximating terms, continued

∂pℓ
∂θk

(x) = 0,

= −uℓBℓkuk,
∂qℓ
∂uk

(x) = 0,

= −uℓBℓk.

• In summary, the approximations
∂pℓ
∂θk

(x)≈−uℓBℓkuk and

∂qℓ
∂uk

(x)≈−uℓBℓk apply for allℓ andk.
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Compact representation

• Define the matrixB to be the imaginary part of the bus admittance matrix
A.

• DefineU to be the diagonal matrix having diagonal entries equal to the
corresponding entries ofu.

Jpθ(x) ≈ −UBU,

Jqu(x) ≈ −UB.

At iterationν, the decoupled equations (8.14) can therefore be
approximated by:

−U (ν)BU(ν)∆θ(ν) = −p(x(ν)), (8.17)

−U (ν)B∆u(ν) = −q(x(ν)). (8.18)
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Pre-conditioning and scaling variables

• By movingu(ν) to the right-hand sides of (8.17) and (8.18) and defining
∆φ(ν) = u(ν)∆θ(ν), we obtain the equivalent system:

−B∆φ(ν) = −[U (ν)]
−1

p(x(ν)), (8.19)

−B∆u(ν) = −[U (ν)]
−1

q(x(ν)). (8.20)

• The coefficient matrix(−B) on the left-hand sides of both (8.19)
and (8.20) is constant and symmetric.

• To solve (8.19) and (8.20), we need only performLU factorization of
(−B) once, not once per iteration.

• Once∆φ(ν) is known,∆θ(ν) can be calculated using:

∆θ(ν) = [U (ν)]
−1

∆φ(ν). (8.21)
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Discussion

• The advantage of using a constant coefficient matrix in (8.19) and (8.20)
is that it significantly reduces the computational effort per iteration.

• The approximations we have described are not always very good.
• But found to work in practice to decrease computational effort overall.
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8.2.4.3 Quasi-Newton methods
• Quasi-Newton methods can also be applied to solve the equations.
• Equations (8.19) and (8.20) specify a suitable initialization for the

approximation to the Jacobian.

8.2.4.4 Iterative methods
• Instead of directly solving the linear equations for the Newton–Raphson

update, it is also possible to use an iterative algorithm, such as the
conjugate gradient method.
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8.2.5 Step-size rules
• A step-size rule can aid in convergence.

8.2.6 Stopping criteria
• Require a sufficiently small value of the norm of the:

– change between successive iterates, and
– deviation of the entries ofg from zero.
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8.2.7 Circuit changes
8.2.7.1 Sensitivity

∂x⋆

∂χ (0) = −[J(x⋆;0)]−1K(x⋆;0),

∀x∈ R
n,∀χ ∈ R

s,J(x;χ) =
∂g
∂x (x;χ),

∀x∈ R
n,∀χ ∈ R

s,K(x;χ) =
∂g
∂χ (x;χ).

8.2.7.2 Large change analysis
• Large changes to the real and reactive injections into the system can be

analyzed by restarting the Newton–Raphson updates based onthe
solution to the base-case system.

• If the fast decoupled update equations are used, no changes are necessary
to the Jacobian.

• Changes to the transmission lines require an update to the Jacobian even
if the approximate Jacobian is used.
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